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SUPERVISING PROFESSOR: DAN TAMIR 

Many steganography techniques suffer from a low secret-to-cover ratio or are 

vulnerable to statistics-based steganalysis. Prime-based mimic functions provide an 

'efficient and substantially covert method to hiding information for steganography. 

Experiment results show a competitive secret-to-cover ratio and low language model 

perplexities. 
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1. Introduction 

Steganography is the art and science of hiding information in plain sight. By 

hiding information in plain sight, such as images, audio, or text, we are sending 

informatio~ over a covert channel to completely avoid detection. In fact, almost any 

abstract medium can be utilized to provide cover for the information to be concealed. 

This abstract medium is referred to as the cover medium. In order to perform optimally, 

the cover medium must be chosen and utilized in such a manner that neither human nor 

machine can recognize it as a cover for hidden information. Unfortunately, with many 

steganography techniques, the size ratio of secret message to the cover is quite low. 

Additionally, these techniques are vulnerable to automated steganalysis. 

In this thesis, we define a prime-based mimic function that encodes a secret 

message into the sentences of a given grammar such that the sentences are statistically 

similar to typical sentences in the grammar while maintaining a competitive bit-rate. We 

show this by implementing a prime-based mimic function and statistically analyze the 

generated sentences with a language model that calculates geometric and average 

perplexities. Additionally, the average bit-rate is calculated and compared to other 

steganography techniques. Our results show low perplexities and competitive secret-to

cover ratios. However, we begin with a literature survey of steganography research. 
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2. Literature Survey 

In this section we shall discuss popular steganography research related to 

image steganography, audio steganography, timing-based covert channels, and mimic 

functions along with technique robustness and fundamental steganography concepts. 

Originating with the Greeks, history shows a multitude of steganography 

techniques. For instance, in 440 BC, Histiaeus used the tattooing of a trusted scout's head, 

later covered by hair, to conceal a message [1]. Later, during WWII, additions to the field 

would include the use of microdots and invisible inks [1]. 

As described in the introduction and shown through the historical examples, 

the purpose of steganography is to send information over a covert channel, thus avoiding 

the detection of the secret message altogether. Similar to the scenarios used in research 

and examples of encryption, we shall also use the actors Alice, Bob, and Eve to be our 

sender, receiver, and observer respectively. Typically, the knowledge held by Eve is 

complete with regards to anything transmitted and methodology used. 

Our base scenario has Alice attempting to send a secret message to Bob using 

a cover. The cover is the medium in which the secret message is embedded, such as 

image data, audio data, and text data. Hopefully, Eve, having complete knowledge of the 
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steganography method and any additional transmitted information, such as sequence 

lengths or public-keys, cannot detect the presence of a secret message. Given Eve's 

complete knowledge, a strong steganography method would still allow the successful 

covert transmission of information between Alice and Bob. 

2.1 Robustness 

3 

During the course of our base scenario, if Eve detects the presence of a secret 

message in the cover, then she has a choice to make: allow the cover to continue to be 

transmitted without modification or to attempt to modify the cover in such a manner as to 

prohibit Bob from reading the secret message. A steganography technique's resistance to 

such a modification is called its robustness. Obviously, Eve's decision is based on her 

intelligence priorities. For the purposes of detailing robustness, we assume Eve will 

attempt to modify the cover. 

Instead of completely ruining the cover, Eve can subtly introduce noise, 

distortion, or another domain specific modification to maintain the cohesion and 

usefulness of the cover while rendering the secret message unusable by Bob. Domain 

specific modifications include applying filters to an image, re-sampling an audio file, and 

replacing words with synonyms in a story. 

2.2 Types of Steganography 

Three categories of steganography are recognized, each with varying levels of 
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knowledge transmission and assumption. The first, pure steganography, allows no prior 

exchange of prior information and assumes both the sender and receiver know the 

encoding and decoding algorithm. Unfortunately, since we assume Eve has complete 

knowledge of the steganography system, then she also has the ability to decode the secret 

message. The second, secret key steganography, involves the transmission of a secret key 

that is required to decode information in the cover. Again, we can assume Eve has 

intercepted the secret key and can now decode the secret message. The third, public-key 

steganography, uses a mechanism similar to public-key encryption to transmit a public

key that can be used to encode the secret message. Fortunately, even though Eve has 

knowledge of this public-key, she cannot decode the message. 

2.3 Language Models 

Given that most lexical and linguistic steganography techniques attempt to 

acquire the statistical properties of a defined language, it is appropriate to analyze their 

output. An efficient method for doing so involves the use of language models. Language 

models, using the most simplistic definition, build a probability distribution for the words 

and relationships in a body of text, or corpus. This corpus serves as the training data set 

for the model and should contain the statistical properties that the cover wishes to 

acquire. Many types of language models exist and have been well-researched. However, 

the most popular type of language model is an n-gram based model that segments the 

words of the corpus into 1, 2, ... , n-tuples and calculates their conditional probabilities. 

This type of language model is the default model used in our experiment. 
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2.4 Perplexity 

Amongst the numerous measurements performed within a language model, 

the most interesting to us is perplexity. Perplexity is defined as two raised to the power of 

the entropy of the random variable X , or, 

-:t p(x,)log,(p(x,)) 
2 ,., 

where n is the number of events in X and p(xJ is the probability of event x, 

occurring [2]. A more intuitive definition of perplexity is the measurement of how 

surprised a language model is to see a specific sample. The lower the total entropy of the 

sample, the lower the uncertainty of the sample, and the lower the perplexity of the 

sample. Raising the entropy by a power of two has a normalizing effect on the logarithm, 

but still maintains the proper proportionality of having a lower perplexity being 

equivalent to less surprise. Fortunately, the perplexity is automatically calculated for us in 

our experiment by SRILM toolkit [3]. 

2.4 Image 

Image data serve as an excellent cover medium due to their variety in 

compression algorithms, a high bit-depth, and popularity in use. Modem compression 

algorithms, such as the JPEG algorithm, allow for a reasonable amount of noise to be 

introduced into the image data. This noise, coupled with a high bit-depth can itself be a 

secret message. The popularity in use allows a small stream of image data, serving as a 

covert channel, to be hidden amongst the many other streams of legitimate image data. 



Two popular steganography techniques, Least Significant Bit Substitution and Domain 

Transformation, both operate on image data [1]. In order to express the approximate 

bandwidth of these techniques, a sample of the first 100 JPEG-encoded images from an 

image search on Google were measured. Since each image was restricted to a resolution 

of 640x480, or 307,200 pixels, the search yielded an average size of87 kilobytes. We 

define an image steganography technique's bandwidth to be, 

b=l!..r 
q 

6 

where p is the number of secret bits encoded into the cover, q is the total size, in 

bits, of the cover, and r is the bandwidth of the channel the cover is transmitted on. For 

our purposes, we will assume r is 1.544 Mbit/sec, or a Tl communications line. 

Additionally, q is the average size yielded by the image search, or 712,704 bits. 

2.4.1 Least Significant Bit Substitution 

When examining an image, having a bit-depth greater than two and a color 

channel-based encoding scheme, the gradient difference between sequential values is 
' 

slight. At higher bit-depths, the difference can be completely indistinguishable. Taking 

advantage of this difference, Least Significant Bit Substitution (LSB) replaces a constant 

number of bits from each pixel or color channel with the same number of bits from a 

secret message [ 1]. Spread over the entire set of image data, the entire secret message can 

encoded while inserting a minimal amount of noise into the image data. Unfortunately, 

this technique, although popular and easy to implement, suffers from quick detection by 
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standard steganalysis techniques, particularly Laplace Filtering. Additionally, because the 

secret message is stored in the values, rather than relationships, of the pixels, LSB cannot 

resist modification of the cover well. The trade-off for the lack of modification resistance 

is bandwidth. Given a a single-bit bit substitution and a sample image from the search 

above, we can encode 307,200 bits, or 38 kilobytes; this figures to a secret-to-cover ratio 

of approximately 0.43 and a bandwidth of 633 Kbit/sec. 

