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BMO ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS
OF ELLIPTIC SYSTEMS

AZZEDDINE EL BARAKA

Dedicated to all the civilian victims of the catalogue of horror in the Middle Fast

ABSTRACT. In this paper we show that the scale of Sobolev-Campanato spaces
L£P*5 contain the general BMO-Triebel-Lizorkin spaces F. 5o,p a8 special cases,
so that the conjecture by Triebel regarding estimates for solutions of scalar
regular elliptic boundary value problems in F3, , spaces (solved in the case
p = 2 in a previous work) is completely solved now.

Also we prove that the method used for the scalar case works for systems,
and we give a priori estimates near the boundary for solutions of regular elliptic

systems in the general spaces £P:»* containing BMO, F3, p,» and Morrey-

Campanato spaces £2* as special cases. This result extends the work by the
author in the scalar case.

1. INTRODUCTION

The aim of this paper is to give the regularity for solutions of regular elliptic
systems in the John and Nirenberg space BMO and more generaly in Morrey-
Campanato spaces £>* and their local versions bmo and [>*. So, this paper is
the continuation of [9] where we got the regularity for solutions of a scalar regular
elliptic boundary value probem in £P**(£)) spaces containing Fjom, BMO, £,
and their local versions as special cases.

Firstly, we mention the well known work for variational systems of Campanato [5]
who obtained some results concerning local and global (under Dirichlet boundary
conditions) regularity for solutions u € H} (€2, RY) of second order linear strongly
elliptic systems of the form

> /Q (Aij(x).Djul Dig)dz = ; /Q (fi(x)| Dig)dx

1,j=1

for any ¢ € Cg°(2,RY). He showed that if f € BMO(Q,R™) then Du €

BMO(Q,R™) provided the cofficients A;; are Hélder continuous in © and 99
is Holder differentiable, and he got the a-priori estimate

| Dullprro < CllfllBaro
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2 A. EL BARAKA EJDE-2006/101

An inspection of Campanato’s proof gave a refinement of this result for (nonreg-
ular) elliptic systems with coefficients just belonging to the class of small multipliers
of BMO(Q), cf. [1].

In this paper we deal with non-variational and inhomogeneous systems. For
instance, let us take the classical regular second order elliptic system

Au=f inQ

1.1
ulg =@ on 9N, (1.1)

where

e (2 is a regular bounded open set of R™.
o A =3, <20(@)Dg, as(z) is the N x N matrix (a¥(x))ij=1..n with

smooth coefficients on Q, here a = (a1,...,a,) is a multi-index, || =

ai + -+ + ay is the length of a, and Dy = Dg! ... Dg» is the derivation,
. a; 1 9%

with .Dg;; = iaijawaj .

J
e u, f, ¢ are vector-valued functions in R¥.

We prove in this paper that under the proper ellipticity of A, if f € BMO(£2,RY)
and ¢ € BMO3/?(0Q,RY) then the solution u of the system (1.1) belongs to
BMO?(Q,RYN), that is u, Du and D?>u € BMO, and we give the estimate

lull Baro + |1 Dull saro + |1 D*ull saro < C{lIflsao + el Bros/2}

In addition, this work generalizes the result of the above example to the elliptic
systems in the sense of Douglis and Nirenberg [6] and to the general spaces £P*:
defined in [7] and [8].

In [10] we showed that the Sobolev-Campanato spaces £P*** contain BM O, L2
and their local versions bmo,[?* as special cases. In this paper we give a gener-
alization of some results of [10] by showing that £P*** spaces contain the general
BMO-Triebel-Lizorkin spaces I, , as special cases cf. Theorem We want to
attract attention in this paper that, with the result of Theorem [3.1]in mind and the
a priori estimates of [J] relative to the scalar case, Triebel’s conjecture [16, section
4.3.4] previously solved in the case p = 2 in [9] is completely solved now in the
general spaces F5 .

We show that the method used for the scalar case in [9] can be adapted for elliptic
systems. The plan of the paper is as follows: in the first section we give the main
definitions and results (Theorems and , section 2 contains an index theorem
for a system of ordinary differential equations needed in the proof. In section 3 we
identify the space £P*** for A = n and we give a partial result on the topological dual
of ﬁ&,p (the closure of Schwartz class S(R") in BMO-Triebel-Lizorkin spaces F, ,,),
and next we recall some results proved in previous papers concerning intermediate
derivatives, compactness, interpolation and traces. Finally, section 4 deals with the
proof of the main result: we follow one Peetre’s method used in the scalar case
[9]. This method was described in the case of Sobolev spaces H?® for a class of
degenerate elliptic systems in [3], and consists in doing a partial Fourier transform
with respect to the tangential direction on the system of equations, and reducing the
problem to an isomorphism theorem for a system of ordinary differential operators.
Thereby we estimate the “almost tangential derivatives” of the solution in some
vector-valued LP—spaces, built on £P**(R"~1) in the sense of Bochner’s integrals
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(Proposition . Next, we make use of an interpolation lemma to estimate the
normal derivatives of the solution.

From these BMO estimates we can get again the classical LP estimates [2] via
an interpolation theorem due to Stampacchia [14].

To make the paper self contained, we recall the definitions of the spaces £P*°
For this we need a Littlewood-Paley partition of unity: Denote z = (¢,2') € R x
R"! and ¢ = (7,¢) its dual variable.

Let ¢ € C°(R™), ¢ > 0 and ¢ equal to 1 for |¢] < 1, 0 for |£] > 2. Putting
0(&) = (&) — ¢(2€), we have suppf C {3 < |¢| < 2}. For j € Z we set

Aju =027 Dy)u, Alu =027 Dy)u

which means that Aj and A; are the convolution operators with symbols 6(277¢)
and 6(0,277¢); and denoting v; (&) = D k< 0(27F¢) (= p(279€) for £ # 0) we set
Siu = 1;(Dy)u, S;u = 1;(Dy)u
with the same meaning as above. If 7 > 1 we set also
[)IAju = Aju, Alu = A;%
Sju= (27 Dy)u, Sju = (277 Dy )u,
Sou = Agu = (D, )u, Sju = Aju = @(Dyr)u
Remark 1.1. For u € §'(R™) we have
u = ZAku:Aou—i—ZAku: Sju + Z Agu  for j € N.
k>0 k>1 k>j4+1
If 0 ¢ supp Fu, then
u = ZAkuzsju—&— Z Aju for j € Z.
kez k>j+1

If we remove the condition 0 ¢ supp Fu, the above formula remains valid modulo
polynomials, cf. [8, Lemma 2.6].

