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CONTACT DISCONTINUITIES IN MULTI-DIMENSIONAL
ISENTROPIC EULER EQUATIONS

JAN BŘEZINA, ELISABETTA CHIODAROLI, ONDŘEJ KREML

Abstract. In this note we partially extend the recent nonuniqueness results

on admissible weak solutions to the Riemann problem for the 2D compressible
isentropic Euler equations. We prove non-uniqueness of admissible weak solu-

tions that start from the Riemann initial data allowing a contact discontinuity

to emerge.

1. Introduction

This article concerns the isentropic compressible Euler system in two space di-
mensions

∂tρ+ divx(ρv) = 0

∂t(ρv) + divx(ρv ⊗ v) +∇x[p(ρ)] = 0

ρ(·, 0) = ρ0

v(·, 0) = v0.

(1.1)

Here (ρ, v) denotes the unknown density and velocity of the fluid respectively. The
pressure p is a given function of ρ and in order for system (1.1) to be hyperbolic,
it needs to satisfy p′ > 0. Throughout this paper we assume that p(ρ) = ργ with a
constant γ ≥ 1. The space variables are denoted as x = (x1, x2) ∈ R2 and similarly
the components of the vectors are denoted as v = (v1, v2) ∈ R2.

The total energy of the fluid is given as the sum of the kinetic energy ρ |v|
2

2 and
the internal energy ρε(ρ) where the internal energy density ε(ρ) is related to the
pressure through the relation p(r) = r2ε′(r). The total energy plays the role of the
(only one) mathematical entropy in the terminology of hyperbolic conservations
laws, therefore we also consider the entropy (energy) inequality

∂t

(
ρε(ρ) + ρ

|v|2

2

)
+ divx

[(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v
]
≤ 0. (1.2)

In this note we work with bounded weak solutions that satisfy (1.1) in the sense
of distributions. Moreover, we say that a weak solution to (1.1) is admissible, when
it satisfies (1.2) in the sense of distributions, more precisely we require the following
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inequality to hold for every nonnegative test function ϕ ∈ C∞c (R2 × [0,∞)):∫ ∞
0

∫
R2

[(
ρε(ρ) + ρ

|v|2

2

)
∂tϕ+

(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v · ∇xϕ

]
dxdt

+
∫

R2

(
ρ0(x)ε(ρ0(x)) + ρ0(x)

|v0(x)|2

2

)
ϕ(x, 0)dx ≥ 0.

Camillo De Lellis and Lászlo Székelyhidi proved in [7] the existence of initial data
(ρ0, v0) for which there exists infinitely many admissible weak solutions to (1.1) by
a suitable application of their theory for the incompressible Euler equations based
on convex integration or Baire cathegory method. Later in [2] and [3] the regularity
of such initial data was improved. The proof in [3] uses as a core idea the analysis
of the Riemann problem for compressible Euler equations in 2D. The Riemann
problem is a problem with a specific choice of initial data in the form

(ρ0(x), v0(x)) :=

{
(ρ−, v−) if x2 < 0
(ρ+, v+) if x2 > 0,

(1.3)

where ρ±, v± = (v±1, v±2) are constants. The same problem was further studied in
[4] and [5] and also by Klingenberg and Markfelder [9]. All these results show that
the entropy inequality itself is not enough to single out a unique physical solution
for certain ranges of the initial data ρ±, v±.

The Riemann problem is a classical building block of the one-dimensional theory
for hyperbolic conservation laws. It is well known that it allows for existence of
BV self-similar solutions consisting of constant states joined by rarefaction waves,
admissible shocks and contact discontinuities, see for example [6]. Since the initial
data (1.3) are one-dimensional, it is easy to observe, that the 1D self-similar solu-
tions prolonged as constant to the next dimension are indeed solutions to the 2D
problem as well. Such solutions are unique in the class of admissible weak solutions
if we require them to be self-similar and to have locally bounded variation. However
dropping the requirements of self-similarity and BVloc yields nonuniqueness as was
illustrated in [3, 4, 5, 9].

In the case of 2D isentropic Euler system, a contact discontinuity appears in
the self-similar solution if and only if the first components of the velocities v− and
v+ are not equal. If v−1 = v+1, then the self-similar solution can consist only of
admissible shocks and rarefaction waves, see [4, Section 2] for detailed analysis.