2.4.2 Domain Transformation 

Another popular steganography technique, Domain Transformation, involves 

transforming the image data from the time domain into the frequency domain. The raw 

pixel values can easily be mapped to a time series with each pixel value k representing 

sample n , where N is the total number of samples or pixel values. The 

transformation, commonly called the Discrete Fourier Transform (DPT), returns the 

frequency components of the image data. The DPT is defmed as 

N-1 

S ( k) = F { s} = ~ s ( n) exp ( 2 i '; k ) , 

where i is the imaginary unit ✓ -1 [1]. In order to return the frequency components 

back into the time domain, the inverse DPT must be performed. This is defined as, 

N-1 

S(k)=F- 1{S}= L S (n) exp( 2 i nrr k) . 
n=O N 

With the help of the DPT, a domain transformation can be used to encode the 

secret message within image data. First, the image data are transformed into the 



frequency domain using the DFT. Next, a subtle modification can be performed 

according to a previously arranged method. For instance, the magnitude of a frequency 

component can be increased or decreased in order to represent a one or a zero 

respectively [I]. Finally, the frequency components are transformed back into the image 

data and transmitted. Upon receipt of the image data, the process is reversed to retrieve 

the modification made to the frequency and the bit is decoded. 
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A steganography technique that utilizes a domain transformation can be quite 

robust. Because the frequency components themselves contain the secret message, any 

change to another image format, such from JPEG to PNG has no effect on the 

components. Additionally, many modifications such as filters will not alter the frequency 

components enough to ruin the secret message. Unfortunately, the transmission rate using 

domain transformation can be low compared to the LSB technique since domain 

transformation requires that the DFT be performed on a block of data. For instance, the 

JPEG image format uses a 8x8 pixel block of data to perform its compression. The same 

block size would be a suitable block size for the DFT as well. Thus, a 640x480 resolution 

image could only encode 600 bits of information. Thus, the secret-to-cover ratio for a 

domain transformation is approximately 0.00084 with a bandwidth of 1.3 Kbits/sec. 

Here, we have traded a high robustness for a low bit-rate. 

2.4.3 Laplace Filtering 

Image steganography techniques, such as LSB, which introduce noise may be 



susceptible to steganalysis attacks involving Laplace Filtering. Primarily used in physics 

to model wave propagation and heat flow, this filtering attack utilizes the Laplace 

operator V2 to detect noise within an image [1]. The following equation is evaluated 

for each pixel in the suspect image: 

V2 p(x, y )= p (x+ 1,y)+ p(x-1,y )+ p (x ,y+ 1 )+ p(x, y-1)-4p(x, y) 

9 

In this equation, the function p represents the value of the pixel at coordinate ( x, y) 

The resulting histogram from the calculations show a sharp spike centered around zero 

with a tightness proportional to the amount of noise present in the image. If a wide and 

broken spike is found, the image has considerable amounts of noise and may have been 

processed with a steganography technique. Additionally, varying sizes of pixel blocks 

can be used in the Laplace filter, such as pairs of pixels or 8x8 blocks of pixels. Together, 

the resulting histograms may show broken spikes. 

2.5 Audio 

Audio data can also become the cover for a covert message. The techniques 

used in image steganography may be applied in the domain of audio steganography with 

varying results. Petitcolas [1] states that since human audio perception is extremely 

sensitive to noise, the steganography techniques which introduce noise into the cover, 

such as LSB Substitution and Domain Transformation, are easier to detect. Therefore, 

techniques which exploit weaknesses in human audio perception perform better. 

Since the steganography techniques are intended to be used on digital data, 



IO 

the audio data must be represented as a discrete time series. A common encoding scheme 

for a discrete time signal is Pulse Code Modulation, or PCM. This type of modulation 

normalizes the magnitudes of the signal to a discrete range, typically an 8-bit or 16-bit 

signed value. Any abnormally large spikes or small ripples in the signal are clipped at the 

maximum range or rounded down to the smallest range respectively. In order to express 

the bandwidth of the following techniques, we assume the digital audio data serving as 

the cover has been encoded using an 8-bit signed PCM scheme sampled at 8,192 KHz, 

suitable for voice communication, for ten seconds. The same equation used to calculate 

image bandwidth, found in section 3.4, applies to audio bandwidth with the exception 

that q is now 81,920 bytes or 655,360 bits. 

2.5.1 Phase Coding 

While human audio perception recognizes changes in noise levels quite well, 

it has a difficult time detecting phase shifts. The phase coding technique exploits this 

weakness by introducing a phase shift into the cover by performing a DFT on the cover, 

modifying the resulting phase matrix and performing the inverse DFT. 

The cover c, is split into a series of N sequences, c 1 ( n) of length / ( m) 

and a DFT is performed on the set of sequences. The result of the DFT gives us the phase 

matrix </)1 ( k) and the transform magnitudes A 1 ( k) . These are found by the 

following functions, 



and 

A 1 (k)= ✓ Re[F { cJ(k) ]2+ Im[F { cJ(k) ]2 

lm[F{c,}(k)] 
<I>, ( k )= arctan ( Re [ F {c 

1 
( k)}] ) 

Now, in order to phase shift the cover data, we set the first element in the 

phase matrix to be a small multiple of rr . Since Petitcolas [1] uses rr/2 , so shall, 

we. To calculate the <I>, (k) , the new phase matrices, let, 

With this assignment, we phase shift 90 degrees ahead or back to embed a 

single bit. The remaining sequences will be calculated by performing the sum of the 

original phase differences and the previous element of the phase matrix. Thus, 

<P1 (k)=cbo(k )+[ ¢1 (k)-¢o(k)] 

<PN(k)=cp;_I (k )+[ cpN(k )-cpN-1 (k )] 

11 

Once the new phase matrix has been calculated, the inverse DFT is performed 

using A, (k) and ¢, (k) to produce the phase-shifted cover. The receiver, having 

knowledge of l (m) , can now use the DFT to retrieve the phase shift and determine the 

embedded bit. Knowledge of l ( m) is required since the DFT must operate on data 

blocks of uniform size. 

An issue with phase coding is the extremely small data transmission rate of 
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the technique. For a single bit to be sent, an entire set of audio data must be transmitted 

and gives us an approximate 0.00001 secret-to-cover ratio and a bandwidth of 19 bits/sec. 

Additionally, a consideration must be given to precision in implementation since the DFT 

will require the use of floating-point arithmetic. Incorrect data could be sent or received if 

excessive loss of precision is not prevented or checked. In spite of the issues involved 

with phase coding, Chang [5] has shown phase coding to have robustness against re

sampling of the cover. 

2.5.2 Echo fflding 

Another audio steganography technique involves the modification of the 

cover by inserting a variable echo periodically throughout the data. The variability of the 

echo which is inserted into the cover determines the bit-depth of the embedded data. For 

instance, Gruhl [ 5] uses .d t and .d t' , the time delay of the echo, to embed a single 

bit of data. With additional interv~ls of .d t , an increased bit-depth can be achieved 

with great precision and complexity in the encoding and decoding functions. 

As in phase coding, the cover c must be split into N sequences of length 

l ( m) . Each sequence can contain an inserted echo to represent a single datum. 

