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BLOW-UP OF SOLUTIONS TO SINGULAR PARABOLIC
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Abstract. We prove the existence of a local weak solutions for semi-linear
parabolic equations with a strong singular absorption and a general source.

Also, we investigate criteria for the solutions to blow up in finite time.

1. Introduction

In this article, we are interested in nonnegative solutions of the equation

∂tu−∆u+ u−βχ{u>0} = f(u, x, t) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1.1)

where Ω is a bounded domain in RN , β ∈ (0, 1), and χ{u>0} denotes the character-
istic function of the set of points (x, t) where u(x, t) > 0, i.e:

χ{u>0} =

{
1, if u > 0,
0, if u ≤ 0.

Note that the absorption term u−βχ{u>0} becomes singular when u is near to
0, and we impose u−βχ{u>0} = 0 whenever u = 0. Through this paper, f :
[0,∞) × Ω × [0,∞) → R will be assumed a nonnegative function satisfying the
hypothesis

(H1) f ∈ C1
(
[0,∞) × Ω × [0,∞)

)
, f(0, x, t) = 0, for all (x, t) ∈ Ω × (0,∞), and

f(u, x, t) ≤ h(u) for all (x, t) ∈ Ω × (0,∞), where h is a locally Lipschitz
function on [0,∞), and h(0) = 0.

In the sequel, we always consider nonnegative initial data u0 6= 0.
Problem (1.1) can be considered as a limit of mathematical models describing

enzymatic kinetics (see [1]), or the Langmuir-Hinshelwood model of the heteroge-
neous chemical catalyst (see, e.g. [22, p. 68] and [8, 20]). This problem has been
studied by the authors in [4, 7, 14, 15, 18, 20, 24], and references therein. These
authors have considered the existence and uniqueness, and the qualitative behavior
of these solutions. For example, when f = 0, Phillips [20] proved the existence of
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solution for the Cauchy problem associating to equation (1.1). A partial uniqueness
of solution of equation (1.1) was proved by Davila and Montenegro [7], for a class
of solutions with initial data u0(x) ≥ C dist(x, ∂Ω)µ, for µ ∈ (1, 2

1+β ) (see also [6]
the uniqueness in a different class of solutions). A beautiful result established by
Winkler, [24], showed that the uniqueness of solution fails in general. One of the
interesting behaviors of solutions of (1.1) is the extinction that any solution van-
ishes after a finite time even beginning with a positive initial data, see [20, 14] (see
also [4] for a quasilinear equation of this type). It is known that this phenomenon
occurs according to the presence of the nonlinear singular absorption u−βχ{u>0}.

Equation (1.1) with source term f(u) satisfying the sublinear condition, i.e:
f(u) ≤ C(u + 1), was considered by Davila and Montenegro [7]. The authors
proved the existence of solution and showed that the measure of the set {(x, t) ∈
Ω × (0,∞) : u(x, t) = 0} is positive (see also a more general statement in [9]). In
other words, the solution may exhibit the quenching behavior. Still in the sublinear
case with source term λf(u), Montenegro [19] proved that there is a real number
λ0 > 0 such that for any λ ∈ (0, λ0), there is t0 > 0 such that

u(x, t0) = 0, ∀x ∈ Ω.

He called this phenomenon complete quenching.
From our knowledge, equation (1.1) with a general source term f(u, x, t) has not

been studied completely. Thus, we would like to investigate first the existence of
solutions to equation (1.1). Furthermore, it is well known that nonlinear parabolic
equations with general source f(u, x, t) may cause the finite time blow-up. As men-
tioned above, the nonlinear absorption u−βχ{u>0} causes the complete quenching
phenomenon. Thus, it is interesting to see when the complete quenching prevails
the blow-up, and conversely. We also note that the above qualitative behavior of
solutions were studied by the authors in [3, 5] for the p-Laplacian equation in one-
dimension of this type. In this paper, we only consider the blowing-up solutions
of (1.1). Before giving our results, it is necessary to introduce a notion of weak
solution of equation (1.1).

