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PROPERTIES OF THE LINEAR MULTIPLIER OPERATOR FOR
THE WEINSTEIN TRANSFORM AND APPLICATIONS

ABDESSALEM GASMI, ANIS EL GARNA

Communicated by Vicentiu Radulescu

ABSTRACT. In this article, we use the theory of reproducing kernels to study
the Weinstein multiplier operators on Sobolev type spaces. Some applications
are given and an associated Hormander type theorem on LP-boundedness is
established.

1. INTRODUCTION

In this article, we consider the Weinstein operator A%}d defined on Rf‘l =
R?x]0, +00[, by

g2 9a41 9

=
pt 0x; Tar1 O0Tgq1

1
A%t = =Ag+ Lo, >, (1.1)

where Ay is the Laplacian for the d first variables and L,, is the Bessel operator for
the last variable defined on ]0, +oo[ by

0?u 2a+1 Ou 1 0 2o 3u]

= 352 = 2a+1 d+1 .
8xd+1 Tar1 OTae1 xdf"H 0T g1 0% gy1

Lou

The Weinstein operator Af,‘[}d, mostly referred to as the Laplace-Bessel differential
operator is now known as an important operator in analysis, because of its appli-
cations in pure and applied Mathematics, especially in Fluid Mechanics [10]. The
relevant harmonic analysis associated with the Bessel differential operator L, goes
back to Bochner, Delsarte, Levitan and has been studied by many other authors
such as Lofstrom and Peetre [19], Kipriyanov [I7], Stempak [28], Trimeche [29],
Aliev and Rubin [IJ.

The Weinstein transform generalizing the usual Fourier transform, is given for
f e LLRE!) and A € REH by

FrhHo) = F(@) Aa(@, Ndpa,a(z),

d+1
RY
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where
26+1
_ La1 I
dpg,a(x) = Gm) 72T (3 1 1)dx and A, g is given later by (2.2)).

In this article, we deal with the theory of multiplier operators in the Weinstein
settings. For s € R, we consider the Sobolev type spaces H;, 5, when a > 3 > -1/2,
consisting of all f € S.(RI*1), (the space of tempered distributions, even with
respect to the last variable), such that ]—'ﬁ,’d( f) is a function and

(L4 [2[2)*2Fp(f) € L*(dug,a)-

The space Hj, 5 is an Hilbert space when endowed with the inner product

a,d a,d
gy = [ O R @) ),
, e+
and it is continuously embedded in L?(dpq4,q4), when s > a — 3, where dug 4(2) =
(1+ [2?)*dpp.a(2).
For m € L*(dug,q), we define the Weinstein multiplier operators T}, g.m,, for
f S fo,[-}v by

Ta,ﬂ,mf(z) = (fgt}d)il(mf&}d(f))(x)v T E R(-if—-H'

These operators are a generalization of the usual linear multiplier operator T,
associated with a bounded function m and given by T, (f) = F~(mF(f)), where
F(f) denotes the ordinary Fourier transform on R™. These operators gained the
interest of many Mathematicians and they were generalized in many settings, (see
for instance [3] @, [15] [14] 24]).

For m € L*>(dpg,q) the operator Ty, g, is shown to be a bounded operator from
Hg)ﬁ onto L?(dpg.q), and for f € Hg’ﬁ we have

1o 12201 < I i ) -

Furthermore, if f is e-concentrated on E and f‘?‘l;d( f) is v-concentrated on S, where
E and S are two measurable subsets on Rﬂlfl. Using Donoho-Stark uncertainty
principle for the Weinstein transform, we obtain the following estimation

(taa(EN (np,a(S)? > Z;—’Za v,

where c, 4 is the constant given by
1
Cod = (9myd/220 (o + 1)
As in [20] 26] B0], the theory of reproducing kernels is used to give the best
approximation of the operator Ty, 3m on the Sobolev-Weinstein spaces H;, 5. More

(1.2)

precisely, for all n > 0 and g € L?(dugq), we show that there exists a unique
function f;7,, where the infimum
. 2 2
B ey, 49 = T 0, )
is attained.
The function

g 1s called the extremal function and it is given by

;g = <g7 Ta,ﬁ,m(Ks('7 y))>L2(dug,d)7
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where K is the reproducing kernel of the space (M, 5, (-, '>n7’)-(f¥ﬂ).