Katzenbeisser [ 4] gives, 

c(t)=J(t)+cx.f(t-.dt) , 

as the general function to calculate the new cover data with the inserted echo, 

where ex. is a small constant less than one to represent a minor degradation of the echo 
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signal . By replacing L\ t with .1 t' , we can embed a different value. 

Again, with the receiver having knowledge of the sequence length / ( m) , 

the cover is processed using autocorrelation. A signal spike is present at the beginning of 

the echo and is thus the determination of the embedded value. The process of 

autocorrelation is a statistical process comparing different points in time and determines 

their correlation. This is found by 

R(t, s) E[(X,-µ,)(X s-µJ] 
CT ,er s 

where X has mean µ and variance er . When well-defined, R , inclusively falls 

between -1 and 1, or where -1 signifies complete non-correlation and 1 signifies perfect 

correlation respectively. For the purposes of echo hiding, the signal spike occurs when an 

echo has been encountered and correlated to the original signal producing a value close to 

1. 

Gruhl [6] has shown echo hiding to have a potentially higher data 

transmission rate than phase coding with an equivalent robustness. The transmission rate 

is potentially higher, since the secret-to-cover ratio is N /81920 with a respective 

bandwidth of 19N bits/sec, where N is the number of echo segments encoded. 

Obviously, if only one echo segment has been encoded, then the bit-rate is equivalent to 

phase coding. Additionally, Gruhl [ 6] details the typical steganalysis attack on the echo 

hiding technique. While it is possible to detect and modify a cover using the detailed 



attack, it relies on brute force and is limited to a small range of values for L1 t . Thus, 

the steganalysis can be easily overwhelmed with excessive transmission or using an 

obtuse range of values for L1 t . 

2.6 Timing-based techniques 
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The techniques shown for image and audio data rely on storing the secret 

message within the cover. A technique shown by Guirguis [7] and Cabuk [8], relies on 

the timing of network transmissions to encode a secret message. By forcing the loss of a 

network transmission at a specific interval predetermined by the parties, the receipt or 

loss of said transmission can represent a single bit. This type of technique can be quite 

stealthy with a trade-off to a comparably low bit-rate of 4-12 bits/sec [7]. 

2. 7 Cover Generation and Mimic Functions 

Steganography applications using image-based or audio-based systems are 

required to use a cover channel or medium independent of the payload. As discussed in 

[ 4], the use of an independent cover implies that consideration must be given to proper 

choice of cover; consequences of insecurity arise when a cover is poorly chosen. Since it 

is difficult for a human operator to examine even a small percentage of possible covers, 

automated systems are employed to search for the various statistical properties of covers. 

Holotyak [9] and Fridrich [ 1 O] are just two from a thorough body of research into 

statistical steganography. 
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2.7.1 Cover Generation 

Given that a chosen cover can be detected using a statistical property inherent 

to the cover itself or the steganography technique employed, the chosen cover must have 

statistical properties unknown to the steganalyst or statistical properties that make it 

indistinguishable from non-cover data of the same medium. The first, statistical 

properties which are unknown to the steganalyst, is simply security through obscurity and 

hardly a reasonable choice. The second defines the goal of cover generation. Cover 

generation accepts a payload as usual, but causes the cover to be dependent on the 

payload in a manner that maintains desirable statistical properties. 

2.7.2 Mimic Functions 

In [11] and [12], Wayner defmes mimic functions, a cover generation 

technique that uses text as a cover medium. Mimic functions begin with a secret message 

to encode and end with a generated cover consisting of a body of text which is accepted 

by a context-free grammar. Furthermore, the generated cover is shown by Wayner to 

have a possible strength, or resistance to steganalysis, proportional to the average 

complexity of the context-free grammar [12]. This technique forms the basis for our 

definition of prime-based mimic functions with the exception that the Huffman-coding 

portion of the technique is omitted. 

A given secret message is first compressed using a Huffman-coding scheme 

[18]. This scheme compresses the secret message based upon the statistical properties of 



the text so that the more frequent characters are represented by fewer bits. Once 

Huffman-coded, the resulting set of bits are used to determine the set of productions to 

expand in the context-free grammar. After the final expansion, the text may be 

transmitted as a steganography cover and decoded, using the inverse of the described 

process, to retrieve the secret message. 

The strength of the transmitted message is proportional to the average 

complexity of the context-free grammar. This complexity is defined as 

n IT p(a.)2E(r,) ' 
1=0 

where p (a.) is the probability that terminal a, appears in a string generated by the 

grammar and E(t,) is the entropy of a set of particular strings generated by the 

grammar. Wayner states, "the larger it is, the more secure the system may be against 

probabilistic attacks" [12]. 

Although not discussed in the literature, the robustness of mimic functions 

depends upon the redundancy within the context-free grammar and whether or not 

misspelled words and garbage characters would be accepted. The transmission rate, 

however, is higher than the typical image and audio based steganography techniques. 

Wayner provides an example which encodes, "Paul is dead! I am the Walrus! Buy 

something right now. Don't shoplift. Buy! Buy! Here are the plans to the Overthruster, 

Sergei. Y oyodyne forever." Assuming the message was stored as a standard 8-bit byte, 

16 



the example encodes 148 bytes into a 12,660 byte cover message yielding a secret-to

cover ratio of 0.012 and a bit-rate of 18 Kbits/sec. 

2.7.3 NICETEXT 

17 

Another approach to the goal of using text for steganography, is the set of 

functions called NICETEXT [13]. NICETEXT utilizes a collection of dictionaries and 

styles to construct a cover that is statistically similar to a specific and defined language. 

The dictionaries are a combination of manually and automatically generated word-type 

and word pairs which assist in selecting an appropriate word for a sentence within the 

cover based on usage frequency within the language. The styles, composed of sequences 

of word-types, enforce a grammar within the cover by simulating a probabilistic context

free grammar. Thus, the dictionaries and styles intersect by word-type. Using a set of bits 

as input, a specific style is selected from a table keyed on the bit signature and the word

types replaced with dictionary words. Chapman's thesis [13] contains a clear example 

which encodes 88 bytes of data into a 2000 byte cover yielding a secret-to-cover ratio of 

0.044 and an average bit-rate of 67 Kbits/sec. 



3. Prime-based Mimic Functions 

In this section we formally define a prime-based mimic function and give a 

trivial example of its usage. Supplemental to the prime-based mimic function, we also 

define the criteria for a required mapping algorithm and briefly discuss its limitations. 

A prime-based mimic function modifies data to fit the statistical properties of , 

a context-free grammar. The context-free grammar is modified by adding a function ~ 

which maps productions to a set of sequential prime numbers and 1. Let 

where 

G=(V,T,S,P,~) , 

V is a finite set of variables, 
T is a finite set of terminal symbols, 
SE V is the starting symbol, 
P is a finite set of productions, 
~ is a function mapping productions to prime-numbers and 1. 

Given the application of the Fundamental Theorem of Arithmetic [14], which 

states that any integer greater than one is composed of the product of a finite set of prime 

numbers, the inclusion of ~ allows a unique expansion of productions within the 

grammar to be representative of an integer. In other words, an integer can be encoded 

using sentences within a language described by G . For example, let 

G=( {S}, {a, b}, S, P, ~) , with productions 

18 



p 0=S----+aSa 
p 1=S----+bSb 

P2=S----+A, 

19 

and ~ = {{ Po, 2} , { p 1, 3}, { Pi, l}} . During the expansion of the productions, we apply the 

appropriate prime-number to the total product representing the integer. For example, if 

we wish to encode the value of 2, we begin with the sentential form 'S' and apply the 

necessary productions to result in an equivalent product. We apply production Po , 

being mapped to the prime-number 2, and multiply to a product of 2 and a sentential 

form of'aSa'. Finally, we apply production P 2 , being mapped to 1, and multiply to a 

product of2 and a sentential form of 'aa'. Consequently, we can see that bb is 

representativeof 3*1=3 ,aaaaof 2*2*1=4 ,aabbaaof 2*2*3*1=12 ,ad 

infinitum. 