If the self-similar solution consists only of rarefaction waves, it is in fact unique in
the class of all bounded admissible weak solutions, as was first proved in [1] (see also
[8] and [10] for related results). If on the other hand the self-similar solution consists
of two admissible shocks, then there exists infinitely many admissible weak solutions
with the same initial data, see [4]. The same non-uniqueness result holds also in
the case where the self-similar solution consists of one shock and one rarefaction
wave, see [5, 9].

The case of Riemann initial data including v−1 6= v+1 has not been studied
in this context yet, even though there is an interesting result by Székelyhidi [11]
concerning incompressible Euler system. He proved that vortex sheet initial data
(i.e. v− = (−1, 0), v+ = (1, 0)) allow for the existence of infinitely many weak
solutions (to incompressible Euler system) satisfying either strict energy inequality
or energy equality. However this result does not seem to transfer directly to the
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compressible case mainly because the role of the pressure is different in both systems
of equations.

The question, whether a self-similar solution consisting only of a contact discon-
tinuity (or more generally rarefaction waves and a contact discontinuity) is unique
in the class of bounded admissible weak solutions or not, is to our knowledge still
open. On the other hand it is natural to expect that the non-uniqueness results in
[4, 5, 9] also extend to the case when the self-similar solution contains a contact
discontinuity. In this note we give a confirmation of this conjecture and show how
to obtain non-uniqueness of admissible weak solutions for such initial data. Our
main results are as follows.

Theorem 1.1. Let p(ρ) = ργ , γ ≥ 1. Let ρ+, ρ− > 0, v+, v− ∈ R2 and let

v−2 − v+2 >

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−
.

Then there exists infinitely many bounded admissible weak solutions to the Riemann
problem for the Euler system (1.1) and (1.3).

Remark 1.2. The condition v−2 − v+2 >
√

(ρ+−ρ−)(p(ρ+)−p(ρ−))
ρ+ρ−

means that the
self-similar solution consists of two shocks and a contact discontinuity (apart from
the case v−1 = v+1 when the contact discontinuity does not appear). For a
schematic view of the self-similar solution in this case see Figure 1. Theorem 1.1
extends the result in [4] to the case v−1 6= v+1.
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Figure 1. Wave fan consisting of a shock, a contact discontinuity
and another shock.

Theorem 1.3. Let p(ρ) = ργ , γ ≥ 1. Let ρ+, ρ− > 0, ρ+ 6= ρ−, and let v+, v− ∈
R2. There exists

V := V (ρ−, ρ+, v+2, γ) <

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−

such that if

V < v−2 − v+2 <

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−

then there exists infinitely many bounded admissible weak solutions to the Riemann
problem for the Euler system (1.1) and (1.3).
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Remark 1.4. The condition V < v−2 − v+2 <
√

(ρ+−ρ−)(p(ρ+)−p(ρ−))
ρ+ρ−

means that
the self-similar solution consists of one shock, one rarefaction wave and a contact
discontinuity (apart from the case v−1 = v+1 when the contact discontinuity does
not appear). See Figure 2 for a sketch of the two possible structures of the self-
similar solution in the case v−1 6= v+1. Theorem 1.3 extends the result of [5] to the
case v−1 6= v+1.
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Figure 2. Wave fan consisting of (a) a shock, a contact disconti-
nuity and a rarefaction, or (b) a rarefaction, a contact discontinuity
and a shock.

Theorem 1.5. Let p(ρ) = ργ , γ ≥ 1. Let ρ+, ρ− > 0, ρ+ 6= ρ−, and v+, v− ∈ R2.
If

−
∣∣ ∫ ρ+

ρ−

√
p′(τ)
τ

dτ
∣∣ < v−2 − v+2 ≤

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−

then there exists infinitely many admissible weak solutions to the Riemann problem
for the Euler system (1.1) and (1.3).

Remark 1.6. The condition v−2 − v+2 =
√

(ρ+−ρ−)(p(ρ+)−p(ρ−))
ρ+ρ−

means that the
self-similar solution consists of a single shock and a contact discontinuity (apart
from the case v−1 = v+1 when the contact discontinuity does not appear). The
condition

−
∣∣ ∫ ρ+

ρ−

√
p′(τ)
τ

dτ
∣∣ < v−2 − v+2 <

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−

covers all the cases, when the self-similar solution consists of one shock, one rar-
efaction wave and a contact discontinuity (apart from the case v−1 = v+1 when the
contact discontinuity does not appear). Theorem 1.5 extends the result of [9] to
the case v−1 6= v+1.

