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Abstract. In the work by Giné and Grau [11], a planar differential system
of degree nine admitting a nested configuration formed by an algebraic and a

non-algebraic limit cycles explicitly given was presented. As an improvement,

we obtain by a new method a similar result for a family of quintic polynomial
differential systems.

1. Introduction

In the qualitative theory of autonomous and planar differential systems, the
study of limit cycles is very attractive because of their relation with the applications
to other areas of sciences; see for instance [9, 17]. Nevertheless, most of researchers
on that domain focus their attention on the number, stability and location in the
phase plane of the limit cycles for the system of degree n = max{degPn,degQn},

ẋ =
dx

dt
= Pn(x, y),

ẏ =
dy

dt
= Qn(x, y),

(1.1)

where Pn(x, y) and Qn(x, y) are coprime polynomials of R[x, y]. We recall that a
limit cycle of system (1.1) is an isolated periodic orbit in the set of its periodic orbits
and it is said to be algebraic if it is contained in the zero set of an invariant algebraic
curve of the system. We recall that an algebraic curve defined by U(x, y) = 0 is an
invariant curve for (1.1) if there exists a polynomial K(x, y) (called the cofactor)
such that

Pn(x, y)
∂U

∂x
+Qn(x, y)

∂U

∂x
= K(x, y)U(x, y). (1.2)

Another interesting and also a natural problem is to express analytically the
limit cycles. Until recently, the only limit cycles known in an explicit way were
algebraic (see for instance [4, 5, 12, 14] and references therein). It is surprising that
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exact algebraic limit cycles where obtained by Abdelkadder [1] and Bendjeddou
and Cheurfa [4] for a class of Liénard equation.

Limit cycles of planar polynomial differential systems are not in general algebraic.
For instance, the limit cycle appearing in the van der Pol equation is non-algebraic
as it is proved by Odani [15]. In the chronological order the first examples of systems
were explicit non-algebraic limit cycles appeared are those of Gasull [10] and by Al-
Dossary [2] for n = 5, Bendjeddou and al. [3] for n = 7 and by Benterki and Llibre
[6] for n = 3. Another class of quintic systems with homogeneous nonlinearity
has been studied via averaging theory by Benterki and Llibre [7] . The first result
for the coexistence of algebraic and non-algebraic limit cycles goes back to Giné
and Grau [11] for n = 9. These last authors transform their system into a Ricatti
equation which is itself transformed into a variable coefficients second order linear
differential equation using the classic linearization method. From the principal
result of an earlier work (see details from page 5 of their paper) they obtain a first
integral and by the way the explicit equations of the possible limit cycles.

In this work, we obtain by a more intuitive and understandable method a similar
result for a class of systems of degree n = 5. We show that our system admits an
invariant algebraic curve, corresponding of course to a particular solution of the
Ricatti equation obtained when the suited transformations are performed on the
system, so the first integral can be easily obtained. The limit cycles are also exactly
given and form a nested configuration, the inner one is algebraic, while the outer
is non-algebraic.

2. Main result

As a main result, we shall prove the following theorem.

Theorem 2.1. The quintic two-parameters system
ẋ = P5(x, y),

ẏ = Q5(x, y),
(2.1)

where

P5(x, y) = x+ x(x2 + y2 − 1)(ax2 − 4bxy + ay2)

+ (x2 + y2)(−2x+ 2y + x3 + xy2),

and

Q5(x, y) = y + y(x2 + y2 − 1)(ax2 − 4bxy + ay2)

+ (x2 + y2)(−2x− 2y + y3 + x2y),

in which a ∈ R∗+ and b ∈ R∗ possesses exactly two limit cycles: the circle (γ1) :
x2 + y2 − 1 = 0 surrounding a transcendental and stable limit cycle (γ∗) explicitly
given in polar coordinates (r, θ), by the equation

r(θ; r∗) =

√√√√√ exp(aθ + b cos 2θ)( r2∗
(r2∗−1)eb

+ f(θ))

−1 + exp(aθ + b cos 2θ)( r2∗
(r2∗−1)eb

+ f(θ))
, (2.2)

with

f(θ) =
∫ θ

0

exp(−as− b cos 2s)ds, r∗ =

√
f(2π)eb+2πa

(f(2π) + 1)e2πa − 1
,
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if the following conditions are fulfilled:

4b2 − a2 < 0, (2.3)

f(2π) 6= 1 + e−2πa

1− eb
, f(2π) 6= e−b−2πa

(1 + (e2πa − 1)r2
∗ ±
√

2eπa
√
r∗

1− r2
∗

)
. (2.4)

Moreover, (γ∗) defines an unstable limit cycle when b+ πa = 0.