3.1 Complexity 

The overall complexity of a prime-based mimic function is quite low. Storage 

of the grammar used in a prime-based mimic function is simply based on the number of 

productions used and thus linear in space complexity. Implementation, discussed in 

greater detail below, of a prime-based mimic function may be complex in logic, but only 

requires four total passes of the production list per sentence. The reason for this 

requirement is discussed in the implementation section. Therefore, the time complexity is 

defined as, 

x=4pn , 

where p is the number of productions in the grammar and n is the number of 



sentence to create. Since p is constant across all ri sentence creations, x exhibits 

linear growth and thus prime-based mimic functions are linear in time complexity. 

3.2 General Usage 
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The general process of using a prime-based mimic function as a 

steganography tool is shown in figure 1. In order for Alice to send a message secretly to 

Bob, she must employ a steganography technique; in our case she uses a prime-based 

mimic function. Once transmitted, the secret message is only hidden not encrypted. If the 

steganography technique is known then the message is vulnerable to exposure. As usual 

in secret message exchange, Alice encrypts her plain-text message with message with an 

encryption cipher in preparation for transmission. Before transmission, the cipher-text is 

segmented into units of identical size. The unit size is dependent upon the mapping 

algorithm described above and thus dependent upon the largest prime number used by the 

prime-based mimic function and the largest integer to encode. Sequentially, each cipher

text unit will be processed by the prime-based mimic function into the hidden-text. This 

hidden-text is then transmitted to Bob. If the language of strings defined by the grammar 

of the prime-based mimic function is complex enough, then Eve considers the hidden

text uninteresting and ignores it. Bob then processes the hidden-text into cipher-text using 

the same prime-based mimic function and then decrypts the cipher-text. 



n to Bob lnrtlally . t11s s 
ncrypte-d 1 1 ord r rnair tat 

ic ·· prime- -05 <.1 i ic function proces · s 
pmne components , conver I g th into 1 -1e t'lidoe r)t • t 

5 Th r. 1ddcn t l , b 1ng a string 1n t10 I ag 
prim bas d imic funclio , e om s unr 

7 Sob r c .1 s th ht 
ob m 1e c,phE:!r xi. 

product 

The to al Ira s Is.s1on o 

pt . th hldd 

0 . Bob s s th ppropri ctph r o decry l th 
c1ph rie o lainmg t plain ex 

t and ,gno 11 , 

-· 

Figure 1: General usage 

21 

~ 
I 

Cip rte 

Prim -bas d ~11 ic Fu c 10n 

1d n! x 

Hidd ntex 

P 11n -ba s d v11m 1c . un .l1cm 

Plaint . :d 



22 

3.3 Mapping Algorithm 

Almost immediately, the problem of sparseness is apparent. Prime numbers 

not related in ~ cannot be components of the integer encoded in a sentence. For 

instance, any prime number greater than three cannot be used. Thus, in the example given 

above, integers such as seven and its multiples cannot be represented. In order to 

overcome this problem, we define a mapping algorithm to remove the sparseness. 

First, we must define a range of integers to map. The format of our input 

tends to dictate the maximum size of our integers. For instance, when using digital data, a 

power of two such as 256, is appropriate. Second any mapping algorithm can used that 

meets a few criteria: the mapping must be one-to-one, it must be invertible, and each 

unique integer must have a prime factorization containing the primes found in the 

production to prime-number mapping, ~ . This mapping algorithm allows the full range 

of input data to be mapped to an integer that can be encoded by G . An example 

mapping that fits with our example grammar from above is, 

0--d :{} 
1~2:{2} 
2~3 :{3} 
3~4 :{2,2} 
4~6:{2,3} 
5~8 :{2,2,2} 
6~9 :{3,3} 
7 ~ 12:{2,2,3} 
8~ 16: {2,2,2,2} 

The example mapping allows a 3-bit integer, including the integers five and seven, to be 

encoded using only the prime factors of two and three. This type of mapping algorithm, 
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albeit primitive, can be expanded to include any size of input integer. The bit-depth of the 

maximum integer accepted by the algorithm as input is, from here on, defined as the 

block size of the mimic function. During general usage, the block size is the size of the 

cipher-text segments. 

There are, however, limitations to the mapping algorithm. Since the mapped 

values are typically stored in CPU registers or standard language integer variables, they 

are limited to the maximum sizes of these containers. For instance, the maximum size of 

an unsigned integer on a standard desktop machine is limited to 2 32 • If the mapped 

values exceed this limitation, the container typically wraps and begins at zero which 

invalidates the uniqueness constraint on the mapping algorithm. We can determine the 

maximum integer required for a mapping by calculating, 

n 

y= TI p~g.(x) , 

1=1 

where n is the cardinality of the unique set of prime numbers used in the prime-based 

mimic function and x is the largest integer to be encoded. As an example, let our 

unique set of prime numbers be, { 2, 3, 5, 7} and our largest integer to be encoded one 8-

bit byte, or 256. This evaluates to, 

y = 24 34 54 t = 1944810000 

In this case, we would require a 32-bit container to store each mapped value. When the 

largest integer to be encoded is increased to two 8-bit bytes, or 65536, the evaluation is, 

y= ii 58?8= 1125899906842624 . 
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Obviously, this quickly overflows a 32-bit container but would fit nicely in a 64-bit 

container. Other implementations, such as binary coded decimals, or arbitrary precision 

computation are able to overcome these limitations since the mapping algorithm only 

requires the use of the multiplication operation. 

3.4 Secret-to-Cover Ratio 

As described previously, the secret-to-cover ratio of a steganography 

technique is the ratio of the secret message size to the cover message size. This ratio is a 

simple measurement of a steganography technique's efficiency when transmitting a secret 

message. For prime-based mimic functions, the lower bounds of the secret-to-cover ratio 

can be defined. However, since the construction of the grammar and mapping algorithm 

used in a prime-based mimic function greatly influences the secret-to-cover ratio, an 

exact ratio must be determined individually. 

The lower-bound of the secret-to-cover ratio is defined as requiring one 

symbol in the cover message for each prime factor of the mapped value obtained from the 

mapping algorithm. Since a production in the grammar must have a right-hand side 

variable and eventually terminate with at least one symbol, a single prime factor must be 

expressed by at least one symbol. Therefore, the number of mapped value prime factors 

determine the lower-bound of the secret-to-cover ratio. 

With the strictest definition of a prime-based mimic function, the upper-
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bound of the secret-to-cover ratio cannot be defined since the number of possible 

sentences is infinite. This lack of an upper-bound is caused by the traversal of 

productions having a prime-cost of 1 arranged in a loop. However, an implementation 

would limit the traversal of these productions and reduce the upper-bound to a finite, yet 

still possibly large, value. In fact, in our experiment the secret-to-cover ratio exhibited 

was between 0.028 and 0.069, a value greater than most of the steganography techniques 

described in the literature survey. 

3.5 Robustness 

As described previously, robustness is the ability of a steganography 

technique to resist modification to the cover message. Fortunately, prime-based mimic 

functions exhibit a competitive level of resistance to modification of the generated cover 

message. However, this resistance is dependent upon the grammar and mapping 

algorithm used for the prime-based mimic function. 

