
PRIME-BASED MIMIC FUNCTIONS

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Wesley J. Connell, B.S.

San Marcos, Texas
August2009

ACKNOWLEDGEMENTS

Dan Tamir, PhD.
Carol Hazlewood, PhD.

Mina Guirguis, PhD.

111

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTSiii

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

ABSTRACT ... viii

1. Introduction ... 1

2. Literature Survey ... 2

2.1 Robustness .. 3
2.2 Types of Steganography ... 3
2.3 Language Models ... 4
2.4 Perplexity .. 5
2.4Image .. 5

2.4.1 Least Significant Bit Substitution ... 6
2.4.2 Domain Transformation .. ?
2.4.3 Laplace Filtering ... 8

2.5 Audio .. 9
2.5.1 Phase Coding .. 10
2.5.2 Echo Hiding .. 12

2.6 Timing-based techniques .. 14
2.7 Cover Generation and Mimic Functions .. 14

2. 7 .1 Cover Generation .. 15
2. 7 .2 Mimic Functions ... 15
2. 7 .3 NICETEXT ... 17

3. Prime-based Mimic Functions .. 18

3.1 Complexity ... 19
3.2 General Usage .. 20
3.3 Mapping Algorithm .. 22
3.4 Secret-to-Cover Ratio ... 24

lV

3.5 Robustness .. 25

4. Experiments ... 27

4.1 Implementation ... 27
4.2 Methodology ... 31

5. Results ... 35

5.1 Compressed ML with a 4-bit Block Mapping .. 36
5.2 Compressed ML with a 8-bit Block Mapping .. 37
5.3 Compressed ML with a 16-bit Block Mapping .. 38
5.4 Encrypted ML with a 4-bit Block Mapping ... 39
5.5 Encrypted ML with a 8-bit Block Mapping .. .40
5.6 Encrypted ML with a 16-bit Block Mapping .. .41
5.7 Uncompressed ML with a 4-bit Block Mapping42
5.8 Uncompressed ML with a 8-bit Block Mapping43
5.9 Uncompressed ML with a 16-bit Block Mapping44
5 .10 /dev/urandom Data with a 4-bit Block Mapping45
5 .11 /dev/urandom Data with a 8-bit Block Mapping46
5.12 /dev/urandom Data with a 16-bit Block Mapping47
5 .13 One Valued Byte Data with a 4-bit Block Mapping48
5.14 One Valued Byte Data with a 8-bit Block Mapping49
5.15 One Valued Byte Data with a 16-bit Block Mapping 50
5.16 /dev/zero Data with a 4-bit Block Mapping ... 51
5.17 /dev/zero Data with a 8-bit Block Mapping ... 52
5.18 /dev/zero Data with a 16-bit Block Mapping ... 53
5.19 Experiment Summary ... 54
5.20 Average Bit-rate Comparison .. 55

6. Evaluation and Conclusions .. 58

6.1 Conclusions .. 61

7. Recommendations ... 62

REFERENCES .. 65

V

LIST OF TABLES

Table Page

1. Example prime-based mimic function expansion .. 29
2. Experiment Summary .. 55

V1

LIST OF FIGURES

Figure Page

1. General usage ... 21
2. Compressed ML 4-bit Block .. 36
3. Compressed ML 8-bit Block .. 37
4. Compressed ML 16-bit Block .. 38
5. Encrypted ML 4-bit Block ... 39
6. Encrypted ML 8-bit Block ... 40
7. Encrypted ML 16-bit Block ... 41
8. Uncompressed ML 4-bit Block .. 42
9. Uncompressed ML 8-bit Block .. 43
10. Uncompressed ML 16-bit Block. .. .44
11. /dev/urandom 4-bit Block .. 45
12. /dev/urandom 8-bit Block .. 46
13. /dev/urandom 16-bit Block. .. .47
14. One Valued Byte 4-bit Block.48
15. One Valued Byte 8-bit Block ... 49
16. One Valued Byte 16-bit Block. .. 50
17. /dev/zero 4-bit Block .. 51
18. /dev/zero 8-bit Block .. 52
19. /dev/zero 16-bit Block .. 53
20. Secret-to-cover Ratio Comparison ... 56
21. Average bit-rate comparison .. 56

Vll

ABSTRACT

PRIME-BASED MIMIC FUNCTIONS

by

Wesley J. Connell

Texas State University-San Marcos

August2009

r

SUPERVISING PROFESSOR: DAN TAMIR

Many steganography techniques suffer from a low secret-to-cover ratio or are

vulnerable to statistics-based steganalysis. Prime-based mimic functions provide an

'efficient and substantially covert method to hiding information for steganography.

Experiment results show a competitive secret-to-cover ratio and low language model

perplexities.

Vlll

1. Introduction

Steganography is the art and science of hiding information in plain sight. By

hiding information in plain sight, such as images, audio, or text, we are sending

informatio~ over a covert channel to completely avoid detection. In fact, almost any

abstract medium can be utilized to provide cover for the information to be concealed.

This abstract medium is referred to as the cover medium. In order to perform optimally,

the cover medium must be chosen and utilized in such a manner that neither human nor

machine can recognize it as a cover for hidden information. Unfortunately, with many

steganography techniques, the size ratio of secret message to the cover is quite low.

Additionally, these techniques are vulnerable to automated steganalysis.

In this thesis, we define a prime-based mimic function that encodes a secret

message into the sentences of a given grammar such that the sentences are statistically

similar to typical sentences in the grammar while maintaining a competitive bit-rate. We

show this by implementing a prime-based mimic function and statistically analyze the

generated sentences with a language model that calculates geometric and average

perplexities. Additionally, the average bit-rate is calculated and compared to other

steganography techniques. Our results show low perplexities and competitive secret-to

cover ratios. However, we begin with a literature survey of steganography research.

1

2. Literature Survey

In this section we shall discuss popular steganography research related to

image steganography, audio steganography, timing-based covert channels, and mimic

functions along with technique robustness and fundamental steganography concepts.

Originating with the Greeks, history shows a multitude of steganography

techniques. For instance, in 440 BC, Histiaeus used the tattooing of a trusted scout's head,

later covered by hair, to conceal a message [1]. Later, during WWII, additions to the field

would include the use of microdots and invisible inks [1].

As described in the introduction and shown through the historical examples,

the purpose of steganography is to send information over a covert channel, thus avoiding

the detection of the secret message altogether. Similar to the scenarios used in research

and examples of encryption, we shall also use the actors Alice, Bob, and Eve to be our

sender, receiver, and observer respectively. Typically, the knowledge held by Eve is

complete with regards to anything transmitted and methodology used.

Our base scenario has Alice attempting to send a secret message to Bob using

a cover. The cover is the medium in which the secret message is embedded, such as

image data, audio data, and text data. Hopefully, Eve, having complete knowledge of the

2

steganography method and any additional transmitted information, such as sequence

lengths or public-keys, cannot detect the presence of a secret message. Given Eve's

complete knowledge, a strong steganography method would still allow the successful

covert transmission of information between Alice and Bob.

2.1 Robustness

3

During the course of our base scenario, if Eve detects the presence of a secret

message in the cover, then she has a choice to make: allow the cover to continue to be

transmitted without modification or to attempt to modify the cover in such a manner as to

prohibit Bob from reading the secret message. A steganography technique's resistance to

such a modification is called its robustness. Obviously, Eve's decision is based on her

intelligence priorities. For the purposes of detailing robustness, we assume Eve will

attempt to modify the cover.

Instead of completely ruining the cover, Eve can subtly introduce noise,

distortion, or another domain specific modification to maintain the cohesion and

usefulness of the cover while rendering the secret message unusable by Bob. Domain

specific modifications include applying filters to an image, re-sampling an audio file, and

replacing words with synonyms in a story.

2.2 Types of Steganography

Three categories of steganography are recognized, each with varying levels of

4

knowledge transmission and assumption. The first, pure steganography, allows no prior

exchange of prior information and assumes both the sender and receiver know the

encoding and decoding algorithm. Unfortunately, since we assume Eve has complete

knowledge of the steganography system, then she also has the ability to decode the secret

message. The second, secret key steganography, involves the transmission of a secret key

that is required to decode information in the cover. Again, we can assume Eve has

intercepted the secret key and can now decode the secret message. The third, public-key

steganography, uses a mechanism similar to public-key encryption to transmit a public

key that can be used to encode the secret message. Fortunately, even though Eve has

knowledge of this public-key, she cannot decode the message.

