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BLOW-UP OF SOLUTIONS TO SINGULAR PARABOLIC
EQUATIONS WITH NONLINEAR SOURCES
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ABSTRACT. We prove the existence of a local weak solutions for semi-linear
parabolic equations with a strong singular absorption and a general source.
Also, we investigate criteria for the solutions to blow up in finite time.

1. INTRODUCTION

In this article, we are interested in nonnegative solutions of the equation
Oru — Au + uiﬁx{uw} = f(u,z,t) inQx(0,7T),
u(z,t) =0 on 90 x (0,7), (1.1)
u(z,0) =up(z) in Q,

where © is a bounded domain in RY, 8 € (0,1), and x{,>0} denotes the character-
istic function of the set of points (z,t) where u(z,t) > 0, i.e:

1, ifu>0,
XMu>0b =g ipy <0,

Note that the absorption term u_ﬁx{u>0} becomes singular when « is near to
0, and we impose ufﬁx{uw} = 0 whenever v = 0. Through this paper, f :
[0,00) x Q x [0,00) — R will be assumed a nonnegative function satisfying the
hypothesis

(H1) fect ([0, ) X Q x [0,00)), f(0,2,t) =0, for all (z,t) € Q x (0,00), and

flu,z,t) < h(u) for all (z,t) € Q x (0,00), where h is a locally Lipschitz
function on [0, 00), and h(0) = 0.
In the sequel, we always consider nonnegative initial data wg # 0.

Problem can be considered as a limit of mathematical models describing
enzymatic kinetics (see [I]), or the Langmuir-Hinshelwood model of the heteroge-
neous chemical catalyst (see, e.g. [22] p. 68] and [8, 20]). This problem has been
studied by the authors in [4l [7, [14] 15| 18, 20, 24], and references therein. These
authors have considered the existence and uniqueness, and the qualitative behavior
of these solutions. For example, when f = 0, Phillips [20] proved the existence of
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solution for the Cauchy problem associating to equation . A partial uniqueness
of solution of equation was proved by Davila and Montenegro [7], for a class
of solutions with initial data ug(z) > Cdist(x, 0Q)#, for p € (1, ﬁ) (see also [6]
the uniqueness in a different class of solutions). A beautiful result established by
Winkler, [24], showed that the uniqueness of solution fails in general. One of the
interesting behaviors of solutions of is the extinction that any solution van-
ishes after a finite time even beginning with a positive initial data, see [20] [14] (see
also [4] for a quasilinear equation of this type). It is known that this phenomenon
occurs according to the presence of the nonlinear singular absorption v =2 X{u>0}-

Equation with source term f(u) satisfying the sublinear condition, i.e:
f(u) < C(u+ 1), was considered by Davila and Montenegro [7]. The authors
proved the existence of solution and showed that the measure of the set {(z,t) €
Q x (0,00) : u(z,t) = 0} is positive (see also a more general statement in [9]). In
other words, the solution may exhibit the quenching behavior. Still in the sublinear
case with source term Af(u), Montenegro [19] proved that there is a real number
Ao > 0 such that for any A € (0, Ag), there is ¢3 > 0 such that

u(z,to) =0, Vrel.

He called this phenomenon complete quenching.

From our knowledge, equation with a general source term f(u,z,t) has not
been studied completely. Thus, we would like to investigate first the existence of
solutions to equation . Furthermore, it is well known that nonlinear parabolic
equations with general source f(u,x,t) may cause the finite time blow-up. As men-
tioned above, the nonlinear absorption u=? X{u>0} causes the complete quenching
phenomenon. Thus, it is interesting to see when the complete quenching prevails
the blow-up, and conversely. We also note that the above qualitative behavior of
solutions were studied by the authors in [3] [5] for the p-Laplacian equation in one-
dimension of this type. In this paper, we only consider the blowing-up solutions
of . Before giving our results, it is necessary to introduce a notion of weak
solution of equation .

Definition 1.1. Let up € L°°(€2). A nonnegative function u(z,t) is called a weak
solution of equation if u™Pxus0y € LN(Q2%(0,7)), and uw € L*(0, T} We2(Q)N
L (2% (0,T))NC([0,T); L' (Q)) satisfies equation in the sense of distributions
D'(Q x (0,T)), ie.

