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Software inspections are one of the most powerful error detection 

techniques in software development. Traditionally, experienced software
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inspectors read the source code line-by-line, report the errors as they find them, 

and document comments and suggestions. Selecting code candidates for an 

inspection is a challenging and difficult task for the inspection teams due to the 

enormous size of a software system. It is practically impossible to inspect all of 

the code. Therefore, a surrogate measure to predict the amount of software 

errors that are in the system is needed and this measure is called the Fault Index. 

The Fault Index is a single numeric value calculated from statistical analysis of 

the variability of source code metrics. Utilizing a Fault Index to select code 

candidates prior to and during the inspection process increases the effectiveness 

of the inspection. In addition, incorporating the Fault Index to select code 

candidates is more efficient than inspectors' opinion. Finally, it is up to the 

inspection team members to inspect and remove errors from those potentially 

fault-prone components.
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CHAPTER I

1.1 Introduction

Inspections are vital in both the success and quality of a delivered software 

product. This paper will investigate the impact and the potential usage of the 

Fault Index metric to guide inspections and its effectiveness given time and 

budget constraints. In addition, this paper will attempt to demonstrate a positive 

side effect of using the Fault Index. The Fault Index can potentially reduce both 

the amount of time and costs associated with software inspections and improve 

the overall quality and reliability of the software. Finding highly complex errors 

early in the software lifecycle has a positive and significant impact on both 

development and support costs as well as customer satisfaction.

The amount of time spent during software inspections is highly 

dependant on pre-inspection reviews and preparation. Typically, the team 

reviews the code prior to the formal inspection. A formal inspection is 

considered a strict formal process that has defined rules and guidelines. 

However, some studies indicate that pre-reviews are not performed at all (Buck, 

1981). Many times, the inspectors who attend the inspections have briefly
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reviewed the material, did not understand the material, or never reviewed it at 

ah.

In today's software development market, high demands are placed on 

development organizations to satisfy customers through timely and inexpensive 

delivery of a high quality product. Many development organizations are 

competing in a fast-paced technological market and their success greatly 

depends on delivering high quality software on time, and within budget. Due to 

time and market demands however, many development organizations are 

sacrificing quality. This trend is increasing despite significant gains from the 

efforts of research and development to improve software engineering techniques.

One of the many key process improvement activities recommended by CMMI® 

is software inspections. Software inspections provide a vehicle in which to detect 

potential problems earlier in the life cycle. Detecting and ultimately removing 

injected errors early in the life cycle translates into reduced effort and costs later 

in the life cycle. In order to perform adequate and efficient software inspections 

effectively, teams of people must review the code, submit findings, and finally 

perform the inspection. If the inspected product contains a million lines of code, 

it is highly probable that the inspection will be ineffective and time consuming. 

Often, complete inspections may not be practical, in which case, we need the
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ability to make informed decisions concerning which portions of the system need 

inspection, and which may forgo inspection.

An approach to this problem is to identify and collect some static 

measures from the source code to enhance and use in the inspection process. 

There are various significant types of static metrics that could be applied to 

identify high-risk modules that a project might choose from (Khoshgoftaar, 

Munson, Lanning, 1994). When selecting a static analysis tool, the tool must 

have the ability to calculate some primitive static metrics. Once this step is 

performed, a technique called principal component analysis (PCA) is conducted 

next on the output of the static analysis tool. When the principal component 

analysis is complete, identification of the Fault Index measure is performed. 

Finally, when the Fault Index is known, it now gives the inspection teams the 

ability to uniquely identify and select high-risk code inspection candidates. This 

process will not only facilitate and improve code coverage during the inspection, 

but will most likely expose those critical portions of the source code that need 

thorough inspection. In addition, by utilizing a Fault Index, the test teams will 

now have the capacity to perform additional types of testing, hence increasing

the error discovery rate.
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1.2 Research Objective

The goal of this project is to incorporate a Fault Index in the software inspection 

process. Today, many development teams do not know how to adequately select 

code candidates to inspect. This causes the teams to randomly select code 

modules that may or may not have critical potential faults. Code candidates 

selected based on the Fault Index will result in improved quality of the delivered 

software product. This is most significant because it can reduce test, support, 

and lifecycle costs, improve software reliability, reduce time to market, and 

eventually lead to increased customer satisfaction. To validate these findings, 

some historical project data will be collected for use as the baseline. Next, the 

teams will integrate and use the Fault Index and measure its impact on time 

development process. In parallel, the teams will collect various project data and 

track the projects through closure and delivery to the customer. This 

investigation will attempt to prove the effectiveness of using a Fault Index to 

select code inspection candidates that impacts software reliability, rework,

overall costs, and time to market.



CHAPTER II

2.1 Background of Software Inspections

IBM created the software inspection process in 1972, for the dual purposes of im

proving software quality and increasing programmer productivity (Fagan, 1986). 

Its accelerating rate of adoption throughout the software development and 

maintenance industry is an acknowledgment of its effectiveness in meeting its 

goals (Fagan, 1986). Software inspection is a method of static testing to verify 

that software meets its requirements. It engages the developers and others in a 

formal process of investigation that usually detects more defects in the product, 

and at lower cost, than does machine testing. Users of the method report very 

significant improvements in quality that are accompanied by lower development 

costs and greatly reduced maintenance efforts. Software inspections examine the 

products of each major development activity, such as requirements specification, 

high-level design, detailed design, and coding (Fagan, 1976). Code inspections 

are a rigorous and strict form of peer review technique used for identification 

and removal of coding errors to improve productivity, manageability, and 

quality (Fagan, 1976; Freedman, Weinberg, 1990). Software reviews, or

5
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inspections, are an important and widely used practice for the development of 

quality software (Fagan 1976, Gilb 1993, Humphrey 1995, Strauss & Ebenau 

1994).

Most code inspections involve a prior stage of individual preparation 

(Fagan 1976, Gilb 1993, Freedman and Weinberg 1990, Strauss & Ebenau 1994). 

While multiple reviewers find more defects than an average individual reviewer 

does, they rarely (if ever) report all the defects lurking in the product (Land et al 

1997a & 1997b). Often, inspection meetings fail to report defects detected in 

preparation by individual reviewers (Votta 1993). Where reviewers have 

individually searched for defects ahead of the meeting, they find few new ones at 

the inspection meeting (Porter and Votta 1994, Porter et al 1995). For these 

reasons, and in view of the resource and schedule costs of holding inspections, 

some reviewers have questioned the need to hold an inspection meeting (Votta 

1993, Johnson & Tjahjono 1998). However, other findings have shown that 

excellent results have been obtained by both small and large organizations in all 

aspects of new development as well as in maintenance. There is some evidence 

that developers who participate in the inspection of their own product actually 

create fewer defects in future work. Because inspections formalize the 

development process, productivity and quality enhancing tools can be adopted 

more easily and rapidly.
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2.1.1 Benefits in Defect Reduction, Prevention, and Cost Improvement

With the implementation of the inspection process by IBM, they achieved 

significant improvements in quality. IBM has nearly doubled the number of 

lines of code shipped for System/370 software products since 1976, while the 

number of defects per thousand lines of code has been reduced by two-thirds. 

Feedback from early MVS/XA and VM/SP Release 3 users indicates these 

products met and, in many cases, exceeded ever-increasing quality expectations 

(Fenton, 1984).

Observation of a small sample of programmers suggested that early 

experience gained from inspections caused programmers to reduce the number 

of defects that were injected in the design and code of programs created later 

during the same project. Preliminary analysis of a much larger study of data 

from recent inspections is providing similar results. As improvements are 

incorporated into everyday practice, it is probable that inspections will help 

bring further reductions in defect injection and detection rates. Additional 

reports showing that inspections improve quality and reduce costs follow. In all 

these cases, the cost of inspections is included in the project cost. Typically, all 

design and code inspection costs amount to 15% of project cost.
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IBM and AETNA reported that software inspections found 82 and 93 

percent, respectively, of all defects (that would cause malfunction) detected over 

the life cycle of the products. Other account contracts found over 50 percent of 

all defects by inspection. In similar reports, The Standard Bank of South Africa 

and American Express, although unable to use trained inspection moderators 

(and the former conducted only code inspections), yet both still managed to 

obtain outstanding results using inspections. The tremendous reduction in 

corrective maintenance at the Standard Bank of South Africa also brought 

impressive savings in life cycle costs (Graden, Horsley, and Pingel, 1986).

Naturally, a reduction in maintenance effort allows redirection of 

programmers to work off the application backlog, which is reputed to contain at 

least two years of work at most locations. Impressive cost savings and quality 

improvements have been realized by inspections. For a product of about 20 000 

Lines of Code (LOC), R. Larson (Larson, 1975) reported that code inspections 

resulted in:

• Modification of approximately 30 percent of the functional matrices 

representing test coverage

• Detection of 176 major defects in the code (i.e., in 176 instances testing 

would have missed testing a critical function or tested it incorrectly)
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• Produced a cost savings of more than 83 percent in programmer time by 

detecting the major defects by code inspection as opposed to finding them 

during functional variation testing

There are those who would use inspections whether or not they are cost justified 

for defect removal because of the nonquantifiable benefits the technique supplies 

toward improving the service provided to users and toward creating a more 

professional application development environment (Crossman, 1979).

Experience has shown that inspections have the effect of slightly front-end 

loading the commitment of people resources in development by adding to 

requirements and design, while greatly reducing the effort required during 

testing and for rework of design and code. The result is an overall net reduction 

in development resources and length of schedule. Figure 2.1 is a pictorial 

description of the familiar "snail" shaped curve of software development 

resources versus schedule, with and without inspections.
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WITHOUT INSPECTIONS

Figure 2.1: Software development Inspection resource curve

Recently, some researchers have argued that pre-inspection meetings may be 

worthwhile because they are effective at detecting false positives i.e. issues that 

are not true defects (Sauer et al 1996, Porter & Johnson 1997), and because they 

detect soft maintenance issues (Porter et al 1997). Experience suggests that, in 

some organizations, day-to-day pressures preclude effective individual 

preparation, the result being that an inspection meeting is essential as the only 

point at which defect detection occurs. While there continue to be good reasons 

for holding pre-inspection meetings, it is desirable to design the inspection 

process to be as effective as possible within acceptable cost constraints.
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This paper reports the results of an experimental study of utilizing a Fault 

Index during inspections. The purpose of this research is to empirically 

demonstrate that using a Fault Index to select fault-prone components improves 

inspection defect detection performance. Less predictably, this study finds that 

utilizing a Fault Index to select component code candidates also results in the 

inspection being more effective at finding new defects not previously discovered 

by individual effort. The combined positive effects of the Fault Index strongly 

indicate that it is worth adopting. Further analysis provides a deeper 

understanding of how code candidate selections are based on principal 

component analysis findings.