When o = 3, as in [2], we develop the original Hérmander’s technique to es-
tablish an analogous of the well-known Hérmander theorem (see [I6]), which gives
a sufficient condition on m guaranteeing the boundedness of T, on LP(R"), for
1<p<oo.

This paper is organized as follows. In section 2, we recall some basic Harmonic
Analysis results related with the Weinstein operator developed in [4, [5] and [6].
In the third section, the Weinstein multiplier operators are studied on the space
He a0 for « > 3 > —1/2. In the fourth section, the extremal function associated
with the Weinstein operators is given using the theory of the reproducing kernel
and we list some of its properties in Corollary and Corollary In the last
section, we prove the Hérmander multiplier theorem for the operators T, g, when
a=[0F>-1/2.

2. HARMONIC ANALYSIS AND THE WEINSTEIN-LAPLACE OPERATOR

In this section, we shall collect some results and definitions from the theory of
the harmonic analysis associated with the Weinstein operator A(;[}d defined on Riﬂ
by the relation . Main references are [4, [l [0 [7, 12| 13| 21 22].

Let us begin by the following result, which gives the eigenfunction \I'i“’d of the
Weinstein operator A?,‘[}d.

Proposition 2.1. For all A = (A1, Aa,...,Aat1) € Riﬂ, the system

0u . .
W(m) = —)\?u(x), ifl1<j<d
J
Lou(z) = =3, u(z), (2.1)
w0 =1, 2 y=0, 2y =—ir, f1<j<d
=1, 8$d+1 — Y 81'J - YRl =7 =
has a unique solution \Ilgf’d given by
Ueh(z) = e AN 5 (Nap12a11), Yz € CHL (2.2)
where z = (2',zq11), 2 = (21, 22,...,24) and jo is the normalized Bessel function

of index «, defined by
. =
Jal® =T+ D) 3 Sre ot

n=0

£

2n
()™ veeC.

Remark 2.2. The Weinstein kernel Ay 4 : (A, 2) — \I/f\"d(z) has a unique extension
to C4*+1 x C9*+! and can be written in the form

1
Aoa(2,y) = e 1Y) / (1 =133 cos(trgryart)dt Va,y € CHL 0 (2.3)
0

where x = (2/,z441), ' = (21,22, ...,24) and a, is the constant given by
A(a+1)

fo = il (a+ L)

The following result summarizes some of the Weinstein kernel’s properties.
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Proposition 2.3. (i) For all \, z € C¥! and t € R, we have
A%d()\, 0) =1, Amd(/\, Z) = Amd(z, )\), Aa7d()\, tZ) = Aa7d(t)\, Z)
(ii) For all v € N1 2 € RT! and » € C4', we have
DY A a(, )] < 2l exp(al| Tm 2], (2.4)

where 5
DY =7
02" ... 0z,
and |v| =v1 + -+ +vgy1. In particular
[Aga(z,y)] <1,Vz,y € REF. (2.5)

In this article, we use the following notation:
o (C, (]Rd‘“)7 the space of continuous functions on R4t even with respect to the
last variable.
e C, .(R41), the space of continuous functions on R+ with compact support,
even with respect to the last variable.
e CL(RI*1), the space of functions of class CP on R¥*!, even with respect to the
last variable.
o £, (R, the space of C>®-functions on R4!, even with respect to the last
variable.
o S.(R¥*1) the Schwartz space of rapidly decreasing functions on R4*! even with
respect to the last variable.
e D.(R¥*1), the space of C*-functions on R4*! which are of compact support,
even with respect to the last variable.
o S, (RI*1), the space of temperate distributions on R?*! even with respect to
the last variable. It is the topological dual of S, (R4*+1).
o LP(dpa,q), 1 < p < 400, the space of measurable functions on Rdjl such that

||f||Loo(d#ayd) = €SS SUD, i+t |f(x)] < 400,

1/p )
e = [ [ 1@ Pdna@)] " < o0, i1 p< 40,
+

where 14,4 is the measure on R‘f‘l given by
Qo a(z) = ot da, (2.6)

dz is the Lebesgue measure on R4t and Ca,d is the constant given by relation

o H.(C4*t1), the space of entire functions on C?*1, even with respect to the last
variable, rapidly decreasing and of exponential type.

Definition 2.4. The Weinstein transform for f € L}, (Rf‘l) is

Frl(H) = F(@) Mg a(w, Ndptoa(x), YA € REHL (2.7)

d+1
RY
where fiq 4 is the measure on R‘f‘l given by relation (2.6)).