T
/O /Q (—ugy + Vu- Vo +u " Xus0y6 — f(u,2,1)¢) dedt =0, (1.2)
for all ¢ € C°(2 x (0,7)).

Our first result is the existence of a local solution to (|1.1)).

Theorem 1.2. Let ug € L>=(R), and let f satisfy (H1). Then, there exists a finite
time T = T(ug) > 0 such that equation (L.1)) has a mazimal weak solution u in
Q% (0,T), i.e: for any weak solution v in Q x (0,T), we have

v<u, inQx(0,T).
Moreover, there is a positive constant C = C(f, ||uollec) such that

Vu(z,7)> < Cu'™? (71 +1), forae (z,7)€Qx(0,T). (1.3)
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Besides, if V(u)/") € L>®(Q), with v =
C = C(f,up) such that

|Vu(z, 7)) < Cu=P(z,7), forae (x,7)€Qx(0,T). (1.4)
Remark 1.3. Theorem implies that u is continuous up to the boundary. Fur-

thermore, u is continuous up to ¢ = 0 provided V(ué/ ") € L*°(Q) (see for example
I3, 4, [5, 20]).

Remark 1.4. Similarly as in the case of p-Laplacian of the equation of this type
(see [3]), when f(u,z,t) = f(u), the results of Theorem [L.2still hold s for f a locally
Lipschitz function on [0, 00), instead of f € C?([0,00)), required in the previous
works (see for example [7, [19]). For example, our existence result can take into
account the function f(u) = (u — 1) u.

After that, we study the global nonexistence of solutions of , the so called
finite time blowing-up solution. In this paper, we point out some criteria on initial
data ug to guarantee the blow-up of solution in a finite time. For simplicity, we
consider f(u,x,t) = f(u). We will give the first result of blow-up for the superlinear
case, i.e. f(u) = uP, for p > 1. Then, it is convenient to introduce the energy
functional

ﬁ, then there is a positive constant

Luerl(t)>daj, (1.5)

E(t) = /Q (%|Vu(t)|2 + %ulfﬁ(t) -

B

Our first criterion considers E(0) negative.

Theorem 1.5. Let ug € L>(Q) N H} (). Suppose that f(u) = uP, for p>1, and
E(0) <0. Let u be a solution of equation (1.1). Then, u blows up in a finite time.

It is interesting to find out an optimal condition of nonlinear source f(u) such
that the explosion of solution holds. Let us remind a necessary and sufficient
condition for blow-up of solutions of equation without the singular absorption
u? X{u>0}>

Ou— Au= f(u) inQx (0,7),

u(z,t) =0 on 90 x (0,7), (1.6)
u(z,0) = up(z) in Q,
It is known that if f is a convex function on (0, c0), and

1

/a mds < 400, (17)

for some a > 0, then the solution u of must blow up in a finite time provided
that ug is large enough (see also [10, 1], necessary and sufficient conditions for
blow-up of solution of the porous medium equation). One can take for instance a
typical weak superlinear f(u) = (1 4 w)log?(1 + u), which is convex and satisfies
(1.7), with u > 0, p > 1. We also note that only condition is not sufficient to
guarantee the explosion of u in a finite time if lacking of the convexity of f, see [21],
Theorem 19.15]. Here, we will demonstrate that the explosion of solution of
occurs with f as above.

Theorem 1.6. Let f(u,z,t) = f(u) be a locally Lipschitz function on [0,00).
Suppose that f(u) is a convex function on (0,00), and f satisfies (1.7) for some
a > 0. Then, the solution u of (L.1)) blows up in a finite time if ug € Cp(QQ) is large
enough.
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Our proof of Theorem is based on the first eigenvalue method introduced by
Kaplan [T3]. Note that our equation contains the singular term u =% X {u>0}, Which
causes a difficulty in estimating this solution. To overcome this obstacle, we show
that if ug is positive inside of € and large enough, then u(t) is also positive inside
of Q for a certain large time interval. Note that the concave method used by the
authors in [3] to prove the explosion of solutions for p-Laplacian equation in one
dimension of this type cannot be applied to this situation. Finally, one can find a
rich source of topic of explosive solutions in [12] [I7, 21 23], and references therein.