2.1.2 The Software Inspection

The software inspection process is a set of operations occurring in a definite 

sequence that operates on a given input and converts it to a desired output. In 

this case, the input is developed source code and the output is discovered 

defects. Once this process is completed, an exit criterion must be satisfied in 

order to determine the success of executing this process.

The general purpose of the inspection is to discover and record defects. 

Defects recorded during the code inspection are identified by component, a brief
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description of the defect, and type of error1. Currently, preparation for the 

inspection process is accomplished through the application of unstructured 

defect detection methods. These methods are composed of defect detection 

techniques, individual reviewer responsibilities, and a policy for coordinating 

responsibilities among the review team. Defect detection techniques range in 

prescriptiveness from intuitive, nonsystematic procedures (such as ad hoc or 

checklist techniques) to explicit and highly systematic procedures (such as 

correctness proofs). A reviewer's individual responsibility may be general, to 

identify as many defects as possible, or specific, to focus on a limited set of issues 

(such as ensuring appropriate use of hardware interfaces, identifying untestable 

requirements, or checking conformity to coding standards). Individual 

responsibilities may or may not be coordinated among the review team 

members. When they are not coordinated, all reviewers have identical 

responsibilities. In contrast, the reviewers in coordinated teams have distinct 

responsibilities. The most frequently used detection methods (ad hoc and 

checklist) rely on nonsystematic techniques. Reviewer responsibilities are 

general and identical. Multiple-session inspection approaches normally require 

reviewers to carry out specific and distinct responsibilities. One reason these 

approaches are rarely used may be that many practitioners consider it too risky

1 Errors are classified as Errors, Suggestions, Question and Other
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to remove the redundancy of general and identical responsibilities and to focus 

reviewers on narrow sets of issues that may or may not be present (Porter et al 

1997). Clearly, the advantages and disadvantages of alternative defect detection 

methods need to be understood before new methods can be safely applied.

2.2 Steps in the Software Inspection Process

In figure 2.2, each software inspection is itself a lengthy five or six-step process 

that is carried out by a designated moderator, by the author of the work product 

being inspected, and by at least one other peer inspector. The process steps are:
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Figure 2.2: Inspection Process

Planning for a code inspection begins when a developer's work product is ready 

for inspection. The first step is to select a moderator - a peer developer 

responsible for carrying out the inspection. The moderator typically is selected 

by the author or a first line manager from among a pool of qualified developers 

or may be selected by an independent group with overall responsibility for the 

conduct of inspections. Since the moderator has overall responsibility for the
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inspection, including the final decision on the work product's disposition at the 

end of the inspection, it is important that he or she be as objective as possible. 

One way to ensure this is to specify that the moderator not be a member of a 

group that has direct production responsibility for the inspected work product. 

The moderator's first responsibility is to meet with the author and to verify that 

the work product to be inspected meets the entry criteria for the inspection.

When the work product meets these criteria, the next step is to decide whether to 

hold an overview or not, to select the other inspectors, and to schedule the 

overview and the meeting.

An Overview is a presentation to provide inspectors with any background 

information they may need in order to properly inspect the author's work 

product. Typically, the author gives the overview, and it often covers material 

pertinent to a number of inspections. Another use of an overview is to provide a 

tutorial session on a specialized design or implementation technique for the 

inspected work product. Due to the complexities in calculating the Fault Index, a 

brief tutorial is recommended. For example, the purpose of using the Fault Index 

is to focus on those components or modules that are highly complex and have 

the highest risk of failure (Gupta, Patnaik, Emam, and Goel, 1998).

Preparation for a software inspection is an individual activity. The author 

prepares by collecting all the material required for this inspection. Once
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achieved, the next step would be to prepare a list and recommend which 

modules should be inspected. The other inspectors prepare by reviewing the 

code components identified by the output of the Fault Index calculation. The 

purpose of individual preparation is to develop an understanding of the work 

product and to note places where this understanding is incomplete, or where the 

work product appears to have defects. Obvious defects are noted during this 

step, but detailed analysis and classification of defects is deferred to the 

inspection meeting.

The next step in the inspection process is the formal meeting. The 

moderator conducts this meeting. There is an established agenda, which consists 

of:

• Introduction

• Establishing preparedness

• Reading material and recording defects

• Reviewing defect list

• Determining disposition

• Debriefing

During the introduction, the moderator introduces the inspectors and the 

examined material and states the purpose of the meeting. Preparedness is 

established by having each inspector report his or her preparation time. The
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moderator sums these times for entry. If the moderator feels that preparation 

has been insufficient for an effective meeting, he or she may postpone the 

meeting.

Reading the material and recording defects are the major activities of an 

inspection meeting. At the seating, one of the inspectors takes the role of reader 

and paces the group through the material by paraphrasing each "line" of the 

material aloud for the group. As the reader proceeds through the material, the 

inspectors (including the reader) interrupt with questions and concerns. Each of 

these is either handled immediately or tabled. Whenever the group agrees, or 

the moderator rules, that a defect has been detected, the recorder for that 

inspection notes the location, description, class, and defect type. The moderator 

or a fourth inspector, other than the author, can assume the role of recorder.

After the reading and recording of defects, the moderator has the recorder 

review the defect list to ensure that all defects are recorded and correctly 

classified. After this, the inspectors determine the disposition of the material: 

"meets," "rework," or "reinspect." The disposition of "meets" is given when the 

work product as inspected meets the exit criteria (or needs only trivial 

corrections) required for the inspection. The disposition of "reinspect" is when 

the rework will change the work product in a substantial way.
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The author performs inspection rework. This phase consists simply of correcting 

the defects noted in the inspection defect list. The follow-up step is the 

responsibility of the moderator. It consists of verifying the corrections made 

during rework. Clearly, this entire process can be time consuming and the net 

findings of faults in the code can be minimal.

2.2.1 Inspection Effectiveness and Attributes

A key attribute of software inspections is that the process itself collects data for 

evaluating its own effectiveness. When inspections were first being 

implemented in IBM by M.E. Fagan, a study was conducted which compared the 

effectiveness of the inspection process with an existing "walkthrough" approach. 

The bottom line of this study was that inspections resulted in a 23 percent 

productivity improvement and a 38 percent quality improvement (Buck, 1981).

Many additional studies conducted since then have documented the 

effectiveness of inspections (Peele, 1998). It is also important to note that 

inspections can be implemented on almost any software development project 

with minimal investment. This is another major benefit of the software 

inspection process and measured as a return on investment (ROI).
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2.2.2 The Return on Investment for Inspections

ROI can measure the economic value of popular approaches to software process 

improvement. ROI is a simple arithmetic ratio of net benefits to costs, expressed 

as a percentage. That is, benefits minus costs are the numerator, and total costs 

are the denominator. ROI measures the magnitude of benefits to costs, benefits 

returned above costs, profits achieved after expenses, value of an investment, 

actual benefits, cost savings, and efficiencies obtained. Code inspections provide 

an ROI of approximately 2,500 percent. The benefit to cost ratio for inspections is 

26:1. That means for every dollar spent on inspections yields 26 dollars in return. 

Therefore, code inspections have been found to provide the most benefit with the 

least amount of costs (Rico, 2002).

2.2.3 Scheduling for the Inspection

One of the key considerations to decide in planning for inspections is time. As 

previously mentioned, planning for the entire inspection process is challenging 

especially when time to market pressures exist. This situation is exacerbated 

when a large amount of code needs inspecting. Thoroughly examining all of the 

source code presents a significant challenge and is sometimes infeasible within

given time constraints.
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The starting point for code inspection implementation effort described in 

the next section is the incorporation and usage of a Fault Index standard for 

software code inspections. It provides an effective and efficient methodology for 

conducting software code inspections for a typical project.

2.2.4 Inspection Guideline Criteria

The implementation methodology first needs to establish and review the basic 

rules and instructions for the teams to follow. Some of the mandatory 

instructions for the code inspections are:

1. The inspection process should consist of the steps described previously; 

the inspection meeting should follow the agenda described previously.

2. The minimum number of participants for an inspection is three: a 

moderator/recorder, a reader, and the author.

3. An inspection meeting cannot be held unless the participants have 

individually studied the product prior to the meeting.

4. Each inspection must create a defect list, and defects classified.

5. Collect data on the effort expended and the types of defects found.

For each code inspection, it is mandatory that the project specify:

Entry criteria
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• Exit criteria

• Defect types

Entry criteria are the pro forma conditions that a work product must meet before 

considered ready for inspection. These generally include the development 

activity exit criteria that would apply if an inspection were not specified for that 

activity, but they also include requirements for an effective inspection. For 

example, the entry criteria for a code inspection would require a clean compile 

and Fault Index calculation, but would also specify that the inspected material 

have visible line numbers and pertinent requirements, design, and change 

information included as part of the inspection package. Exit criteria are the 

completion conditions for an inspection. Typically, these are the correction of all 

detected defects and the documentation of any uncorrected defects in the project 

trouble-tracking system.

As described in the previous section, defect counts are used as process 

control data. Thus, the precise classification of defects is an essential part of the 

specification of each inspection. For software inspections, a defect is defined to 

be non-compliance with the product specification or a documentation standard. 

Again, individual preparation is a mandatory requirement of the code inspection 

process. At the inspection meeting, the emphasis is on pooling the individual 

understanding gained during preparation to maximize defect detection.
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Strategies for detecting defects depend on the inspection, the kind of material, 

and the defect categories. In Fagan's implementation, the inspectors are 

provided with checklists keyed to the defect types (Fagan, 1976). Since a 

software inspection is a cooperative process that relies on group synergy, the 

selection of participants is an important issue. In a code inspection, teams of 

three or four developers concerned only with the detail design, coding, and unit 

test are effective (Graden & Horsley, 1986).



CHAPTER III

3.1 Code Inspection and the Fault Index Process

Source code is an elusive entity. It contains complexities both obvious and 

hidden. It contains attributes that either enhance or detract from its 

understandability, readability, complexity, maintainability, and reliability. It can 

be entirely free of defects or contain hazardous, devastating ones. To improve 

source code quality is to identify and remove detrimental aspects of the source 

code and enhance the beneficial aspects. Software measurement is one method 

for identifying and differentiating detrimental and beneficial aspects of source 

code. Indeed, there are certain complexity metrics that have shown to be 

distinctly associated with defects (Munson and Khoshgoftaar, 1990a).

The methodology for identifying source code attributes and their relationship to 

defects was demonstrated in several antecedent studies. The main idea is that 

we can identify those software attributes that are associated with defects.

23
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The theory and contention of this paper is that the usage of the Fault Index to 

rank and select high-risk modules used for a code inspection will ultimately 

improve inspection effectiveness and thus improve code quality, reduce rework, 

and improve field reliability.