A prime-based mimic function resists modification to the generated cover 

message if the changed symbols are part of productions with the same prime-cost. If, 

during parsing, the changed symbol causes the decoder to choose a path with the same 

prime-cost, then the change has been successfully resisted. For instance, ifwe assume a 

grammar includes the two productions, K--¼ y, K--¼ x , each with an equal prime-cost, 

then the replacement of x with y or y with x has no effect on the final product. 
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When the modification is bit manipulation instead of symbol manipulation, a 

different quality of robustness is present. The two types of bit manipulation are when a 

bit in the data stream has been flipped and when a bit is missing. If a bit within the data 

stream has been flipped, the entire sentence is invalid and must be retransmitted. If a bit 

is missing from the data stream, the end of the current expression cannot be properly 

determined invalidating the entire data stream. Error correction bits and symbol escaping 

can be used to further resist modifications of this kind. However, this topic is outside the 

scope of this thesis. 



4. Experiments 

In this section we describe our implementation details and experiment 

methodology. We also describe the techniques used in analyzing the results of our 

experiments. 

4.1 Implementation 

Each prime-based mimic function requires a language definition to serve as 

the cover for our secret data. In our case, we implement our mimic function to produce 

strings within a basic arithmetic expression language. A context-free arithmetic 

expression language can be defined unambiguously and easily meets the prime

numbering criteria discussed above; thus, the language definition is quite suitable for our 

implementation purposes. We define the basic arithmetic language as: 

Let G =( V, T, E, P) such that, 

V={E ,T ,F, G,K}, 

T={x ,y,+,-, * ,!," ,$}, 
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and with productions, 
E~T 
T~F 
F~G 
G~K 
K~xly 
E~E+T 
E~E-T 
T~T*F 
T~TIF 
F~F"G 
F~F$G 
a~(E). 
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The form.at of the strings contained within this language is similar to many of 

the expressions found in a typical college algebra textbook. Two aesthetic changes have 

been made to the syntax to facilitate consistency for the implementation. If a single 

character is used to denote an operation, tokenization and parsing can be greatly 

simplified, especially if every operation is a single character. The exponential operation 

has been denoted with a caret character and the logarithm operation has been denoted 

with a dollar sign character. A few examples are: 

(x+ yr is denoted as (x+ y) AX 

logx( L )is denoted asx $(yl x) 
X 

We now define the prime-number to production mapping function as: 

8= { {P0 , I} ,{Pi, 1}, {P2 ,l}, {P3 , 1}, {P4 , I} ,{P5,2}, 
{ p 6, 3}, { p 7, 5}, { p 8, 7}, { p 9, 2}, { p IO, 3}, { p 11, 1}} 

Fortunately, the choice of prime-number mapping for the basic arithmetic 

expression language allows for a simplified parsing mechanism. In the event that an 



operational token is encountered during decoding, the respective prime number can be 

added to the list of factors. This choice is deliberate to simplify the implementation and 

and must be avoided in a real-world scenario. Using the previous examples, we can see 

that 

x$(ylx)=3*7=21 
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As an example, we show the production applications along with the current 

running product of the e~pansion of (x+ y V x . We begin with the sentential form 'E', 

Table 1: Example prime-based mimic function expansion 

Production Sentential Form Mapped Prime- Running Product 
number 

E~T T 1 1 
T~FAG FAG 2 2 

F~G GAG 1 2 
G~(E) (E)AG 1 2 

E~E+T {E+T)AG 2 4 
E~T (T+T)AG 1 4 
T~F (F+T)AG 1 4 
F~G (G+T)A(J 1 4 
G~K (K+T)AG 1 4 
K~x (x+T)AG 1 4 
T~F (x+F)AG 1 4 
F~G (x+G)AG 1 4 
G~K (x+K)AG 1 4 
K~y (x+y)AG 1 4 
G~K (x+y)AK 1 4 
K~x (x+y)Ax 1 4 

We implement prime-based mimic function encoder and decoder in C using 

the GLib library [15]. The GLib library was chosen for its portable and mature 
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implementation of hash tables, linked lists, and string utilities. Specifically, the linked list 

implementation in the GLib library is helpful since a great deal of list iteration is required 

in the encoder portion of the mimic function implementation. Additionally, the hash table 

implementation is used in the transmission mapping implementation. 

The mimic function implementation, named the mimic-coder, accepts two 

command-line option flags for encoding and decoding with a required filename 

argument. If the encoding flag has been set, then the file is read a single byte, assuming 

an 8-bit byte, at a time. Each byte is encoded into an arithmetic expression and printed to 

standard output. If the decoding flag has been set, then the file is read a line at a time , 

assuming newline terminated lines. Each line is decoded into a value and printed to 

standard output. Any program or operating system errors are printed to standard error and 

cause termination of the program. 

In order to encode a byte of data in an arithmetic expression, four sets of 

productions must be found and added to the final set of productions to apply to the initial 

sentential form of'E'. These four sets of productions are: the required productions, the 

pre-bridge productions, the bridge productions, and the post-bridge productions. The 

required productions are those productions that are required to encode every prime-factor 

for the current byte's transmission value. The pre-bridge productions are those 

productions required to derive from the initial sentential form to the first production in 

the required productions set. Occasionally, the pre-bridge production set is empty since 
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the first production in the required production set matches the initial sentential form. The 

bridge productions are those productions required to derive from the one of the right

hand side symbols of a required production to a following required production. These 

productions connect the derivation of each required production. Any remaining right

hand side symbols which have not been matched to other required productions are 

matched to productions leading to terminals. 

First, the byte's integer value is converted to the transmission value and its 

respective prime-factor set. The prime-factor set is then iterated and a random production 

matching each prime-factor is added to required productions set. A random production 

that matches a specific prime-factor is helpful in strengthening the resulting sentential 

form. After each prime-factor has been matched to a required production, the pre-bridge 
I 

productions are found connecting the derivation of the initial sentential form to the first 

required production. Next, the bridge productions are found, followed by the post-bridge 

productions. Finally, with the final set of productions, the sentential form is derived and 

printed to standard out. 

4.2 Methodology 

In our experiment, the SRI Language Modeling toolkit, SRILM toolkit, was 

used to analyze five sets of data encoded by the mimic-coder program: 

uncompressed, compressed, encrypted, random, and zero. Each data set was further 

analyzed using a 4-bit, 8-bit, and 16-bit block size for the intermediate value mapping 
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algorithm. A 4-bit block size effectively doubled the number of arithmetic expressions 

produced while the 16-bit block size halved the number of arithmetics expressions 

produced. Thus, a 100 byte file produces 200, 100, and 50 arithmetic expressions for 4-

bit, 8-bit, and 16-bit block sizes respectively. The following is a listing of all experiments 

performed: 

• Compressed ML with a 4-bit Block Mapping 
• Compressed ML with a 8-bit Block Mapping 
• Compressed ML with a 16-bit Block Mapping 
• Encrypted ML with a 4-bit Block Mapping 
• Encrypted ML with a 8-bit Block Mapping 
• Encrypted ML with a 16-bit Block Mapping 
• Uncompressed ML with a 4-bit Block Mapping 
• Uncompressed ML with a 8-bit Block Mapping 
• Uncompressed ML with a 16-bit Block Mapping 
• /dev/urandom Data with a 4-bit Block Mapping 
• /dev/urandom Data with a 8-bit Block Mapping 
• /dev/urandom Data with a 16-bit Block Mapping 
• One Valued Byte Data with a 4-bit Block Mapping 
• One Valued Byte Data with a 8-bit Block Mapping 
• One Valued Byte Data with a 16-bit Block Mapping 
• /dev/zero Data with a 4-bit Block Mapping 
• /dev/zero Data with a 8-bit Block Mapping 
• /dev/zero Data with a 16-bit Block Mapping 

Two additional experiments were performed to compare the results of the 

above experiments with valid and invalid arithmetic expressions. In order to generate the 

valid arithmetic expressions, the derivation tree of the basic arithmetic language was 

walked using a depth-limited search. By choosing a depth of 20, we were able to generate 

77,050 arithmetic expressions to be analyzed by SRILM. In order to generate the invalid 

arithmetic expressions, a set of sentences with random lengths no greater than 10 symbols 

were generated. The symbols chosen were those existing in the language. If symbols 



outside the language were used, the language model implemented by SRILM would 

automatically give an extremely high perplexity. 
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The output of the SRILM package was then processed with a trivial Perl 

script to extract the statistical results of the analysis. Usage of the SRILM requires the 

creation of a language model trained with a corpus which is then applied to the test data. 