Definition 1.2. Let s ¢ R, A > 0 and 1 < p < +00. The space [,p7/\’s(R") denotes
the set of all tempered distributions v € §’(R™) such that

s 1/
E okp | Agullb p(B)} P« 400 (1.2)
k>J+

ey = {s1p 7

where J* = max(J,0),|B| is the measure of B and the supremum is taken over all
J € Z and all balls B of R" of radius 2.

The space L£P**(R") equipped with the norm is a Banach space. If Q
is either R or a bounded C*°-domain in R™, £P**(Q)) denotes the space of all
restrictions to € of elements of £P**(R™).

To give the homogeneous counterpart of the spaces £P**(R™), we recall the
notation of [16, chapter 5]. Let

Z(R™) = {p € S(R"); (D“F¢)(0) = 0 for every multi-index a}
Z(R™) is considered as a subspace of S(R™) with the same topology, and Z’(R™) is
the topological dual of Z(R™). We may identify Z’'(R™) and S’(R™)/P, where P is
the set of all polynomials of R” with complex coefficients. Z’'(R™) is interpreted as
S’'(R™) modulo polynomials.
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Definition 1.3. Let s € R, A > 0 and 1 < p < +00. The dotted space £P*5(R™)
denotes the set of all u € Z’(R™) such that

1 S| A 1/
ol oy = {500 —5 S0 2Rl ) < o0 (13)
7.B |B|n (=5

where the supremum is taken over all J € Z and all balls B of R™ of radius 277.
If P is a polynomial of P and u € §'(R"), it follows immediately that
-+ Pl goone gy = lll g

This shows that the norm (1.3)) is well defined. Further, the space L£P*5(R™)
equipped with this norm is a Banach space.

Remark 1.4. The supremum in expressions (|1.2)) and (1.3)) can be taken over all
J € 7 and all cubes of R" of sidelength 277.

The reader can find the properties of these spaces in [7), [8, [I0]. We recall that

A—n
the space LP*** coincides with Campanato space I>* = £,2 when s = 0,p = 2

and 0 < A < n+ 2, itself equals bmo for A = n, cf. [10]; and we will see in Theorem
that in the case A = n, the space £P"* coincides with the homogeneous BMO-
Triebel-Lizorkin space Fg;),p(l < p < +00), itself equals BMO when s = 0 and
p=2.

We return to our main goal which is the estimates for solutions of regular elliptic
systems in C°°—bounded open sets {2 in R™. This problem can be reduced, via a
partition of unity, to a priori estimates for solutions of regular elliptic systems in
the upper-half space R} = {z = (t,2"); t > 0}. We denote £ = (7,¢’) the dual
variable of x = (t,2’) € R" = R x R"~L.

Consider L the following differential system in the sense of Douglis and Nirenberg
[6]:

L = L(t,2"; Dy, Dy) = (Lij(x; Dy))ij=1,...N (1.4)
where
Lij(x; Dp)u(z) = Liju(x) = Y alf (x)D2u(x) (1.5)
la|<si+t;
here @ = (ay, ..., qy,) is a multi-index, |a] = a1 + -+ + «,, is the length of «, and
DY = Dgr...Dgn is the derivation, with ng = 1%] aa:;fj . The coefficients a¥ are

J
assumed to be in C*°(R7) and s;,¢; are integers which we can suppose satisfying
s; < 0and t; > 0. In the definition of L;j;, it is to be understood that if s; +¢; <0
then L;; = 0. Let ng (x; Dy) represent the principal part of L;;(x, Dy), which is
the sum of the terms in L;;(x; D,) which are exactly of the order s; + t;.

We suppose that L is elliptic in the following classical sense.

(E1) For any (7,&') € R™\ {0},
det(L?j(O; ¢,7))ij=1,..N #0

and the number m4 (£') of the roots with positive imaginary parts of the
polynomial

P(r) = det(ng(O;ﬁlaT))v:,j:l,...,zv
in the complex variable 7, is constant and equals m .
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Now we will define the traces. For each u € £P**T% (R") we consider ¢; traces of
u defined for 2’ € R"~! by:

yu(z') = Diu(0,2") for 1 =0,...,t; — 1.
Set v = (Y0,..-,7,—1). We showed in [9, Theorem 3.1] that the operator v is

continuous from L£PA5F (R?) to [1, ! £pAstti—1=1/p(Rn—1),
If my = 0 there is no boundary conditions for our problem. If m > 0, for each

i=1,...,my4, let o; be an integer o; < —1. Set
t—1
(Bij(@', Dyr) - y)u = ZBZJI ', Dy )i,
1=0
fori =1,...,my, j = 1,...,N; where By;;(z',D,/) is a differential operator of

degree less than or equal o; +t; — [, with smooth coefficients bounded with their
derivatives. If oy +¢; — 1 < 0 we put B;; = 0.

Denote B~y the matrix B(x’ D)y = (Bij(2', Dar) - 7)i=1,....mssj=1,...,.N- This
operator is continuous from H | LPASTE (RT) into [T £PA~ ”’_1/3”(]R" D). Let
B?j - 7y represent the principal part of Bj; - v, which is the sum of the terms in
B;;(x', D) -y which are exactly of the order o; +t; — in B;j;(2/, D). We denote
B%y = B%(z', Dw)y = (B} "Y)”'»Zli“""ﬁ'

We assume that S

(E2) For any & € R"~1 |¢/| = 1, the problem
LO(t,0;€', Dy)u(t) = 0
B%(0,&)yv =0

has only the trivial solution v = 0 in H;\le WtiP(Ry).
The first part of our main result is the following theorem.
Theorem 1.5. Let s and A be two nonnegative real numbers and 1 < p < +00.
Under hypotheses (E1) and (E2), for any compact set K of R, there is a constant
Cxk > 0, such that for any u € Hf;l LA F (RT) with suppu C K, we get

||U||Hj\l=l LPXstt; (Ri) S C{HLUHHiV:l LA s—s; (Ri)

+ ”B’YUHHZ';J; LP’A’Sioi’i%(Rnfl) + ”u”H?f:l ﬁp’A’S“J’l(Rf_)}

This statement remains true if we replace £ by the dotted space L.