Some basic properties of the transform F‘?“;d are summarized in the following
results. For the proofs, we refer to [6, [7] [8].
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Proposition 2.5. (i) For all f € L'(dpa.q), we have

IF N o= (e < NI L g a)- (2.8)
(i5) For m € N and f € S.(R¥1), we have
FVAW" ) = D" F (W), Yy eRTT(29)
(i4i) For all f in S.(R¥*Y) and m € N, we have
AR [F DI = Fp'(Pnf) (), VA € REF, (2.10)

where Pp,(\) = (—=1)™||\||*™.

Theorem 2.6. (i) The Weinstein transform fg[}d is a topological isomorphism
from S, (R*+1) onto itself, from D.(RI*1) onto H.(CHL) and from S’ (R*+1) onto
itself.

(ii) Let f € S.(RI¥*Y). The inverse transform (fﬁ{,’d)fl is given by

(Fu T (@) = Fy(H)(—x), Ve eRIL. (2.11)
(iii) Let f € L'(dpa.a). If Fo'(f) € LY (dpia,a), then we have
@ = [ F DO R0 p)dioaly), ae s eREL @12)
¥
Theorem 2.7. (i) For all f,g € S.(R%*1), we have the Parseval formula
Lo P08 a0 = [ A OOF Doy 219
(ii) (Plancherel formula) For all f € S,(R**1), we have

[ 5@ o) = [ F DO PN, (2.14)
RY R

(iii) (Plancherel theorem) The transform f"f[;d extends uniquely to an isometric
isomorphism on L?(dpia.q)-

Definition 2.8. The translation operator 7%, = € R‘f‘l, associated with the We-
instein operator AW is defined on C,(R4*+1), for all y € Rd+1 by

_ Oa o
TS f(y) = / fl@' +v, \/xdﬂ + Y51+ 2Tap 1Y cos 0)(sin 0)**d6,
(2.15)

= @+ u)ga (@, yas1, W du,
Ry

where 2’ +y' = (x1 + y1,..., %4 + ya), and

4 Tla+1) Ywwu)*?
_ o2a—1 y W
Ga(v,00) = 2 Vil(a+1/2)  (uvw)?e Lo-ul vl (2),

with

T(U,w,u):i\/(v—l—w—l—u)(v—l—w—u)(v—w+u)(w+u—v).
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We should note that for all v,w > 0, we have
/ o (v, w, w)u* T du = 1. (2.16)
Ry

The following proposition summarizes some properties of the Weinstein translation
operator.

Proposition 2.9. (i) For f € C.(R%!), we have
o f(y) =75 f(x) and 76 f = f, Va,y € RTT

(ii) For all f € E.(RY) and y € R, the function x — 7 f(y) belongs to
5*(Rd+1).

(i1i) We have

A%}d oTY =170 A%}d, Va € R’f‘l.

(iv) Let f € LP(dpia,a), 1 < p < +oo and x € RITT. Then 72f belongs to

LP(dpie,q) and we have
172 fll v (dpaa) < I L2 (i a)-

(v) The function Ay a(-,\), X € C4HL, on ]Rile satisfies the product formula

Aa7d(:177 A)A(X,d(ya )‘) = 7—7("1 [Aa,d('7 )‘)](y)a Vy S Ri_.—l * (217)
(vi) Let f € LP(dpta,a), p=1 or2 and x € Rf‘l, we have
FW D) = Daale ) F (Hw), Yy eRET (2.18)

(vii) The space S.(R1) is invariant under the operators T, with x € R

Definition 2.10. The Weinstein convolution product of f,g € C,(R%*1) is given
by:

fow g(z) = /Rd“ T F (=) 9(y)dpa,aly), Vo eRE (2.19)

Proposition 2.11. (i) Let p,q,r € [1,400] be such that ]l) + % — % =1. Then for
all f € LP(dpg,q) and g € L(dpg,q), the function f*w g belongs to L (dpia,q) and

1f *w gllordpa.a) < N2 dpe.) 190 La(dua a)- (2.20)

(i) For all f,g € LY(dpa,q), (resp. Se(R*¥™1)), fxw g € L' (dpa,) (resp.
S.(R¥1)) and

,d ,d .d
Fw(f xw g) = F () Fw (9)- (2.21)
3. WEINSTEIN MULTIPLIER OPERATORS ON A SOBOLEV TYPE SPACE

Throughout this section « and 3 denote two real numbers satisfying o > 3 > —%.
Let s € R, we define the Sobolev-Weinstein type space of order s, denoted by H, 5,

as the set of all f € S.(R41) such that F*(f) is a function and
1+ 122 Fpd(f) € L (dpaa)-

The space H;, s 1s endowed with the inner product

g, = /}R L FR D F ) )i ol2)
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and the norm

13, = [, I OEP (),

where dpuj ;(2) = (1 + |21%)*dpg a(z).
Lemma 3.1. Let s € R, the space H7, 5 is an Hilbert space.