The training data used was a set of one-hundred arithmetic expressions from a college 

algebra textbook. The default language models and parameters present for the SRILM 

package were found to be suitable. The general input chosen for the mimic-coder 

program is page 270 of The Memoirs and Letters Benjamin Franklin (ML). In this usage, 

the ML serves as the secret message while the arithmetic expressions generated by the 

program serve as the cover. Notably, this specific page contains Benjamin Franklin's 

quote, ''They who can give up essential liberty to obtain a little temporary safety, deserve 

neither liberty nor safety." 

The total size of the ML, representative of the uncompressed data set, is 

12,404 bytes. Since the ML is encoded as standard ASCII text, the range of values is 

limited to the printable characters. For the compressed data set, the ML was compressed 

using the default configuration of the gzip compression application and resulted in a 

data file 5,149 bytes in size. The encrypted data set, created by processing the ML with 

openssl enc -aes-25 6-cbc -salt, produced a file larger than the original text 

at 12,432 bytes.'For comparison, 12,404 bytes of random data, 12,404 bytes of one 
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valued bytes and 12,404 bytes of zeros were encoded separately to be analyzed. The 

random data bytes were dumped from the / dev /urandom device on a server running 

a standard Linux kernel version 2.6.27. The zero data bytes were dumped from the 

/ dev / zero device on the same machine. 

After processing the data from the experiments into a usable form, the 

analysis compares the geometric and average perplexities for each respective experiment. 

Perplexity data points which are closer to the origin of the graph show less surprise on the 

part of the language model and thus an expected sentence. The comparison of perplexities 

has been used by Meng [19] and Taskiran [20] to automatically and accurately identify 

generated cover-text from normal text. Both Meng and Taskiran use the SRILM Toolkit 

to analyze generated cover-text and normal text. Finally, the data sizes before and after 

encoding were compared across experiments to show relationships between the block 

sizes of the mapping algorithm and how well each type of data encodes with respect to 

bit-rate. 



5. Results 

In this section we describe the results obtained from our experiments. Each 

experiment is shown on a single page with an explanation of the results for clarity. For 

each graph, a general description is provided along with a notice regarding outlying data 

points, clustered data points, and maximum perplexities. 

35 
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5.1 Compressed ML with a 4-bit Block Mapping 

Figure 2 shows the results of an experiment using a compressed data file of 

the ML text and a 4-bit block in the mapping algorithm. As defined earlier, perplexity is 

the relative surprise of the language model when analyzing a sentence. We see a tight 

clustering of data points within (30, 50) to the origin which shows the language model 

accepting the sentences with little surprise. No data points exceed a 53 geometric 

perplexity or an average perplexity of 243. Four outliers are present which represent 

mapped values of 1 and show both higher geometric and average perplexities. 
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Figure 2: Compressed ML 4-bit Block 
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5.2 Compressed ML with a 8-bit Block Mapping 

Figure 3 shows the results of an experiment using a compressed data file of 

the ML text and a 8-bit block in the mapping algorithm. We see a tight clustering of data 

points within (20, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 37 geometric perplexity or an 

average perplexity of 243. Three outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Geometric Perplexity vs. Average Perplexity 

250 

200 

150 

100 

50 

0 ---=-, 
... . .. . .. . ... . -,,, .•. ,,,.. 

0 5 1 0 15 20 25 30 35 40 45 

Figure 3: Compressed ML 8-bit Block 
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5.3 Compressed ML with a 16-bit Block Mapping 

Figure 4 shows the results of an experiment using a compressed data file of 

the ML text and a 16-bit block in the mapping algorithm. We see a tight clustering of data 

points within (20, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 52 geometric perplexity or an 

average perplexity of 243. Four outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Figure 4: Compressed ML 16-bit Block 
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5.4 Encrypted ML with a 4-bit Block Mapping 

Figure 5 shows the results of an experiment using a encrypted data file of the 

ML text and a 4-bit block in the mapping algorithm. We see a tight clustering of data 

points within (30, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 37 geometric perplexity or an 

average perplexity of 243. Three outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Figure 5: Encrypted ML 4-bit Block 
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5.5 Encrypted ML with a 8-bit Block Mapping 

Figure 6 shows the results of an experiment using a encrypted data file of the 

ML text and a 8-bit block in the mapping algorithm. We see a tight clustering of data 

points within (20, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 37 geometric perplexity or an 

average perplexity of 243. Three outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Figure 6: Encrypted ML 8-bit Block 
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5.6 Encrypted ML with a 16-bit Block Mapping 

Figure 7 shows the results of an experiment using a encrypted data file of the 

ML text and a 16-bit block in the mapping algorithm. We see a tight clustering of data 

points within (20, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 37 geometric perplexity or an 

average perplexity of 243. Three outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Figure 7: Encrypted ML 16-bit Block 
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5. 7 Uncompressed ML with a 4-bit Block Mapping 

Figure 8 shows the results of an experiment using a plain-text data file of the 

ML text and a 4-bit block in the mapping algorithm. We see a tight clustering of data 

points within (30, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 53 geometric perplexity or an 

average perplexity of 243. Three outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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5.8 Uncompressed ML with a 8-bit Block Mapping 

Figure 9 shows the results of an experiment using a plain-text data file of the 

ML text and a 8-bit block in the mapping algorithm. We see a tight clustering of data 

points within (20, 25) to the origin which shows the language model accepting the 

sentences with very little surprise. No outliers exist and no data points exceed a 25 

geometric perplexity or an average perplexity of 40. 
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Figure 9: Uncompressed ML 8-bit Block 
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5.9 Uncompressed ML with a 16-bit Block Mapping 

Figure 10 shows the results of an experiment using a plain-text data file of the 

ML text and a 16-bit block in the mapping algorithm. We see a tight clustering of data 

points within (20, 25) to the origin which shows the language model accepting the 

sentences with very little surprise. No outliers exist and no data points exceed a 22 

geometric perplexity or an average perplexity of 33. 
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Figure I 0: Uncompressed ML 16-bit Block 
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5.10 /dev/urandom Data with a 4-bit Block Mapping 

Figure 11 shows the results of an experiment using a data file of 12,404 bytes 

of random data and a 4-bit block in the mapping algorithm. We see a tight clustering of 

data points within (30, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 53 geometric perplexity or an 

average perplexity of 243. Three outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Figure 11: /dev/urandom 4-bit Block 
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5.11 /dev/urandom Data with a 8-bit Block Mapping 