This article is organized as follows: In the next section, we prove the existence
of a local solution to . To do that, we prove some gradient estimates for the
approximating solutions. The last section is devoted to study of blowing-up of
solutions.

The notation that will be used in this paper is the following: we denote by C
a general positive constant, possibly varying from line to line. Furthermore, the
constants which depend on parameters will be emphasized by using parentheses.
For example, C' = C(p, B, T) means that C depends on p, 3, 7.

2. EXISTENCE OF A LOCAL SOLUTION

In this section, we consider a regularized equation of (1.1)):
Opue — Aue + ge(ue) = fue,z,t) in Q x (0,00),
ue =n on 9N x (0,00), (2.1)
ue(0) =wup+n onQ
for any 0 < n < ¢, with ge(s) = ¥(s)s77, 1.(s) = ¢(£), and ¥ € C*(R) is a
non-decreasing function on R such that ¢(s) = 0 for s <1, and ¢(s) =1 for s > 2.
Note that g. is a globally Lipschitz function for any € > 0. We will show that
solution u. , of equation (2.1)) tends to a solution of equation (1.1)) as n,e — 0. In

passing to the limit, we need to derive some gradient estimates for solution ue,,,
see also [0 [7, 20]. Then, we have the following result.

Lemma 2.1. Let ug € C°(Q), ug # 0. There exists a classical unique solution
Uey of (2.1) in Q x (0,T).

(i) There is a constant C > 0 only depending on 3,T, f,||uo|leo such that
|Vu5,n(x,7)|2 < C’u;;lﬁ(a:,T) (771 + 1), for any (x,7) € Q2 x (0,T), (2.2)
(i) If V(u(l)/'y) € L>(Q), then we obtain
|Vu57n(:c,7)|2 < C’u;;]ﬁ(x,T), for any (x,7) € 2 x (0,T), (2.3)
with C' > 0 merely depends on 3, T, f, ||tolco, HV(u(l)M)HOO.

Proof. (1) Fix € € (0, ||ug||so). For any n € (0,¢), the existence and uniqueness of
a classical solution u. , of problem (2.1) is well-known (see [16]). We denote by
u = u. , for short. Let I'(t) be the flat solution of the ODE:

o, =h(T), in[0,T],

£(0) = 2. 24)

where h is the function in (H1) above, and T” is the maximal existence time of
I'(t). Note that 7" depends merely on |lug|leo, see [2 Chapter 1]. It follows from
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the comparison principle that
n<u<T(t), Vtelo,T1].
Let us put u = ¢(v) = v7, with v = 2/(1 + ). Then

§ 2_1 v)) — v),T
'Ut_A'U:g|V'U‘ Py (9:(6(v)) = f(D(v), z,1)). (2.5)

For any 7 € (0,77/3), let us consider a cut-off function £(t) € C>°(0,00), 0 < £(t) <

1, such that
€(t) = 1, on [r, %/],
0, outside (3, % +3),
and [§] < <2, for some constant ¢y > 0.

Then, we set w = £(t)|Vol?. If maxqyo,r]w = 0, then Vu(r) = 0, so estimate

(2.2) is trivial.
If not, there is a point (zo,%p) € Q x (0,27"/3) such that maxqyrjw =
w(zo,to). Thus, we have at (zg, to):
wy =0, Vw=0, Aw<0. (2.6)
This implies
0 < wy — Aw = &[Vo]> +2¢(t) (Vo.Vu, — Vo.V(Av)) — 2¢(t)|D?v]?,
or
0 < &|Vol? + 26(1) Vo - V(v; — Av). (2.7)
A combination of (2.5) and provides us with
/!
— t
((b*,‘vvﬁ* g€(¢(v)) f(d)(v)vxa ))
¢ o'

0 < &|Vv|? +26(H) Vo - V

Since £(tg) > 0, we obtain

(9(v)) — f(¢(v), z,t)

(bl )
At the moment, we estimate the terms on the right hand side of (2.8]). First of all,
we have from (2.6]) that V(|Vov(xg,t)|?) = 0, so

1 /!
0< 267 6|VoP + Vo v(ﬁwﬁ . (2.8)