Usually, the author and several other reviewers examine a piece of source 

code for the purpose of identifying defects. To identify defects the reviewers 

must understand the code. Code inspections are undoubtedly useful, but 

humans are fallible and so the reviews and inspections are fundamentally 

flawed; defects pass code inspections undetected (Votta, 1993). This downstream 

effect has major consequences for a development organization. As defects go 

undetected through the product lifecycle, it becomes more costly to find and fix 

them (Porter et al 1997). Figure 3.1 shows the cost of a defect as it moves through 

the project lifecycle. The figure contains data collected from over 70 projects 

beginning in 2004.
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Figure 3.1: Lifecycle Defect Costs 

The figure shows how much it costs to find and fix a defect at each process 

step. The y-axis represents defects/kloc and the x-axis represents each process 

step. Finding and fixing a defect in the requirements phase costs $100. When a 

defect escapes requirements and is found and fixed in the test phase, it now costs 

$1700. When the defect goes undetected and not fixed early in the lifecycle, the 

cost significantly increases from requirements to the field. Therefore, it is less 

costly to find defects earlier than later in the field. In addition, customer found 

defects negatively impacts customer satisfaction. Therefore, enhancing source 
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code understanding would improve the effectiveness of reviews and inspections 

thus substantially reduce lifecycle costs and preventing customer dissatisfaction. 

Subsequently, fewer defects would remain undetected and the overall quality of 

the source code would improve.

Through a considerable amount of research, statements on inspection 

effectiveness have been formalized and recognized. It is known that "...more 

time should be spent on a complex part of the code" (Khoshgoftaar, Munson, 

Lanning, 1994) and "identify spots where code is most complex, best inspections 

are only 60 - 80 percent effective." Effectiveness of source code inspections are 

improved by the identification and rigorous review of the most complex sections 

of the source code.

3.1.1 Introduction to the Fault Index

Software complexity is like the weather. Everyone "knows" that today's weather 

is better or worse than yesterday's. However, if an observer were pressed to 

quantify the weather, the questioner would receive a list of atmospheric 

observations such as temperature, wind speed, cloud cover, and precipitation. It 

is anyone's guess as to how best to build a single index of weather from the 

weather metrics. Software complexity is defined in IEEE Standard 729-1983 as:
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The degree of complication of a system or system component, determined by 

such factors as the number and intricacy of interfaces, the number and intricacy 

of conditional branches, the degree of nesting, the types of data structures, and 

other system characteristics (IEEE, 1983).

By counting these composite metric attributes (and many others), 

researchers are trying to build a single index of software complexity (Stark and 

Lacovara, 1985). With a single index available, Java subroutines2 are placed in 

complexity order relative to one another, giving rise to the name "relative 

complexity." Recently, relative complexity has gained an alternative name called 

the Fault Index. The Fault Index can be used prior to and during the coding, 

testing, and maintenance phases of the software life cycle to locate code "hot 

spots." The challenge for researchers in software complexity is to define a 

computational method that agrees with a programmer's intuition of complexity 

and highly correlates to attributes such as code defects.

With many program complexity metrics available, it is difficult to rank 

programs by complexity: the different metrics can give different indications. 

There are two parts to this problem. First, because different metrics can 

measure the same program attribute, we need a method of evaluating a given 

program attribute based on the values of all metrics that measure this at

2 Hereafter, we refer genetically to "functions", "modules", and "packages" as the operative level 
of granularity of the analysis.



2 8

tribute. Second, because different metrics can measure distinct program 

attributes, we need a method of evaluating the overall program complexity 

based on the preferred values of all program metric attributes. Principal 

components analysis (PCA) is a statistical method that represents each 

independent variable metric in proportion to the amount of unique variation 

contributed by that complexity metric. The next section describes the rationale 

for using the statistical technique called principal component analysis. Principal 

component analysis identifies a small number of unobservable factors, which 

give rise to function complexity. Next, the method for building a single Fault 

Index based on the principal component analysis is examined. Finally, the 

results of the combination of the Fault Index and inspection process yield a 

remarkable improvement to both the inspection process and overall software 

development lifecycle.

3.2 The Fault Index Metric

Researchers have developed a realistic measure of a single index metric called 

the Fault Index that combines the measuring capabilities of any number of 

software metrics (Munson and Khoshgoftaar, 1990a). The method applies 

principal components analysis, a widely used statistical method that is useful in
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identifying uncorrelated sources of variation in multivariate data (Johnson and 

Wichern, 1992). A multivariate data set consists of values for each of m attributes 

for each of n observations, and thus can be represented by an n X m matrix.

When applying principal components analysis, one typically seeks to account for 

most of the variability in the m attributes of this matrix with a single fault index. 

The selected principal components explain the structure of software complexity 

data, and refer to the components as complexity domains (Munson and 

Khoshgoftaar, 1992).

In order to simplify the structure of software complexity even further than 

the orthogonal domains produced by the principal components analysis, it 

would be useful if each of the program modules in a software system could be 

characterized by a single value representing some cumulative measure of 

complexity. Furthermore, the measure would serve as a parameter in a function 

to rank the complexity of software modules. The objective in the selection of 

such a linear function, g, is that it be related in some manner to software defects 

either directly or inversely such that g(x) = ax + b where x is the cumulative 

measure of complexity. The more closely related x is to software defects, the 

more valuable the function g will be in the anticipation of software defects. 

Previous research has established that the Fault Index metric has properties that 

will be useful in this regard. The Fault Index metric is a weighted sum of a set of
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uncorrelated attribute domain metrics (Munson and Khoshgoftaar, 1990a; 

Munson and Khoshgoftaar, 1990b). This Fault Index metric represents each raw 

metric in proportion to the amount of unique variation contributed by that 

metric.

To avoid the use of negative complexity values, scale the module Fault Indexes 

to a new mean and standard deviation. For this study, the Fault Index values 

scale such that they have a mean of 50 and a standard deviation of 10. Thus, the 

average Fault Index of the scaled values will be 50. A module with a Fault Index 

of 60 will be seen to be one standard deviation above the new system average of 

50.

The principal value of the Fault Index metrics is in its relationship to software 

defects. When the Fault Index metric is calculated, a ranking from the highest to 

lowest value will be performed. If the Fault Index ranking of a program module 

is large, then the number of defects ultimately found in that module will 

potentially be large. In this capacity, the Fault Index measure will satisfy the 

need as a fault substitute. In addition to software defects, the Fault Index metric 

also has many applications in software project management and software 

reliability engineering (Khoshgoftaar and Munson, 1992; Munson and

Khoshgoftaar, 1990a, 1991b).
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3.2.1 Principal Component Analysis

Principal component analysis (PCA) involves a mathematical procedure that 

transforms a number of (possibly) correlated variables into a (smaller) number of 

uncorrelated factors called principal components. The first principal component 

accounts for as much of the variability in the data as possible, and each 

succeeding component accounts for as much of the remaining variability as 

possible.

Traditionally, principal component analysis is performed on a square 

symmetric matrix of pure sums of squares and cross products (SSCP),

Covariance (scaled sums of squares and cross products), or Correlation (sums of 

squares and cross products from standardized data). The analysis results for 

objects of type SSCP and Covariance do not differ, since these objects only differ 

in a global scaling factor. A correlation object has to be used if the variances of 

individual variants differ much, or if the units of measurement of the individual 

variants differ.

Among the large set of static code metrics, each member or metric is observed as 

a measure of a distinct attribute of a program. Some subsets of this set actually 

measure a single attribute. For example, two common code metrics, executable 

lines of code and physical lines of code both measure the number of lines of code
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in a program but the counts are slightly different. In some languages, this 

correspondence is one to one. These two static metrics share a common measure 

of program size. This results in a high correlation between the two metrics. This 

strong correlation identifies that the two static metrics measure the same 

program attribute and in this study, is undesirable.

For this study, different static complexity metrics can measure the same program 

attribute. Therefore, we need to identify and remove those static complexity 

metrics that are strongly correlated. In addition, because different metrics can 

measure distinct program attributes, a statistical method of evaluating the 

overall program complexity is needed which is based upon the values of the 

various program attributes.

This problem entails more than the consideration of just two static metrics. 

Today, well over a 100 static software complexity measures are defined and there 

is compelling evidence that at least five contribute to program complexity 

(Munson and Khoshgoftaar, 1989). All of these measures are some type of 

observation of attributes of source code text. Many serve different purposes, 

often someone's notion of the "real" or "essential" complexity of the code. Like 

some concepts in software engineering, they often have no theoretical basis, but 

represent an ad hoc view of complexity. There are commercially available tools 

that parse source code and output a laundry list of static complexity measures.
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Many of the static measures are combinations of fundamental observations. We 

call these derived or independent variable metrics (e.gv Halstead volume, log 

McCabe Complexity). Once the PC A is complete, the Fault Index will be 

produced.

3.2.2 The Transformation Matrix

Part of the PCA is producing the standardized transformation matrix. In this 

particular study, we started with nine original static metrics. The goal of the 

PCA is to reduce the number of independent variables into a smaller number of 

domains. The transformation matrix is used to collapse the original matrix of 

metric values onto a smaller matrix of domain scores. In this case, we collapsed 

the original nine static metrics into two domains. This reduces the 

dimensionality of the measurement problem. The transformation matrix then, is 

an m X d matrix that, when multiplied by the original matrix (n X m), creates an n 

X d matrix of domain scores. Finally, at the end, we multiply the n X d  domain 

score matrix by the d X 1 vector of eigenvalues for the identified domains. This 

yields the Fault Index; a single measure of complexity for each of the modules in

the system.
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3.2.3 A Fault Index Computational Example

The computation of the Fault Index involves a number of steps in the 

transformation of the raw metric data. The PCA-RCM tool performs all of those 

calculations. The tool computes standardized scores, or z scores, for each of the 

raw metrics for each of the modules. This transformation is accomplished by 

first subtracting the mean value of each metric from each raw metric. This will 

insure that all metrics have the same mean: 0. Next, it divides these transformed 

metrics by the standard deviation for that metric, yielding the final z score for the 

corresponding raw metric. When all of the 4 raw metrics for all modules have 

been similarly transformed, they will all have the same mean (0) and the same 

standard deviation (1). The next step in the computational process is the 

transformation of the standardized metric scores to factor scores or domain 

scores. This will reduce the total number of measures for each program module 

from nine scores to one or two scores representing the orthogonal metric 

domains. The products of the factor scores are summed for each domain to 

create a domain score, DS, for each orthogonal component. The domain score is 

distributed with a mean of zero and a standard deviation of one.

The final computation is the Fault Index. This measure will consolidate 

the domain metrics into a single measure, which will also be our fault substitute 

measure. To compute the module Fault Index, each of the domain scores is
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weighted by the eigenvalue of the corresponding domain. These eigenvalues 

represent the relative proportion of variance that each of the domains explains. 