Proof. Firstly, we have yP5(x, y) − xQ5(x, y) = 2(x2 + y2)2, thus the origin is the
unique critical point at finite distance. Moreover it is not difficult to see that the
circle (γ1) : x2 + y2 − 1 = 0 is an invariant curve, the associated cofactor being

K(x, y) = 2(x2 + y2)P2(x, y),

where P2(x, y) = (a+ 1)x2 − 4bxy + (a+ 1)y2 − 1.
Of course (γ1) defines a periodic solution of system (2.1), since it do not pass

through the origin. To see whether or not (γ1) is in fact a limit cycle, we can
proceed as follow: Let T denotes be the period of (γ1), we consider the integral
I(γ1), where

I(γ1) =
∫ T

0

Div(x(t), y(t))dt. (2.5)

We know from [12] that can be computed via

I(γ1) =
∫ T

0

K(x(t), y(t))dt. (2.6)

From (2.3), we have 4b2 − a2 < 0, so the curve P2(x, y) = 0 do not cross (γ1). But
P2(0, 0) < 0, hence K(x, y) < 0 inside (γ1)/{(0, 0)}, so I(γ1) < 0. Consequently
(γ1) defines a stable algebraic limit cycle for system (2.1). The search for the non-
algebraic limit cycle, requires the integration of the system. In polar coordinates,
this system becomes

ṙ = (−2b sin 2θ + a+ 1)r5 + (2b sin 2θ − a− 2)r3 + r,

θ̇ = −2r2.
(2.7)

Since θ̇ is negative for all t, the orbits (r(t), θ(t)) of system (2.6) have the oppo-
site orientation with respect to those (x(t), y(t)) of system (2.1). Taking θ as an
independent variable, we obtain the equation

dr

dθ
= −1

2
(−2b sin 2θ + a+ 1)r3 − 1

2
(2b sin 2θ − a− 2)r − 1

2r
. (2.8)

Via the change of variables ρ = r2, this equation is transformed into the Riccati
equation

dρ

dθ
= (2b sin 2θ − a− 1)ρ2 + (−2b sin 2θ + a+ 2)ρ− 1. (2.9)

Fortunately, this equation is integrable, since it possesses the particular solution
ρ = 1 corresponding of course to the limit cycle (γ1). The general solution of this
equation is

ρ(θ) =
exp(aθ + b cos 2θ)(k + f(θ))

−1 + exp(aθ + b cos 2θ)(k + f(θ))
,
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with f(θ) =
∫ θ

0
exp(−as − b cos 2s)ds. Consequently, the general solution of (2.8)

is

r(θ; k) =

√
exp(aθ + b cos 2θ)(k + f(θ))

−1 + exp(aθ + b cos 2θ)(k + f(θ))
, (2.10)

as given in the theorem.
By passing to Cartesian coordinates, we deduce the first integral is

F (x, y) =
(

x2+y2

x2+y2−1 − exp(a arctan
y

x
+ b cos(2 arctan

y

x
))

×
∫ arctan y

x

0

exp(−b cos 2s− as)ds
)

÷ exp(a arctan
y

x
+ b cos(2 arctan

y

x
)).

(2.11)

The trajectories of system (2.1) are the level curves F (x, y) = k, k ∈ R and since
these curves are obviously all non-algebraic (if we exclude of course the curve (γ1)
corresponding to k → +∞), thus any other limit cycle, if exists, should also be
non-algebraic.

To go a steep further, we remark that the solution such as r(0; r0) = r0 > 0,
corresponds to the value k = r20

(r20−1)eb
provided a rewriting of the general solution

of (2.8) as

r(θ; r0) =
√
g(θ), (2.12)

where

g(θ) =
exp(aθ + b cos 2θ)

( r20
(r20−1)eb

+ f(θ)
)

−1 + exp(aθ + b cos 2θ)
( r20

(r20−1)eb
+ f(θ)

) (2.13)

A periodic solution of system (2.1) must satisfy the condition

r(2π; r0) = r0, (2.14)

provided two distinct values of r0: r1 = 1 and thanks to (2.4), the well defined
second value

r∗ =

√
f(2π)eb+2πa

(f(2π) + 1)e2πa − 1
.

Obviously, the first value of r0 corresponds to the algebraic limit cycle (γ1).
By inserting the second value r∗ of r0 in (2.12), we obtain the second candidate

solution given by the statement of the theorem through (2.2). In the sequel, the
notation r(θ, r∗) or (γ∗) both refer to this curve solution.