Figure 12 shows the results of an experiment using a data file of 12,404 bytes 

of random data and a 8-bit block in the mapping algorithm. We see a tight clustering of 

data points within (20, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 53 geometric perplexity or an 

average perplexity of 243. Four outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Figure 12: /dev/urandom 8-bit Block 
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5.12 /dev/urandom Data with a 16-bit Block Mapping 

Figure 13 shows the results of an experiment using a data file of 12,404 bytes 

of random data and a 16-bit block in the mapping algorithm. We see a tight clustering of 

data points within (20, 50) to the origin which shows the language model accepting the 

sentences with little surprise. No data points exceed a 33 geometric perplexity or an 

average perplexity of 243. Four outliers are present which represent mapped values of 1 

and show both higher geometric and average perplexities. 
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Figure 13: /dev/urandom 16-bit Block 
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5.13 One Valued Byte Data with a 4-bit Block Mapping 

Figure 14 shows the results of an experiment using a data file of 12,404 bytes 

all with a value of one and a 16-bit block in the mapping algorithm. We see a tight 

clustering of data points within (20, 50) to the origin which shows the language model 

accepting the sentences with little surprise. However, the clustering is flatter than the 

previous experiments and shows lower boundary of the perplexities. No data points 

exceed a 37 geometric perplexity or an average perplexity of 243. Three outliers are 

present which represent mapped values of 1 and show both higher geometric and average 

perplexities. 
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Figure 14: One Valued Byte 4-bit Block 
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5.14 One Valued Byte Data with a 8-bit Block Mapping 

Figure 15 shows the results of an experiment using a data file of 12,404 bytes 

all with a value of one and a 16-bit block in the mapping algorithm. We see a tight 

clustering of data points within (20, 40) to the origin which shows the language model 

accepting the sentences with little surprise. However, the clustering is flatter than the 

previous experiments and shows lower boundary of the perplexities. No data points 

exceed a 37 geometric perplexity or an average perplexity of 130. One outlying data 

point is present which represents mapped values of 1 and show both higher geometric and 

average perplexities. 
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Figure 15: One Valued Byte 8-bit Block 
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5.15 One Valued Byte Data with a 16-bit Block Mapping 

Figure 16 shows the results of an experiment using a data file of 12,404 bytes 

all with a value of one and a 16-bit block in the mapping algorithm. We see a tight 

clustering of data points within (20, 30) to the origin which shows the language model 

accepting the sentences with little surprise. However, the clustering is flatter than the 

previous experiments and shows lower boundary of the perplexities. No data points 

exceed a 37 geometric perplexity or an average perplexity of 130. One outlying data 

point is present which represents mapped values of 1 and show both higher geometric and 

average perplexities. 
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Figure 16: One Valued Byte 16-bit Block 
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5.16 /dev/zero Data with a 4-bit Block Mapping 

Figure 17 shows the results of an experiment using a data file of 12,404 bytes 

all with a value of zero and a 4-bit block in the mapping algorithm. We see a sparse and 

roughly linear layout of data points lying between (16, 25) and the origin which shows 

the language model accepting the sentences with very little surprise. No data points 

exceed a 17 geometric perplexity or an average perplexity of 243. Two outliers are 

present which represent mapped values of 1 and show both higher geometric and average 

perplexities. 
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Figure 17: /dev/zero 4-bit Block 
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5.17 /dev/zero Data with a 8-bit Block Mapping 

Figure 18 shows the results of an experiment using a data file of 12,404 bytes 

all with a value of zero and a 8-bit block in the mapping algorithm. We see a sparse and 

roughly linear layout of data points lying between ( 16, 25) and the origin which show the 

language model accepting the sentences with very little surprise. No data points exceed a 

16 geometric perplexity or an average perplexity of 243. Two outliers are present which 

represent mapped values of 1 and show both higher geometric and average perplexities. 
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Figure 18: /dev/zero 8-bit Block 
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5.18 /dev/zero Data with a 16-bit Block Mapping 

Figure 19 shows the results of an experiment using a data file of 12,404 bytes 

all with a value of zero and a 16-bit block in the mapping algorithm. We see a sparse and 

roughly linear layout of data points lying between (16, 25) and the origin which shows 

the language model accepting the sentences with very little surprise. No data points 

exceed a 16 geometric perplexity or an average perplexity of 243. Two outliers are 

present which represent mapped values of 1 and show both higher geometric and average 

perplexities. 
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Figure 19: /devlzero 16-bit Block 



5.19 Experiment Summary 

The table below summarizes the results of the experiments by showing the 

starting range, ending range, and brief notes about distribution of data points. The two 

additional experiments using valid and invalid expression, although not graphed, have 

been listed in the table. Descriptions within the 'Notes' column describe the overall 

distribution of the data set. Outliers, implies that the data is clustered with a few points 

located far from the cluster. Thin, implies that the data are not only clustered, but 

clustered tightly in a thin band. Sparse, implies that the data is not clustered. Uniform, 

implies that the data are spread throughout the range of the data. 
I 
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Table 2: Experiment Summary 

Experiment Name Starting Range Ending Range Notes 

Comp. ML, 4-bit (0,0) (30, 50) Outliers 

Comp. ML, 8-bit (0,0) (20, 50) Outliers 

Comp. ML, 16-bit (0,0) (20, 50) Outliers 

Enc. ML, 4-bit (0,0) (30, 50) Outliers 

Enc. ML, 8-bit (0,0) (20, 50) Outliers 

Enc. ML, 16-bit (0,0) (20, 50) Outliers 

Unc. ML, 4-bit (0,0) (30, 50) Outliers 

Unc. ML, 8-bit (0,0) (20, 25) No Outliers 

Unc. ML, 16-bit (0,0) (20, 25) No Outliers 

Random, 4-bit (0,0) (30, 50) Outliers 

Random, 8-bit (0,0) (20, 50) Outliers 

Random, 16-bit (0,0) (20, 50) Outliers 

One Valued, 4-bit (0,0) (20, 50) Outliers, Thin 

One Valued, 8-bit (0,0) (20, 40) Outliers, Thin 

One Valued, 16-bit (0,0) (20, 30) Outliers, Thin 

Zero Valued, 4-bit (0,0) (16, 25) Outliers, Sparse 

Zero Valued, 8-bit (0,0) (16, 25) Outliers, Sparse 

Zero Valued, 16-bit (0,0) (16, 25) Outliers, Sparse 

Valid Expressions (0,0) (72, 118) Uniform 

Invalid Expressions (0,0) Undefined Sparse 

5.20 Average Bit-rate Comparison 

Figure 21 shows a column graph comparing the secret-to-cover ration for the 

encrypted, random, and uncompressed experiments. The compressed, zero and one

valued byte experiments were omitted since they transmitted no data. 
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Figure 20 shows a column graph comparing the average bit-rate across a Tl 

telecommunications line for each experiment type and block size. The graph shows the 4-

bit and 8-bit block sizes having similar bit-rates while the 16-bit block have a doubled 

bit-rate. Additionally, the ratios between the bit-rate of each block size, with the 
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exception of the uncompressed results, are nearly identical at a 9% increase between 4-bit 

and 8-bit and 50% between 8-bit and 16-bit. 



6. Evaluation and Conclusions 

In this section we evaluate and discuss the results of our experiments. 

Primarily, we discuss the clustering and outlying data points relating to perplexity and the 

comparison of bit-rates between experiments and against other steganography techniques. 

Our criteria for success are how well the tested output of prime-based mimic functions 

compare to other known perplexities and how well the bit-rate compares to other 

steganography techniques. 