The resulting sum of the products of the domain scores and the eigenvalues 

yields the Fault Index.

This Fault Index value has a mean of zero and a variance equal to the sum of the 

squared eigenvalues as follows:

<j2p = Yh a ] • The Fault Index is then scaled to a more tractable distribution by

adjusting the standard deviation of the Fault Index to one and dividing it by the 

standard deviation, a p, for the domains. Finally, the Fault Index is adjusted to a

mean of 50 and a standard deviation of 10 in this study. The whole process may 

be summarized as follows: p, = (p,, Icrp)110 + 50

3.3 Research Methodology

In the case of this study, a single proxy measure, the Fault Index, is constructed 

to serve as a code selection measure. This single measure will permit you to rank 

the program modules from high to low. Once the modules are ranked, those 

program modules that possess large values will most likely possess a high 

number of defects. In this case, the Fault Index will serve as a predictor of
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defects. If the code executes a significant proportion of time in those modules, 

the potential exposure to software defects will be great and the software will 

likely fail. Therefore, utilizing a Fault Index in the inspection process permits the 

inspection teams to select those code modules that are at high-risk for failure. As 

a result, the ability to improve the source code quality will significantly increase. 

In addition, the usage of the Fault Index is considered as an inspection process 

enhancement. It is a proactive approach to improve source code quality, which 

is better than a reactive approach of finding and fixing defects in test or in the 

field.

Because software can be measured in a multitude of ways, the scope of 

possible software metrics is quite large. There are a large number of static 

complexity metrics to choose from in the construction of a proxy measure for 

software faults (Zuse, 1990). Many of these metrics have a high degree of 

interrelationship among all of the metrics and are more meaningful than others 

are for a particular project or purpose. Therefore, a chosen subset of static 

metrics that will be used must:

• Possess a high correlation with defect measures

• Posses a low correlation with other object-oriented metrics 

This is important for the subsequent calculation of the Fault Index.
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The primary purpose and intent is to implement a standard to enhance the 

effectiveness of software code inspections by improving the code selection 

process. Software inspections already had been chosen as a prime candidate for 

a standard precisely because, as previously mentioned, their effectiveness had 

been measured and verified. Three ongoing projects were selected to pilot the 

study of using a Fault Index during code reviews. No sophisticated selection 

criteria were enforced, but the teams for the pilot evidenced two important 

attributes. First, the development teams were currently in the middle of a 

development cycle, however, because the source code was being reviewed after 

the inception of the pilot (the same languages, authors and coding styles were 

used), code inspection verification was difficult. The data from this research was 

collected at various steps in the process. Second, the teams were quite small, 

which made the initial pilots manageable. Next, three systems selected for the 

pilot study will briefly be described.

3.3.1 The Software Systems

One of the three teams was developing an On Demand system (System 1) as part 

of the IBM corporate strategic direction. Five programmers were involved 

throughout the entire project, and another five programmers (including two
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contract programmers) were involved in at least some part. Development 

included high-level languages, and integrated code in excess of 900 thousand 

lines of code (KLOC) for the entire project. This highly complex system monitors 

and reports on the performance of various client software systems. The second 

system is an Automated Deployment Tool (System 2) that automates the 

deployment of software in various heterogeneous environments. Three 

programmers were involved and integrated 50KLOC. The final system is Mixed 

Address Database (System3) that enables users to create, update, and delete 

Intranet and Internet account, sub-account and device records. Only two 

programmers were involved and only produced 10KLOC.

3.3.2 The Selection of Tools

The next task was selecting various tools for use in collecting all of the static 

software metrics. Three tools were chosen: Together Architecture by Borland, 

Principal Component Analysis-Relative Complexity Measure (PCA-RCM),

Source Code Analysis, and Measurement Program (SCAMP). The Together tool 

is capable of generating over 30 object-oriented and static complexity metrics for 

the Java and C++ programming language. Initially, a wide variety of software 

metrics was collected for each of the systems (Mayer and Hall, 1999). Table 3.1
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partially lists the output of some object-oriented and complexity metrics from the 

Together tool and their definitions are in Appendix B.

Metrics CBO c c ‘ DAC DOIH FO HDiff MNOL MSOO NOprnd NOprtr NORM NUOprnd

Packagel 31 26 2 1 23 119 7 15 3258 3227 100 317

Package2 3 59 1 1 3 60 2 3 616 518 7 97

Package3 14 65 0 1 8 390 2 10 5811 5855 72 255

Package4 13 33 1 2 11 52 3 4 884 937 34 172

Packages 3 1 0 4 0 8 0 1 36 36 4 8

Package6 11 48 3 1 9 43 2 3 477 423 17 79

Package7 13 89 3 2 9 74 2 22 2037 1713 34 293

Package8 3 9 1 3 2 17 2 3 225 165 11 84

Package9 34 63 3 3 30 126 13 27 2006 2090 77 317

Packagel0 18 194 1 3 12 94 24 65 3808 4028 52 530

Packagel1 4 7 0 1 3 13 2 4 166 185 19 65

Packagel2 12 8 2 1 6 24 2 6 381 400 33 111

Table 3.1: Static object-oriented metrics

First, the source code for each system was loaded into the Together tool. Second, 

the tool performed all of the static calculations for each of the systems. Third, 

after the calculations were performed the tool produced a graph, which plotted 

the static metrics on an axis. The tool provided some standard recommended 

industry boundary limits for each of the static measures. The tool also permits 

the user to adjust those limits if needed. Figure 3.2, called a Kiviat graph, 

displayed the static measures and their boundary limits.
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Figure 3.2: Kiviat Graph of Object-oriented Metrics 

Each axis (or ray) of the Kiviat graph represents one metric, as labeled in 

the graph. The measurement scale of each axis is the range of the metric: the 

minimum value is located in the center, the maximum value at the outer end. 

The axes are linearly scaled. The line between each metric connects the 

measurement values of the selected element for each metric on the axes. If the 
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element has many relatively large values, the area enclosed by the thick line will 

be large. Therefore, the size of the enclosed area serves as an indicator of the 

criticality of the element. 
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The graph identified which metric exceeded their particular boundary and 

is considered a prime static metrics candidate. Once that analysis was 

completed, correlations were performed on those metrics. Based on the results of 

the correlations, the final metrics set was selected for use in the study.

3.3.3 Correlation of Metrics

One of the key process steps for this study is to identify correlations between the 

metrics and software defects. The correlation between the static metrics must be 

low. The importance of this low correlation is that we want metrics that are 

unique and will provide meaningful input values for the Fault Index calculation.

If the static metrics strongly correlate with one another, this may imply that they 

are in some way identical. Therefore, the static metrics for this study was based 

on correlations below 40-50 percent. Conversely, the correlation between static 

metrics and software defects must be strong. Again, the importance of this is that 

we want to provide meaningful input into the Fault Index calculation in order for 

it to be a good predictor of software faults. Therefore, the correlations must 

possess a greater than 70 percent value.
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The values of the static metrics produced by the Kiviat graph were analyzed 

along with their correlations and only a subset of these metrics proved useful for 

this research.

After performing the static analysis on the source code data from Table 

3.1, the only significant static metrics used were based on their correlation, which 

is denoted by the R-squared value (an example is given in Figure 3.3).

Pkgs Correlations R2 = 0.2395

Figure 3.3: Independent variable correlations

As shown in the figure, the two metrics, Coupling Between Objects (CBO) and 

Maximum Size of Operation (MSOO) are not strongly correlated as denoted by
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the 23 percent R-squared value. The weak correlation between the two metrics 

provides meaningful input into the Fault Index calculation and satisfies the 

criteria for this study. Therefore, the two metrics are a prime candidate for use as 

input into the Fault Index calculation. If the two metrics were strongly 

correlated, it would have meant that they are essentially providing an identical 

relation into the Fault Index calculation therefore providing no additional value.

In figure 3.4, the same analysis was performed to determine the correlation of 

each defect count to static metrics.

Pkgs Correlations
R2 = 0.9188

Figure 3.4: Defect to static metrics correlation
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As stated earlier, a strong correlation is present, denoted by a 91 percent R- 

squared value, and shows a positive relation exists between the static metric 

CBO and defects. This indicates that the metric possesses a strong relationship in 

determining software defects in the program modules.

Table 3.2 is the final list of the metrics that were selected from the static metric 

and defect correlations along with their definitions.
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RFC Response for Class; the number of methods, internal 

and external, available to a class

CBO Coupling between Objects; counts the number of other 

classes to which a class is coupled

V(g) Cyclomatic Complexity (McCabe, 1976)

FO Fan Out; number of reference types

VOD Violations of Demeters Law (Chidamber and Kemerer, 

1994)

DOIH Depth of Inheritance; How far down the inheritance 

hierarchy for a class

LOCOM Lack of Cohesion Metric;

MNOL Maximum Number of Levels; depth of (if, for, while) 

statements

MSOO Maximum Size of Operation; The number of 

operations (if, for, while) for a class

WMPC Weighted Methods Per Class; sum of the complexity 

for a class

NORM Number of Remote Methods

DAC Data Abstraction Coupling

Table 3.2: Selected metrics and definitions



CHAPTER IV

4.1 Output Results from the Principal Component Analysis

In most linear modeling applications concerned with the mapping of software 

metrics onto software defects, the independent variables, or metrics, from Table

3.1 each are assumed to represent some distinct aspect of variability that is not 

obviously present in other measures. In software development, the independent 

variables (in this case the various complexity and object-oriented metrics) 

strongly correlate with defects and weakly correlate with each other. Such linear 

models may be subject to changes due to additions or deletions of variables or 

even discrete changes in metric values. To avoid these problems, principal 

components analysis (PCA) was used to map the metrics onto orthogonal 

attribute domains. Each principal component extracted by this procedure may 

be observed to represent an underlying common attribute domain (Jackson, 

1991). Some object-oriented metrics such as Fan Out (FO), Weighted Methods Per 

Class (WMPC), and Response for Class (RFC) are not strongly correlated with each 

other. Therefore, these metrics generally prove to associate well with a principal 

component related to the object-oriented attribute of a program.

46
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We will now examine the outputs of the principal components of the metrics 

(independent variables) for the three software systems. The first step in the 

investigative process is to determine how many distinct sources of variation are 

truly measured by the raw static metrics selected for use in all three systems. 

Table 4.1 contains the results of the principal components analysis performed on 

the software packages from system 1.