2.3 Language Models

Given that most lexical and linguistic steganography techniques attempt to

acquire the statistical properties of a defined language, it is appropriate to analyze their

output. An efficient method for doing so involves the use of language models. Language

models, using the most simplistic definition, build a probability distribution for the words

and relationships in a body of text, or corpus. This corpus serves as the training data set

for the model and should contain the statistical properties that the cover wishes to

acquire. Many types of language models exist and have been well-researched. However,

the most popular type of language model is an n-gram based model that segments the

words of the corpus into 1, 2, ... , n-tuples and calculates their conditional probabilities.

This type of language model is the default model used in our experiment.

5

2.4 Perplexity

Amongst the numerous measurements performed within a language model,

the most interesting to us is perplexity. Perplexity is defined as two raised to the power of

the entropy of the random variable X , or,

-:t p(x,)log,(p(x,))
2 ,.,

where n is the number of events in X and p(xJ is the probability of event x,

occurring [2]. A more intuitive definition of perplexity is the measurement of how

surprised a language model is to see a specific sample. The lower the total entropy of the

sample, the lower the uncertainty of the sample, and the lower the perplexity of the

sample. Raising the entropy by a power of two has a normalizing effect on the logarithm,

but still maintains the proper proportionality of having a lower perplexity being

equivalent to less surprise. Fortunately, the perplexity is automatically calculated for us in

our experiment by SRILM toolkit [3].

2.4 Image

Image data serve as an excellent cover medium due to their variety in

compression algorithms, a high bit-depth, and popularity in use. Modem compression

algorithms, such as the JPEG algorithm, allow for a reasonable amount of noise to be

introduced into the image data. This noise, coupled with a high bit-depth can itself be a

secret message. The popularity in use allows a small stream of image data, serving as a

covert channel, to be hidden amongst the many other streams of legitimate image data.

Two popular steganography techniques, Least Significant Bit Substitution and Domain

Transformation, both operate on image data [1]. In order to express the approximate

bandwidth of these techniques, a sample of the first 100 JPEG-encoded images from an

image search on Google were measured. Since each image was restricted to a resolution

of 640x480, or 307,200 pixels, the search yielded an average size of87 kilobytes. We

define an image steganography technique's bandwidth to be,

b=l!..r
q

6

where p is the number of secret bits encoded into the cover, q is the total size, in

bits, of the cover, and r is the bandwidth of the channel the cover is transmitted on. For

our purposes, we will assume r is 1.544 Mbit/sec, or a Tl communications line.

Additionally, q is the average size yielded by the image search, or 712,704 bits.

2.4.1 Least Significant Bit Substitution

When examining an image, having a bit-depth greater than two and a color

channel-based encoding scheme, the gradient difference between sequential values is
'

slight. At higher bit-depths, the difference can be completely indistinguishable. Taking

advantage of this difference, Least Significant Bit Substitution (LSB) replaces a constant

number of bits from each pixel or color channel with the same number of bits from a

secret message [1]. Spread over the entire set of image data, the entire secret message can

encoded while inserting a minimal amount of noise into the image data. Unfortunately,

this technique, although popular and easy to implement, suffers from quick detection by

7

standard steganalysis techniques, particularly Laplace Filtering. Additionally, because the

secret message is stored in the values, rather than relationships, of the pixels, LSB cannot

resist modification of the cover well. The trade-off for the lack of modification resistance

is bandwidth. Given a a single-bit bit substitution and a sample image from the search

above, we can encode 307,200 bits, or 38 kilobytes; this figures to a secret-to-cover ratio

of approximately 0.43 and a bandwidth of 633 Kbit/sec.

2.4.2 Domain Transformation

Another popular steganography technique, Domain Transformation, involves

transforming the image data from the time domain into the frequency domain. The raw

pixel values can easily be mapped to a time series with each pixel value k representing

sample n , where N is the total number of samples or pixel values. The

transformation, commonly called the Discrete Fourier Transform (DPT), returns the

frequency components of the image data. The DPT is defmed as

N-1

S (k) = F { s} = ~ s (n) exp (2 i '; k) ,

where i is the imaginary unit ✓ -1 [1]. In order to return the frequency components

back into the time domain, the inverse DPT must be performed. This is defined as,

N-1

S(k)=F- 1{S}= L S (n) exp(2 i nrr k) .
n=O N

With the help of the DPT, a domain transformation can be used to encode the

secret message within image data. First, the image data are transformed into the

frequency domain using the DFT. Next, a subtle modification can be performed

according to a previously arranged method. For instance, the magnitude of a frequency

component can be increased or decreased in order to represent a one or a zero

respectively [I]. Finally, the frequency components are transformed back into the image

data and transmitted. Upon receipt of the image data, the process is reversed to retrieve

the modification made to the frequency and the bit is decoded.

8

A steganography technique that utilizes a domain transformation can be quite

robust. Because the frequency components themselves contain the secret message, any

change to another image format, such from JPEG to PNG has no effect on the

components. Additionally, many modifications such as filters will not alter the frequency

components enough to ruin the secret message. Unfortunately, the transmission rate using

domain transformation can be low compared to the LSB technique since domain

transformation requires that the DFT be performed on a block of data. For instance, the

JPEG image format uses a 8x8 pixel block of data to perform its compression. The same

block size would be a suitable block size for the DFT as well. Thus, a 640x480 resolution

image could only encode 600 bits of information. Thus, the secret-to-cover ratio for a

domain transformation is approximately 0.00084 with a bandwidth of 1.3 Kbits/sec.

Here, we have traded a high robustness for a low bit-rate.

2.4.3 Laplace Filtering

Image steganography techniques, such as LSB, which introduce noise may be

susceptible to steganalysis attacks involving Laplace Filtering. Primarily used in physics

to model wave propagation and heat flow, this filtering attack utilizes the Laplace

operator V2 to detect noise within an image [1]. The following equation is evaluated

for each pixel in the suspect image:

V2 p(x, y)= p (x+ 1,y)+ p(x-1,y)+ p (x ,y+ 1)+ p(x, y-1)-4p(x, y)

9

In this equation, the function p represents the value of the pixel at coordinate (x, y)

The resulting histogram from the calculations show a sharp spike centered around zero

with a tightness proportional to the amount of noise present in the image. If a wide and

broken spike is found, the image has considerable amounts of noise and may have been

processed with a steganography technique. Additionally, varying sizes of pixel blocks

can be used in the Laplace filter, such as pairs of pixels or 8x8 blocks of pixels. Together,

the resulting histograms may show broken spikes.

2.5 Audio

Audio data can also become the cover for a covert message. The techniques

used in image steganography may be applied in the domain of audio steganography with

varying results. Petitcolas [1] states that since human audio perception is extremely

sensitive to noise, the steganography techniques which introduce noise into the cover,

such as LSB Substitution and Domain Transformation, are easier to detect. Therefore,

techniques which exploit weaknesses in human audio perception perform better.

Since the steganography techniques are intended to be used on digital data,

IO

the audio data must be represented as a discrete time series. A common encoding scheme

for a discrete time signal is Pulse Code Modulation, or PCM. This type of modulation

normalizes the magnitudes of the signal to a discrete range, typically an 8-bit or 16-bit

signed value. Any abnormally large spikes or small ripples in the signal are clipped at the

maximum range or rounded down to the smallest range respectively. In order to express

the bandwidth of the following techniques, we assume the digital audio data serving as

the cover has been encoded using an 8-bit signed PCM scheme sampled at 8,192 KHz,

suitable for voice communication, for ten seconds. The same equation used to calculate

image bandwidth, found in section 3.4, applies to audio bandwidth with the exception

that q is now 81,920 bytes or 655,360 bits.

2.5.1 Phase Coding

While human audio perception recognizes changes in noise levels quite well,

it has a difficult time detecting phase shifts. The phase coding technique exploits this

weakness by introducing a phase shift into the cover by performing a DFT on the cover,

modifying the resulting phase matrix and performing the inverse DFT.

The cover c, is split into a series of N sequences, c 1 (n) of length / (m)

and a DFT is performed on the set of sequences. The result of the DFT gives us the phase

matrix </)1 (k) and the transform magnitudes A 1 (k) . These are found by the

following functions,

and

A 1 (k)= ✓ Re[F { cJ(k)]2+ Im[F { cJ(k)]2

lm[F{c,}(k)]
<I>, (k)= arctan (Re [F {c

1
(k)}])

Now, in order to phase shift the cover data, we set the first element in the

phase matrix to be a small multiple of rr . Since Petitcolas [1] uses rr/2 , so shall,

we. To calculate the <I>, (k) , the new phase matrices, let,

With this assignment, we phase shift 90 degrees ahead or back to embed a

single bit. The remaining sequences will be calculated by performing the sum of the

original phase differences and the previous element of the phase matrix. Thus,

<P1 (k)=cbo(k)+[¢1 (k)-¢o(k)]

<PN(k)=cp;_I (k)+[cpN(k)-cpN-1 (k)]

11

Once the new phase matrix has been calculated, the inverse DFT is performed

using A, (k) and ¢, (k) to produce the phase-shifted cover. The receiver, having

knowledge of l (m) , can now use the DFT to retrieve the phase shift and determine the

embedded bit. Knowledge of l (m) is required since the DFT must operate on data

blocks of uniform size.