To show that it is a periodic solution, we have to show that
• the function θ → g(θ) is 2π-periodic, where in this case

g(θ) =
exp(aθ + b cos 2θ)

(
e2πa

1−e2πa f(2π) + f(θ)
)

−1 + exp(aθ + b cos 2θ)
(

e2πa

1−e2πa f(2π) + f(θ)
) . (2.15)

• g(θ) > 0 for all θ ∈ [0, 2π[.
The last condition ensures that r(θ, r∗) is well defined for all θ ∈ [0, 2π[ and the
periodic solution do not pass through the unique equilibrium point (0, 0) of system
(2.1).
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Periodicity. Let θ ∈ [0, 2π[, then

g(θ + 2π) =
exp(aθ + 2πa+ b cos 2θ)

(
e2πa

1−e2πa f(2π) + f(θ + 2π)
)

−1 + exp(aθ + 2πa+ b cos 2θ)
(

e2πa

1−e2πa f(2π) + f(θ + 2π)
) .

However,

f(θ + 2π) =
∫ θ+2π

0

exp(−as− b cos 2s)ds

= f(2π) +
∫ θ+2π

2π

exp(−as− b cos 2s)ds.

In the integral case
∫ θ+2π

2π
exp(−as − b cos 2s)ds, we make the change of variable

u = s− 2π, we obtain

f(θ + 2π) = f(2π) +
∫ θ

0

exp(−a(u+ 2π)− b cos 2(u+ 2π))

= f(2π) + e−2πaf(θ).

Taking into account (2.3), after some calculations we obtain that g(θ+ 2π) = g(θ),
hence g is 2π-periodic.

Strict positivity of g(θ) for θ ∈ [0, 2π[. Let φ(θ) = e2πa

1−e2πa f(2π) + f(θ). Since
dφ
dθ (θ) = exp(−aθ− b cos 2θ) > 0 for all θ ∈ [0, 2π[, the function θ → φ(θ) is strictly
increasing with φ(0) = e2πa

1−e2πa f(2π) and φ(2π) = 1
1−e2πa f(2π). Since a > 0, then

φ(2π) < 0 =⇒ φ(θ) < 0, thus exp(aθ + b cos 2θ)φ(θ) < 0, hence g(θ) > 0 for all
θ ∈ [0, 2π[.

To show that it is in fact a limit cycle, we consider (2.13), and introduce the
Poincaré return map r0 → Π(2π; r0) = r(2π; r0) =

√
g(2π), with the positive x-axis

as section. We compute dΠ
dr0

(2π; r0) at the value r0 = r∗. We find that

dΠ
dr0

(2π; r0)
∣∣
r0=r∗

= eπar∗

√
(e2πa +Aeb+2πa − 1)r2

∗ −Aeb+2πa√
((Aeb + 1)r2

∗ −Aeb)((e2πa +Aeb+2πa − 1)r2
∗ −Aeb+2πa)2

.

Taking into account (2.4), we deduce that dΠ
dr0

(2π; r0)
∣∣
r0=r∗ 6= 1, and finally that

(γ∗) is the expected non-algebraic limit cycle. Obviously (γ∗) lies inside (γ1) when
r∗ < 1. Since the Poincaré return map do not possess other fixed points, the system
(2.1) admits exactly two limit cycles. �

3. Example

As an example let a = 4, b = 1. then system (2.1) becomes

x′ = x+ x(x2 + y2 − 1)(4x2 − 4xy + 4y2) + (x2 + y2)(−2x+ 2y + x3 + xy2),

y′ = y + y(x2 + y2 − 1)(4x2 − 4xy + 4y2) + (x2 + y2)(−2x− 2y + y3 + x2y).
(3.1)

Then we have f(2π) =
∫ 2π

0
exp(−4s− cos 2s)ds ' 0.121 24 and then

r∗ =

√
(0.121 24)e1+8π

((0.121 24) + 1)e8π − 1
' 0.542 15. (3.2)
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It is easy to verify that all conditions of Theorem 2.1 are satisfied. We conclude
that system (3.1) has two limit cycles. Since r∗ < 1, the non-algebraic lies inside
the algebraic one as shown on the Poincaré disc in Figure 3.1:

Figure 3.1. Limit Cycles of System (3.1)

Conclusion. In this work, we have extend the result obtained in [11] by reducing
the degree of the differential system from n = 9 to n = 5. The method used
is intuitive. Obtaining interesting results of this kind becomes more and more
difficult for lower values of n. Nevertheless it is not forbidden to undertake the
study of the following problems:

• coexistence of two explicit non-algebraic limit cycles for a quintic system;
• coexistence of explicit algebraic and non-algebraic limit cycles for n = 3;
• obtaining a quadratic system with exact non-algebraic limit cycle (this

question is due to Benterki and Llibre [6]).

Acknowledgments. The authors would like to express their gratitude to the ref-
eree for pointing out some references to our attention and for his valuable remarks.
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