In the rest of this note we prove Theorems 1.1, 1.3 and 1.5.

2. Preliminaries

Here we state three important definitions from [3] in the form we need in this
paper. By S2×2

0 we denote the space of 2× 2 symmetric matrices with zero trace.

Definition 2.1. A fan partition of R2 × (0,∞) consists of four open sets P−, P1,
P2, P+ of the form

P− = {(x, t) : t > 0 and x2 < ν−t},
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P1 = {(x, t) : t > 0 and ν−t < x2 < ν1t},
P2 = {(x, t) : t > 0 and ν1t < x2 < ν+t},
P+ = {(x, t) : t > 0 and x2 > ν+t},

where ν− < ν1 < ν+ is an arbitrary triple of real numbers.

Definition 2.2. A fan subsolution to the compressible Euler equations (1.1) with
the initial data (1.3) is a triple (ρ, v, u) : R2× (0,∞)→ (R+,R2,S2×2

0 ) of piecewise
constant functions satisfying the following requirements.

(i) There is a fan partition P−, P1, P2, P+ of R2 × (0,∞) such that

(ρ, v, u) = (ρ−, v−, u−)1P− + (ρ1, v1, u1)1P1 + (ρ2, v2, u2)1P2 + (ρ+, v+, u+)1P+

where ρi, vi, ui are constants with ρi > 0 (i = 1, 2) and u± = v± ⊗ v± −
1
2 |v±|

2 Id;
(ii) There exist positive constants C1, C2 such that

vi ⊗ vi − ui <
Ci
2

Id

for i = 1, 2;
(iii) The triplete (ρ, v, u) solves the following system in the sense of distributions:

∂tρ+ divx(ρv) = 0 (2.1)

∂t(ρv) + divx (ρu) +∇x
(
p(ρ) +

1
2

(
ρ|v|21P+∪P− +

2∑
i=1

Ciρi1Pi

))
= 0. (2.2)

Definition 2.3. A fan subsolution (ρ, v, u) is said to be admissible if it satisfies
the following inequality in the sense of distributions

∂t

(
ρε(ρ)

)
+ divx[(ρε(ρ) + p(ρ))v] + ∂t

(
ρ
|v|2

2
1P+∪P−

)
+ divx

(
ρ
|v|2

2
v1P+∪P−

)
+

2∑
i=1

[
∂t

(
ρi
Ci
2

1Pi

)
+ divx

(
ρiv

Ci
2

1Pi

)]
≤ 0 .

(2.3)

A sufficient condition for the existence of infinitely many admissible weak so-
lutions is the existence of a single admissible fan subsolution as is stated in the
following proposition.

Proposition 2.4. Let p be any C1 function and (ρ±, v±) be such that there exists
at least one admissible fan subsolution (ρ, v, u) of (1.1) with the initial data (1.3).
Then there are infinitely many bounded admissible weak solutions (ρ, v) to (1.1) and
(1.3) such that ρ = ρ and |v|21Pi

= Ci (i = 1, 2).

The core of the proof of Proposition 2.4 is the following fundamental lemma.

Lemma 2.5. Let (ṽ, ũ) ∈ R2 × S2×2
0 and C0 > 0 be such that ṽ ⊗ ṽ − ũ < C0

2 Id.
For any open set Ω ⊂ R2 × R there are infinitely many maps (v, u) ∈ L∞(R2 ×
R,R2 × S2×2

0 ) with the following properties
(i) v and u vanish identically outside Ω;

(ii) divx v = 0 and ∂tv + divx u = 0;
(iii) (ṽ + v)⊗ (ṽ + v)− (ũ+ u) = C0

2 Id a.e. on Ω.
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The proof of Lemma 2.5 can be found in [3, Section 4] and it is essentially based
on the theory of De Lellis and Székelyhidi in [7] for the incompressible Euler system.
We will not present the proof here.

Proposition 2.4 is proved using Lemma 2.5 in the following way. In each of the
regions P1, P2 we use Lemma 2.5 with (ṽ, ũ) = (vi, ui) and C0 = Ci to obtain
vi. Then it is not difficult to check that each couple (ρ, v +

∑2
i=1 vi) is indeed an

admissible weak solution to (1.1). For a complete proof of Proposition 2.4, we refer
the reader to [3, Section 3.3].