Proof. Let (fn)n be a Cauchy sequence on H, 5. It is easy to see that (f‘?“;d(fn))n
is a Cauchy sequence of Lz(u; 4)» which is a complete space. Therefore there exists
a function g € LQ(ufé’d) satisfying

. a,d =
15 () = 9l =0

Then g € 8, (R*1) and if we denote f the distribution given by f = (F5")~1(g),
according to Theore we deduce that f € S’*(Riﬂ) and ]-"ﬁ,’d(f =g €
L2(pg7d), which proves that f € H;, ;. Furthermore,

i (= flla, = lim () = gllza ) = 0.

This proves that H7, 5 is a complete space. [l

Remark 3.2. (i) For s > a — f and f € H, 5, the Plancherel Theorem associated
with the Weinstein transform leads to

a,d
Co,d |~7:W (f)(Z)|2 2(04—/3)(1 s

2 —_—
Hf”LQ(uawd) = cs.d Ri'H (1—|—|Z|2)3 Zd+1 /u'ﬁ,d(z)'

Also for s > o — 3, we have

2(a—p a—
e

< <1
(T4 [z2)* = (L +]22)°

So, we deduce that
Ca,dy1/2
) € G220 (3.1)

3

Consequently, the space H, 5 is continuously contained in L?(dpie a)-
(ii) Let s > 20 — B+ 4 + 1. If f € H3, 4, then Fy(f) € L' (dpta,q) and

a,d
1 Fw (N2t (a0 < Cav@”fHHi,ﬂ’

where
Ca= (22 | o T )
Using (3.1)), we deduce that the function fl(f‘;d(f) € L' (dpa.q) N L*(dpte,q) and
fz) = s fﬁ‘;d(f)(z)Aa’d(—x, 2)dpa,d(2); ae x € Riﬂ.
¥

Definition 3.3. Let m be a function in L*(dug q), we define the Weinstein mul-
tiplier operator Ty, g,m on H, 5, by

Topnf(@) = (Fp") " (mFy(M)(@), = eRE

Using Plancherel Theorem associated with the Weinstein transform, we get the
following result.
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Theorem 3.4. Let m € L™(dug.a) and f € HY, 5, then we have
||Toz,[3,mf||L2(d/L5,d) < ”m”L”(d#B,d)Hf”Hgﬁ'

Definition 3.5. (i) Let E be a measurable subset of Ri+17 we say that the function
fe Hgﬁ is e-concentrated on E, if

1f —xefla, < ellflbn .

where g is the indicator function of the set F.
(i) Let S be a measurable subset of R4 and let f € HJ, 5. We say that f‘f“‘;d(f)
is v-concentrated on S, if

17 () = Xs P (Dl 2 ams.0) < VIl F e,

The following theorem can be obtained from Donoho-Stark Uncertainty Principle
for the Weinstein transform (see [23]).

Theorem 3.6. Let [ € H?X’ﬁ, if f is e-concentrated on E and ]—'%d(f) is v-
concentrated on S, then

(Haa(B))?(pg.a(S)M? > Cai’d(I —v—¢).
CB.,d

4. EXTREMAL FUNCTIONS FOR THE OPERATOR T, g m

The theory of extremal functions and reproducing kernels on Hilbert spaces,
is an important tool in this section concerning the study of the extremal function
associated with the Weinstein multiplier operators T}, g ,,. In this section, s denotes
a real number satisfying s > 2a — 0 + % + 1.

Let n > 0. We denote by (-, ~>,77nyﬁ the inner product on the space H, 5 by

<f7 g>7],7‘lz’5 = 77<f7 g)’}-{;ﬁ + <Ta,,8,mf7 Ta,ﬁ,mg>L2(d;L/37d)7

and | - [|y»: , the associated norm.

We remark that the two norms | - [|5xs , and || - [l , are equivalent, therefore
the pair (H7, 5, (-, -)n,nz, ,) is an Hilbert space with a reproducing kernel given in
the following theorem.