If A =n we get the estimates in the spaces of BMO-Triebel-Lizorkin F3, , and
Fg;,p. IfoO<A<n+4+2and p =2 we get the estimates in Morrey-Campanato
spaces L3,

Now, let 2 be a C*°—bounded open set of R™, I" its boundary. Let L be the
differential system defined by and , where the coefficients a¥/ are belonging
to C°°(9Q).

We assume the following hypotheses:

(H1) For any « € T and any £ € R™\ {0}, det(LY;(2;€))ij=1,..n5 # 0 and for

any &, € R™\ {0} tangent to I' at x, the number m_ (z, §) of the roots with
positive imaginary parts of the polynomial

P(r) = det(L?j(foz + Tl/z))i,jzl ..... N
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in the complex variable 7, is constant and equals m,. Here v, is the inward
unit normal vector to the boundary I' at x.

To give the complementing condition we define the traces. For each u € L1t ()
we consider t; traces of u defined by

olu
’yluzw|r fori=0,...,¢t; — 1.

The operator v = (v0,...,7,-1) is a continuous operator from LPAST(Q) to
[T, £pAstts=t=1/p(T). Let o; be an integer < —1. We define the following
differential operators on T,

ti—1

(Bij(@, D) - v)u = Z Biji(z, D)niu

1=0
where B;j;(x, D) is a differential operator on I' with smooth coefficients on T', of
degree < o; +t; — 1. If o +t; — 1 < 0 we put B;;; = 0.

Denote By = B(x,D)y = (Bij - ¥)i=1,...,m43j=1,...~- This operator is continu-
ous from H;yzl LPAsF(Q) into [ £PA7=1/P(T). Let BY; - v represent the
principal part of B;;-y. We denote B%y = B%(z; D)y = (B?j “Y)i=1,.cmy si=1,...,N -

Finally we suppose:

(H2) For any = € T and any &, € R\ {0}, |¢;] = 1, tangent to I' at z, the

problem,

LO(2;&, + v Dy)u(t) =0
B(x;6,)0 =0

has only the trivial solution v = 0 in vazl WP (RS).

Theorem 1.6. Let s and A be two nonnegative real numbers and 1 < p < +o0.
Under hypotheses (H1) and (H2), there exists a constant C > 0 such that for any
u € Hj\]:l LPAST(Q), we get

||U||1-[§\f:1 L£PN T (Q)
< OBl eonemssay + Ul ponooncg gy + Bl ponestsr )
This theorem extends the scalar case work [9]. From this theorem and the
interpolation theorem of Stampacchia, cf. [I4] or [I2], Theorem 4.6], we get in the

same manner as in [9], the classical LP estimates for solutions of regular elliptic
systems [2].

2. A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS
Let L = (L;j); j=1,...n be a system of ordinary differential operators with con-
stant coefficients defined on R by:

sittj
Liju= L;j(D¢)u = Z ay Dfu, fori,j=1,...,N.
k=0

where az,j € C and u is a function of the variable ¢t € R;..
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In this section we are interested in the system Lu(t) = f(t), where

Uy J1
u = : and f=1] :
un In

are vectors of functions defined on R;. The operator L is bounded from the space
[I2, WhP(Ry) to TI;L, W—(Ry). Let LY be the principal part of L;;. We
assume that the polynomial

P(r) = det(Lg;(7))i

is not vanishing on the real line R. Let m, be the number of the roots of P(r)
satisfying Im 7 > 0.

Theorem 2.1. Under the above assumption the operator

N N
L:J[whr®y) — [[W P (Ry)

j=1 i=1
is a Fredholm operator and its indez is equal to m.

The proof of this theorem is classical see for example [2 B]. We study L on a
neighborhood of 0 and next on a neighborhood of +oco.

3. SOME PRELIMINARY RESULTS

In [10] we established the connection between £P** spaces, BMO, Campanato

spaces £P* and their local versions. Also, we showed directly that for p = 2 and
A\ = n the space £>™* coincides with the space F%, o itself equals I°(bmo), where I*
is the Riesz potential operator. The following theorem shows that the general BMO-
Triebel-Lizorkin spaces F, ,, are a particular case of LP% spaces. The definition

of the spaces I3, ,, and their homogeneous version Fcfo,p are respectively given in
[16, section 2.3.4] and [16], section 5.1.4].

Theorem 3.1. Let s € R and 1 < p < +oo. The space F3, ,(R") [respectively
F3, ,(R™)] 'coincides algebraically and topologically with the space LP™3(R™) [re-
spectively LP™5(R™)].

In particular, for p = 2 we have a result in [10].

Proof. The proof is a consequence of some results of [I1]. Firstly, we remark that
11, (5.1) and (5.2)] gives the homogeneous part of the theorem. To show the
inhomogeneous counterpart, we mention the following equivalent norm for F3, ,
space, cf. [11 (12.8)]

1 . .
1fllrs , ~{ sup E/B 32kl A flrda} T (3.1)

J>0,B(2-7) Py

the supremum is taken over all nonnegative integers J and over all cubes B of R"
of sidelength 27, This equivalence yields the continuous embedding £P™*(R") —
Fs (R™).