Definition 1.1. Let u0 ∈ L∞(Ω). A nonnegative function u(x, t) is called a weak
solution of equation (1.1) if u−βχ{u>0} ∈ L1(Ω×(0, T )), and u ∈ L2(0, T ;W 1,2

0 (Ω))∩
L∞(Ω×(0, T ))∩C([0, T );L1(Ω)) satisfies equation (1.1) in the sense of distributions
D′(Ω× (0, T )), i.e.∫ T

0

∫
Ω

(
−uφt +∇u · ∇φ+ u−βχ{u>0}φ− f(u, x, t)φ

)
dx dt = 0, (1.2)

for all φ ∈ C∞c (Ω× (0, T )).

Our first result is the existence of a local solution to (1.1).

Theorem 1.2. Let u0 ∈ L∞(Ω), and let f satisfy (H1). Then, there exists a finite
time T = T (u0) > 0 such that equation (1.1) has a maximal weak solution u in
Ω× (0, T ), i.e: for any weak solution v in Ω× (0, T ), we have

v ≤ u, in Ω× (0, T ).

Moreover, there is a positive constant C = C(f, ‖u0‖∞) such that

|∇u(x, τ)|2 ≤ Cu1−β (τ−1 + 1
)
, for a.e. (x, τ) ∈ Ω× (0, T ). (1.3)
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Besides, if ∇(u1/γ
0 ) ∈ L∞(Ω), with γ = 2

1+β , then there is a positive constant
C = C(f, u0) such that

|∇u(x, τ)|2 ≤ Cu1−β(x, τ), for a.e. (x, τ) ∈ Ω× (0, T ). (1.4)

Remark 1.3. Theorem 1.2 implies that u is continuous up to the boundary. Fur-
thermore, u is continuous up to t = 0 provided ∇(u1/γ

0 ) ∈ L∞(Ω) (see for example
[3, 4, 5, 20]).

Remark 1.4. Similarly as in the case of p-Laplacian of the equation of this type
(see [3]), when f(u, x, t) = f(u), the results of Theorem 1.2 still hold s for f a locally
Lipschitz function on [0,∞), instead of f ∈ C2([0,∞)), required in the previous
works (see for example [7, 19]). For example, our existence result can take into
account the function f(u) = (u− 1)+u.

After that, we study the global nonexistence of solutions of (1.1), the so called
finite time blowing-up solution. In this paper, we point out some criteria on initial
data u0 to guarantee the blow-up of solution in a finite time. For simplicity, we
consider f(u, x, t) = f(u). We will give the first result of blow-up for the superlinear
case, i.e. f(u) = up, for p > 1. Then, it is convenient to introduce the energy
functional

E(t) =
∫

Ω

(1
2
|∇u(t)|2 +

1
1− β

u1−β(t)− 1
p+ 1

up+1(t)
)
dx, (1.5)

Our first criterion considers E(0) negative.

Theorem 1.5. Let u0 ∈ L∞(Ω) ∩H1
0 (Ω). Suppose that f(u) = up, for p > 1, and

E(0) ≤ 0. Let u be a solution of equation (1.1). Then, u blows up in a finite time.

It is interesting to find out an optimal condition of nonlinear source f(u) such
that the explosion of solution holds. Let us remind a necessary and sufficient
condition for blow-up of solutions of equation (1.1) without the singular absorption
u−βχ{u>0},

∂tu−∆u = f(u) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,
(1.6)

It is known that if f is a convex function on (0,∞), and∫ ∞
a

1
f(s)

ds < +∞, (1.7)

for some a > 0, then the solution u of (1.6) must blow up in a finite time provided
that u0 is large enough (see also [10, 11], necessary and sufficient conditions for
blow-up of solution of the porous medium equation). One can take for instance a
typical weak superlinear f(u) = (1 + u) logp(1 + u), which is convex and satisfies
(1.7), with u ≥ 0, p > 1. We also note that only condition (1.7) is not sufficient to
guarantee the explosion of u in a finite time if lacking of the convexity of f , see [21,
Theorem 19.15]. Here, we will demonstrate that the explosion of solution of (1.1)
occurs with f as above.

Theorem 1.6. Let f(u, x, t) = f(u) be a locally Lipschitz function on [0,∞).
Suppose that f(u) is a convex function on (0,∞), and f satisfies (1.7) for some
a > 0. Then, the solution u of (1.1) blows up in a finite time if u0 ∈ Cb(Ω) is large
enough.