System 1 Domainl Domain2

FO 0.61 0.58

MNOL 0.80 -0.30

MSOO 0.91 -0.04

WMPC -0.09 0.88

Eigenvalues 1.86 1.20

Table 4.1 : Orthogonal attribute domains for system 1

System 1 is comprised of four metrics that are based on the correlation 

selection and was reduced to two orthogonal attribute domains. The table 

contains the values of the varimax rotation of the factor pattern. To reiterate, one 

of the primary purposes of principal components analysis is to reduce the 

dimensionality of the attribute problem. The data shows that the metrics MSOO,
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MNOL, and FO are distinctly associated with the first principal component 

labeled Domain 1. In addition, each domain of all three systems, has an 

eigenvalue greater than one. This is important because it represents the relative 

contribution of its associated domain to the total variance explained by all of the 

domains.

Upon application of principal components analysis, only two distinct attribute 

domains were produced for systems 1 and 3 and only one for system 2. Tables 

4.2 and 4.3 show the orthogonal attribute domains for systems 2 and 3 for their 

respective metrics set.

The domain metrics give considerable information about the programs. 

Consider the domain metrics for system 1. The large positive value of the 

Maximum Size of Operation (MSOO)3 indicates that the influence of this 

program's MSOO complexity is strongly positive compared with this influence in 

other programs. The slight negative value of the weighted methods per class 

domain metric indicates that the influence of this program's complexity is 

average compared with this influence in other programs.

System 2 and 3 both have large positive domain values for VOD, RFC, and 

FO metrics in Domain 1. However, system 3 has lower and negative domain

3 The number of operations (if, for, while) for a class domain metric.
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results in Domain 2. The increase in the difference between these values reflects 

the wider gap between the program's complexities. The more negative value of 

the domain metric reflects the decrease in the program's complexity.

System 2 Domainl

FO 0.87

RFC 0.90

VOD 0.92

Eigenvalue 2.42

Table 4.2: Orthogonal attribute domain for system 2

System 3 Domainl Domain2

FO 0.78 -0.27

MSOO 0.85 -0.31
NORM 0.94 -0.04
RFC 0.87 0.31
VOD 0.84 -0.38

V(g) 0.58 0.73
DOIH 0.43 0.31
Eigenvalues 4.22 1.04

Table 4.3: Orthogonal attribute domain for system 3

By transforming the static metric attributes for each of the system modules into 

orthogonal domain metrics, consequently standardized all of the measurements
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in order to achieve relevant comparisons among the measurements. To this end, 

each of the system's results were baselined on their correlated static code 

measurements. To achieve this baseline measurement, means and standard 

deviations were computed for their respective set of selected static metrics. 

Further, a transformation matrix was computed for the mapping between the 

static metrics to the one or two orthogonal domain metrics for this set of program 

modules. The transformation matrices were obtained from the principal 

components analysis and are shown in Tables 4.4,4.5, and 4.6 respectively.

System 1 Domainl Domain2

FO 0.33 0.48

MNOL 0.43 -0.25

MSOO 0.49 -0.03

WMPC -0.05 0.73

Table 4.4: Transformation matrix for system 1

The standardized metrics were then transformed to their domain metric 

equivalents. All subsequent domain metrics were obtained using the original 

baselined transformation matrix. The domain metrics are normalized such that

they have a mean of 0 and a standard deviation of 1. In this manner, all of the
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domain metrics were established to be comparable. For example, a domain 

metric of + .36 indicates that the associated module is .36 standard deviations 

above the average module value of 0.

System 2 Domain 1

FO 0.36

RFC 0.37

VOD 0.38

Table 4.5: Transformation matrix for system 2

System 3 Domain 1 Domain2

FO 0.19 -0.26

MSOO 0.20 -0.30
NORM 0.22 -0.04

RFC 0.21 0.29
VOD 0.20 -0.36

V(g) 0.14 0.70
DOIH 0.10 0.30

Table 4.6: Transformation matrix for system 3
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4.2 Output from the Fault Index calculation of the Three Software Systems

Once the principal component analysis was complete, the final step was the 

calculation of The Fault Index for the three systems. The values of the Fault 

Index (FI) for the three systems are shown in Tables 4.7,4.8, and 4.9 respectively.

System 1 Packages DOMAIN 1 DOMAIN2 FI Defects
Package13 2.48 0.03 71 45
Package1 0.87 1.59 66 35
Package3 0.27 1.16 59 30
Package4 -0.34 1.42 55 25
Package14 1.17 -1.35 52 12
Package11 0.51 -0.53 51 12
Package2 0.17 -0.44 49 21
Package9 -0.45 0.03 46 23
Package12 -0.53 0.09 46 6
Package7 -1.12 0.75 45 4
Packageó -1.09 0.69 45 5
Package5 -0.18 -1.04 43 10
Package8 -0.54 -1.18 39 9
Package10 -1.22 -1.21 33 5

Table 4.7: Fault Index for system 1

In its capacity as a fault substitute, the program packages shown in Table 

4.7 are ordered from the most complex (highest FI) to the least complex (smallest 

FI). Previous validation studies support the conclusion that the packages that 

possess a high Fault Index are the modules that have the greatest potential for 

defects (Khoshgoftaar and Munson, 1990; Munson and Khoshgoftaar, 1992b).
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However, not all of the large Fault Index packages were identified as being the 

ones with the most defects reported. Possible explanations for this may include 

that the package was not tested thoroughly to expose those parts of the module 

where the faults existed. Some of the paths through the code were executed and 

others were not. Finally, the possibility of random chance is considered as well. 

However, in all three cases, the highest Fault Index did produce the most defects,

System 2 Packages DOMAIN 1 FI Defects

Package9 1.71 67 42

Package1 1.53 65 36

Package10 0.93 59 22

Package7 0.86 59 20

Package3 0.19 52 20
Package4 -0.23 48 25

Packageó -0.50 45 13

Package12 -0.55 44 12

Package2 -0.74 43 11

Package8 -0.88 41 10
Package11 -1.11 39 7
Package5 -1.22 38 6

Table 4.8: Fault Index for system 2

It is interesting to consider programs from the high and low extremes and 

from the middle of the Fault Index scale. System 3 has the highest observed 

Fault Index of all three systems and this system had the highest eigenvalue.
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System 2 has the lowest Fault Index. It is important to note the values of the 

Fault Index for all three systems and their weighted metrics failed to rank the 

elements in the order suggested by the metrics contributing to the weighting.

The Fault Index metric ranking of these systems is partially consistent 

with the order implied by the raw static metrics. Still, this comparison of the 

Fault Index metric and the traditional object-oriented metrics does not validate 

either in the sense offered by (Schneidewind, 1992).

System 3 Packages DOMAIN 1 DOMAIN2 FI Defects

Package5 2.47 -0.77 72 25

Packageó 1.09 0.37 61 12

Package7 0.49 1.51 58 14

Package4 -0.01 2.37 56 5

Package1 0.40 -1.17 51 15

Package12 -0.16 -0.39 48 10

Package9 -0.36 -0.10 46 13
Package11 -0.28 -0.47 46 11
Package3 -0.31 -0.66 45 2
Package8 -1.05 -0.13 40 5
Package10 -1.09 -0.13 39 2

Package2 -1.20 -0.44 37 4

Table 4.9: Fault Index for system 3

It can be observed from the values in the tables that there is a great deal of

variability in the complexity of these program packages. To develop an
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understanding of this failure potential, a means of characterizing the functional 

behavior of a system in terms of how it distributes its activity across a set of 

modules needs developing. This requires knowing what the program does, its 

functionalities, and how these different functionalities allocate time to the 

modules that comprise the system.

4.3 Results

The results from this study are depicted in the following four figures of the three 

selected systems. Figures 4.1,4.2, and 4.3 clearly demonstrate that there is a 

strong correlation of defects associated with utilizing the Fault Index metric. 

Figure 4.4, is showing the combined results of all three of the programs into one 

graph to depict how various types of projects and programming styles do not

influence the correlation of the Fault Index metric.
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Correlation of Fault Index and Defects

R2 = 0.78

Figure 4.1 : Fault Index distribution for system 1

This study identified a strong correlation between the Fault Index metric 

and the software faults. System 1 had a 78 percent positive correlation of its 

Fault Index and the defects discovered. It was determined that a correlation 

greater than 60 percent was sufficient to claim success. It is also concluded that 

using the Fault Index as a surrogate proxy measure can fairly predict and aide in 

the selection of code candidates for the inspection process.
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Correlation o f Fault Index and Defects

Figure 4.2: Fault Index distribution for system2

Correlation of Fault Index and Defects

R2 = 0.78

Figure 4.3: Fault Index distribution for system3
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It is clear that the complexity of programs is multidimensional. There are many 

distinct and uncorrelated complexity domains. Different metrics can measure 

different program attributes. At the same time, different metrics can measure the 

same program attribute. With many metrics available for a group of programs, it 

becomes difficult to rank the programs by complexity: the different metrics can 

give different indications. In Figure 4.4, all of the systems data was combined to 

provide an overall Fault Index to defect correlation. This is meant to substantiate 

and prove the validity of the hypothesis. The correlation of the Fault Index and 

defects of all three systems combined was determined to be 65 percent.

Correlation of Fault Index and Defects

Figure 4.4: Fault Index distribution for all systems
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A number of characteristics are important in evaluating this method.

First, the derived metric will have little use if not validated (Schneidewind, 1992). 

Studies of several systems have established relationships between complexity 

and program faults. Second, a method of combining metrics should be stable. In 

general, stability is difficult to judge: we need a combination of metrics because it 

is not easy to rank programs by considering multiple metrics. For a given 

program pair, if all constituent metrics are higher for one member of the pair, 

one would expect that the combined metric for this member will also be higher. 

Data presented by other researchers concluded that the Fault Index metric 

consistently ranked the programs of each pair into the expected order 

(Ramamurthy and Melton, 1988). The Fault Index metric exhibits more stability 

than the single traditional object-oriented metrics. Another study has also 

established the stability of the Fault Index metric (Munson and Khoshgoftaar. 

1990b).

Third, the combining method should be extendable to many independent 

metrics. More than one hundred software complexity metrics exist. A minimal 

set of measures needed to capture the most important attributes of programs 

could consist of more than 44 software complexity measures (Zuse. 1991). The 

Fault Index metric can use any number of metrics with no change in the basic 

methodology. Thus, the Fault Index metric is more extendable.



60

Fourth, because we seek to reduce the difficulty in comparing program 

complexity, the combining metrics should be effective at reducing the number of 

total metrics and must be considered. The Fault Index metric reduces the 

problem of ranking programs using n metrics to a single metric.

Finally, the combining method should be widely applicable. The Fault Index 

metric can be computed for any group of programs for which complexity metrics 

can be collected. As presented, static metric synthesis severely restricts the 

domain of measurable programs. Thus, the combining method restricts itself to a 

subset of the potential applications in software system development. 

Furthermore, because programs that use multiple entry, multiple exits, and 

GOTO constructs are not measurable by the combining method, the method is 

not applicable in research aimed at testing hypotheses regarding the effects of 

these constructs on software reliability. Thus, the Fault Index metric is more

widely applicable.
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Teams involved with the systems that were inspected in this study were asked to 

provide feedback. Some of the observations are listed here:

• When asked about their general experiences with using software metrics, 

positive themes were echoed.