00,p
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Conversely, let f € F3, ,(R"). Let B a cube of R" of sidelength 2=/ with J
a negative integer. We divide the cube B into 27"/ nonoverlapping cubes Q; of
sidelength equal to 1. Thus

1 1
& D> 2N e <273 o | Soriapis
B il JQ;

E>0=J+ i i k>0

1
< sup —/ 2kPs| A, f|Pda:
P11 228

k>0
the supremum is taken over all cubes @ of sidelength equal to 1. The last term is
obviously bounded from above by the right hand side of . Hence f € £P™*(R"™)
and we have the continuous embedding Fy, ,(R") < LP"*(R"). The proof of
Theorem [3.1] is complete. O

Let us denote by Iifow (respectively ¢mo) the closure of Schwartz class S(R™)
in BMO -Triebel-Lizorkin spaces F5, , (respectively bmo = FY, ,). The following
result shed some light on the topological dual of }%‘(fo’p

Corollary 3.2. Let s € R,1 < p < 400, and 1 < p’ < 400 with % + ﬁ =1. We
have ) Cn
FiTR") = (FL ,(R") < F,, , " (R")
in particular
F)1(R") = (emo) — F, 5 (R").
We have a similar result for the homogeneous spaces.

The proof of this corollary is a simple consequence of [8, (3.3)] and Theorem 3.1
Now we recall some lemmas needed in the proof of Theorem The following
lemma is proved in [8].

Lemma 3.3. Let 1 <p < +o0, and A < 0. If (a;,);,. s a sequence of positive real
numbers satisfying (a;,); € P for any v > 1, then there is a constant C > 0 such

that
S e < Cow S,
j>1v>1 v2li57

holds.
We introduce the following spaces needed in the proof.

Definition 3.4. We denote W% P(R) the classical Sobolev space of all u € LP(R)
satisfying Dfu € LP(R) for 1 < k < t;. By W4 P(R; LPM*(R"1)) we denote the
functions u in LP(R; £+t (R"~1)) satisfying DFu € LP(R; LP-AsTti—F(Rn—1))
for k = 17...,75]'.

Remark 3.5. The most convenient norm of LP(R; £P-*#(R"~1)) for this purpose
is

1 o
Hu”LT’(R;ET’>)‘=S(RT"_1)) = {Sup T Z 2k p”AkuHI[),p(]RxB)}l/p
LB B[ k>J+

where the supremum is taken over all J € Z and all balls B of R”~! with radius
2=/,

Here are some results proved in [9] regarding intermediate derivatives, compact-
ness and interpolation.
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Lemma 3.6. There exists C > 0 such that for any e > 0 and any u € LP5+ (R™)
[respectively Wti-P(R; LPA(R"1)) ] we get for k=0,...,t; — 1,
k

t; e
HDf“”LPWSHJ’—J(Rn) < ClelDfullgonemny +& 75 (|ull gorste; (Rn)}

[respectively

||Df“”y(ﬂg;g?»*vﬁ*%*J(Rn—l))
tj -2
< C{ellDY ull Lo ycons @n-1y) +€ T [l o goprdotes g1y}

We have the same result when we replace L by L.

Lemma 3.7. Let s1 < so < s3 be three real numbers, A > 0 and 1 < p < +o0.
There exists a constant C > 0 such that for any ¢ > 0, and u € LPMN3(R")
[respectively LP(R; LP*%3(R™1))] we get

_sa=s1
el o0 oy < CLelltall oo oy + € 572 [l gooner oy }
[respectively
||u||LP(]R;LPx>\~82 (Rn—1))
_sa=s1
< Ofellulln@erasa@n-iy +& 57 full o ggnsn @i}
We have the same result if we replace L by L.

Lemma 3.8. Let A > 0 and 1 < p < +o0. Let m be an integer > 1, and s be a
real < m. If u € LP(R; LPA*(R"™Y)) is such that D"u € LP(R; LPAs—m(R™1))
then u € LP*(R™), and there is a constant C > 0 independent of u such that

||u||£p,)\,5(]Rn) < C{HD;nu||Lp(R;Ep,)x,sf'm,(Rnfl)) + ||u||Lp(]R;ﬁp,X,s(Rnfl))} .
This statement remains true if we replace £ by £ provided —m < s < m.

Lemma 3.9. There exists Co > 0 such that for any ¢ € S(R™), there exists C; > 0
satisfying for any u € LP*(R™) [respectively LP(R; L3 (R"1))]

oullzorsmny < CollollLoe @mllullgens@ny + Crllull zors—1@n)
[respectively

||s0u||LP(R;,CP1>\,S(]Rn—l))
< Collell Lo @n)

/U/”Lp(]R;['p.A.s(]Rnfl)) +C Hu”Lp(]R;Ep,)\,sfl(Rnfl)).}
This statement remains true if we replace £ by L.

The characterization of the traces for elements of the spaces involved in this
paper is given in the following theorem proved in [9].

Theorem 3.10. Lett; be an integer > 1,1 € {0,1,...,t;—1},s e R,LA>0and1 <
p < 4o00. Foru € Wltojc’p(R_F;Ep’A’s(R"_l)), the series Y ;<o DIALu(0,.) converges
in S'(R"™Y) and define an element yju belonging to the space ,Cp”\’5+tj7l7%(R"_1).
Further, the map u — yyu is a continuous operator from Wzi,jc’p(R—H LPA3(R71))

to [jpv’\vs‘*‘tj_l_%(R"*l) and there exists an extension operator R; from the space
EP’A’S“J'*Z*%(R"_l) to the space W' P(Ry; LPN*(R™1Y)) such that

oR; =1id 1 .
Y 1 Lp,)\,s+t37l7§(R7L71)
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In particular, if s > 0, then the operator ~; maps LPA3Tti (R}) into the space
ﬁp’k’sﬂj—l_%(R”*l). We have the same results if we replace £ by L.

Remark 3.11. Let s > 0, \ = nand ! = 0. In the case p = 2, Strichartz [I5] showed
that the trace v of functions in I*(BMO)(= £>™*(R") cf. [10]) must be in the
homogeneous Hélder space C*°(R™). In addition, he proved that g is surjective by
showing that the extension operator Ryf(z) = F~ (e P Ff), z = (¢,2'), maps
C*(R™) into I°*(BMO). In the case 1 < p < +00, Frazier and Jawerth [I1, Theorem
11.2] generalized the last result by showing that the space of traces of functions in
Fcfo’p(R”)(: LP75(R™) cf. Theorem ﬂ above) is independent of p and coincides
with C*(R™) as well.

4. PROOF OF THEOREM

The first step in the proof is the following statement.