3. Proofs

3.1. Proof of Theorem 1.1. To prove Theorem 1.1 it is sufficient to find a single
admissible fan subsolution, because of Proposition 2.4. Therefore we introduce the
following notation

vi = (αi, βi), v− = (v−1, v−2)

v+ = (v+1, v+2) ui =
(
γi δi
δi −γi

)
for i = 1, 2. Since the fan subsolution is by definition formed by piecewise constant
functions, the partial differential equations (2.1)–(2.3) transfer to a set of Rankin-
Hugoniot conditions on each of the three interfaces of the fan partition. We have:

• Rankine-Hugoniot conditions on the left interface:

ν−(ρ− − ρ1) = ρ−v−2 − ρ1β1 (3.1)

ν−(ρ−v−1 − ρ1α1) = ρ−v−1v−2 − ρ1δ1 (3.2)

ν−(ρ−v−2 − ρ1β1) = ρ−v
2
−2 + ρ1γ1 + p(ρ−)− p(ρ1)− ρ1

C1

2
; (3.3)

• Rankine-Hugoniot conditions on the middle interface:

ν1(ρ1 − ρ2) = ρ1β1 − ρ2β2 (3.4)

ν1(ρ1α1 − ρ2α2) = ρ1δ1 − ρ2δ2 (3.5)

ν1(ρ1β1 − ρ2β2) = −ρ1γ1 + ρ2γ2 + p(ρ1)− p(ρ2) + ρ1
C1

2
− ρ2

C2

2
; (3.6)

• Rankine-Hugoniot conditions on the right interface:

ν+(ρ2 − ρ+) = ρ2β2 − ρ+v+2 (3.7)

ν+(ρ2α2 − ρ+v+1) = ρ2δ2 − ρ+v+1v+2 (3.8)

ν+(ρ2β2 − ρ+v+2) = −ρ2γ2 − ρ+v
2
+2 + p(ρ2)− p(ρ+) + ρ2

C2

2
; (3.9)

• Subsolution conditions:

α2
1 + β2

1 < C1 (3.10)

α2
2 + β2

2 < C2 (3.11)(C1

2
− α1

2 + γ1

)(C1

2
− β1

2 − γ1

)
−
(
δ1 − α1β1

)2
> 0 (3.12)(C2

2
− α2

2 + γ2

)(C2

2
− β2

2 − γ2

)
−
(
δ2 − α2β2

)2
> 0 ; (3.13)
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• Admissibility condition on the left interface:

ν−(ρ−ε(ρ−)− ρ1ε(ρ1)) + ν−

(
ρ−
|v−|2

2
− ρ1

C1

2

)
≤ [(ρ−ε(ρ−) + p(ρ−))v−2 − (ρ1ε(ρ1) + p(ρ1))β1]

+
(
ρ−v−2

|v−|2

2
− ρ1β1

C1

2

)
;

(3.14)

• Admissibility condition on the middle interface:

ν1(ρ1ε(ρ1)− ρ2ε(ρ2)) + ν1

(
ρ1
C1

2
− ρ2

C2

2

)
≤ [(ρ1ε(ρ1) + p(ρ1))β1 − (ρ2ε(ρ2) + p(ρ2))β2]

+
(
ρ1β1

C1

2
− ρ2β2

C2

2

)
;

(3.15)

• Admissibility condition on the right interface:

ν+(ρ2ε(ρ2)− ρ+ε(ρ+)) + ν+

(
ρ2
C2

2
− ρ+

|v+|2

2

)
≤ [(ρ2ε(ρ2) + p(ρ2))β2 − (ρ+ε(ρ+) + p(ρ+))v+2]

+
(
ρ2β2

C2

2
− ρ+v+2

|v+|2

2

)
.

(3.16)

Motivated both by the structure of the self-similar solution as well as the struc-
ture of the fan subsolution from [4] in the case of no contact discontinuity we make
the following ansatz. We set

α1 = v−1 (3.17)

α2 = v+1 (3.18)

ρ1 = ρ2 (3.19)

β1 = β2 =: β. (3.20)

Such ansatz yields the following simplification of the above set of identities and
inequalities. The equation (3.4) is satisfied trivially and the equation (3.6) simplifies
to

γ1 −
C1

2
= γ2 −

C2

2
. (3.21)

Moreover combining (3.1) and (3.2) yields δ1 = α1β and similarly we get from the
right interface that δ2 = α2β. Plugging this in (3.5) leads to ν1 = β. Finally the
admissibility condition on the middle interface (3.15) is trivially satisfied. Thus,
after applying (3.21) what remains is the following set of relations.