An issue with phase coding is the extremely small data transmission rate of

12

the technique. For a single bit to be sent, an entire set of audio data must be transmitted

and gives us an approximate 0.00001 secret-to-cover ratio and a bandwidth of 19 bits/sec.

Additionally, a consideration must be given to precision in implementation since the DFT

will require the use of floating-point arithmetic. Incorrect data could be sent or received if

excessive loss of precision is not prevented or checked. In spite of the issues involved

with phase coding, Chang [5] has shown phase coding to have robustness against re

sampling of the cover.

2.5.2 Echo fflding

Another audio steganography technique involves the modification of the

cover by inserting a variable echo periodically throughout the data. The variability of the

echo which is inserted into the cover determines the bit-depth of the embedded data. For

instance, Gruhl [5] uses .d t and .d t' , the time delay of the echo, to embed a single

bit of data. With additional interv~ls of .d t , an increased bit-depth can be achieved

with great precision and complexity in the encoding and decoding functions.

As in phase coding, the cover c must be split into N sequences of length

l (m) . Each sequence can contain an inserted echo to represent a single datum.

Katzenbeisser [4] gives,

c(t)=J(t)+cx.f(t-.dt) ,

as the general function to calculate the new cover data with the inserted echo,

where ex. is a small constant less than one to represent a minor degradation of the echo

13

signal . By replacing L\ t with .1 t' , we can embed a different value.

Again, with the receiver having knowledge of the sequence length / (m) ,

the cover is processed using autocorrelation. A signal spike is present at the beginning of

the echo and is thus the determination of the embedded value. The process of

autocorrelation is a statistical process comparing different points in time and determines

their correlation. This is found by

R(t, s) E[(X,-µ,)(X s-µJ]
CT ,er s

where X has mean µ and variance er . When well-defined, R , inclusively falls

between -1 and 1, or where -1 signifies complete non-correlation and 1 signifies perfect

correlation respectively. For the purposes of echo hiding, the signal spike occurs when an

echo has been encountered and correlated to the original signal producing a value close to

1.

Gruhl [6] has shown echo hiding to have a potentially higher data

transmission rate than phase coding with an equivalent robustness. The transmission rate

is potentially higher, since the secret-to-cover ratio is N /81920 with a respective

bandwidth of 19N bits/sec, where N is the number of echo segments encoded.

Obviously, if only one echo segment has been encoded, then the bit-rate is equivalent to

phase coding. Additionally, Gruhl [6] details the typical steganalysis attack on the echo

hiding technique. While it is possible to detect and modify a cover using the detailed

attack, it relies on brute force and is limited to a small range of values for L1 t . Thus,

the steganalysis can be easily overwhelmed with excessive transmission or using an

obtuse range of values for L1 t .

2.6 Timing-based techniques

14

The techniques shown for image and audio data rely on storing the secret

message within the cover. A technique shown by Guirguis [7] and Cabuk [8], relies on

the timing of network transmissions to encode a secret message. By forcing the loss of a

network transmission at a specific interval predetermined by the parties, the receipt or

loss of said transmission can represent a single bit. This type of technique can be quite

stealthy with a trade-off to a comparably low bit-rate of 4-12 bits/sec [7].

2. 7 Cover Generation and Mimic Functions

Steganography applications using image-based or audio-based systems are

required to use a cover channel or medium independent of the payload. As discussed in

[4], the use of an independent cover implies that consideration must be given to proper

choice of cover; consequences of insecurity arise when a cover is poorly chosen. Since it

is difficult for a human operator to examine even a small percentage of possible covers,

automated systems are employed to search for the various statistical properties of covers.

Holotyak [9] and Fridrich [1 O] are just two from a thorough body of research into

statistical steganography.

15

2.7.1 Cover Generation

Given that a chosen cover can be detected using a statistical property inherent

to the cover itself or the steganography technique employed, the chosen cover must have

statistical properties unknown to the steganalyst or statistical properties that make it

indistinguishable from non-cover data of the same medium. The first, statistical

properties which are unknown to the steganalyst, is simply security through obscurity and

hardly a reasonable choice. The second defines the goal of cover generation. Cover

generation accepts a payload as usual, but causes the cover to be dependent on the

payload in a manner that maintains desirable statistical properties.

2.7.2 Mimic Functions

In [11] and [12], Wayner defmes mimic functions, a cover generation

technique that uses text as a cover medium. Mimic functions begin with a secret message

to encode and end with a generated cover consisting of a body of text which is accepted

by a context-free grammar. Furthermore, the generated cover is shown by Wayner to

have a possible strength, or resistance to steganalysis, proportional to the average

complexity of the context-free grammar [12]. This technique forms the basis for our

definition of prime-based mimic functions with the exception that the Huffman-coding

portion of the technique is omitted.

A given secret message is first compressed using a Huffman-coding scheme

[18]. This scheme compresses the secret message based upon the statistical properties of

the text so that the more frequent characters are represented by fewer bits. Once

Huffman-coded, the resulting set of bits are used to determine the set of productions to

expand in the context-free grammar. After the final expansion, the text may be

transmitted as a steganography cover and decoded, using the inverse of the described

process, to retrieve the secret message.

The strength of the transmitted message is proportional to the average

complexity of the context-free grammar. This complexity is defined as

n IT p(a.)2E(r,) '
1=0

where p (a.) is the probability that terminal a, appears in a string generated by the

grammar and E(t,) is the entropy of a set of particular strings generated by the

grammar. Wayner states, "the larger it is, the more secure the system may be against

probabilistic attacks" [12].

Although not discussed in the literature, the robustness of mimic functions

depends upon the redundancy within the context-free grammar and whether or not

misspelled words and garbage characters would be accepted. The transmission rate,

however, is higher than the typical image and audio based steganography techniques.

Wayner provides an example which encodes, "Paul is dead! I am the Walrus! Buy

something right now. Don't shoplift. Buy! Buy! Here are the plans to the Overthruster,

Sergei. Y oyodyne forever." Assuming the message was stored as a standard 8-bit byte,

16

the example encodes 148 bytes into a 12,660 byte cover message yielding a secret-to

cover ratio of 0.012 and a bit-rate of 18 Kbits/sec.

2.7.3 NICETEXT

17

Another approach to the goal of using text for steganography, is the set of

functions called NICETEXT [13]. NICETEXT utilizes a collection of dictionaries and

styles to construct a cover that is statistically similar to a specific and defined language.

The dictionaries are a combination of manually and automatically generated word-type

and word pairs which assist in selecting an appropriate word for a sentence within the

cover based on usage frequency within the language. The styles, composed of sequences

of word-types, enforce a grammar within the cover by simulating a probabilistic context

free grammar. Thus, the dictionaries and styles intersect by word-type. Using a set of bits

as input, a specific style is selected from a table keyed on the bit signature and the word

types replaced with dictionary words. Chapman's thesis [13] contains a clear example

which encodes 88 bytes of data into a 2000 byte cover yielding a secret-to-cover ratio of

0.044 and an average bit-rate of 67 Kbits/sec.

3. Prime-based Mimic Functions

In this section we formally define a prime-based mimic function and give a

trivial example of its usage. Supplemental to the prime-based mimic function, we also

define the criteria for a required mapping algorithm and briefly discuss its limitations.

A prime-based mimic function modifies data to fit the statistical properties of ,

a context-free grammar. The context-free grammar is modified by adding a function ~

which maps productions to a set of sequential prime numbers and 1. Let

where

G=(V,T,S,P,~) ,

V is a finite set of variables,
T is a finite set of terminal symbols,
SE V is the starting symbol,
P is a finite set of productions,
~ is a function mapping productions to prime-numbers and 1.