Proposition 4.1. Let s € R, A >0 and 1 < p < 4+o00. Under hypotheses (E1) and
(E2), for any compact set K of R, there is a constant Cx > 0 such that for any

u e vazl WtiP(Ry; L2 (R*1)) with suppu C K, we get

||'U||]‘[;.V:1 Wt P (Rp;Lp2s (Rn—1)) < CK{HLUHI_H\Ll W—sip(R 5 LP A e (RA-1))
+ || Byu
Byl

m s, 8 — i,l n—
o LT (R
ol ogsern sty |

We have the same result if we replace £ by L.

Proof. Tt is classical that with the aid of Lemmas and and with the
freezing technique of the coefficients of L, we can restrict ourselves to proving the
last proposition for the following homogeneous system of operators with constant
coefficients

LO = LO(Dm/aDt) = (L?j(O;Df’aDt))iJ:l---N and BO"Y = BO(Osz/)7

where
LY(0; Dy, D)= Y~ aif(0)DY D},
k+la’|=sit+t;

With the aid of Theorem we prove as in [13} [3] @] that under hypotheses (E1)
and (E2), for every ¢’ € R"~1\ {0}, the operator (L°(¢’, D;), B°(0,£)7) is invertible
from vazl WtiP(RL) to Hf\il W—soP(Ry) x C™+ and if K denotes its inverse,
then the mapping ¢ —— K¢ is C* from R\ {0} to E(Hf\;l W—sP(Ry) x
(C"“r;]_[;y:l WtiP(R,)) and for any multi-index o/, there exists C,,y > 0 such that
for any ¢, L < |¢/| <2, and any (f,g) € [[IL, W—*"?(R4) x C™+,

||D?' Ke(f, g)Hanzl WP (Ry) S Cor[I(f 9)||H§V:1 W5 (Ry)xC™+ - (4.1)

First of all, we will prove that for any integer M > 1 sufficiently large, there
exists a constant C' > 0 such that for any ball B of R"~! of radius 277, J € Z,
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centered at zf, € R"~1,
||“||1—[§V:1 Lr(B;W'P(Ry))
< C{HLOU||H§V:1 Lr(2B;W =i P(Ry)) T ||BOVUHH:';+1 L?(2B)

o _1
+|BJ'/P Z 27MIF, |1 p(||L0U||H;V:1Lp(FU;W—sm(ﬂh))
v>—J+1

+ 1B yul| s Lp(F»)}

holds for any u € H;\;l S(R"~1; Wi-P(R,)) whose tangential spectrum (i.e. the
support of the tangential Fourier transform of u) belongs to the annulus 3 < [¢/| <
2, here F, = {2/ e R"1; 2V < |2/ — zf| < 2.2}.

For this, we apply the operator (L°(&’, Dy), B(0,£")7) to the relation

(4.2)

Fulo€) = [ uly)ay
to obtain the system
L€, Dy)Ful.,€') = FL(..¢') = / € (LOw) (o )y
B0, Ful €)= FEu(€) = [ € By )y
Then we apply K¢/ to this system,
Fu(., &)= /e_iy/‘é/KE/(Lou(.7y’)7B0’yu(y’))dy'
Since u(.,z’) = fe”/'g/@({’)fu(.,f’)w, ® € Cg°(R™ 1) is equal to 1 for § <

|¢'] < 2 and its support belongs to an annulus, we integrate by parts with respect
to &', then

el = ’ / / dy'd¢’
/ / i (1= A (€K (0l Bty )} e

Inequality (4.1]) yields

[[ul., 33/)”1‘[;.\’:1 WhiP(R,)

1

0 / 0 / !
<C | ey ey By, wosir s xeme 4y

We integrate with respect to ' € B,

||UHLP(B;H§V:1 WP (Ry))

1
<C
- {/x’EB (/y/eRnl (1+ |z" —y'|2)M

P 1/p
X ||(L0u(.,y/),BO’yu(y/))HHﬁl WP (Ry ) xC™+ dy’) dw’}
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We decompose R~ = (2B) U U, _ ;4 Fi, where 2B = {y/; |y — x| < 2.277}
and F, = {y; 2" < |y — (| <2.2¥, v > —J + 1. Thus

||“HLP(B;H§V:1 WP (Ry))

<o [, (L, mrmmmew

P 1/p
XL y') Byl DI, weser gy ensdy') da’ §

el

LOu(..y/), Bvu(y' ay ) da’
X [(L7uls "), Boyu(y )y wsir @, yxeme dy' ) da

The first term of the right hand side of the above inequality is an LP— norm of
a convolution product of a function of L'(R"~1) (for M large) and a function of
LP(R™1); on the other hand, for the second term we remark that for 2/ € B and
y € F,,v>—J+1, we have |z — y'| ~ |z{ —¢'| ~2”. Hence

1
/E, (14 J2" =y H)M

v>—J+1
1/p

H“”LP(B;H;.V:l W'iP(Ry))

< C{IL%]| ooy, wsem(my)) T ||BOVU||H::1 LmB)}

HCIBP Y 2 Ou ) By Dy, e cn 4
v>—J+1 y'EF,

n
I, LP(2B)

< C{IL%|| ooy, wsemqmyy) + 1B
+ O|B|1/p Z 27211M|FV|1—%

v>—J+1
0 1 RO YT NP
< ([ Iy, BN yeigayiems @)
y' EF, i
ul
So that inequality (4.2)) is proved. Letu= | : | € H;VZI WtiP (R ; LPAS(R?L))
N
u

with suppu C K, K is a compact set of R7.. For k € N, we set uy(z) = Al u(2 k).
If £ > 1, then uy, € vazl S(R* 1, WtiP(R,)) and its tangential spectrum (i.e. the

support of its tangential Fourier transform) belongs to the annulus {% <€ <2}
We have

(L) = 2MH L0 and (B! ), = 289 By (4.3)
We apply inequality (4.2) for each ug, k > 1,

HukHH_;V:l Lr(B;Wh P (Ry )