4 N. T. DUY, A. N. DAO EJDE-2018/48

Our proof of Theorem 1.6 is based on the first eigenvalue method introduced by
Kaplan [13]. Note that our equation contains the singular term u−βχ{u>0}, which
causes a difficulty in estimating this solution. To overcome this obstacle, we show
that if u0 is positive inside of Ω and large enough, then u(t) is also positive inside
of Ω for a certain large time interval. Note that the concave method used by the
authors in [3] to prove the explosion of solutions for p-Laplacian equation in one
dimension of this type cannot be applied to this situation. Finally, one can find a
rich source of topic of explosive solutions in [12, 17, 21, 23], and references therein.

This article is organized as follows: In the next section, we prove the existence
of a local solution to (1.1). To do that, we prove some gradient estimates for the
approximating solutions. The last section is devoted to study of blowing-up of
solutions.

The notation that will be used in this paper is the following: we denote by C
a general positive constant, possibly varying from line to line. Furthermore, the
constants which depend on parameters will be emphasized by using parentheses.
For example, C = C(p, β, τ) means that C depends on p, β, τ .

2. Existence of a local solution

In this section, we consider a regularized equation of (1.1):

∂tuε −∆uε + gε(uε) = f(uε, x, t) in Ω× (0,∞),

uε = η on ∂Ω× (0,∞),

uε(0) = u0 + η on Ω
(2.1)

for any 0 < η < ε, with gε(s) = ψε(s)s−β , ψε(s) = ψ( sε ), and ψ ∈ C∞(R) is a
non-decreasing function on R such that ψ(s) = 0 for s ≤ 1, and ψ(s) = 1 for s ≥ 2.
Note that gε is a globally Lipschitz function for any ε > 0. We will show that
solution uε,η of equation (2.1) tends to a solution of equation (1.1) as η, ε→ 0. In
passing to the limit, we need to derive some gradient estimates for solution uε,η,
see also [6, 7, 20]. Then, we have the following result.

Lemma 2.1. Let u0 ∈ C∞c (Ω), u0 6= 0. There exists a classical unique solution
uε,η of (2.1) in Ω× (0, T ).

(i) There is a constant C > 0 only depending on β, T, f, ‖u0‖∞ such that

|∇uε,η(x, τ)|2 ≤ Cu1−β
ε,η (x, τ)

(
τ−1 + 1

)
, for any (x, τ) ∈ Ω× (0, T ), (2.2)

(ii) If ∇(u1/γ
0 ) ∈ L∞(Ω), then we obtain

|∇uε,η(x, τ)|2 ≤ Cu1−β
ε,η (x, τ), for any (x, τ) ∈ Ω× (0, T ), (2.3)

with C > 0 merely depends on β, T, f, ‖u0‖∞, ‖∇(u1/γ
0 )‖∞.

Proof. (1) Fix ε ∈ (0, ‖u0‖∞). For any η ∈ (0, ε), the existence and uniqueness of
a classical solution uε,η of problem (2.1) is well-known (see [16]). We denote by
u = uε,η for short. Let Γ(t) be the flat solution of the ODE:

∂tΓ = h(Γ), in [0, T ′],

Γ(0) = 2‖u0‖∞,
(2.4)

where h is the function in (H1) above, and T ′ is the maximal existence time of
Γ(t). Note that T ′ depends merely on ‖u0‖∞, see [2, Chapter 1]. It follows from
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the comparison principle that

η ≤ u ≤ Γ(t), ∀t ∈ [0, T ′].

Let us put u = φ(v) = vγ , with γ = 2/(1 + β). Then

vt −∆v =
φ′′

φ′
|∇v|2 − 1

φ′
(
gε(φ(v))− f(φ(v), x, t)

)
. (2.5)

For any τ ∈ (0, T ′/3), let us consider a cut-off function ξ(t) ∈ C∞(0,∞), 0 ≤ ξ(t) ≤
1, such that

ξ(t) =

{
1, on [τ, T

′

3 ],
0, outside ( τ2 ,

T ′

3 + τ
2 ),

and |ξt| ≤ c0
τ , for some constant c0 > 0.

Then, we set w = ξ(t)|∇v|2. If maxΩ×[0,T ] w = 0, then ∇v(τ) = 0, so estimate
(2.2) is trivial.