Theorem 4.1. Let n > 0 and m € L>(dpg,a). The space (Hy, g, (-, )yns ) has
the reproducing kernel

Ca,d A a(—z,2)Ae a(y, 2) 2(a—B)
Ks Z, = 7’/ ) s Py d N 2):
( y) €a,d ]Rd++1 \m(z)|2 _|_77(1 + ‘Z|2)s d+1 12 ,d( )

that is
(i) For ally € R‘f‘l, the function Ks(-,y) belongs to H;, 5.
(ii) The reproducing property: For all f € H?, 5 and y € Riﬂ,
<f7 KS('7y)>TI,Hf¥ﬁ = f(y)
Proof. (i) Let y € R‘f‘l. Using the relation ([2.5]), one can see that the function

Cod Aoa(y, z) L2(a=0)
cg.a [m(z)|2 +n(L+ |2]2)s 741

Py 2
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belongs to L'(dpa,qa) N L*(dpte,q). Then the function K is well defined and

K(z,y) = (Fp") () (@), z € REF. (4.1)
Plancherel Theorem for the Weinstein transform and relation (2.5)) give
4(a=p)

2\s| a,d 2 Ca,d\2 Zd+1
) . < —_ - -

So
4(a—p)
Ca,d Zd+1 1/2
K, (., s < —(/ s d z )
I,y < 22( [, ot dina)
1
< Ecaﬁ < 00.

This proves that for all y € R‘fl the function K;(-,y) belongs to H;, 5
(i) Let f € H}, 5 and y € Ri‘H, using relation (4.1]), we have

(L KsCoy)nms, ,
=n(f, (Fp")~ Yoz , + (Tapmf, T B (Fp ) 7 y)) L2 (dpas.a) -

Using Parseval formula for the Weinstein transform,

<f7 )>7]'H
—77/ T (£)(2)dy (2)dus (= )+/ [m(2) P Fi () (2) by (2)dpip az)

d+1
RY

a,d Ca,d 2(a—
= [ T DG 2 Ny 2)257  dpsal2)
s

= /RdJrl ‘FI(/IX/’d(f)(Z>Aa,d(y,Z)dua’d(z) = f(y)

Hence K(-,y) is a reproducing kernel. [

Remark 4.2. The space H, ;5 has the reproducing kernel

Ca,d 2(a— —s
Ky (z,y) = =4 Aai(~2, 2)Naaly, 2)205 Pdpss(2).
¢g,d JRYH

Theorem 4.3. Let m € L*(dpa.q), for any function g € L*(dug,q) and for any
n >0, there exists a unique function fy ., where the infimum

inf {nllflI3e | +lg = TapmfIZ2 (0, 0} (4.2)
FEHE 4 '

is attained. Moreover, the extremal function fy , is given by

Fra6) = [ ., 90)Qu (e 0)dts ale).

where

(DAaa(@ 2)Aail=y2) ) o
| o

Qa,5(2,y) :/Rdﬂ m(z)]? + (1 + |z[2)®

+
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Proof. The existence and the uniqueness of the extremal function f; satisfying
(4.2)) is obtained in [11l 20, 25]. Especially, using the reproducing kernel of the
space (. | - oz ,)s £ 1 given by

fog = (9, Ta,8,m(Ks(,9))) L2 (dps a) - (4.3)
The relation (4.1)) leads to

T @) = [ (&) F U ) ) Aal—o s al)

Aa by Aa )
= [, m) et D) ).
+

m(2)[2 +n(1+[2[2)*
Which gives the result. ([
Corollary 4.4. Let g € L*(dug.a) and n > 0. The extremal function In.q satisfies:

* Ca,d
‘f'r],g| < 2\/77“9“1/2(dﬂ6,d)7 (44)
c =2 1/2
* < o, 2 . .
sl < 55 ( [ o P ) (45)
Aoz d(—y,z)m(z) 3,d
* = : Fi 2)dpte.q(2). 4.6
a0 = [ e L W @) (49)
Proof. To prove (4.4), have
f;,g(y) = <gvTo¢,ﬁ,m(Ks('7y))>L2(d,u57d)-
This leads to
F o) < 912 I FG 0 2
9 9 1/2
< lollzans ([, ImCP16,(:) ()
+
2(a—p) 2
Ca,d Zapr | Im(z)] 1/2
< dlg .
< 'g'”““ﬁ«“(@ﬂ s TP (T + PP ()

Using the inequality
S 2 S
()P + (1 + [2)°]° > an(1 + o) (=),

we obtain
2(a—p)
. Cad Zdt1 )1/2
< Zod S = S
gl < ”g”m(d”"'d)(%d /Ri“ an(1 + 22 (e)

Ca,p
< 2 .
— 2\/77 ||g||L (dﬂ[i,d)

To prove (4.5) we write

fra = [ ¢

Holder inequality gives

=12 |=|?

et g(2)Qa.p(x, y)dpg,a().