B C{HLOUkHHg\’:l Lr(2B;W—=i?(Ry)) T ||BOVUI<||1-[;’:; L?(2B)

oy _1
1B S 2 MRS (1L e e aw-rer @)
v>—J+1

0
+ 1B yurllgrs por,y) }

(4.4)
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The operator A} commutes with the derivation and then with the constant coeffi-
cients operator L, so with the aid of m we have

lukllr, owts e @y)) ZHukHLP(B WP (R )
Jj=1

N t;
=3 IDf gl Lo (Bire ey

j=1r=0
N i
=D 2P M ALDI | 1o, <ok
j=1r=0
and
0
(P2 Ukavzl L?(2B;W—si:P(Ry))
N
= ZH(Louk)l||Lp(2B;W*8wP(]R+))
i=1
—2”22 CH LY el oo 2w —se0 )
=1 j=1
= ZZ?’“”“’IIZz R ALD] (L0 )| Lo (s x2-+418)
i=17r=0
and finally

1B%vurllpgs coem)

my

= ZH WUk HLP(2B)

= ZHZ? Hoitt) (BY; ’YUJ) | zr(2B)

=1 j=1

my N )
- ZQk(nfl)/p||227k(ai+tj)A;€BZQﬂuJ Lo 2-#+15)
—~ —

Substituting the above equalities in (4.4) gives

N
ZZ?"”HA;D{W e (r, x2-+B)

7j=1r=0
s,
< 0{22”22 M AL DY L0 || Lo iy w241 )
i=1r=0 j=1
my N
+ ) I 27D AL Byl || ook
i=1 j=1

—5;

LD 2-2”M\F|"[ZZ||22 (D ALDT LY o, x2-v1,)

v>—J+1 i=1r=0 j=1
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my N

+ >IN 2D AL B | -, |

i=1 j=1

Now we replace v’/ by 2ty to get

N tj

SoY 2 T AL o, <2k

j=1r=0

< C{ZZQk(S 97—T)||ZA/ DT‘ u ||Lp(]R+><2 k+1B)
1=1r=0

_'_221@(5 az—l/p)HZA;CB”’YU ||Lz> 2-k+1B)

—8;

-1 S—S;—T s j
ENED MRS B T HZA'D 30 oy xa-rr

v>—J+1 1=1r=0
" ZQk(s—Ui—l/P)HZA;CB?j’qu ||Lp(27kpy)} }
i=1 Jj=1
Hence
N i .
NN A AL D | oz, o)
j=1r=0
< O3S I ALD L0 iz i
i=17r=0
My
+ ZQk(sfaifl/p) HA%(BO’YU)ZHLP(Q—k-Fl B)
i=1
s
_o _1 s— sz—T r i
+B[r 30 2 MR p[ZZW 1D} (L) | 2o, 2,
v>—J+1 i=1r=0
my )
+ ZQk(Siaiil/p)HA;C(BO’YU)Z“LP(Q_ICFV)} }
i=1

Set K =J+k€Zand u=v—k € Z, then the ball 27%B becomes the ball By of
R™~1 of radius 27X, the annulus 27%F), becomes the annulus F, of R""! and we
deduce

N i

SN 2K AL DI

j=1r=0

—s;

k(s—s;—r r
gc{zzw P ALD] (L) |85 o)

i=17r=0

my
+ Y 2 R AL (B ) 1] 5,

i=1
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+ ‘QkBK|( 3 o(u+K)(—2M+(n—1)(1= 1)) g3
pn>—K+1

2k S—8;—T) , ;
HA Dy (L) || Lo (s x F,)

oy

i=1lr= O‘F |(

s p
+y Y |AL(B°
Y I’ o))}

A simple calculation yields

Zz2k(s+t1—r)p”A/ Dvu ||LP(R+><BK

j=1r=0

—5;

< C{Zz2k(s si—r p”A/ DT(LO ) ”Lp (. x2510)

i=17r=0

my
+ ZQk(sfaifl/P)p”A;C(BO,YU)ZHZ)(QBK)
=1
+ Q(ka)(72N+n71)p27K/\(Z2u(—2M+(n—1)(l—%)+%)

pn>1

DD

i=1r= 0|F# K‘(n 1)p
m+ 2k(sfai71/ p)

JrZiAHA' (B%yu)! e muio))? }

—1 | Fu—x |07

1=

| ALD} (L) | Loy x Fy i)

|: —Si 2k(s s;—T)

Set Apy = —2M + (n — 1)(1 — %) + %. Multiply by 1/|BK|ﬁ and sum over j,
k > max(K™*,1),

1 |
I S Lar IV I

‘BK‘TL k>max(K+,1)j=1r=0

S S S e AL D

{|BK|k>K+z 1r=0

1 o ;
P S Z ZQk(s =1/PP|| AL (B yu)z||1£p(2BK)

|BK|" > Kti=1

<

—Si 2k(9 8i—T) ;
Y (Do [ZZ |ALDF (L) | oy e
E>K+ p>1 i—1r=0|Fu— (e
m4 2k: s—o;—1/p)

a4 w)"\lmwa})p}

=

i=1 |EL K| (n— 1 P
Now we use Lemma 3.3 E 3| for the last sum k > KT,

1
— X ZZQ’“ SHTOP | LD | m i)

|BK|n k>max(K+,1)j=1r=0
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—8;

Z Zz2k(a Sw—T)PHA/ DT(LO

k>K+z 1r=0

Z ZQk s— Ulfl/p)pHA/ ( ,_Yu)i”ip(QBK)
|BK|" T

k>K+i=1

K|

—s;

+ sup [
~21k§+ ;rzolFu K71
my

2k(5 s;i—T)

ri70
”A/D (L u )HiP(R_;_XF}L—K)

9k(s—oi—1/p)p

Y N B ) o]}

i [ Fu—x [T

On the left hand side of the above inequality we add the terms associated to
k =0, and since F},_x C Bx_,—1 we deduce

N i

|BK|7 Z ZZQk || AL Dy HLP(R+XBK

k>K+j=1r=0

< {|BK Z ZZQk(S slfr):DHA/ DT(LO ) ”LP B x25)

n— 1

k>K+i=1r=0

1

k(s—o;—1 7|2
i L XA
k>Kt+i=1

—Si 2k(s Si—

+sup > Z[Z ! ||A D (L u)’

k>(K—p—1)ti= 17’0
5
i=1 ‘FH K|n7

HLP (RyXBx—p—1)