If not, there is a point (x0, t0) ∈ Ω × (0, 2T ′/3) such that maxΩ×[0,T ′] w =
w(x0, t0). Thus, we have at (x0, t0):

wt = 0, ∇w = 0, ∆w ≤ 0. (2.6)

This implies

0 ≤ wt −∆w = ξt|∇v|2 + 2ξ(t)
(
∇v.∇vt −∇v.∇(∆v)

)
− 2ξ(t)|D2v|2,

or
0 ≤ ξt|∇v|2 + 2ξ(t)∇v · ∇(vt −∆v). (2.7)

A combination of (2.5) and (2.7) provides us with

0 ≤ ξt|∇v|2 + 2ξ(t)∇v · ∇
(φ′′
φ′
|∇v|2 − gε(φ(v))− f(φ(v), x, t)

φ′
)
.

Since ξ(t0) > 0, we obtain

0 ≤ 1
2
ξ−1ξt|∇v|2 +∇v · ∇

(φ′′
φ′
|∇v|2 − gε(φ(v))− f(φ(v), x, t)

φ′
)
. (2.8)

At the moment, we estimate the terms on the right hand side of (2.8). First of all,
we have from (2.6) that ∇(|∇v(x0, t0)|2) = 0, so

∇v · ∇
(φ′′
φ′
|∇v|2

)
= ∇v · ∇

(φ′′
φ′
)
|∇v|2 = (γ − 1)(2γ − 3)v−2|∇v|4. (2.9)

Next, we have

∇v.∇
(f(φ, x0, t0)

φ′

)
=
Dxf(φ, x0, t0)

φ′
∇v +Duf(φ, x0, t0)|∇v|2 − f(φ, x0, t0)

φ′′

φ′2
|∇v|2

=
1
γ
Dxf(φ, x0, t0)v1−γ∇v +Duf(φ, x0, t0)|∇v|2

− (
γ − 1
γ

)f(φ, x0, t0)v−γ |∇v|2.

(2.10)

Since f ≥ 0, and γ > 1, it follows from (2.10) that

∇v · ∇
(f(φ, x0, t0)

φ′

)
≤ 1
γ
|Dxf(φ, x0, t0)|v1−γ |∇v|+ |Duf(φ, x0, t0)||∇v|2. (2.11)
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Concerning the last term, we have

∇v·∇
(gε(φ)

φ′

)
= (g′ε−gε

φ′′

φ′2
)|∇v|2 =

(
ψ′ε(φ)v−β−(β+

γ − 1
γ

)ψε(φ)v−(1+β)γ
)
|∇v|2.

Since ψ′ε ≥ 0, and 0 ≤ ψε ≤ 1, we obtain

−∇v · ∇
(
g(φ)
φ′

)
≤ (β +

γ − 1
γ

)v−(1+β)γ |∇v|2. (2.12)

By inserting (2.9), (2.11) and (2.12) into (2.8), we obtain

(γ − 1)v−2|∇v|4 ≤ 1
2
ξ−1ξt|∇v|2 + (β + 1− 1

γ
)v−(1+β)γ |∇v|2

+ |Duf ||∇v|2 +
1
γ
v1−γ |Dxf ||∇v|.

(2.13)

Now, we multiply both sides of (2.13) by v2 to get

(γ − 1)|∇v|4 ≤ 1
2
ξ−1|ξt|v2|∇v|2 + (β + 1− 1

γ
)|∇v|2 + v2|Duf ||∇v|2

+
1
γ
v3−γ |Dxf ||∇v|.

(2.14)

If |∇v(x0, t0)| ≤ 1, then w(x0, t0) ≤ 1. This leads to w(x, τ) ≤ 1, thereby proves

|∇u(x, τ)|2 ≤ 4
(1 + β)2

u1−β(x, τ).

Then, estimate (2.2) follows immediately.
If not, we have |∇v(x0, t0)| > 1, it follows then from (2.14)

(γ − 1)|∇v|4 ≤ 1
2
ξ−1|ξt|v2|∇v|2 + (β + 1− 1

γ
)|∇v|2 + v2|Duf ||∇v|2

+
1
γ
v3−γ |Dxf ||∇v|2.

By simplifying the term |∇v|2 both sides of the last inequality, we obtain

(γ − 1)|∇v|2 ≤ 1
2
ξ−1|ξt|v2 + (β + 1− 1

γ
) + v2|Duf |+

1
γ
v3−γ |Dxf |.