Vo - V((ZWUF) =Vu- V((Z)WUF = (y—1)(2y — 3)v 3| Vo|h (2.9)
Next, we have
f(¢,$0,t0)
VU.V(T)
= Mvv + Do f(¢, 0, t0)|Vo|* = f(9, 9607?50)(L2|VU|2
¥ 4 (2.10)

1
= Dal(@ 0, 1)V IV + Dy f($, 20, to)| Vo]

- (VT_l)f(@ 0, t0)v 7| Vol

Since f > 0, and v > 1, it follows from (2.10]) that

f(¢> Zo, tO)

vo-v( 7

) < %lefw, 20, 10)[0" Y [Vo| + D f (6, 70, 10)] [V, (211)
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Concerning the last term, we have

Vv (E) = (0. IV = (vh0 (54T (0)e ) W

Since ¥. > 0, and 0 < 9. < 1, we obtain

—Vu-V (g;f)> < (B+ VT*I)NW’WWUF. (2.12)

By inserting (2.9)), (2.11) and (2.12) into (2.8)), we obtain
_ 1 _ 1, _
(v = D2Vl < S€7G Vol + (B+1 - e (1407 7|2

. (2.13)
+ | Dufl|Vol* + ;Ul_WIDfoVUI'
Now, we multiply both sides of (2.13) by v? to get
1. 1
(v = DIVl < 3¢ He|v? Vol 4+ (8 +1 = =)[Vul? 4+ 0* Dy fI| Vo]
i (2.14)

1
+ ;’U377|D1-f”v1}|.

If |Vou(xo, to)| < 1, then w(zg,tg) < 1. This leads to w(z, ) < 1, thereby proves

4 -8
Vu(z,7)]? < mul (z,7).

Then, estimate (2.2) follows immediately.
If not, we have |Vu(xg, )| > 1, it follows then from ([2.14])

1. 1
(v = DIVel" < SE7H&* Vol + (B4 1~ ;)lV’U\2 +0%| Dy f|[Vof?
1
+ ;zﬁ'ﬂwmfuvuﬁ.
By simplifying the term |Vv|? both sides of the last inequality, we obtain
1 1 1
(v = DIVl <SGl + (B+1 - ;) + %Dy f| + ;v?’_leme
Multiplying both sides of the above inequality by £(tg) yields
1 1 1 4
(v = Dé(to) Vo] l€q§|§t|v2 +&(to) ((ﬂ‘i‘ 1- ;) +0%| Dy f| + ;Ug ’Y|Dacf|)~ (2.15)
Recall that w(zo,ty) = &(to)|Vu(zo,t0)]?, 0 < &) < 1, and |&| < 771 Tt follows
from (2.15) that there is a constant C = C(8) > 0 such that
w(@o, to) < C(r7 102 + 0% Duf| + 0777 | Do f[ +1).
Since w(xg, tg) > w(x,7) = |Vou(x,7)|?, we obtain
Vo(z, 7) < C(77 0% + 0% Do f| + 0° 77| Do f| + 1)
Moreover, we have
v (z,t) = u(z,t) <T(T'), for any (z,t) € Q x [0,T"].
Then
Voa.7) < C (=TT 1+ D (I)0(D,f.1(1'))
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T (TYO(DL f,T(T) + 1),
with ©(g, ) = maxo<s<,{|g9(s)|}, or
Vu(z, )2 < Crul=? (T—lrlw(T/) + TS (TO (D, f, (1))

1438

+ (1D, f, T(T)) + 1).

Thus, (i) follows by choosing T' = T1"/3.

(ii) The proof of estimate (2.3) is similar to the one of estimate (2.2). We just
make a slight change by considering a cut-off function {(¢) € C>(R) (instead of &(¢)
above), such that 0 < £(t) < 1, &,(¢t) <0, and

_ 1, ift<T'/3,
= =T
0, ift>27"/3.

Then, we observe that either w(x,t) attains its maximum at the initial data, i.e.

t) = 0) = £(0 02 < L2
(m,t)ggfé’m]w(w, ) = w(xo,0) = £(0)|Vo(zo,0)]* < [V (ug' ")IZ,

for some x( € €2, which implies
Vu(z, 7)? < V2|V (/)2 u P (2, 7), forall z €. (2.16)

Thus, we obtain estimate (2.3)) immediately; or there is a point (zg,tp) € Q x
(0,27"/3) such that

1) = ot
(ac,t)é%ix[o,T’]w(x ) = wlzo,to)

Then, we repeat the proof of (i) for this case until to get
(v = DU 2IVol* < 58 EIVOP + (841 = 2o~ T
DAV + Z0 D, [0l
Since &,(t) < 0, from the above inequality we have
(y= Do | Vo[* < (B+1— %)U—OWMW\? + [ Do flI V] + %v1_7|Dxf||Vv|.