+ ok(s—oi—1/p)p i|p S
7”Ak( 7“) HLP(BK—;L—I):|} T RO ’

where
1 LY
R = jZZ||A6DIUJ||§p(R+xBK) :
|Br ™ {2ir=0
Taking the supremum over K and By yields

N i
ZIZO”DTUJHLP Ry L:PA s+t i~ (RP—1))
j=1r
0
< OSSP gy
i=1r=0

+ Z” ryu H/;p As—oi—1/p(Rn— 1)} + R07

where
N tj

1 g
Ry = sup 7ZZ||A6DtUJ||Z£p(R+xBK)
K,Bg |BK|” =1r=0
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Finally

< 0, ||P
- Wtj:P(R_'_;Lp,)\,s(Rnfl)) — O{”L UH ZNzl W—S.L',P(R_*_;[/p,)\,s(Rnfl))

}+R0

[Jul|¥:

! (4.5)
H Byl s
[T o P (Re-1)
To estimate from above the remainder term Ry, we write

Réf ZZ”A D:Uj“ip(R+xBK)

t g
- |BK|7 17=0 Z”A Dt]ujni”(RJrXBK)
j r=
(4.6)
For the first term in Rf, we use Lemma [3.6| to get a constant C' > 0 such that for

any € > 0,

N tj—1
|BK|7223HA 0Div Lok, x5
J =
N t;j—1
<22 DI oo rsmrt gy
j=17r=0
N t;—1
te s FE
< CZ{EPHDt]ujHI[),P(]R+ ;LA (Rr—1)) + ZE t |uJ||Lp Ry ;LP A, 9+t‘—1(Rn 1))}

j=1

N
— Cz{gp”u]||€thvP(R+;£P,)\,S(Rn 1 +C/||u]||Lp(R kas+t *I(Rn 1))}

(4.7)
To estimate the second term of R we return to the equation L% = f. For each

. N ; i N i o i
i = 1,...,N, S LYu? = f1 so Zj:12r+|a’|:si+tjarj,a’(0) % Diw! = f*, here
fi = (L°u)i. Thus

N
Z Sy ODF T = f Z Y. 4l (0D D

J=lr+t|a’|=s;+t;
0<r<s;+t;—1

Applying D; ®* to the both sides gives
N N
y P o v g L,
Zazsjithj,a'(O)Dtju] =D, f" — Z Z a:ﬂJ/+Si’a, (0)D% Dy o’ (4.8)
Jj=1 J=1 r'+la’=t;
757;S’I"/§tj71

The ellipticity condition gives that the constant matrix A = (o sitty,ar(0))i i

invertible. Let us denote DTu the vector (D}’ 'u?)j, D;° f the vector (D, * f*); and
V the vector (v%); where v’ = ijlz Pl |=t; O e ar (0)D% Dy w?. From (4.8)
—si<r'<t;—1
we obtain
DIu=A"'D;5f - A"V (4.9)
and then

AGDIuw=ATTAD; S f — ATIAYV
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For the second term of R, we write

1

N
ti 4
By |7 D NADE W ey
j=1

1 ! T, ||P
= e 1ol e xi

1 1
< C{——|1A)D; 5 1|17 , + ———IAV|Z
= {|BK|ﬁH 0t f‘lnleLP(R+xBK) |BK|ﬁ” 0 HH

=S r\P P
< C{”Dt f”l—[i\f:l LP(Ry;LP: 2 s (Rn—1)) + HV”H;\W:1 Lp(R+;[;p,A,s—1(Rn—1))}

i L"(R+><BK)}

p p
S C{”f” ’{\7:1 W—.ei,p(R+;[,p,k,s(Rn—l)) + ||VHH§\7:1 LP(R+;LP,>\,5—1(R'rL—1))}

(4.10)
Now

N
”VHIIJ_H\’:l LP(Ry;LP: A s—1(Rn—1)) S CZ Z HDg' D{ u]||IEP(R+;LP,A1571(]R7171))

J=le o=t
0<r'<t;—1

N
r’ Jnp
D S 0
J=10<r/<t;—1
In the same way as for (4.7) there is a constant C' > 0 such that for any & > 0,
VI

p
[T, LP(Rys£P =1 (RP-1))

N . ) tj—1 iy )
S Cz{ngDt]uJ||I[),P(]R+;,CP))"S(R"71)) + Z&‘ tj—r ||uJ||zzp(R+;£p,)\,s+tj71(R7171))}
Jj=1 r’=0

N
o PN o od L] [P TIR
j=1

(4.11)
Finally (£6)-([@E1I) give

p D p
RO < C{”fH ﬁ\le W=siP(Ry ;L0 A (Rn—1)) +e€ ||7.LH ;}1:1 Wtj’P(R+;£p,k,s(R7Lfl))

/ p
+ CEHUHH;\]:l LP(R+;£P,>\,S+tj71(RTI,—1))}

Substituting the above inequality in (4.5) and choosing € > 0 arbitrarily small we
get Proposition for the system (L%, B%y). O

To complete the proof of Theorem|[I.5] we have to estimate the normal derivatives
of the solution.

Lemma 4.2. Let s and X be two real numbers > 0 and 1 < p < +o0. For any
compact set K of R, there erists a constant Cx > 0 such that for any u €

H;-Vzl LrAsF (RT) with suppu C K we get

e, crnsts ey < Coell Ll conesen) + Nl wismgey vy
(4.12)
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Proof. As in the proof of Proposition [I.I] we can restrict ourselves to the operator
L°. Firstly let us take 0 < s < 1. We have

, o S
[\l goxoovs ey = 1D W[l 2oono ey + > IDg D || gons
k+|a/|<t;
0<k<t;—1

The interpolation 1emma gives for k+ |o/| <t;, 0 <k <t; — 1,
’ ki
1Dgr Dy || cox.s e

< C{HDg‘, D || Loy cons g1y + 1D DfHUj\lLv(R+;z:p=A»s—1(Rwl))}

e i & .
< C{ HDt u’ ‘|LP(R+;£p,>\,s+tj—k(Rn_l)) —+ ”Dt +1u-7 ||LP(RJr;EP,A,SJth—k—l(Rn_l))}