• Software metrics were useful by identifying code segments that could be 

improved.

• Software metrics were useful for identifying good code.

• Overall source code quality was improved.

• The amount of rework and test costs were reduced

• Support staffing levels were reduced

However, another theme was echoed that was not as positive. Even 

though some source code that could be improved was isolated by using the Fault 

Index software metric, sufficient resources to make those improvements were not 

available. This was due in part to support of other programs with major defects 

that needed to be fixed. Management commitment and some small amount of 

resources are required to take full advantage of a code review using this software

4.3.1 Inspection Team Results

metrics program.
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Table 4.10 presents all of the Fault Index program results. These results were 

compared with the non-Fault Index program baseline. Clearly, the results of the 

study using the Fault Index proved valuable. The Fault Index provided 

significant cost savings and improved quality. Total project effort decreased due 

to less rework of defects and inspection review rates significantly increased from 

40 lines of code per hour to 120. This proves that inspection effectiveness had 

improved. However, the amount of time spent in inspections increased 

significantly, which is a good thing. This contributed directly to the reduction in 

overall effort and rework. In addition, a higher number of defects were found 

during the inspections thus reducing the number to be discovered by 

development and test. The average number of defects discovered during 

inspections increased from 100 to 500. The net result is that fewer defects will be 

released into the field and consequently not found by the customer. The average 

number of potential defects shipped to the customer went from 742 to 200.

4.3.2 Baseline Results using the Fault Index
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Metrics
No Fault 
Index

Fault
Index Units and descriptions

Fault Index Investment 0 12,300 hrs
Labor Rate $70 $70 $
Size (Lines of Code) 50000 50000 LOC
Total Effort (hrs) 79000 22000 hrs @  SEI Level 3 AIM 85
Inspection Review 
Rate 44 120 LOC/HR

Avg Injection Rate 4% 3% Industry Avg 10%

Total Defects 2000 1500
Defects Injected throughout the 
Lifecycle of the project

Inspection Hours 200 500 Inspection Removal hours Spent
Inspection
Hours/Defect 0.7 2

Actual Data from Inspection 
Tool

Inspection Found 
Defects 100 500

Defects removed prior to Dev 
Test

Residual Inspection 
Defects 1,900 1000

Defects remaining to be found 
by Dev & Test

Development Removal 385 500
Remaining to be Found 
(Test) 1,515 500
Total Early 
Defect/KLOC 9.7 20

Test Efficiency 42% 60%
15 Defects/KLOC to 9 
Defects/KLOC

Test Defects 773 300 Defects Found by Test
Test Hours/Defect 13 6
Test Hours (Finding) 10,357 1800 Estimated based on History

Hours to Fix Defects 7,727 3,000
Avg of 10 hrs to Fix defect if 
you were to fix All

Costs to Fix $540,855 $210,000 Costs to Fix defects in Test
Defects Shipped 742 200 Remaining to be found
30% are defects (Sev 1 
& 2's) 223 60
Costs of Support 
Rework $1,781,640 $480,000

$8000 / Customer Reported 
Defect

Potential Latent 
Defects Remaining 520 140

Table 4.10: Fault Index baseline comparisons
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Other results were calculated as part of the study that aimed at demonstrating 

that using the Fault Index was valuable and affected the bottom line. In Table 

4.11, development productivity improved by 72 percent and consequently the 

amount of rework improved by 27 percent. This had a positive impact on 

improved time to market such that the product delivered was earlier than 

expected. The combination of early delivery and higher quality directly affected 

the customer satisfaction rating, increasing it by 5 percent.

4.4 Other Significant Results

Measurement Rating % Improvement

% Savings from Rework by: 27%

Improved Customer SAT 87 to 94 5%

Productivity Increase by: 11 to 19 72%

Reduced Cycle Time by: 13 to 8 months 60%

Table 4.11 : Percentage improvements to management

4.4.1 Amount of Time Required to Review Code

One expected established measurement is the inspection review rate. It stated 

that team members could spend less time reviewing certain sections of source 

code denoted as not requiring an intensive review (i.e. a lower Fault Index), and
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instead would be able to spend more time reviewing other critical sections. The 

team anticipated an overall drop in total time required to review code, because 

the number of 'good' code sections outnumbered the number of 'bad' ones.

Data was routinely collected for the code inspections, which included both 

the number of person-hours spent reviewing source code and the number of 

reviewers at a particular code review. Using this data, a measurement for each 

code review (those that used the Fault Index and those that did not) was 

established. This measurement, called review speed (rs) was established to show 

the number of seconds each reviewer spent, on average, reviewing each line of 

code. The formula for rs is stated as: 

rs = (t / p) / LOC 

Where:

t is the total time spent reviewing the code, 

p is the total number of source code reviewers.

LOC is the number of Lines Of Code reviewed.

The average rs at code reviews not using software metrics was measured 

at 9.34 seconds per LOC. The average rs at code reviews that were augmented 

with the Fault Index data were measured at 3.46 seconds per LOC. The results of 

the measurements indicate that each code reviewer spent on average, 63 percent 

less time reviewing code using the Fault Index than not using it. Using the Fault
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Index during the review to concentrate scrutiny may account for part of the 

improvement, but also part of this improvement may reflect the fact that source 

code is being improved with the help of the Fault Index prior to reviews, so it 

may be easier to understand during the review. No one disputed the possibility 

that other factors may be involved in the large difference in reviewing time, but 

it would appear that the Fault Index had a positive effect upon the amount of 

time spent reviewing source code.

4.4.2 Effectiveness of Source Code Reviews

When the Fault Index measurement was evaluated during the pilot, each team 

member described how source code review effectiveness was changed. Of those 

team members who reviewed the code using the Fault Index, all but one felt that 

the Fault Index provided a small, positive improvement in their overall code 

review effectiveness. In addition, the Fault Index education was cited as a major 

factor in improving this effectiveness.

As shown in Table 4.10, defects found per inspection hour went from .7 defects 

to 2. This was another major improvement on how effective code inspections 

were, compared to what had been previously achieved.
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When asked whether too little, too much or just the right amount of data 

using the Fault Index metric information was distributed with each of the 

reviews, half of the team thought that too much material was distributed, and the 

other half thought that the amount of material was just right. Not one member 

thought that too little information was distributed. It is recommended that 

future usage of the Fault Index metric program prior to an inspection should 

start slowly, using only a few software metrics, and working up to more software 

metrics over time.

4.4.3 Source Code Quality

Table 4.12 lists some additional data that collected and measured during this 

study. Early indications show that using the Fault Index has provided significant 

improvements in many areas. A fault per inspection hours was measured and it 

represented how many critical defects were removed prior to development and 

test. A 185 percent improvement was noted. In addition, test had reported a 

significant reduction in the number of test found defects. The number of test 

found defects was reduced by 33 percent. Prior to using the Fault Index, an 

average of 15 defects/KLOC were typically discovered by test and now that

number has declined to 9 defects/KLOC.
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Early defect detection numbers were noted as rising from 9 defects/KLOC to 20 

defects/KLOC. This has two positive impacts to the organization. First, this 

improvement reduces costly rework and provides a huge cost savings. Second, 

delivery time to the customer is reduced resulting in a faster time to market. 

Table 4.12 clearly shows that the cost of finding and fixing defects earlier in the 

lifecycle is significantly less than finding and fixing them later. The mean time 

between failures (MTBF) increased from 8 hours to 20. That is a considerable 150 

percent improvement in quality. Because of that, each member truly felt that the 

source code quality dramatically improved. Overall, defect removal efficiency 

reported by all process areas improved dramatically. Finally, the most essential 

critical element of the code quality analysis is the perceived quality in the field by 

the customer.

Currently, customer reported defects prior to using the Fault Index was at 

an all time high. After the implementation of the Fault Index, the maintenance 

team reported a dramatic decrease in the number of problem reports within the 

first month of delivery. That is an astounding 76 percent improvement with field 

defect quality going from 5 defects/KLOC to 1.2 defects/KLOC.
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Results Fault Index
No Fault 
Index

%
Improvement

Defects/KLOC(T est) 9 15 40%
Faults/Inspection Hour 2 0.7 185%
Inspection Rate (LOC/hr) 120 44 173%
MTBF 20 8 150%
Field Defects/KLOC 1.2 5 76%
Defect Efficiency (%):
Pre-Test 12% 5% 140%
Test 65% 50% 30%
Overall 95% 45% 111%

Table 4.12: Percentage improvement yields

4.4.4 Quality Issues Identified

Figure 4.6 is a Pareto chart created to plot some of the quality issues identified 

during the inspection. Normally, these issues are not discovered due to time 

constraints when reviewing the source code. Exposing these issues may not have 

been possible had we not used the Fault Index. The Together tool has a built in 

mechanism that searches, ranks and reports quality issues. Table 4.13 defines 

each quality issue and ranks them by High, Medium, and Low.
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Pareto Chart of Quality Issues 
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Figure 4.5: Pareto chart of discovered quality issues 

As shown in the figure, over 2000 quality issues were reported. The most notable 

was Declaring Variables Inside Loops (DVIL). Most of the issues identified were 

corrected as time permitted. Again, standard thresholds were used and when 

those modules exceeded that threshold, it was reported. Next, the issues were 

counted and placed in a table. Table 4.14 shows each system's issues ranked and 

normalized by KLOC. System 2 had 819 quality issues identified followed by 

system 1 with 536. Combining this data with the Fault Index, a scatter plot graph 

was created. Figure 4.7 shows the Fault Index plotted with the quality issues. 
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Once this data was plotted, we were clearly able to identify code modules that 

were at high risk to fail.

CLE Complex Loop Expression (L)

CPASBF Constant Private Attributes not Final (H)

CQS Command/Query separation (H)

DYIL Declaring Variables inside Loops (H)

EBWB Enclosing body within block (L)

EIAV Explicitly Initialize all variables (L)

HIA Hiding Inherited Attributes (H)

HISM Hiding Inherited Static Methods (H)

HN Hiding Names (H)

MVDSN Multiple Visible Declarations with the same name 
(H)

OPM Overriding Private Methods (H)

OWS Overriding System Function (H)

PPA Public and Private Attributes Mixed (M)

SAUI Static Attribute Used for Initialize (H)

UC Unnecessary Casts (H)

UIMM Unnecessary Interface Members Modified (H)

UPCM Unused Private Class Member (H)

Table 4.13: Quality issues list



72 

System High Med Low 

System I 536 21 QI 

System2 819 14 134 

System3 112 17 111 

Table 4.14: Quality issues per thousand lines of code 

In the upper right region, those circled data points are code modules that are at 

the highest risk for failure. Those components are some of the first ones to be 

selected for an inspection due to their high-risk fault-prone potential. 
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Figure 4.6: Quality issues correlated with the Fault Index 
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4.5 Summary

The consensus and overall reaction of the team was optimistic. They concluded 

that by using the Fault Index to rank and identify high-risk class modules, 

positively enhanced code reviews, and improved the source code. The teams 

experienced a positive return-on-investment, so to speak, during the pilot.