Given the application of the Fundamental Theorem of Arithmetic [14], which

states that any integer greater than one is composed of the product of a finite set of prime

numbers, the inclusion of ~ allows a unique expansion of productions within the

grammar to be representative of an integer. In other words, an integer can be encoded

using sentences within a language described by G . For example, let

G=({S}, {a, b}, S, P, ~) , with productions

18

p 0=S----+aSa
p 1=S----+bSb

P2=S----+A,

19

and ~ = {{ Po, 2} , { p 1, 3}, { Pi, l}} . During the expansion of the productions, we apply the

appropriate prime-number to the total product representing the integer. For example, if

we wish to encode the value of 2, we begin with the sentential form 'S' and apply the

necessary productions to result in an equivalent product. We apply production Po ,

being mapped to the prime-number 2, and multiply to a product of 2 and a sentential

form of'aSa'. Finally, we apply production P 2 , being mapped to 1, and multiply to a

product of2 and a sentential form of 'aa'. Consequently, we can see that bb is

representativeof 3*1=3 ,aaaaof 2*2*1=4 ,aabbaaof 2*2*3*1=12 ,ad

infinitum.

3.1 Complexity

The overall complexity of a prime-based mimic function is quite low. Storage

of the grammar used in a prime-based mimic function is simply based on the number of

productions used and thus linear in space complexity. Implementation, discussed in

greater detail below, of a prime-based mimic function may be complex in logic, but only

requires four total passes of the production list per sentence. The reason for this

requirement is discussed in the implementation section. Therefore, the time complexity is

defined as,

x=4pn ,

where p is the number of productions in the grammar and n is the number of

sentence to create. Since p is constant across all ri sentence creations, x exhibits

linear growth and thus prime-based mimic functions are linear in time complexity.

3.2 General Usage

20

The general process of using a prime-based mimic function as a

steganography tool is shown in figure 1. In order for Alice to send a message secretly to

Bob, she must employ a steganography technique; in our case she uses a prime-based

mimic function. Once transmitted, the secret message is only hidden not encrypted. If the

steganography technique is known then the message is vulnerable to exposure. As usual

in secret message exchange, Alice encrypts her plain-text message with message with an

encryption cipher in preparation for transmission. Before transmission, the cipher-text is

segmented into units of identical size. The unit size is dependent upon the mapping

algorithm described above and thus dependent upon the largest prime number used by the

prime-based mimic function and the largest integer to encode. Sequentially, each cipher

text unit will be processed by the prime-based mimic function into the hidden-text. This

hidden-text is then transmitted to Bob. If the language of strings defined by the grammar

of the prime-based mimic function is complex enough, then Eve considers the hidden

text uninteresting and ignores it. Bob then processes the hidden-text into cipher-text using

the same prime-based mimic function and then decrypts the cipher-text.

n to Bob lnrtlally . t11s s
ncrypte-d 1 1 ord r rnair tat

ic ·· prime- -05 <.1 i ic function proces · s
pmne components , conver I g th into 1 -1e t'lidoe r)t • t

5 Th r. 1ddcn t l , b 1ng a string 1n t10 I ag
prim bas d imic funclio , e om s unr

7 Sob r c .1 s th ht
ob m 1e c,phE:!r xi.

product

The to al Ira s Is.s1on o

pt . th hldd

0 . Bob s s th ppropri ctph r o decry l th
c1ph rie o lainmg t plain ex

t and ,gno 11 ,

-·

Figure 1: General usage

21

~
I

Cip rte

Prim -bas d ~11 ic Fu c 10n

1d n! x

Hidd ntex

P 11n -ba s d v11m 1c . un .l1cm

Plaint . :d

22

3.3 Mapping Algorithm

Almost immediately, the problem of sparseness is apparent. Prime numbers

not related in ~ cannot be components of the integer encoded in a sentence. For

instance, any prime number greater than three cannot be used. Thus, in the example given

above, integers such as seven and its multiples cannot be represented. In order to

overcome this problem, we define a mapping algorithm to remove the sparseness.

First, we must define a range of integers to map. The format of our input

tends to dictate the maximum size of our integers. For instance, when using digital data, a

power of two such as 256, is appropriate. Second any mapping algorithm can used that

meets a few criteria: the mapping must be one-to-one, it must be invertible, and each

unique integer must have a prime factorization containing the primes found in the

production to prime-number mapping, ~ . This mapping algorithm allows the full range

of input data to be mapped to an integer that can be encoded by G . An example

mapping that fits with our example grammar from above is,

0--d :{}
1~2:{2}
2~3 :{3}
3~4 :{2,2}
4~6:{2,3}
5~8 :{2,2,2}
6~9 :{3,3}
7 ~ 12:{2,2,3}
8~ 16: {2,2,2,2}

The example mapping allows a 3-bit integer, including the integers five and seven, to be

encoded using only the prime factors of two and three. This type of mapping algorithm,

23

albeit primitive, can be expanded to include any size of input integer. The bit-depth of the

maximum integer accepted by the algorithm as input is, from here on, defined as the

block size of the mimic function. During general usage, the block size is the size of the

cipher-text segments.

There are, however, limitations to the mapping algorithm. Since the mapped

values are typically stored in CPU registers or standard language integer variables, they

are limited to the maximum sizes of these containers. For instance, the maximum size of

an unsigned integer on a standard desktop machine is limited to 2 32 • If the mapped

values exceed this limitation, the container typically wraps and begins at zero which

invalidates the uniqueness constraint on the mapping algorithm. We can determine the

maximum integer required for a mapping by calculating,

n

y= TI p~g.(x) ,

1=1

where n is the cardinality of the unique set of prime numbers used in the prime-based

mimic function and x is the largest integer to be encoded. As an example, let our

unique set of prime numbers be, { 2, 3, 5, 7} and our largest integer to be encoded one 8-

bit byte, or 256. This evaluates to,

y = 24 34 54 t = 1944810000

In this case, we would require a 32-bit container to store each mapped value. When the

largest integer to be encoded is increased to two 8-bit bytes, or 65536, the evaluation is,

y= ii 58?8= 1125899906842624 .

24

Obviously, this quickly overflows a 32-bit container but would fit nicely in a 64-bit

container. Other implementations, such as binary coded decimals, or arbitrary precision

computation are able to overcome these limitations since the mapping algorithm only

requires the use of the multiplication operation.

3.4 Secret-to-Cover Ratio

As described previously, the secret-to-cover ratio of a steganography

technique is the ratio of the secret message size to the cover message size. This ratio is a

simple measurement of a steganography technique's efficiency when transmitting a secret

message. For prime-based mimic functions, the lower bounds of the secret-to-cover ratio

can be defined. However, since the construction of the grammar and mapping algorithm

used in a prime-based mimic function greatly influences the secret-to-cover ratio, an

exact ratio must be determined individually.

The lower-bound of the secret-to-cover ratio is defined as requiring one

symbol in the cover message for each prime factor of the mapped value obtained from the

mapping algorithm. Since a production in the grammar must have a right-hand side

variable and eventually terminate with at least one symbol, a single prime factor must be

expressed by at least one symbol. Therefore, the number of mapped value prime factors

determine the lower-bound of the secret-to-cover ratio.

With the strictest definition of a prime-based mimic function, the upper-

25

bound of the secret-to-cover ratio cannot be defined since the number of possible

sentences is infinite. This lack of an upper-bound is caused by the traversal of

productions having a prime-cost of 1 arranged in a loop. However, an implementation

would limit the traversal of these productions and reduce the upper-bound to a finite, yet

still possibly large, value. In fact, in our experiment the secret-to-cover ratio exhibited

was between 0.028 and 0.069, a value greater than most of the steganography techniques

described in the literature survey.

3.5 Robustness

As described previously, robustness is the ability of a steganography

technique to resist modification to the cover message. Fortunately, prime-based mimic

functions exhibit a competitive level of resistance to modification of the generated cover

message. However, this resistance is dependent upon the grammar and mapping

algorithm used for the prime-based mimic function.

A prime-based mimic function resists modification to the generated cover

message if the changed symbols are part of productions with the same prime-cost. If,

during parsing, the changed symbol causes the decoder to choose a path with the same

prime-cost, then the change has been successfully resisted. For instance, ifwe assume a

grammar includes the two productions, K--¼ y, K--¼ x , each with an equal prime-cost,

then the replacement of x with y or y with x has no effect on the final product.

26

When the modification is bit manipulation instead of symbol manipulation, a

different quality of robustness is present. The two types of bit manipulation are when a

bit in the data stream has been flipped and when a bit is missing. If a bit within the data

stream has been flipped, the entire sentence is invalid and must be retransmitted. If a bit

is missing from the data stream, the end of the current expression cannot be properly

determined invalidating the entire data stream. Error correction bits and symbol escaping

can be used to further resist modifications of this kind. However, this topic is outside the

scope of this thesis.

4. Experiments

In this section we describe our implementation details and experiment

methodology. We also describe the techniques used in analyzing the results of our

experiments.