[z

Fra@F < [, la@PIQuste.) s ale).
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Now, applying Fubini-Tonelli’s Theorem we obtain

* =2
1 g2 2y < /Rd+1 e 2 |9(2) Qa5 (@, 72 (apn oy dt.a()-

¢
Let 1, be the function defined by

m(2)Aq q(z, 2)
[Im(2)]2 +n(1 +[2[2)*]*

Since s > Qa—ﬁ—l—%—&-l, Yy € LM (dpia,a)NL*(dpta,qa) and Qo 5(z,y) = (flf{,’d)_l(i/)z)(y),
we have

V2 (2) =

1@ M oy = I Qe cdot) 3y
[, et
= Jeaor Tm(R + (1 + =)

</ dpia,d(2)
= Jrerr dn(1 4 [2[2)

Co,a
< ﬁ
Equality llows from relation , Plancherel Theorem for the Weinstein
transform and (4.1)). O
Corollary 4.5. For every f € H}, 5 and g =To g,m [, we have
(i)
Im(2)/?

a,d .
P sy W )
.. . llml oo
W) 15 gllr , € =5 2N fllns i
(ifi) lim, o+ [ £y — Fllaes , = 0;
(iv) lim, o+ [[f7.g = fllL>(dpa.a) = O-

Fi' ) = —

Proof. (i) For every f € H;, 5 and g = Ty g,m f, we have
F' (f.9)(2)

= /R 12 9@ F (Qa,p( edot)) (2)dpp a(x)

= [ o @) (o)

T T o R R (D))l s )

- m(z)? TVEQL |Z‘2)s‘7:i(/1l/7d(f)(2)-

(ii) We have

Im(2)|*

* _ a,d s 1/2
”fn,g”fo’g - (/Rd;rl [m(z)2 _|_77(1 + |Z‘2)9]2|fW (f)(z)Pduﬂ,d(x))
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m()* . o s 1/2
s (/Rdﬂ W‘fwd(f)(zﬂ duﬁ,d(l'))

[l < (dus.a)
< T‘*Ilfll
(iii) We have
2 1/2
”f;]k,g - f”HZ /d+1 m _|_ é(i|+ |Z‘ ) - 1|2|fa}d(f)(z)|2du%7d(x)>
1 z 1/2
- /Rd+1 _|_ ;(|1 -||—)|Z ) ]2 |‘7:{(/)I(/zd(f)(z)‘2duad($)) .

Since
e (1+[2%)*
[m(2)? +n(1 + |2[?)°]?
we obtain the result with the dominated convergence theorem.
(iv) It is easy to see that

<1

—n(1+[2%)°
m(z)? +n(1+[2[*)°

Fot(frg — 2) = Fol () (2).

So
— z 2\s
Fialt) =10 = [ T D o)),
and
* n(1+ |21)° o,
y:ﬂ;}gllfn,g(w—f(y)l S/Ri“ P EEESEEEE \Ft()(2)dptaa(2).

Hence the needed result is a consequence of the dominated convergence theorem
and the inequality
n(1+]2%)°
m(z)? +n(1 +[2[*)*

5. HORMANDER MULTIPLIER THEOREM FOR THE OPERATOR T}, o.m

The aim of this section is to prove an analogue of the famous Hérmander multi-
plier theorem for the operator T4 o,m, which will be denoted as Ty, ,,. The theorem
is stated as follows.

Theorem 5.1. Let ¢ the least integer greater than o + 1 and m be a bounded
C? _function on R\ {0}, satisfying the Hormander condition

o1 1/2 .
(/ |A§(Tm)(§)|2dﬂa,d(§)) < CROH-Gsta) (51
rp2<igl<er i

for all R > 0, where C is a constant independent of R and s € {0,1,...,¢} and
g € {0,1,...,2¢}. Then the operator Ty ., can be extended to a bounded operator
from LP(dpq q) into itself for 1 < p < oco.