Given the experience that the teams gained during the first Fault Index 

metrics pilot, the following steps to adopting a code inspection and using it has 

been created. Interested development teams could use these steps either as a 

rigorous or flexible guide.

1. Obtain management support. One of the more poignant lessons from the 

pilot is that even though source code modification to improve code 

quality was specified for using the Fault Index metric for code reviews, 

human and time resources were not readily available to perform this 

work. Some amount of resources should be granted for taking advantage 

of the information learned during the code reviews.

2. Decide what metrics are available for you to use in order to construct the 

Fault Index. This study recommends using the Fault Index as a primary 

key metric to select code candidates for an inspection. As you grow and 

learn using this metric, expand to other metrics. Remember, anything that 

measures code is considered a software metric. Something as simple as
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Lines of Code (LOC) or Cyclomatic complexity V (g) can be extremely 

useful to some degree in program understanding. Some metrics are 

applicable only to a particular programming language or family of 

programming languages. Some commonly useful software metrics 

include, but are not limited to:

• SSI: the number of Shipped Source Instructions

• CSI: the number of Changed Source Instructions

• LOC: the number of Lines of Code

• Comment density: the ratio of comments to code

• Nesting level: the number of nested constructs

• Software science: various measures from source volume to difficulty to 

estimated time to complete

• Logical complexity: the number (and sometimes also the density) of 

decision statements

3. Decide the method and tools to collect and present metrics. Once you 

have selected the metrics to review the source code, the next step is to find 

or create a tool that automatically collects the information for you.

Manual collection of software metrics is possible, but tends to be both

tedious and error-prone.
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4. Determine exceptional metric values, if appropriate. Teams that adopt a 

software metrics program may wish to accept information pertaining to 

what a 'good' or a 'bad' metric value is for each of the metrics collected.

See Appendix A for more information.

5. Determine the scope of the code reviews and which weakly correlated 

software metrics will be used. In the beginning, you may opt not to 

review all of your code content using the Fault Index. For instance, you 

may opt to not review non-source code, like messages or help text, using 

software metrics. The advantage to limiting the scope of the initial 

program would be to ease into it slowly.

6. Hold source code reviews. Whatever normal code review process you 

currently have in place today can still be used. Simply distribute the Fault 

Index metrics information with the source code. The Fault Index metrics 

information should only enhance and not replace your existing process. 

Source code authors should review the code before the review. Source 

code reviewers should be instructed to scan the Fault Index information 

and locate those sections of the source code that need meticulous review 

and those that need only be skimmed.

7. Hold periodic checkpoint meetings. Two or three software metric 

checkpoint meetings should be held during the development cycle to
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ensure that all team members have the ability to effectively utilize the 

software metrics you chose to use. Additionally, any concerns or 

problems that may arise in your program of adopting the Fault Index for 

code reviews could be made known and action plans could be created.

Enhancing source code reviews using the Fault Index is an inspiring concept. 

The pilot study explored both the benefits and drawbacks and reached a positive 

conclusion relating to its efficacy. At the end of the first development cycle, the 

team discovered a number of positive benefits, and pitfalls that could be 

avoided.

The pilot team discovered that the Fault Index metric improved code 

review effectiveness, reduced the amount of time required to review the code, 

and substantially improved source code quality. Finally, both education and 

resource are cited as being top requirements to an effective Fault Index metrics 

program. The development team plans to extend the pilot into the next 

development cycle of their product. Education and resources will both be 

provided to further improve and enhance the effectiveness of code reviews.



APPENDIX A

A.1 Statistical Analysis of Source Code

Software metrics typically produce 'raw' numbers that are difficult to interpret.

A successful software metrics program must satisfy two requirements to alleviate 

this difficulty:

• Provide education on how to interpret the numbers. For any particular 

software metric, is a larger or smaller number better? The cyclomatic 

complexity metric is related to source code complexity, but both small and 

large numbers can be argued to be less advantageous for average 

identifier length. A good software metric tool will give information on 

how to interpret the numbers. Experimentation will provide some 

education and experience on interpreting software metrics.

• Provide information on what is a 'good' software metric value and what is 

a 'bad' one. Providing education would enable a person to compare two 

software metric values, but what is also needed is to know from a set of 

software metric values which represent code that needs further attention 

(a 'bad' software metric value,) and which do not. Some software metrics

77
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come 'packaged,' so to speak, with recommended bounds. E.g., sections of 

source code should not exhibit a cyclomatic complexity with numbers greater 

than ten (McCabe, 1976). However, other software metrics do not come 

prepackaged with recommended boundaries, and even the recommended 

boundaries may not be applicable to all projects, programming languages or 

people.

The following addresses techniques that may be employed to satisfy the second 

requirement. The first requirement may be satisfied through experimentation, 

expert instruction, or through examination of the original software metric 

proposal documents.

Three methods for determining exceptional software metric values are 

presented; one formal and two informal. The formal method is provided for 

reference only. Only the two informal methods were employed during the pilot. 

Formal Method

The formal method is commonly used in theory and should be somewhat 

familiar- statistical standard deviation. Using this method, existing source code 

is measured and standard deviations are produced from the results. The 

advantage to this approach is that very accurate bounds between 'good' and 'bad' 

software metric values can be obtained. The disadvantages are that source code 

must exist to measure, and that standard deviation can be difficult to compute.
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When establishing software metric bounds, ensure that you are initially 

measuring source code that is at least approximately similar to that which is to be 

later reviewed. Typically, different bounds must be established for each new 

project, programming language, or even personnel involved.

For code reviews, identifying the standard deviations of the code metrics is 

important and should be noted. After computing the standard deviation values, 

decide what value of a is to be acceptable or unacceptable. A value of a = 1 

would yield approximately one-third of the measured source code with 'bad' 

values. A value of a = 2 would yield approximately five percent of the measured 

source code with 'bad' values. A value of □ = 3 would place the 'bad' software 

metric boundary well below one percent. A value mid-way between a = 2 and a = 

3 should be acceptable.

This value should then be published with the software metrics themselves 

for code reviews. Reviewers would be then be able to notice 'bad' software 

metric values and concentrate attention on the corresponding sections of source 

code.

As an example of formal standard deviation computation, consider the 

following software metric results for software science difficulty:



8 0

0.7 8.3 8.5 3.0 3.9

23.8 55.9 34.8 4.3 27.6

7.1 18.0 9.6 33.2 8.1

19.9 28.5 14.0 37.2 6.9

12.7 24.2 15.9 20.1 17.3

Table A.1 Software Science standard deviation results

In table A.l, the computed value for 0=12.89, with a mean x = 17.74. For the 

purposes of this example, let us assume a standard deviation boundary at 2.5a. 

Therefore, the software science difficulty boundary would be the sum of the 

mean and the product of 2.5 and o. Thus, the software science difficulty upper 

bound is set at 49.97. Given the input data set, only one measurement is 

exceptional: 55.9. During future code reviews, any source code segment 

exhibiting a software science difficulty value above 49.97 should be scrutinized 

more carefully.

Optionally, you may wish to pursue the opposite scenario in your 

software metrics program. You could establish a series of bounds of 'fantastic' 

software metric values. Given the example data set, let us assume that any 

source code with a software science difficulty measure more than one standard



81

deviation less than the mean might need only cursory examination during 

reviews. With this example, a 'fantastic' bound of 4.85 could be established, and 

four of the example software science difficulty measurements would qualify. 

Informal Methods

Two informal methods of establishing software metric bounds were 

employed during this pilot. Neither is steeped in scientific proof, nor are they 

statistically verifiable. However, they did seem to work fairly well and were 

both very easy to use.

Informal Method #1 (Eyeball)

Using this method, software metrics measurements are collected as in the above 

formal method. Instead of computing a standard deviation, the measurements 

are sorted in ascending order. These sorted measurements are then examined by 

eyeball. Either the measurements can be graphed using any of a variety of 

graphing program (such as by using a spreadsheet program), or just the raw 

numbers can be examined. Almost invariably, the measurements collected for 

the pilot exhibited the following conditions:

A definite break occurred between very acceptable numbers, and less 

acceptable numbers. A definite break occurred between the less acceptable 

numbers and the unacceptable numbers. The measurements generally followed 

the form as graphed in figure A.l.
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Figure A.1: Graphical Form of Pilot Software Metric Measurements

This is the basic form of the software metric measurements seen during 

the pilot. The left-most part of the graph is normal. The first peak represents 

’grey’ measurements, and the second represents 'black' measurements. 

Breakpoints to start the grey and black areas are established somewhere in the 

valleys. On infrequent occasions, the 'grey' area was not readily discernible and 

only a 'black' measurement was established.

We established a grey and a black area for each software metric. As indicated on 

the graph, the grey area indicated measurements that represented source code 

that should be examined more closely during code reviews. The black area 

indicated measurements that represented source code that not only should be
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examined more closely during code reviews, but should also be the target of a 

serious attempt at source code modification with the explicit purpose of 

improving source code quality. The remaining area (white) indicated 

measurements that the team felt to be acceptable. Source codes with 

measurements at the end of the graph furthest from the grey and black areas 

were candidates for skimming. Once computed, the grey and black boundary 

measurements were published so that code reviewers could access them while 

reviewing the software metrics and source code.

The advantages behind the first eyeball method is that it is much easier to 

compute than by using standard deviation, and it is fairly reliable. The 

disadvantage stems from a lack of accuracy. For the purposes of the pilot, this 

disadvantage did not seem overly severe, however.

As an example, assume the same software science difficulty 

measurements provided in Formal Method, which sorted are:

.7 3.0 3.9 4.3 6.9

7.1 8.1 8.3 8.5 9.6

12.7 14.0 15.9 17.3 18.0

19.9 20.1 23.8 24.2 27.6

28.5 33.2 34.8 37.2 55.9

Table A.2 Informal method standard deviation results
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In table A.2, either by eyeball or by graphing, note where the possible 

breakpoints are. Very generally, it seems that the breakpoints exist at about 30, 

and again at about 40. A general graph is provided in figure A.2. Thus, we 

would say that software science difficulty measurements between 30 and 40 

represent the grey area, and measurements greater than 40 represent the black 

area. Given the provided software science difficulty measurements, three are 

grey and one is black.

grey black

Nimber
of

Measurements

S oftware S aence Difficulty 
(eachblock is 4 units, 0-3, 4-7, etc)

Figure A.2: Graph of Example Data

The example software science difficulty is graphed. Notice the 'bump' in 

the curve. This bump signals the start of the grey area. The other bump at about 

55 is obvious, and belongs within the black area. With more data points, the grey 

and black boundary points oftentimes become more pronounced.
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Informal Method #2 (Other Eyeball)

Using this method, software metrics measurements are not collected as in the 

other two methods. Rather, the list of software metric measurements provided 

for the code review is quickly scanned, and any apparently exceptional metrics 

are noted. If one were given the example software science difficulty 

measurement, the measurement of 55.9 should stand out. Perhaps the 

measurements in the 30's would also stand out. This method is very informal, 

but implies some rather significant advantages and disadvantages.