4.1 Implementation

Each prime-based mimic function requires a language definition to serve as

the cover for our secret data. In our case, we implement our mimic function to produce

strings within a basic arithmetic expression language. A context-free arithmetic

expression language can be defined unambiguously and easily meets the prime

numbering criteria discussed above; thus, the language definition is quite suitable for our

implementation purposes. We define the basic arithmetic language as:

Let G =(V, T, E, P) such that,

V={E ,T ,F, G,K},

T={x ,y,+,-, * ,!," ,$},

27

and with productions,
E~T
T~F
F~G
G~K
K~xly
E~E+T
E~E-T
T~T*F
T~TIF
F~F"G
F~F$G
a~(E).

28

The form.at of the strings contained within this language is similar to many of

the expressions found in a typical college algebra textbook. Two aesthetic changes have

been made to the syntax to facilitate consistency for the implementation. If a single

character is used to denote an operation, tokenization and parsing can be greatly

simplified, especially if every operation is a single character. The exponential operation

has been denoted with a caret character and the logarithm operation has been denoted

with a dollar sign character. A few examples are:

(x+ yr is denoted as (x+ y) AX

logx(L)is denoted asx $(yl x)
X

We now define the prime-number to production mapping function as:

8= { {P0 , I} ,{Pi, 1}, {P2 ,l}, {P3 , 1}, {P4 , I} ,{P5,2},
{ p 6, 3}, { p 7, 5}, { p 8, 7}, { p 9, 2}, { p IO, 3}, { p 11, 1}}

Fortunately, the choice of prime-number mapping for the basic arithmetic

expression language allows for a simplified parsing mechanism. In the event that an

operational token is encountered during decoding, the respective prime number can be

added to the list of factors. This choice is deliberate to simplify the implementation and

and must be avoided in a real-world scenario. Using the previous examples, we can see

that

x$(ylx)=3*7=21

29

As an example, we show the production applications along with the current

running product of the e~pansion of (x+ y V x . We begin with the sentential form 'E',

Table 1: Example prime-based mimic function expansion

Production Sentential Form Mapped Prime- Running Product
number

E~T T 1 1
T~FAG FAG 2 2

F~G GAG 1 2
G~(E) (E)AG 1 2

E~E+T {E+T)AG 2 4
E~T (T+T)AG 1 4
T~F (F+T)AG 1 4
F~G (G+T)A(J 1 4
G~K (K+T)AG 1 4
K~x (x+T)AG 1 4
T~F (x+F)AG 1 4
F~G (x+G)AG 1 4
G~K (x+K)AG 1 4
K~y (x+y)AG 1 4
G~K (x+y)AK 1 4
K~x (x+y)Ax 1 4

We implement prime-based mimic function encoder and decoder in C using

the GLib library [15]. The GLib library was chosen for its portable and mature

30

implementation of hash tables, linked lists, and string utilities. Specifically, the linked list

implementation in the GLib library is helpful since a great deal of list iteration is required

in the encoder portion of the mimic function implementation. Additionally, the hash table

implementation is used in the transmission mapping implementation.

The mimic function implementation, named the mimic-coder, accepts two

command-line option flags for encoding and decoding with a required filename

argument. If the encoding flag has been set, then the file is read a single byte, assuming

an 8-bit byte, at a time. Each byte is encoded into an arithmetic expression and printed to

standard output. If the decoding flag has been set, then the file is read a line at a time ,

assuming newline terminated lines. Each line is decoded into a value and printed to

standard output. Any program or operating system errors are printed to standard error and

cause termination of the program.

In order to encode a byte of data in an arithmetic expression, four sets of

productions must be found and added to the final set of productions to apply to the initial

sentential form of'E'. These four sets of productions are: the required productions, the

pre-bridge productions, the bridge productions, and the post-bridge productions. The

required productions are those productions that are required to encode every prime-factor

for the current byte's transmission value. The pre-bridge productions are those

productions required to derive from the initial sentential form to the first production in

the required productions set. Occasionally, the pre-bridge production set is empty since

31

the first production in the required production set matches the initial sentential form. The

bridge productions are those productions required to derive from the one of the right

hand side symbols of a required production to a following required production. These

productions connect the derivation of each required production. Any remaining right

hand side symbols which have not been matched to other required productions are

matched to productions leading to terminals.

First, the byte's integer value is converted to the transmission value and its

respective prime-factor set. The prime-factor set is then iterated and a random production

matching each prime-factor is added to required productions set. A random production

that matches a specific prime-factor is helpful in strengthening the resulting sentential

form. After each prime-factor has been matched to a required production, the pre-bridge
I

productions are found connecting the derivation of the initial sentential form to the first

required production. Next, the bridge productions are found, followed by the post-bridge

productions. Finally, with the final set of productions, the sentential form is derived and

printed to standard out.

4.2 Methodology

In our experiment, the SRI Language Modeling toolkit, SRILM toolkit, was

used to analyze five sets of data encoded by the mimic-coder program:

uncompressed, compressed, encrypted, random, and zero. Each data set was further

analyzed using a 4-bit, 8-bit, and 16-bit block size for the intermediate value mapping

32

algorithm. A 4-bit block size effectively doubled the number of arithmetic expressions

produced while the 16-bit block size halved the number of arithmetics expressions

produced. Thus, a 100 byte file produces 200, 100, and 50 arithmetic expressions for 4-

bit, 8-bit, and 16-bit block sizes respectively. The following is a listing of all experiments

performed:

• Compressed ML with a 4-bit Block Mapping
• Compressed ML with a 8-bit Block Mapping
• Compressed ML with a 16-bit Block Mapping
• Encrypted ML with a 4-bit Block Mapping
• Encrypted ML with a 8-bit Block Mapping
• Encrypted ML with a 16-bit Block Mapping
• Uncompressed ML with a 4-bit Block Mapping
• Uncompressed ML with a 8-bit Block Mapping
• Uncompressed ML with a 16-bit Block Mapping
• /dev/urandom Data with a 4-bit Block Mapping
• /dev/urandom Data with a 8-bit Block Mapping
• /dev/urandom Data with a 16-bit Block Mapping
• One Valued Byte Data with a 4-bit Block Mapping
• One Valued Byte Data with a 8-bit Block Mapping
• One Valued Byte Data with a 16-bit Block Mapping
• /dev/zero Data with a 4-bit Block Mapping
• /dev/zero Data with a 8-bit Block Mapping
• /dev/zero Data with a 16-bit Block Mapping

Two additional experiments were performed to compare the results of the

above experiments with valid and invalid arithmetic expressions. In order to generate the

valid arithmetic expressions, the derivation tree of the basic arithmetic language was

walked using a depth-limited search. By choosing a depth of 20, we were able to generate

77,050 arithmetic expressions to be analyzed by SRILM. In order to generate the invalid

arithmetic expressions, a set of sentences with random lengths no greater than 10 symbols

were generated. The symbols chosen were those existing in the language. If symbols

outside the language were used, the language model implemented by SRILM would

automatically give an extremely high perplexity.

33

The output of the SRILM package was then processed with a trivial Perl

script to extract the statistical results of the analysis. Usage of the SRILM requires the

creation of a language model trained with a corpus which is then applied to the test data.

The training data used was a set of one-hundred arithmetic expressions from a college

algebra textbook. The default language models and parameters present for the SRILM

package were found to be suitable. The general input chosen for the mimic-coder

program is page 270 of The Memoirs and Letters Benjamin Franklin (ML). In this usage,

the ML serves as the secret message while the arithmetic expressions generated by the

program serve as the cover. Notably, this specific page contains Benjamin Franklin's

quote, ''They who can give up essential liberty to obtain a little temporary safety, deserve

neither liberty nor safety."

The total size of the ML, representative of the uncompressed data set, is

12,404 bytes. Since the ML is encoded as standard ASCII text, the range of values is

limited to the printable characters. For the compressed data set, the ML was compressed

using the default configuration of the gzip compression application and resulted in a

data file 5,149 bytes in size. The encrypted data set, created by processing the ML with

openssl enc -aes-25 6-cbc -salt, produced a file larger than the original text

at 12,432 bytes.'For comparison, 12,404 bytes of random data, 12,404 bytes of one

34

valued bytes and 12,404 bytes of zeros were encoded separately to be analyzed. The

random data bytes were dumped from the / dev /urandom device on a server running

a standard Linux kernel version 2.6.27. The zero data bytes were dumped from the

/ dev / zero device on the same machine.

After processing the data from the experiments into a usable form, the

analysis compares the geometric and average perplexities for each respective experiment.