By repeating the proof of (i) after this inequality, we obtain

|Vu(z, 7)|* < Cul =P (z,7) (FHB(T’)@(Duf, INUAS)) 217)
+ T (T)O(D, f,T(T')) + 1), '

with C = C(8) > 0. Combining (2.16) and (2.17)) yields estimate (2.3), and

completes the proof. O

The proof of Theorem is similar to the one in [] (see also [6]). It applies
Lemma [2.T] to pass to the limit as n — 0 and £ — 0. We let the reader to do it.
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3. NON-GLOBAL EXISTENCE OF SOLUTIONS

In this section, we study the non-global existence of solutions to equation (|1.1)).

Proof of Theorem[1.5. By multiplying by u (resp. u;) in equation (1.1}, we have
the integral equations

1d
=4 u2(1:,t)d:n:—/ (Vule, ) + P (e, t) — ut (@, 0)de,  (3.1)
and
! 2 1 2 L 15 Lo
luPdzds + | (5|Vu(t)]® + ——u' 7 (t) — ——uit(t))da
0 Ja a 2 1-p q+1 (3.2)
1 1 1
= Vo) + —— P — ——uldt)da,
/9(2' o r =g )
see [21]. By combining (3.1]) and (3.2]), we obtain
1d [ , 148 [ q—l/
-— t)de = —2BE(t) + —— Ala, t)de + —— [ u?™(z,t)dx.
5 7 Qu(m,)x ()+1—6 Qu (:v7):v+q+1 Qu (z,t)dz

Since F(0) < 0, (3.2)) implies E(t) < 0, for any ¢ > 0. It follows then from the last
inequality that

1d —1
—— | W¥(z,t)dr > L/ utdz. (3.3)
By Holder’s inequality,
% g—1
/qux < (/ uqﬂdx)q | FT. (3.4)
Q Q

From (3.3) and (3.4)), we obtain y'(t) > C’yqzj(t), with
y(t) = / u?(z,t)de, C = 2(q7_1)qfl
Q

(¢+1)Q=
4luoll} 3
This inequality implies that y(t) — +o00 as t — T, , with Ty = LL;‘E O
(¢+1)|Q 2

Next, we prove Theorem [T.6] Since our proof below is just a local argument,
it suffices to consider initial data uo(xz) = c¢®(x), with ¢ > 0, and ® is the first
eigenfunction of the Dirichlet problem

—A® =)\P inQ,

®(z) =0, on oN. (3:5)

We have the following result.

Theorem 3.1. Let f(u,z,t) = f(u) be a locally Lipschitz function on [0,00) such
that f(0) = 0. Suppose that f(u) is a convex function on (0,00), and f satisfies
for some a > 0. Let ug(x) = c®(x), where ¢ > 0 is large enough. Then,
solution u must blow up in a finite time.

We first modify a result by Davila and Montenegro [7] to show that u(t) is
positive inside of  for a certain large time interval (0, 7).
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Lemma 3.2. Suppose that ug(x) = CPH(x), for C > 1, and for some u € (1, ﬁ)
Then, we have

u(z,t) > Ce”MPH(z), VY(z,t) € Qx (0,Tac), (3.6)
where A > 0 is chosen later, and Ty ¢ = log(C)/A.
Proof. For any € > 0, let uc be a unique solution of the equation
ou — Au+ g-(u) = f(u,z,t) inQx(0,7),
u(z,t) =0 on 92 x (0,T), (3.7)
u(z,0) = up(z) in Q,

obtained by passing to the limit as  — 0 in ([1.1). Note that u. converges to u,
uniformly on any compact set in Q x (0,7, see [3]. Thus, it suffices to prove that
for any € > 0,

ue(x,t) > Ce MM (x), Y(z,t) € Q% (0,Tac).