< Ol [l (ry, 2rne @e-1y)
4.13)
To estimate HDzjuj”Lp,)\,s(]Ri)’ we return again to the equation LYu = f, , to
get
DIu=A"'D;5f - A"tV
and then with the aid of ,

”D?u”H;.\’:lLP/\vS(Ri)

N
ti 4
= Z||Dtjuj||mms(m)
=1

N
. ; k. 4.14
< Y IDT Lo oy + Y. IDE DR porequny} 41

i=1 k+|a'|=t;
0<k<t;—1

N N
< C{ZH(LOU)Z||£P*>\’S*Si(]Ri) + Z”uj ||Wtj’p(R_H,CP’)\’S(R"*l))}
i=1 =

The lemma is proved for 0 < s < 1. For the general case s > 0, we write s = q+7
with ¢ € N and 0 < r < 1, and we do an induction on ¢.This is true for the case
¢ = 0. Assuming that the estimation (4.12)) is true for any g, we show that it
holds for ¢ + 1. Let K be a compact set of R and u € H§V=1 LPASTIG (R ) with
suppu C K.

We remark that v/ € £P-*F1H5 (R?) if and only if u/ € £PAH(RY) and
Dy ud € LA+ (R ) for any 1 < k < n—1, and Djul e LrAsTLR™ ). Moreover
we have

HUHH;\’Zl LPAsstltt (Ri)

g C{ u p.X, s+t rmn
[ ||H_§.V:1[: Xty (R (4.15)

n—1

+> IDaullppy | graests @y + 1D ullpp gpwsﬂ(m)}
=1

where DIy is defined in (4.9). By the induction hypothesis,

lellpp, coneres gy < CrAILuligy ooss )+l wes o e, senns oy}
(4.16)
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We substitute in (4.16) u by D, u, 1 < k < n — 1, and the coefficients of L° are
constant, so

||D$ku||n§v=1 Lt (R
) (4.17)
< Cic{IE %l onoects ) + Nl wis gy sgmners ey

In the same way as for (4.14), with s + 1 instead of s, we return to the equation
Lo = f to get

||DtTUHH_;V:1 Lo sHL(RY)

- 0, i A (4.18)
S C{ZH(L ’LL) ||LP,A,sfsi+1(R:b_) + Z”U]||Wtj=P(R+;£p,>\,s+l(Rn71))}
=1 =

Finally we substitute inequalities (4.16] , and (| in ) to get ( -

fors+1=q+1+r.
Note that Theorem [I.F]is a consequence of Proposition [£.1] and Lemma [4.2]

Acknowledgements. the author would like to thank the anonymous referee for
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REFERENCES

[1] P. Acquistapace, On BMO regularity for linear elliptic systems, Ann.di Mathematica pura
ed applicata (IV), Vol. CLXI (1992), pp. 231-269.

[2] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary condition II, Comm. Pure Appl.
Math., Vol XVII (1964), pp. 35-92.

[3] P. Bolley - J. Camus, Etude d’une classe de systémes d’opérateurs elliptiques et dégénérés,
Publications des séminaires de mathématiques de I’Université de Rennes I, (1973).

[4] S. Campanato, Equazioni ellittiche del II ordine e spazi L%, Ann. math. pura. Appl. 69
(1965), pp. 321-380.

[5] S. Campanato, Sistemi ellittici in forma divergenza. Regolarita all’interno, Quaderni Sc.
Norm. Sup. Pisa (1980).

[6] A. Douglis - L. Nirenberg, Interior estimates for elliptic systems of partial differential equa-
tions, Comm. Pure Appl. Math., Vol. 8, pp. 503-538 (1955).

[7] A. El Baraka, Optimal BMO and LP* estimates near the boundary for solutions of a class
of degenerate elliptic problems, In: ” Partial differential equations, Proc. Conf. Fez (Morocco,
1999). Lecture Notes Pure Appl. Math. 229, New York, Marcel Dekker (2002), 183-193.

[8] A. El Baraka, An embedding theorem for Campanato spaces, Electron. J. Diff. Eqns., Vol.
2002 (2002), No. 66, pp. 1-17.

[9] A. El Baraka, Optimal BMO and LP* estimates for solutions of elliptic boundary value
problems, Arab. J. Sci. Eng., Sect. A Sci.,, Vol. 30 (2005), No. 1, pp. 85-116. at:
http://www.kfupm.edu.sa/publications/ajse/articles/301A_07P.pdf

[10] A. El Baraka, Littlewood-Paley characterization for Campanato spaces, J. Funct. Spaces
Appl., Vol. 4, No. 2 (2006), pp. 193-220.

[11] M. Frazier - B. Jawerth, A discrete transform and applications to distribution spaces, J.
Funct. Anal., 93, NO 1, (1990), pp. 34-170.

[12] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Birkhiuser,
(1993).

[13] J. L. Lions - E. Magenes, Problémes auz limites non homogénes, Dunod, Tome 1, (1968).

[14] G. Stampacchia, The spaces LP*, NP* and interpolation Ann. Sc. Norm. Sup. Pisa (3), 19,
(1965).

[15] R. S. Strichartz, Traces of BMO-Sobolev spaces, Proc. Amer. Math. Soc. 83, 3, (1981) 509-
513.

[16] H. Triebel, Theory of function spaces, Birkhauser, (1983).



EJDE-2006/101 BMO ESTIMATES NEAR THE BOUNDARY 21

[17] H. Triebel, Theory of function spaces II, Birkhauser, (1992).
[18] A. Youssfi, Regularity properties of commutators and BMO-Triebel-Lizorkin spaces, Ann.
Inst. Fourier (Grenoble) 45 (1995), no. 3, 795-807.

AzzEDDINE EL BARAKA

UNIVERSITY SIDI MOHAMED BEN ABDELLAH, FST FEz, BP 2202, ROUTE IMMOUZER, 30000 FEZ,
Morocco
E-mail address: aelbaraka@yahoo.com



	1. Introduction
	2. A system of ordinary differential equations
	3. Some preliminary results
	4. Proof of Theorem 1.5
	Acknowledgements

	References