We need to establish some results associated with the Weinstein analysis to prove

Theorem.1]
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Theorem 5.2. Let K be a measurable function on {(x,y) € Rff_“ fo‘l s x| # |y|}
and T be a bounded operator from L?(djiq ) into itself such that

T(f)(x) = K(z,y)f(y)dpe.a(y), (5-2)

d+1
RY

for all compactly supportedf in L?(dpia.q) and for a.e. x € Ri+17 2| ¢ | supp(f)| =
{lyl,y € supp(f)}. If K satisfies

/ K(2,y) — K(2,2)| dpaa(z) <C, Vg2 e R (5.3)
[lz]=ly||>2|y—z|

then T' extends to a bounded operator from LP(dpa.q) into itself for 1 < p < 2.

Proof. We proceed by the same manner as in the proof of the classical theorem of
singular integral given in [27, Chp. I], by considering here the doubling measure
diia,q and proving that T is a weak-type (1,1). a

Before proving Theorem we need the following lemmas.

Lemma 5.3. Let p € S*(Rfrl), then for all z,y € Riﬂ we have

175 () = T (O L1 (dp.a) <C|xd+1—yd+1|H ||L (dpion.a) (5.4)

Proof. In view of ([2.15)) we have

o) = 5 [ el + 2 (e, zi)v(0)

where g (Ta11, za11) = \/$?1+1 + 23,1 + 224112441 cos 0 and dv(0) = (sin)>**do.
By the mean value theorem, it follows that

Ti‘(«ﬁ)(Z) -7, () (2)

2t + zgr1cos0  Op ’ ’
— g dv(0)dt
2 5 (Far1 = va) / / Wo(zt, 2441) O0zay1 (& 42 Wolar, 2))dv(B)dt,

where z; = 2441 + t(Ya+1 — Tat+1). Now, using the inequality
|2t + 2441 cos 6|
Wo(2t, 2d41)

and making the change of variable u — Wy(z¢, z441), we obtain

72 (0)(2) — 7 () (2)

<1,

< 7‘xd+1 - yd+1\/ / 8 (@' + 2, Vo (2, 2))|dv(0)dt
Zd+1
S 5 ‘derl - yd+1‘ / x + Zl7 u)‘qa (Zt7 Zd41, u)u204+1 dudt.
Ry 8zd+1
So, (5.4) follows from Fubini’s theorem and (2.16). O

Lemma 5.4 (Berstein’s lemma). Let f € L'(dpa,q) and X > 0 and suppose that
supp(.?-"{,lv’d(f)) C {z € RU |2| < A}, Then for all z, y € RET, we have

172 (F) = 7 (D 22 sy < CAM@ars = Yaral [l 2 (dpsaa)-
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Proof. Choose ¢ € S.(RE) such that | Fip?(¢)(z)] = 1 for all z € {z € R |z] <
1} and put 6x(s) = A 60). Then [Fex) )] = IR (@)(3)] = 1in
{z e RT™,|2| < 1} and we can write
7 (f)(2) = 7 (F)(2) = oxsw (72(f) — 7/ () (2)
= [rw (77 (0x) — 7/ (62)) (2).
Using (5.4) we get
172 (f) = 75 (Dllna < CUF Lt (@pa. 172 (D3) = 75 (021 L2 (d )

< Ol dpa.) 1722 (@) = T (D)Lt (e )

< CNzarr — Yar |l Fllr (dpa.a)»
which gives the desired result. O
Lemma 5.5. If m satisfies (5.1). Then there exists a locally integrable function k
on REN\ {0} such that for all |z| ¢ |supp(f)|,

Tom(f)(x) = K(z,y)f(y)dpa.a(y),

R4
where K is given on {(z,y) € R x RE 1|z # |y|}, by
K(z,y) = 7 (k)(=y yat1)- (5:5)
Proof. Let ¢ € D.(R**), supported in {3 < |¢] < 2} and satisfying :

—+oo

e =1, £#0.

j=—o00
Put m;(&) =m(§)p(277¢) and k; = (f‘?‘l}d)*l(mj). Let us prove first the estimate
« s i(d-9tL _g
HASD |y < CoEHE 501, e, (5.6)

In fact by induction we can show that there exist constants b, ., € {0,1,..., s},
depending only on «, satisfying

or
(A% sm; (€ }:w}:bmggﬁw ]ag:nj €), €#£0. (5.7)
= d+1

Leibniz formula gives

Zcqga(q n 2 g ar_q‘P( 2-ig).