One of the first properties of the data gathered is the consistent clustering 

exhibited. The majority of perplexity measurements lie below a geometric perplexity of 

30 and an average perplexity of 50. With the exception of the/ dev / zero experiments, 

the perplexity measurements are largely identical. The outlying measurements, and the 

entire data set of the/ dev / zero experiments, were expanded from the value of zero 

which mapped to the transmitted value of one and thus a simple path through the 

grammar. Due to the definition of the arithmetic grammar, a simple path results in only a 

few combinations of expanded sentential forms. 

When comparing the clusters of perplexity measurements to other external 

measurements, a prime-based mimic function performs quite well. When using a highly 

58 



59 

trained English-based language model, Katz [16] reported perplexity measurements 

between 80 and 120 during a comparison of their language modeling technique and other 

common techniques. Another report by Brown [17], found that the Brown linguistic 

corpus exhibited a perplexity of271 and later perplexities of 244 and 236 after data 

interpolation was applied. 

While the English-based language models exhibited higher perplexities with 

test data, they aren't completely applicable for comparison to the results of our 

experiments. The analysis of the generated valid and invalid arithmetic expressions 

shows that all of the sentences generated in the ML experiments, with the exception of 

the few outliers, exhibit a similar range of perplexities. Additionally, the experiments 

with random data, one-valued data, and zero-valued data also exhibited a similar range of 

perplexities to that of the generated valid arithmetic expressions. 

This shows that the expressions generated by our prime-based mimic function 

are statistically close to actual arithmetic grammar. We can see from figures 8, 9, and 10, 

that the uncompressed transmission exhibited the best clustering of perplexity 

measurements. Since the )uncompressed data are in ASCII format and contained no 

control characters, the chance of encountering a zero valued byte is nil. 

Of the many steganography techniques, only a few had a high secret-to-cover 

ratio. Particularly, the Least Significant Bit substitution technique yielded a secret-to-
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cover ratio of 0.43 or a 0.633 Mbit/sec bit-rate which greatly outperformed all other 

techniques by several orders of magnitude. This lack of throughput in the other 

techniques can be explained by the limiting of a single bit per decision, choice, or 

segment. In some cases, the segment was the entire cover medium, which resulted in an 

extremely low bit-rate. Fortunately for prime-based mimic functions, the bit-rate 

performance increases as the language complexity increases, as the number of expressible 

prime numbers increases, and as the block size of the mapping algorithm increases. We 

can see this behavior in figure 20; the / dev / zero experiment was ignored since no 

actual information was transmitted. 

Of the four remaining experiments analyzed for bit-rate, the highest 

performing experiment was the 'Uncompressed ML 16-bit Block', shown in figure 4 with 

a secret-to-cover ratio of 0.069 or a bit-rate of 106.26 Kbits/sec. As a reminder, these 

secret-to-cover ratios and bit-rate calculations are based on a T-1 telecommunications 

line and are determined by the discussion in section 3.4. A remarkable result of varying 

the block size is shown in the increasing bit-rate when moving to a large block size. 

Although there were not enough block size experiments performed to infer a formula, a 

near exponential growth can be extrapolated. With the compressed, encrypted, and 

random experiments, the increase between a 4-bit and 8-bit block size was nearly 

identical with a 9% growth in bit-rate. Since the compression and encryption tend to 

increase the entropy of a signal, it would be expected that these experiments would 

behave similarly to each other. Meanwhile, the bit-rate in the uncompressed experiment 



grew only 2% from the 4-bit block to the 8-bit block. When moving to a 16-bit block 

mapping algorithm, the bit-rate in the compressed, encrypted, and random experiments 

grew approximately 50% while the uncompressed experiment grew a close 49%. 

Obviously, using a larger block size results in a much higher bit-rate for transmission. 

This is explained by the increase in mappable numbers while maintaining the same 

number of prime factors available for encoding. 

6.1 Conclusions 

61 

By implementing a prime-based mimic function, compressed, cipher-text, and 

plain-text can be encoded into sentences accepted by a context-free grammar while 

having a low perplexity and a competitive bit-rate. The primary limitations are the 

implementation and execution of the mapping algorithm and construction of a context

free grammar complex enough to interesting. The secondary limitations are maintaining a 

suitable bit-rate and avoiding larger geometric and average perplexities. 



7. Recommendations 

In this section we make recommendations for future work to improve the 

definition and implementation of prime-based mimic functions and the associated 

mapping algorithm. Additionally, we discuss potential high-value uses for prime-based 

mimic functions provided the various limitations are overcome. 

Currently the mapping algorithm requires a precomputed set of numbers and 

factors for each value to map, or 2n entries where n is the block size in bits. When 4, 

8, and 16-bit blocks are used, the map is small and reasonable for modem desktop and 

even mobile hardware to store. Desktop hardware can even manage a block size of 32-

bits but are incapable of using block sizes of 64-bits or higher. A function which 

computes a mapping of an integer, given a specific set of prime-numbers, and runs in 

logarithmic or constant time and space would allow higher block sizes to be explored. If a 

function cannot be developed, partial table generation could be helpful since only a very 

small percentage of the integer space is used. Also, as discussed above, binary coded 

decimal methods and arbitrary precision methods could be implemented to overcome the 

upper bounds of mapped values. 

Our experiments showed that a possible exponential growth exists as a 

function of the block size. Greater granularity in the experiments would support this 
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hypothesis. Thus, testing with sequential block sizes, such as 1, 2, 3, ... , might show a 

definite rate of increase in the bit-rate. Coupled with a mapping function that ran in non

exponential time and space, the upper bounds of the test could be increased dramatically 

and explore the behavior of the bit-rate as it approaches the maximum bit-rate of the 

channel. One optimistic hypothesis is that the rate is in fact exponential and the bit-rate 

increases at the expense of complexity in the mimic function grammar. However, the 

seasoned hypothesis is that the bit-rate increases will asymptotically approach the 

maximum bit-rate of the channel. 

The choice of a grammar which implements an arithmetic language was made 

because it is well defmed, unambiguous, well-known, and has many example sentences 

Now that the statistical nature of prime-based mimic functions has been explored, a 

grammar of substantial complexity should be constructed to explore complexity 

questions. Suitable choices would include the grammar for a programming language, 

such as C or Java, and markup languages, such as HTML or XML. In the case of C and 

Java, given a properly constructed grammar, the resulting output should be compilable, 

although not necessarily executable. HTML would be an excellent transport mechanism 

for a covert message as it ubiquitous on the Internet. 

Additional classes of grammars should also be explored. Regular languages 

are a trivial case since they are a simple subset of context-free grammars and quite 

honestly mildly uninteresting for our purposes since extensive real world usage is limited. 
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However, unrestricted grammars can be adapted, using the same techniques to build 

Turing machines which can encode and decode highly complex sentences from any 

language. During the research for this thesis, sample Turing machines were built to 

encode and decode sentences in a very simplistic unrestricted grammar. The 

implementation of these machines can be daunting. Fortunately, the potential to apply 

prime-based mimic functions to any language exists. Additionally, [11] suggests the same 

for mimic functions. 

Another concept developed during the research for this thesis involved the 

automatic mapping of productions in the grammar to prime numbers. An algorithm to 

perform this automatic number is defined as: 

1. For every left-hand side symbol appearing in the grammar, find the lowest cost 

path to a terminal node. 

2. For each path found, each node within the path is given a prime-cost of 1. 

3. The remaining productions may be given a prime-cost of 1 or given a cost equal 

to a prime number. 

This provides an "escape path" for each left-hand side symbol while allowing prime 

numbers to be mapped to the remaining productions. Future work on this algorithm 

would ask if this approach constructs a suitable prime-based mimic function and would 

attempt an implementation. 
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