Perplexity data points which are closer to the origin of the graph show less surprise on the

part of the language model and thus an expected sentence. The comparison of perplexities

has been used by Meng [19] and Taskiran [20] to automatically and accurately identify

generated cover-text from normal text. Both Meng and Taskiran use the SRILM Toolkit

to analyze generated cover-text and normal text. Finally, the data sizes before and after

encoding were compared across experiments to show relationships between the block

sizes of the mapping algorithm and how well each type of data encodes with respect to

bit-rate.

5. Results

In this section we describe the results obtained from our experiments. Each

experiment is shown on a single page with an explanation of the results for clarity. For

each graph, a general description is provided along with a notice regarding outlying data

points, clustered data points, and maximum perplexities.

35

36

5.1 Compressed ML with a 4-bit Block Mapping

Figure 2 shows the results of an experiment using a compressed data file of

the ML text and a 4-bit block in the mapping algorithm. As defined earlier, perplexity is

the relative surprise of the language model when analyzing a sentence. We see a tight

clustering of data points within (30, 50) to the origin which shows the language model

accepting the sentences with little surprise. No data points exceed a 53 geometric

perplexity or an average perplexity of 243. Four outliers are present which represent

mapped values of 1 and show both higher geometric and average perplexities.

Corrpressed ML 4-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

0

0 10 20 30 40 50 60

Figure 2: Compressed ML 4-bit Block

37

5.2 Compressed ML with a 8-bit Block Mapping

Figure 3 shows the results of an experiment using a compressed data file of

the ML text and a 8-bit block in the mapping algorithm. We see a tight clustering of data

points within (20, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 37 geometric perplexity or an

average perplexity of 243. Three outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

Con-pressed ML 8-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

0 ---=-,
... -,,, .•. ,,,..

0 5 1 0 15 20 25 30 35 40 45

Figure 3: Compressed ML 8-bit Block

38

5.3 Compressed ML with a 16-bit Block Mapping

Figure 4 shows the results of an experiment using a compressed data file of

the ML text and a 16-bit block in the mapping algorithm. We see a tight clustering of data

points within (20, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 52 geometric perplexity or an

average perplexity of 243. Four outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

Compressed ML 16-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

0
0 10 20 30 40 50 60

Figure 4: Compressed ML 16-bit Block

39

5.4 Encrypted ML with a 4-bit Block Mapping

Figure 5 shows the results of an experiment using a encrypted data file of the

ML text and a 4-bit block in the mapping algorithm. We see a tight clustering of data

points within (30, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 37 geometric perplexity or an

average perplexity of 243. Three outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

Encrypted ML 4-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

0 ---
0 5 1 0 15 20 25 30 35 40 45

Figure 5: Encrypted ML 4-bit Block

40

5.5 Encrypted ML with a 8-bit Block Mapping

Figure 6 shows the results of an experiment using a encrypted data file of the

ML text and a 8-bit block in the mapping algorithm. We see a tight clustering of data

points within (20, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 37 geometric perplexity or an

average perplexity of 243. Three outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

Encrypted ML 8-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50
. -· ii&=-

0 --0 5 10 15 20 25 30 35 40 45

Figure 6: Encrypted ML 8-bit Block

41

5.6 Encrypted ML with a 16-bit Block Mapping

Figure 7 shows the results of an experiment using a encrypted data file of the

ML text and a 16-bit block in the mapping algorithm. We see a tight clustering of data

points within (20, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 37 geometric perplexity or an

average perplexity of 243. Three outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

Encrypted ML 16-bit Block
Geometric Peplexity vs. Average Perplexity

250

200

150

100

50 ... -. .. .
, . s·· re,.,~- ..

0 .¥2 - --

0 5 1 0 1 5 20 25 30 35 40 45

Figure 7: Encrypted ML 16-bit Block

42

5. 7 Uncompressed ML with a 4-bit Block Mapping

Figure 8 shows the results of an experiment using a plain-text data file of the

ML text and a 4-bit block in the mapping algorithm. We see a tight clustering of data

points within (30, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 53 geometric perplexity or an

average perplexity of 243. Three outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

Uncompressed ML 4-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

0

0

..
. -· -;w-i.. ,·.

. ..-111111.-··111111-· ... ,...-... _--

10 20 30 40 50

Figure 8: Uncompressed ML 4-bit Block

60

43

5.8 Uncompressed ML with a 8-bit Block Mapping

Figure 9 shows the results of an experiment using a plain-text data file of the

ML text and a 8-bit block in the mapping algorithm. We see a tight clustering of data

points within (20, 25) to the origin which shows the language model accepting the

sentences with very little surprise. No outliers exist and no data points exceed a 25

geometric perplexity or an average perplexity of 40.

Uncompressed ML 8-bit Block
Geometric Perplexity vs. Average Perplexity

45

40

35

30

25

20

15

10

5

0

0 5 10 15 20 25 30

Figure 9: Uncompressed ML 8-bit Block

44

5.9 Uncompressed ML with a 16-bit Block Mapping

Figure 10 shows the results of an experiment using a plain-text data file of the

ML text and a 16-bit block in the mapping algorithm. We see a tight clustering of data

points within (20, 25) to the origin which shows the language model accepting the

sentences with very little surprise. No outliers exist and no data points exceed a 22

geometric perplexity or an average perplexity of 33.

Uncorrpressed ML 16-bit Block
Geometric Perplexity vs. Average Perplexity

40

35

30

25

20

15

10

5

0

0 5 10 15 20 25

Figure I 0: Uncompressed ML 16-bit Block

45

5.10 /dev/urandom Data with a 4-bit Block Mapping

Figure 11 shows the results of an experiment using a data file of 12,404 bytes

of random data and a 4-bit block in the mapping algorithm. We see a tight clustering of

data points within (30, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 53 geometric perplexity or an

average perplexity of 243. Three outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

/dev/urandom 4-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

..
50 . - .. . ~·"l·;,itt-" , ..

0
0 10 20 30 40 50 60

Figure 11: /dev/urandom 4-bit Block

46

5.11 /dev/urandom Data with a 8-bit Block Mapping

Figure 12 shows the results of an experiment using a data file of 12,404 bytes

of random data and a 8-bit block in the mapping algorithm. We see a tight clustering of

data points within (20, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 53 geometric perplexity or an

average perplexity of 243. Four outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

/dev/urandom 8-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

..
50

0

0 10 20 30 40 50 60

Figure 12: /dev/urandom 8-bit Block

47

5.12 /dev/urandom Data with a 16-bit Block Mapping

Figure 13 shows the results of an experiment using a data file of 12,404 bytes

of random data and a 16-bit block in the mapping algorithm. We see a tight clustering of

data points within (20, 50) to the origin which shows the language model accepting the

sentences with little surprise. No data points exceed a 33 geometric perplexity or an

average perplexity of 243. Four outliers are present which represent mapped values of 1

and show both higher geometric and average perplexities.

/dev/urandom 16-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

0 -·
.

•·s ···+•;,,,ti'• -
7 • err • •-

0 5 10 15 20 25 30 35

Figure 13: /dev/urandom 16-bit Block

48

5.13 One Valued Byte Data with a 4-bit Block Mapping

Figure 14 shows the results of an experiment using a data file of 12,404 bytes

all with a value of one and a 16-bit block in the mapping algorithm. We see a tight

clustering of data points within (20, 50) to the origin which shows the language model

accepting the sentences with little surprise. However, the clustering is flatter than the

previous experiments and shows lower boundary of the perplexities. No data points

exceed a 37 geometric perplexity or an average perplexity of 243. Three outliers are

present which represent mapped values of 1 and show both higher geometric and average

perplexities.

01e Valued Byte 4-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

0

0 5 10 15 20 25 30 35 40 45

Figure 14: One Valued Byte 4-bit Block

49

5.14 One Valued Byte Data with a 8-bit Block Mapping

Figure 15 shows the results of an experiment using a data file of 12,404 bytes

all with a value of one and a 16-bit block in the mapping algorithm. We see a tight

clustering of data points within (20, 40) to the origin which shows the language model

accepting the sentences with little surprise. However, the clustering is flatter than the

previous experiments and shows lower boundary of the perplexities. No data points

exceed a 37 geometric perplexity or an average perplexity of 130. One outlying data

point is present which represents mapped values of 1 and show both higher geometric and

average perplexities.

One Valued Byte 8-bit Block
Geometric Perplexity vs. Average Perplexity

140

120

100

80

60

40

20

0

.-·~=....\..

~~

0 5 1 0 15 20 25 30 35 40 45

Figure 15: One Valued Byte 8-bit Block

50

5.15 One Valued Byte Data with a 16-bit Block Mapping

Figure 16 shows the results of an experiment using a data file of 12,404 bytes

all with a value of one and a 16-bit block in the mapping algorithm. We see a tight

clustering of data points within (20, 30) to the origin which shows the language model

accepting the sentences with little surprise. However, the clustering is flatter than the

previous experiments and shows lower boundary of the perplexities. No data points

exceed a 37 geometric perplexity or an average perplexity of 130. One outlying data

point is present which represents mapped values of 1 and show both higher geometric and

average perplexities.