a5az+1 a0
Hence,
> 09m 0" 1
a,dys r 5— 90
(A% m; (¢ o megdHZcqzﬂq IAY J(ag 5
j= r= q=0 d+1 gd—&-l

Using , we obtain
p 0'm;
Jo €533 O
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. L o4

< C92i(r—s) Z 924 (q+2p—r) (03)2 / |AZ( qm )(f)‘Qdﬂa,d(f)
=0 2igje<aitt 0801

<O, 92j(at+tt —s)

So, the inequality (5.6 that we seek is a consequence of ({5.7)).
Now, applying Plancherel’s theorem and using ([5.6)), we obtain

S S Y&\ S (a4 —s
=12k (2) 22 () = DA 5l 220 ) < Co2OTT7,

for s = 0,1,...,¢. Applying this formula with s = 0 and s = ¢, we get that the

series
Z 15 (@)1 L2 (dpra.a) + ZH i) k()| 2 (dpra,0)

j=—00

are convergent and the series ZJ__OO |k](x)\ is convergent for a.e. x # 0.
By the Cauchy-Schwarz inequality it follows that

Lm0 S o' s ato)

j=—o0

<N (Ollzaapesy D, el 2dun..) < 00,

j=—oc0

/ |Z|k ~y' s Ya+1)|dpa,a(y)
R+

( )(
< || 22 (e a) Z ||y£k (=Y Ya+ 1)l L2 (dpa a) < OO

for |z| ¢ | supp(f)| (which implies that 0 ¢ supp(7,(f))). Thus we concluded that

/]Rd Z |k; (y)|dpa,a(y) < oo, |z| ¢ |supp(f)].

]_—OO

This allows us to take k = jjioo k; and one can write for |z| ¢ | supp(f)|,

T(f)(x) = / K(2)72 (F)(—2' 2= / K(2,9) £ (0)dptea(y)-

Rd+1
+
Which completes the proof. (I

Proof of Theorem[5.1 First, we note that the adjoint operator 7}, is the multiplier
operator associated with m and

T, (f)(z) = K(y,z)f(y)dpe,a(y); |x| & |supp(f)l,

d+1
]R-%—

where K is given by (5.5). Using the duality argument, it is sufficient to show that
the function K satisfies the condition ([5.3]) of the Theorem which follows from

Z /I |~ yll>2ly—=| Iy (k;) () = 72 (k;) (2)|dpa.a(z) < C, (5.8)

j=—00
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for all y,z € Ri“. To prove (5.8]) we need the following two estimates

/ |kj(z)|dpa(x) < C, |kj(z)|dpte,q(z) < C(2jt)o‘+%_s, t > 0.
R+ || >t '

(5.9)
Cauchy-Schwarz inequality, Plancherel’s theorem and (2.9)), give

[ s @dita(@) < 100+ 21) L, 10+ 2ol oy @l 20
+
dt ¢
it dtl ; ad
< 0277 N P ICY| (AT 5 | 2 (e a) < C-
q=0

Hence the first inequality of ([5.9) is proved. The second inequality of (5.9) follows
in similar way.

Let us remark that if ||z| — |y|| > 2]y — z| and |u| > ||z| — |z]|| then |u] > |y — z|.

Therefore, in view of (2.15)), (2.16), (5.9) and Fubini-Tonelli’s theorem

/ 17 (k;) () — 72 (k) (@) [t a (&)
[lz|=]y[[>2]y—z|

< T (ki) ()| dppe,a( 7 (k) (@) |dpta.a (2
_/zlly>2|yz| ()@ ldptata) + i ()@ it ()

llz|—lyl1>2ly—=|

<9 / 1 ()| dptena(2)
[u]>|y—z|

d+1

SOy -zt =%
On the other hand, Lemma and (5.9)) give

/ 172 (k) () — 72 (k) (2) [t a(2)

lz|=lyll>2ly—z|
< |7y (ki) = 72 (B 21 (dpia.a)
< C2\yar1 — Zar1l-

Thus to get , we write

2 /II |~ lyll>2ly— ||T;(kj)(x) = 72 (k) (@)|dpaa(2)

j=—00
. d41 .
< C( Z 2y —z)*+= T+ Z 2 Ya+1 — Zd+1|> <C.
{27|y—z|>1} {27|y—z|<1}
This completes the proof of Theorem [5.1 (]
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