Multiplying both sides of the above inequality by ξ(t0) yields

(γ−1)ξ(t0)|∇v|2 leq 1
2
|ξt|v2 + ξ(t0)

(
(β+ 1− 1

γ
) + v2|Duf |+

1
γ
v3−γ |Dxf |

)
. (2.15)

Recall that w(x0, t0) = ξ(t0)|∇v(x0, t0)|2, 0 ≤ ξ(t) ≤ 1, and |ξt| ≤ τ−1. It follows
from (2.15) that there is a constant C = C(β) > 0 such that

w(x0, t0) ≤ C
(
τ−1v2 + v2|Duf |+ v3−γ |Dxf |+ 1

)
.

Since w(x0, t0) ≥ w(x, τ) = |∇v(x, τ)|2, we obtain

|∇v(x, τ)|2 ≤ C
(
τ−1v2 + v2|Duf |+ v3−γ |Dxf |+ 1

)
Moreover, we have

vγ(x, t) = u(x, t) ≤ Γ(T ′), for any (x, t) ∈ Ω× [0, T ′].

Then

|∇v(x, τ)|2 ≤ C
(
τ−1Γ1+β(T ′) + Γ1+β(T ′)Θ(Duf,Γ(T ′))
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+ Γ
1+3β

2 (T ′)Θ(Dxf,Γ(T ′)) + 1
)
,

with Θ(g, r) = max0≤s≤r{|g(s)|}, or

|∇u(x, τ)|2 ≤ C1u
1−β
(
τ−1Γ1+β(T ′) + Γ1+β(T ′)Θ(Duf,Γ(T ′))

+ Γ
1+3β

2 (T ′)Θ(Dxf,Γ(T ′)) + 1
)
.

Thus, (i) follows by choosing T = T ′/3.

(ii) The proof of estimate (2.3) is similar to the one of estimate (2.2). We just
make a slight change by considering a cut-off function ξ(t) ∈ C∞(R) (instead of ξ(t)
above), such that 0 ≤ ξ(t) ≤ 1, ξt(t) ≤ 0, and

ξ(t) =

{
1, if t ≤ T ′/3,
0, if t ≥ 2T ′/3.

Then, we observe that either w(x, t) attains its maximum at the initial data, i.e.

max
(x,t)∈I×[0,2T0]

w(x, t) = w(x0, 0) = ξ(0)|∇v(x0, 0)|2 ≤ ‖∇(u1/γ
0 )‖2∞,

for some x0 ∈ Ω, which implies

|∇u(x, τ)|2 ≤ γ2‖∇(u1/γ
0 )‖2∞u1−β(x, τ), for all x ∈ Ω. (2.16)

Thus, we obtain estimate (2.3) immediately; or there is a point (x0, t0) ∈ Ω ×
(0, 2T ′/3) such that

max
(x,t)∈Ω×[0,T ′]

w(x, t) = w(x0, t0)

Then, we repeat the proof of (i) for this case until (2.13) to get

(γ − 1)v−2|∇v|4 ≤ 1
2
ξ
−1
ξt|∇v|2 + (β + 1− 1

γ
)v−(1+β)γ |∇v|2

+ |Duf ||∇v|2 +
1
γ
v1−γ |Dxf ||∇v|.

Since ξt(t) ≤ 0, from the above inequality we have

(γ − 1)v−2|∇v|4 ≤ (β + 1− 1
γ

)v−(1+β)γ |∇v|2 + |Duf ||∇v|2 +
1
γ
v1−γ |Dxf ||∇v|.

By repeating the proof of (i) after this inequality, we obtain

|∇u(x, τ)|2 ≤ Cu1−β(x, τ)
(
Γ1+β(T ′)Θ(Duf,Γ(T ′))

+ Γ
1+3β

2 (T ′)Θ(Dxf,Γ(T ′)) + 1
)
,

(2.17)

with C = C(β) > 0. Combining (2.16) and (2.17) yields estimate (2.3), and
completes the proof. �

The proof of Theorem 1.2 is similar to the one in [4] (see also [6]). It applies
Lemma 2.1 to pass to the limit as η → 0 and ε→ 0. We let the reader to do it.
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3. Non-global existence of solutions

In this section, we study the non-global existence of solutions to equation (1.1).