01e Valued Byte 16-bit Block
Geometric Perplexity vs. Average Perplexity

140

120

100

80

60

40

20

0

0 5 1 0 15 20 25 30 35 40 45

Figure 16: One Valued Byte 16-bit Block

51

5.16 /dev/zero Data with a 4-bit Block Mapping

Figure 17 shows the results of an experiment using a data file of 12,404 bytes

all with a value of zero and a 4-bit block in the mapping algorithm. We see a sparse and

roughly linear layout of data points lying between (16, 25) and the origin which shows

the language model accepting the sentences with very little surprise. No data points

exceed a 17 geometric perplexity or an average perplexity of 243. Two outliers are

present which represent mapped values of 1 and show both higher geometric and average

perplexities.

/dev/zero 4-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

......... -. . .
0

4 6 8 10 12 14 16 18

Figure 17: /dev/zero 4-bit Block

52

5.17 /dev/zero Data with a 8-bit Block Mapping

Figure 18 shows the results of an experiment using a data file of 12,404 bytes

all with a value of zero and a 8-bit block in the mapping algorithm. We see a sparse and

roughly linear layout of data points lying between (16, 25) and the origin which show the

language model accepting the sentences with very little surprise. No data points exceed a

16 geometric perplexity or an average perplexity of 243. Two outliers are present which

represent mapped values of 1 and show both higher geometric and average perplexities.

/dev/zero 8-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

. -..
0

4 6 8 10 12 14 16 18

Figure 18: /dev/zero 8-bit Block

53

5.18 /dev/zero Data with a 16-bit Block Mapping

Figure 19 shows the results of an experiment using a data file of 12,404 bytes

all with a value of zero and a 16-bit block in the mapping algorithm. We see a sparse and

roughly linear layout of data points lying between (16, 25) and the origin which shows

the language model accepting the sentences with very little surprise. No data points

exceed a 16 geometric perplexity or an average perplexity of 243. Two outliers are

present which represent mapped values of 1 and show both higher geometric and average

perplexities.

/dev/zero 16-bit Block
Geometric Perplexity vs. Average Perplexity

250

200

150

100

50

.
0

4 6 8 10 12 14 16

Figure 19: /devlzero 16-bit Block

5.19 Experiment Summary

The table below summarizes the results of the experiments by showing the

starting range, ending range, and brief notes about distribution of data points. The two

additional experiments using valid and invalid expression, although not graphed, have

been listed in the table. Descriptions within the 'Notes' column describe the overall

distribution of the data set. Outliers, implies that the data is clustered with a few points

located far from the cluster. Thin, implies that the data are not only clustered, but

clustered tightly in a thin band. Sparse, implies that the data is not clustered. Uniform,

implies that the data are spread throughout the range of the data.
I

54

55

Table 2: Experiment Summary

Experiment Name Starting Range Ending Range Notes

Comp. ML, 4-bit (0,0) (30, 50) Outliers

Comp. ML, 8-bit (0,0) (20, 50) Outliers

Comp. ML, 16-bit (0,0) (20, 50) Outliers

Enc. ML, 4-bit (0,0) (30, 50) Outliers

Enc. ML, 8-bit (0,0) (20, 50) Outliers

Enc. ML, 16-bit (0,0) (20, 50) Outliers

Unc. ML, 4-bit (0,0) (30, 50) Outliers

Unc. ML, 8-bit (0,0) (20, 25) No Outliers

Unc. ML, 16-bit (0,0) (20, 25) No Outliers

Random, 4-bit (0,0) (30, 50) Outliers

Random, 8-bit (0,0) (20, 50) Outliers

Random, 16-bit (0,0) (20, 50) Outliers

One Valued, 4-bit (0,0) (20, 50) Outliers, Thin

One Valued, 8-bit (0,0) (20, 40) Outliers, Thin

One Valued, 16-bit (0,0) (20, 30) Outliers, Thin

Zero Valued, 4-bit (0,0) (16, 25) Outliers, Sparse

Zero Valued, 8-bit (0,0) (16, 25) Outliers, Sparse

Zero Valued, 16-bit (0,0) (16, 25) Outliers, Sparse

Valid Expressions (0,0) (72, 118) Uniform

Invalid Expressions (0,0) Undefined Sparse

5.20 Average Bit-rate Comparison

Figure 21 shows a column graph comparing the secret-to-cover ration for the

encrypted, random, and uncompressed experiments. The compressed, zero and one

valued byte experiments were omitted since they transmitted no data.

0.08000

0.07000

0.06000

0.05000

0.04000

0.03000

0.02000

0.01000

0.00000

u
Q)

120

100

80

en 60
~
.0
~ 40

20

0

Encrypted Random Uncorrpress ed

Figure 20: Secret-to-cover Ratio Comparison

Encrypted Random Uncorrpressed

Figure 21: Average bit-rate comparison

■ 4-bit Block
El 8-bit Block
□ 16-bit Block

■ 4-bit Block
El 8-bit Block
□ 16-bit Block

56

Figure 20 shows a column graph comparing the average bit-rate across a Tl

telecommunications line for each experiment type and block size. The graph shows the 4-

bit and 8-bit block sizes having similar bit-rates while the 16-bit block have a doubled

bit-rate. Additionally, the ratios between the bit-rate of each block size, with the

57

exception of the uncompressed results, are nearly identical at a 9% increase between 4-bit

and 8-bit and 50% between 8-bit and 16-bit.

6. Evaluation and Conclusions

In this section we evaluate and discuss the results of our experiments.

Primarily, we discuss the clustering and outlying data points relating to perplexity and the

comparison of bit-rates between experiments and against other steganography techniques.

Our criteria for success are how well the tested output of prime-based mimic functions

compare to other known perplexities and how well the bit-rate compares to other

steganography techniques.

One of the first properties of the data gathered is the consistent clustering

exhibited. The majority of perplexity measurements lie below a geometric perplexity of

30 and an average perplexity of 50. With the exception of the/ dev / zero experiments,

the perplexity measurements are largely identical. The outlying measurements, and the

entire data set of the/ dev / zero experiments, were expanded from the value of zero

which mapped to the transmitted value of one and thus a simple path through the

grammar. Due to the definition of the arithmetic grammar, a simple path results in only a

few combinations of expanded sentential forms.

When comparing the clusters of perplexity measurements to other external

measurements, a prime-based mimic function performs quite well. When using a highly

58

59

trained English-based language model, Katz [16] reported perplexity measurements

between 80 and 120 during a comparison of their language modeling technique and other

common techniques. Another report by Brown [17], found that the Brown linguistic

corpus exhibited a perplexity of271 and later perplexities of 244 and 236 after data

interpolation was applied.

While the English-based language models exhibited higher perplexities with

test data, they aren't completely applicable for comparison to the results of our

experiments. The analysis of the generated valid and invalid arithmetic expressions

shows that all of the sentences generated in the ML experiments, with the exception of

the few outliers, exhibit a similar range of perplexities. Additionally, the experiments

with random data, one-valued data, and zero-valued data also exhibited a similar range of

perplexities to that of the generated valid arithmetic expressions.

This shows that the expressions generated by our prime-based mimic function

are statistically close to actual arithmetic grammar. We can see from figures 8, 9, and 10,

that the uncompressed transmission exhibited the best clustering of perplexity

measurements. Since the)uncompressed data are in ASCII format and contained no

control characters, the chance of encountering a zero valued byte is nil.

Of the many steganography techniques, only a few had a high secret-to-cover

ratio. Particularly, the Least Significant Bit substitution technique yielded a secret-to-

60

cover ratio of 0.43 or a 0.633 Mbit/sec bit-rate which greatly outperformed all other

techniques by several orders of magnitude. This lack of throughput in the other

techniques can be explained by the limiting of a single bit per decision, choice, or

segment. In some cases, the segment was the entire cover medium, which resulted in an

extremely low bit-rate. Fortunately for prime-based mimic functions, the bit-rate

performance increases as the language complexity increases, as the number of expressible

prime numbers increases, and as the block size of the mapping algorithm increases. We

can see this behavior in figure 20; the / dev / zero experiment was ignored since no

actual information was transmitted.