One advantage is that software metric measurement selection occurs very 

quickly. Instead of spending a great deal of time computing standard deviation, 

or sorting and perhaps graphing data, the results are immediately obtainable. 

Another advantage is that no historic information need exist. Before, existing 

and similar source code is measured to establish bounds. If no source code exists 

that closely matches the new code, this informal method would still allow some 

degree of assurance that sections of source code with exceptional software metric 

measurements would be viewed more closely.

The disadvantages are that the evaluation criteria are very inaccurate. 

What may be an exceptional software metric measurement for one set of 

reviewed source code may not be exceptional for another, even though both sets 

are written in the same programming language, by the same programmer, or
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perform similar or complementary tasks. For instance, if lines of code were used 

as the software metric, one code review could contain small utility functions of 

10 LOC or less each, and one main function of 100 LOC. Another code review 

could contain several sorting functions of 80-120 LOC each. The exceptional 

function of 100 LOC in the first review would not even be noticed in the second. 

This disadvantage would be minimized with reviewer experience, however.



APPENDIX B

B.1 Metrics Definitions

SSI: Shipped Source Instructions: the number of Shipped Source Instructions 

that we produced and delivered to the end user.

Nesting level: Counts the maximum depth of if, for and while branches in the 

bodies of methods. Logical units with a high number of nested levels might need 

implementation simplification and process improvements, because groups that 

contain more than seven pieces of information are increasingly harder for people 

to understand in problem solving.

Response for Class: RFC is the number of methods, internal and external, 

available to a class (Chidamber and Kemerer, 1994). This measure is calculated as 

'Number of Local/Intemal Methods' + 'Number of Remote/Extemal Methods'. 

The enumeration of methods belonging to a class and its parent, as well as those 

called on other classes, indicates a degree of complexity for the class. RFC differs 

from CBO; Coupling Between Objects, in that a class need not utilize a large 

number of remote objects in order to have a high RFC value. Consider a class 

with a large number of exposed methods that is utilized by a client class
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extensively. In this case, the client class RFC value would be high while its CBO 

could be one. Distinguishing CBO as a coupling measure and RFC as a 

complexity measure is important. Many software metrics have relationships 

and/or similarities to other metrics. As RFC is directly related to complexity, the 

ability to test, debug and maintain a class increase with an increase in RFC. In 

the calculation of RFC, inherited methods count, but overridden methods do not. 

This makes sense, as only one method of a particular signature is available to'an 

object the class. In addition, only one level of depth is counted for remote 

method invocations.

Coupling Between Objects or CBO: Object-oriented design necessitates 

interaction between objects. Excessive interaction between an object of one class 

and many objects of other classes may be detrimental to the modularity, 

maintenance and testing of a system. Coupling Between Objects counts the 

number of other classes to which a class is coupled, save inherited classes, 

java.lang.* classes and primitive types (Lee, Liang, Wang, 1993). A decrease in 

the modularity of a class can be expected with high values of CBO. However, 

some objects necessarily have a high degree of coupling with other objects. In 

the case of factories, controllers, and some modern user interface frameworks,

one should expect a higher value for CBO.
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An important note about the implementation of the CBO metric is that it 

only counts each type used in a class once. Multiple usages of a class as 

referenced, thrown as an exception, or passed as a formal parameter are only 

counted at their first occurrence. As mentioned, parent classes do not count, as is 

the case for implemented interfaces. There is an implicit high degree of coupling 

in these cases.

Cvclomatic Complexity: This measure represents the cognitive complexity of the 

class. It counts the number of possible paths through an algorithm by counting 

the number of distinct regions on a flow graph, meaning the number of if, for and 

while statements in the operation's body. Case labels for switch statements are 

counted if the Case as branch box is checked.

A strict definition of Fault Index looks at a program's control flow graph as a 

measure of its complexity:

CC = L - N  + 2P

where L is the number of links in the control flow graph, N is the number of 

nodes in the control flow graph, and P is the number of disconnected parts in the

control flow graph.
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For example, consider a method that consists of an if  statement:

if (x>0) { 
x++;

} else {

x—;

}

CC = L -N  + 2P = 4 -4  + 2*l = 2 

A less formal definition is:

CC = D + 2

where D is the number of binary decisions in the control flow graph, if it has only 

one entry and exit. In other words, the number of if, for and while statements and 

number of logical and and or operators.

For the example above:

CC = D + 1 = 1 + 1=2

Software Science Difficulty: This set of metrics is based upon the work of 

Maurice Halstead who proposed that source code complexity is fundamentally 

based upon the usage of the operators and operands of a programming 

language. Using the total and unique numbers of operators and operands, 

Halstead offers several metrics, which provide measurements of source code for 

its size, difficulty, average time for development, and other factors.
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Length: The length of a piece of source code is the sum of total operators 

and operands. This software science metric is directly related to the size of the 

piece of source code it is measuring.

Volume: The volume of a piece of source code, like its length, is directly 

related to the size of the piece of source code it is measuring. Unlike length, 

however, the volume is also directly related to the uniqueness of the components 

of the source code.

Difficulty: The difficulty of a piece of source code is proposed to be a 

measure of its complexity. The more complex a piece of source code, the greater 

its difficulty measure.

Effort: The effort of a piece of source code is proposed to be the relative 

amount of work that would be required to produce the piece of source code. It is 

simply the product of the source code's volume and difficulty

Time: The average amount of time required to develop a piece of source 

code. Time is directly related to Effort. The above number represents the 

number of HOURS required to develop the source files by a person of average 

skill given average working conditions. This number includes time to develop 

code, but not time to comment it.

It is calculated as ('Number of Unique Operators' / 2) * ('Number of Operands' / 

'Number of Unique Operands').
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Logical Complexity- based upon logical attributes of the input source both. Both 

the absolute number of logical decisions and their frequency are measured. This 

metric is based upon the proposal that the more decisions a source file contains, 

and the greater the density of those decisions, the more complex it is.

Call Tree- This statistic lists, for each module of the measured source files, the 

number of called modules, their names, and the source code locations of their 

calls.

VOD - Violations of Demeters Law: Law of Demeter (Lieberherr and Holland, 

1989). The definition of this metric is based on the minimization form of the Law 

of Demeter. Based on the concepts defined there, and remembering that the 

minimization form of Demeters Law requires that the number of acquaintance 

classes should be kept low, we define the VOD metric.

Definition 1 (Client) Method M is a client of method/attached to class C, 

if inside M message/is sent to an object of class C, or to C. If/is specialized in 

one or more subclasses, then M is only a client of/ attached to the highest class in 

the hierarchy. Method M is a client of some method attached to C.

Definition 2 (Supplier) If M is a client of class C then C is a supplier to M. 

In other words, a supplier class to a method is a class whose methods are called

in the method.
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Definition 3 (Acquaintance Class) A class Cl is an acquaintance class of 

method M attached to class C2, if Cl is a supplier to M and Cl is not one of the 

following: 

the same as C2;

a class used in the declaration of an argument of M 

a class used in the declaration of an instance variable of C2

Definition 4 (Preferred-acquaintance Class) A preferred-acquaintance 

class of method M is either:

A class of objects created directly in M, or 

A class used in the declaration of a global variable used in M.

Direct creation means that a given object is created via operator new.

Definition 5 (Preferred-supplier class) Class B is called a preferred- 

supplier to method M (attached to class C) if B is a supplier to M and one of the 

following conditions holds:

B is used in the declaration of an instance variable of C ,

B is used in the declaration of an argument of M, including C and its super 

classes.

B is a preferred acquaintance class of M.
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Acquaintance classes 

Supplier classes 

Figure 8.2: The relation among the different types of supplier classes 

The class form of Demeters Law has two versions: a strict version and a 

minimization version. The strict form of the law states that every supplier class 

of a method must be a preferred supplier. 

The minimization form is more permissive than the first version and requires 

only minimizing the number of acquaintance classes of each method. 

Observations: 

The motivation behind the Law of Demeter is to ensure that the software is as 

modular as possible. The Law effectively reduces the occurrences of certain 

nested message sends and simplifies the methods. 
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The definition of the Law makes a difference between the classes associated with 

the declaration of the method and the classes used in the body of the method, i.e. 

the classes associated with its implementation. The former includes the class 

where the method is attached, its super classes, the classes Used in the 

declarations of the instance variables and the classes used to declare the 

arguments of the method. In some sense, there are 'automatic' consequences of 

the method declaration. They can be easily derived from the code and shown by 

a browser. All other supplier classes to the methods are introduced in the body 

of the function that means these couples were created at the time of concretely 

implementing the method. They can only be determined by a careful reading of 

the implementation.

Definition 6 (VOD Metric) being given a class C and A the set of all its 

acquaintance classes.

VOD(C) = IAI

Informally, VOD is the number of acquaintance classes of a given class.

Keeping the VOD value for a class low offers a number of benefits, enumerated 

below:

Coupling control- A project with a low VOD value is the sign of minimal 

"use" coupling between abstractions. That means that a reduced number of 

methods can be invoked. This makes the methods more reusable.
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Structure hiding- Reducing VOD represents in fact the reducing of the 

direct retrieval of subparts of the "part-of" hierarchy. In other words, public 

members should be used in a restricted way.

Localization of information- A low VOD value also means that the class 

information is localized. This reduces the programming complexity. 

Inter-Module Complexity: The Henry-Kafura inter-module complexity metric 

was designed to measure the connectivity of a module within a source file 

(Henry and Kafura, 1981). This metric has been found to correlate well with 

maintenance effort. The number of input and output parameters is reflected in 

this metric. Basically, the fewer parameters a module has and the fewer 

parameters that are used in calls to other modules, the less connected it is with 

other modules, and the less likely errors are to propagate throughout source 

code. The inter-module complexity is directly related to the interconnections a 

module has with other modules. Look for modules with exceptionally high 

inter-module complexity measures. The complexity of these modules can be 

reduced by removing some of the interconnections (parameters). Parameters can 

also be reduced in a module by splitting it up into two or more smaller modules, 

each using fewer parameters, and calling fewer modules.
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