Proof of Theorem 1.5. By multiplying by u (resp. ut) in equation (1.1), we have
the integral equations

1
2
d

dt

∫
Ω

u2(x, t)dx = −
∫

Ω

(
|∇u(x, t)|2 + u1−β(x, t)− uq+1(x, t)

)
dx, (3.1)

and ∫ t

0

∫
Ω

|ut|2dxds+
∫

Ω

(1
2
|∇u(t)|2 +

1
1− β

u1−β(t)− 1
q + 1

uq+1(t)
)
dx

=
∫

Ω

(1
2
|∇u0|2 +

1
1− β

u1−β
0 − 1

q + 1
uq+1

0

)
dx,

(3.2)

see [21]. By combining (3.1) and (3.2), we obtain

1
2
d

dt

∫
Ω

u2(x, t)dx = −2E(t) +
1 + β

1− β

∫
Ω

u1−β(x, t)dx+
q − 1
q + 1

∫
Ω

uq+1(x, t)dx.

Since E(0) ≤ 0, (3.2) implies E(t) ≤ 0, for any t > 0. It follows then from the last
inequality that

1
2
d

dt

∫
Ω

u2(x, t)dx ≥ q − 1
q + 1

∫
Ω

uq+1dx. (3.3)

By Holder’s inequality, ∫
Ω

u2dx ≤
(∫

Ω

uq+1dx
) 2
q+1 |Ω|

q−1
q+1 . (3.4)

From (3.3) and (3.4), we obtain y′(t) ≥ Cy
q+1

2 (t), with

y(t) =
∫

Ω

u2(x, t)dx, C =
2(q − 1)

(q + 1)|Ω| q−1
2

.

This inequality implies that y(t)→ +∞ as t→ T−0 , with T0 =
4‖u0‖1−q

L2(Ω)

(q+1)|Ω|
q−1

2
. �

Next, we prove Theorem 1.6. Since our proof below is just a local argument,
it suffices to consider initial data u0(x) = cΦ(x), with c > 0, and Φ is the first
eigenfunction of the Dirichlet problem

−∆Φ = λ1Φ in Ω,

Φ(x) = 0, on ∂Ω .
(3.5)

We have the following result.

Theorem 3.1. Let f(u, x, t) = f(u) be a locally Lipschitz function on [0,∞) such
that f(0) = 0. Suppose that f(u) is a convex function on (0,∞), and f satisfies
(1.7) for some a > 0. Let u0(x) = cΦ(x), where c > 0 is large enough. Then,
solution u must blow up in a finite time.

We first modify a result by Davila and Montenegro [7] to show that u(t) is
positive inside of Ω for a certain large time interval (0, T ).
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Lemma 3.2. Suppose that u0(x) = CΦµ(x), for C > 1, and for some µ ∈ (1, 2
1+β ).

Then, we have

u(x, t) ≥ Ce−AtΦµ(x), ∀(x, t) ∈ Ω× (0, TA,C), (3.6)

where A > 0 is chosen later, and TA,C = log(C)/A.

Proof. For any ε > 0, let uε be a unique solution of the equation

∂tu−∆u+ gε(u) = f(u, x, t) in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,
(3.7)

obtained by passing to the limit as η → 0 in (1.1). Note that uε converges to u,
uniformly on any compact set in Ω× (0, T ), see [3]. Thus, it suffices to prove that
for any ε > 0,

uε(x, t) ≥ Ce−AtΦµ(x), ∀(x, t) ∈ Ω× (0, TA,C).

Put w = Ce−AtΦµ(x). We show that w is a sub-solution of (3.7) for A > 0 large
enough. In fact, we have

∂tw −∆w + gε(v)− f(w) ≤ ∂tw −∆w + w−βχ{w>0}

= −CAe−AtΦµ − Cµe−AtΦµ−1∆Φ− Cµ(µ− 1)e−AtΦµ−2|∇Φ|2

+ C−βeAβtΦ−βµχ{Φ>0}

= C(−A+ λ1µ)e−AtΦµ + Ce−AtΦ−βµ
(
− µ(µ− 1)Φµ(β+1)−2|∇Φ|2

+ C−β−1eAβt+Atχ{Φ>0}

)
.