Put w = Ce~4®*(z). We show that w is a sub-solution of (3.7) for A > 0 large
enough. In fact, we have

Ow — Aw + g.(v) — f(w) < dhw — Aw + w_ﬁx{w>0}
= —CAe MPH — e MdP1AD — Cp(p — 1) MOH2|VD|?
+C PN Dy gsy
= C(—A+ \p)e MoH + Ce—Atcb—ﬂﬂ( — p(p — 1)erET=2 |7 |2

n C—B—leA6t+AtX{q>>0}>.

Note that for any ¢ € (0,T4,c), we obtain C~A~1eAP+A4t <1 This leads to
Oyw — Aw + g-(w) — f(w)

3.8

< Ce*At((—A + M) @ + &P (— pu(p — 1)@ PTI 2| p|2 4 1)). (3:8)

It is clear that (—A + A\qp)®@"* <0in Q x (0,T4 ¢), if A > 2.
Let ws = {z € Q : dist(x,0Q) < ¢}, for any ¢ > 0. Obviously, we have

(—plp— 1)oHA+D=217 9|2 4 1) <0, forany x € ws, (3.9)

if 6 > 0 is small enough because of u(1+ 3) —2 < 0.
Fix § > 0 such that (3.9 holds. On the set Q\ws, we choose A > 0 large enough
such that

(—A+Mp) @ + &1 (— pu(p — 1)@ TI=2|ve[2 4+ 1) < 0. (3.10)

A combination of (3.8)), (3.9), and (3.10] implies that w is a sub-solution of equation
(3.7); thereby it proves
w < Ue, in Q x (O,TA70).

which completes the proof. O

Remark 3.3. Note that A is chosen independently of C, see (3.10]) again. If we
fix A > 0 such that (3.10) holds, then Ty ¢ = T¢ is as large as log C.

Now we have sufficient information to complete the proof of the above theorem.
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Proof of theorem 34}, Fix pu € (1, 135). Since @ is continuous on €2, we have
ug(z) = c®(z) > eno®(z), in Q,

with ng = (maxmeg{q)(a:)})lf” > 0. By applying Lemma we obtain
u(z,t) > Coe~ MO (x), V(z,t) € Qx (0,Te,),
with Cy = enp, and T, = log(Co)/A. Multiply both sides of . 1.1]) by ® yields

% i e da:_/f u(z,t)) )dx—/\l/ﬂu(x,t)@(a:)dx
—/Quf X{us>0} (7, 1)@ (x)dx.

Thanks to Lemma we obtain that for any ¢ € (0,7¢,),

% u(z, x)dx > / f(uw)®(x)dx — )\1/ O (z)dx

@ @ (3.11)

— CgﬁeAﬁt/ PL-rBdy,
Q

Note that C(;BeAﬁt <1, for any t € (0,T¢,). By the convexity of f and (3.11), we
obtain

2t) > F(2(8) = Mz(t) — / O Mdz, forte (0,Ta),  (3.12)
Q
with z( fQ x)dz. Since f is a convex function, it follows from
that f(ss) — 400 as s — —|—oo‘ Thus, there is a constant sq > 0 such that
1
if(s) > A1 —|—/ P11Bdz, Vs > sp. (3.13)
Since c is sufficiently large, we have z(0) = cfQ ®2(z)dx > max{a,so}. It follows
from (3.12) and (3.13) that z(t) > z(0) and
1
(1) 2 510, for any £ € (0,Te)
Therefore,
1 /t 2/ (t)dt /Z(t) dz /+°° dz
—t < = — < ——, foranyte (0,T¢,).
27 Jo f2(0)  Juo) f(2) T Ja o S(2) ’
This implies
Tc, /+°° dz
< iy 3.14
2 <), 1@ (344

The right-hand side of (3.14)) is bounded by a constant, while T, is as large as
log Cy = log(cmo) (see Remark [3.3). Then, we obtain a contradiction if ¢ is large
enough. This completes the proof. (I

Remark 3.4. It is not difficult to show that the blow-up result in Theorem [I.6]
still holds if ug is assumed to be positive and large enough in a ball B(zg,r) € Q.

Note that the result in Theorem [3.1]still holds if f is only assumed to be a convex
function on (a, o), for some a > 0.
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