Of the four remaining experiments analyzed for bit-rate, the highest

performing experiment was the 'Uncompressed ML 16-bit Block', shown in figure 4 with

a secret-to-cover ratio of 0.069 or a bit-rate of 106.26 Kbits/sec. As a reminder, these

secret-to-cover ratios and bit-rate calculations are based on a T-1 telecommunications

line and are determined by the discussion in section 3.4. A remarkable result of varying

the block size is shown in the increasing bit-rate when moving to a large block size.

Although there were not enough block size experiments performed to infer a formula, a

near exponential growth can be extrapolated. With the compressed, encrypted, and

random experiments, the increase between a 4-bit and 8-bit block size was nearly

identical with a 9% growth in bit-rate. Since the compression and encryption tend to

increase the entropy of a signal, it would be expected that these experiments would

behave similarly to each other. Meanwhile, the bit-rate in the uncompressed experiment

grew only 2% from the 4-bit block to the 8-bit block. When moving to a 16-bit block

mapping algorithm, the bit-rate in the compressed, encrypted, and random experiments

grew approximately 50% while the uncompressed experiment grew a close 49%.

Obviously, using a larger block size results in a much higher bit-rate for transmission.

This is explained by the increase in mappable numbers while maintaining the same

number of prime factors available for encoding.

6.1 Conclusions

61

By implementing a prime-based mimic function, compressed, cipher-text, and

plain-text can be encoded into sentences accepted by a context-free grammar while

having a low perplexity and a competitive bit-rate. The primary limitations are the

implementation and execution of the mapping algorithm and construction of a context

free grammar complex enough to interesting. The secondary limitations are maintaining a

suitable bit-rate and avoiding larger geometric and average perplexities.

7. Recommendations

In this section we make recommendations for future work to improve the

definition and implementation of prime-based mimic functions and the associated

mapping algorithm. Additionally, we discuss potential high-value uses for prime-based

mimic functions provided the various limitations are overcome.

Currently the mapping algorithm requires a precomputed set of numbers and

factors for each value to map, or 2n entries where n is the block size in bits. When 4,

8, and 16-bit blocks are used, the map is small and reasonable for modem desktop and

even mobile hardware to store. Desktop hardware can even manage a block size of 32-

bits but are incapable of using block sizes of 64-bits or higher. A function which

computes a mapping of an integer, given a specific set of prime-numbers, and runs in

logarithmic or constant time and space would allow higher block sizes to be explored. If a

function cannot be developed, partial table generation could be helpful since only a very

small percentage of the integer space is used. Also, as discussed above, binary coded

decimal methods and arbitrary precision methods could be implemented to overcome the

upper bounds of mapped values.

Our experiments showed that a possible exponential growth exists as a

function of the block size. Greater granularity in the experiments would support this

62

63

hypothesis. Thus, testing with sequential block sizes, such as 1, 2, 3, ... , might show a

definite rate of increase in the bit-rate. Coupled with a mapping function that ran in non

exponential time and space, the upper bounds of the test could be increased dramatically

and explore the behavior of the bit-rate as it approaches the maximum bit-rate of the

channel. One optimistic hypothesis is that the rate is in fact exponential and the bit-rate

increases at the expense of complexity in the mimic function grammar. However, the

seasoned hypothesis is that the bit-rate increases will asymptotically approach the

maximum bit-rate of the channel.

The choice of a grammar which implements an arithmetic language was made

because it is well defmed, unambiguous, well-known, and has many example sentences

Now that the statistical nature of prime-based mimic functions has been explored, a

grammar of substantial complexity should be constructed to explore complexity

questions. Suitable choices would include the grammar for a programming language,

such as C or Java, and markup languages, such as HTML or XML. In the case of C and

Java, given a properly constructed grammar, the resulting output should be compilable,

although not necessarily executable. HTML would be an excellent transport mechanism

for a covert message as it ubiquitous on the Internet.

Additional classes of grammars should also be explored. Regular languages

are a trivial case since they are a simple subset of context-free grammars and quite

honestly mildly uninteresting for our purposes since extensive real world usage is limited.

64

However, unrestricted grammars can be adapted, using the same techniques to build

Turing machines which can encode and decode highly complex sentences from any

language. During the research for this thesis, sample Turing machines were built to

encode and decode sentences in a very simplistic unrestricted grammar. The

implementation of these machines can be daunting. Fortunately, the potential to apply

prime-based mimic functions to any language exists. Additionally, [11] suggests the same

for mimic functions.

Another concept developed during the research for this thesis involved the

automatic mapping of productions in the grammar to prime numbers. An algorithm to

perform this automatic number is defined as:

1. For every left-hand side symbol appearing in the grammar, find the lowest cost

path to a terminal node.

2. For each path found, each node within the path is given a prime-cost of 1.

3. The remaining productions may be given a prime-cost of 1 or given a cost equal

to a prime number.

This provides an "escape path" for each left-hand side symbol while allowing prime

numbers to be mapped to the remaining productions. Future work on this algorithm

would ask if this approach constructs a suitable prime-based mimic function and would

attempt an implementation.

REFERENCES

[1] F. Petitcolas, R.J. Anderson, and M.G. Kuhn, "Information hiding- a survey,"
Proceedings of the IEEE, vol. 87, 1999, pp. 1062-1078.

[2] Christopher D. Manning and Hinrich Schutze, Foundations of Statistical Natural
Language Processing, Massachusetts Institute of Technology, 1999.

[3] SRI Language Modeling Toolkit, STAR Laboratory.

[4] S. Katzenbeisser and F. Petitcolas, Information Hiding: techniques for
steganography and digital watermarking, Artech House, Inc., 2000.

[5] L. Chang and I. Moskowitz, "Critical analysis of security in voice hiding
techniques," Lecture notes in computer science, 1997, pp. 203-216.

[6] D. Gruhl, A. Lu, and W. Bender, "Echo hiding," Lecture notes in computer science,
vol. 1174, 1996, pp. 295-316.

[7] M. Guirguis and J. Valdez, "Masquerading a Wired Covert Channel into a Wireless
like Channel," Proceedings of the 1st IEEE International Workshop on Network
Security and Privacy, 2008.

[8] S. Cabuk, C. Brodley, and C. Shields, "IP covert timing channels: design and
detection," Proceedings of the 11th ACM conference on Computer and
Communications Security, 2004, pp. 178-187.

[9] T. Holotyak, J. Fridrich, and S. Voloshynovskiy, "Blind statistical steganalysis of
additive steganography using wavelet higher order statistics," Lecture notes in
computer science, vol. 3677, 2005, p. 273.

[10] J. Fridrich, M. Goljan, and D. Soukal, "Higher-order statistical steganalysis of
palette images," Security and Watermarking of Multimedia Contents V, vol. 5020,
2003, pp. 178-190.

[11] Peter Wayner, "Mimic Functions," Cryptologia, vol. XVI, Jul. 1992, pp. 193-214.

[12] Peter Wayner, "Strong Theoretical Stegnography," Cryptologia, vol. XIX, Jul.
1995, pp. 285-289.

65

[13] Mark T. Chapman, "Hiding the Hidden: A Software System for Concealing
Ciphertext as Innocuous Text," The University of Wisconsin- Milwaukee, 1997.

[14] G. Hardy and E. Wright, An introduction to the theory of numbers, Oxford:
Clarendon Press, 1960.

[15] GLib, Gnome: the free software project.

[16] S. Katz, "Estimation of probabilities from sparse data for the language model
component of a speech recognizer," IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 35, 1987, pp. 400-401.

[17] P. Brown, R. Mercer, V. Della Pietra, and J. Lai, "Class-based n-gram models of
natural language," Computational Linguistics, vol. 18, 1992, pp. 467-479.

66

[18] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes,"
Proceedings of the l.R.E.; September 1952, pp. 1098-1102.

[19] P. Meng, L. Huang, Z. Chen, W. Yang, and D. Li, "Linguistic Steganography
Detection Based on Perplexity," International Conference on Multimedia
Information Technology, 2008.

[20] C. M. Taskiran, U. Topkara, M. Topkara, and E.J. Delp, "Attacks on lexical natural
language steganography systems," in Proceedings of the SPIE International
Conference on Security, Steganography, and Watermarking of Multimedia
Contents, January 2006.

VITA

Wesley J. Connell was born in Austin, Texas on June 3, 1977, the son of

Kimberley Jeter and Tony Connell. He is the father of Azurean Teeple and husband to

Kristy Peloquin. He received a Bachelor of Science in Applied Mathematics and

Computer Science from Texas State University-San Marcos in May 2006, graduating

Cum Laude. In August 2006, he entered the Graduate College of Texas State University

San Marcos.

Permanent Address: 5604 Southwest Pkwy #2114

Austin, Texas 78735

This thesis was typed by Wesley J. Connell.