Note that for any t ∈ (0, TA,C), we obtain C−β−1eAβt+At ≤ 1. This leads to

∂tw −∆w + gε(w)− f(w)

≤ Ce−At
(

(−A+ λ1µ)Φµ + Φ−βµ
(
− µ(µ− 1)Φµ(β+1)−2|∇Φ|2 + 1

))
.

(3.8)

It is clear that (−A+ λ1µ)Φµ ≤ 0 in Ω× (0, TA,C), if A > 2λ1.
Let ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}, for any δ > 0. Obviously, we have(

− µ(µ− 1)Φµ(β+1)−2|∇Φ|2 + 1
)
< 0, for any x ∈ ωδ, (3.9)

if δ > 0 is small enough because of µ(1 + β)− 2 < 0.
Fix δ > 0 such that (3.9) holds. On the set Ω\ωδ, we choose A > 0 large enough

such that

(−A+ λ1µ)Φµ + Φ−βµ
(
− µ(µ− 1)Φµ(β+1)−2|∇Φ|2 + 1

)
< 0. (3.10)

A combination of (3.8), (3.9), and (3.10) implies that w is a sub-solution of equation
(3.7); thereby it proves

w ≤ uε, in Ω× (0, TA,C).

which completes the proof. �

Remark 3.3. Note that A is chosen independently of C, see (3.10) again. If we
fix A > 0 such that (3.10) holds, then TA,C = TC is as large as logC.

Now we have sufficient information to complete the proof of the above theorem.
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Proof of theorem 3.1. Fix µ ∈ (1, 2
1+β ). Since Φ is continuous on Ω, we have

u0(x) = cΦ(x) ≥ cη0Φµ(x), in Ω,

with η0 =
(

maxx∈Ω{Φ(x)}
)1−µ

> 0. By applying Lemma 3.2, we obtain

u(x, t) ≥ C0e
−AtΦµ(x), ∀(x, t) ∈ Ω× (0, TC0),

with C0 = cη0, and TC0 = log(C0)/A. Multiply both sides of (1.1) by Φ yields

d

dt

∫
Ω

u(x, t)Φ(x)dx =
∫

Ω

f(u(x, t))Φ(x)dx− λ1

∫
Ω

u(x, t)Φ(x)dx

−
∫

Ω

u−βχ{u>0}(x, t)Φ(x)dx.

Thanks to Lemma 3.2, we obtain that for any t ∈ (0, TC0),

d

dt

∫
Ω

u(x, t)Φ(x)dx ≥
∫

Ω

f(u)Φ(x)dx− λ1

∫
Ω

uΦ(x)dx

− C−β0 eAβt
∫

Ω

Φ1−µβdx.

(3.11)

Note that C−β0 eAβt ≤ 1, for any t ∈ (0, TC0). By the convexity of f and (3.11), we
obtain

z′(t) ≥ f(z(t))− λ1z(t)−
∫

Ω

Φ1−µβdx, for t ∈ (0, TC0), (3.12)

with z(t) =
∫

Ω
u(x, t)Φ(x)dx. Since f is a convex function, it follows from (1.7)

that f(s)
s → +∞ as s→ +∞. Thus, there is a constant s0 > 0 such that

1
2
f(s) ≥ λ1s+

∫
Ω

Φ1−µβdx, ∀s > s0. (3.13)

Since c is sufficiently large, we have z(0) = c
∫

Ω
Φ2(x)dx > max{a, s0}. It follows

from (3.12) and (3.13) that z(t) ≥ z(0) and

z′(t) ≥ 1
2
f(z(t)), for any t ∈ (0, TC0).

Therefore,

1
2
t ≤

∫ t

0

z′(t)dt
f(z(t))

=
∫ z(t)

z(0)

dz

f(z)
≤
∫ +∞

a

dz

f(z)
, for any t ∈ (0, TC0).

This implies
TC0

2
≤
∫ +∞

a

dz

f(z)
. (3.14)

The right-hand side of (3.14) is bounded by a constant, while TC0 is as large as
logC0 = log(cη0) (see Remark 3.3). Then, we obtain a contradiction if c is large
enough. This completes the proof. �

Remark 3.4. It is not difficult to show that the blow-up result in Theorem 1.6
still holds if u0 is assumed to be positive and large enough in a ball B(x0, r0) b Ω.

Note that the result in Theorem 3.1 still holds if f is only assumed to be a convex
function on (a,∞), for some a > 0.
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