• Rankine-Hugoniot conditions on the left interface:

ν−(ρ− − ρ1) = ρ−v−2 − ρ1β (3.22)

ν−(ρ−v−2 − ρ1β) = ρ−v
2
−2 + ρ1γ1 + p(ρ−)− p(ρ1)− ρ1

C1

2
; (3.23)

• Rankine-Hugoniot conditions on the right interface:

ν+(ρ1 − ρ+) = ρ1β − ρ+v+2 (3.24)

ν+(ρ1β − ρ+v+2) = −ρ1γ1 − ρ+v
2
+2 + p(ρ1)− p(ρ+) + ρ1

C1

2
; (3.25)
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• Subsolution conditions:

v2
−1 + β2 < C1 (3.26)

v2
+1 + β2 < C2 (3.27)(C1

2
− v2
−1 + γ1

)(C1

2
− β2 − γ1

)
> 0 (3.28)(C2

2
− v2

+1 + γ2

)(C1

2
− β2 − γ1

)
> 0 ; (3.29)

• Admissibility condition on the left interface:

ν−(ρ−ε(ρ−)− ρ1ε(ρ1)) + ν−

(
ρ−

v2
−1 + v2

−2

2
− ρ1

C1

2

)
≤ [(ρ−ε(ρ−) + p(ρ−))v−2 − (ρ1ε(ρ1) + p(ρ1))β]

+
(
ρ−v−2

v2
−1 + v2

−2

2
− ρ1β

C1

2

)
;

(3.30)

• Admissibility condition on the right interface:

ν+(ρ1ε(ρ1)− ρ+ε(ρ+)) + ν+

(
ρ1
C2

2
− ρ+

v2
+1 + v2

+2

2

)
≤ [(ρ1ε(ρ1) + p(ρ1))β − (ρ+ε(ρ+) + p(ρ+))v+2]

+
(
ρ1β

C2

2
− ρ+v+2

v2
+1 + v2

+2

2

)
.

(3.31)

As argued in [4, Lemma 4.3], inequalities (3.26)–(3.29) are satisfied only if

C1

2
− γ1 > β2.

Hence using the notation

ε1 =
C1

2
− γ1 − β2

ε2 =
C1

2
− v2
−1 + γ1 = C1 − v2

−1 − β2 − ε1

ε′2 =
C2

2
− v2

+1 + γ2 = C2 − v2
+1 − β2 − ε1

we see that (3.26)–(3.29) are equivalent to ε1 > 0, ε2 > 0 and ε′2 > 0. Before we
proceed any further let us set ε2 = ε′2, i.e.

C1 − v2
−1 = C2 − v2

+1. (3.32)

Finally, following the proof of [4, Lemma 4.4] we rewrite (3.22)–(3.31) in the new
variables ε1 and ε2 as follows.

• Rankine-Hugoniot conditions on the left interface:

ν−(ρ− − ρ1) = ρ−v−2 − ρ1β (3.33)

ν−(ρ−v−2 − ρ1β) = ρ−v
2
−2 − ρ1(β2 + ε1) + p(ρ−)− p(ρ1) ; (3.34)

• Rankine-Hugoniot conditions on the right interface:

ν+(ρ1 − ρ+) = ρ1β − ρ+v+2 (3.35)

ν+(ρ1β − ρ+v+2) = ρ1(β2 + ε1)− ρ+v
2
+2 + p(ρ1)− p(ρ+) ; (3.36)
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• Subsolution conditions:

ε1 > 0 (3.37)

ε2 > 0 ; (3.38)

• Admissibility condition on the left interface:

(β − v−2)
(
p(ρ−) + p(ρ1)− 2ρ−ρ1

ε(ρ−)− ε(ρ1)
ρ− − ρ1

)
≤ ε1ρ1(v−2 + β)− (ε1 + ε2)

ρ−ρ1(β − v−2)
ρ− − ρ1

;
(3.39)

• Admissibility condition on the right interface:

(v+2 − β)
(
p(ρ1) + p(ρ+)− 2ρ1ρ+

ε(ρ1)− ε(ρ+)
ρ1 − ρ+

)
≤ ε1ρ1(v+2 + β)− (ε1 + ε2)

ρ1ρ+(v+2 − β)
ρ1 − ρ+

.

(3.40)

Now it is easy to observe that the set of relations (3.33)–(3.40) is exactly the
same as the set of relations [4, (4.26)–(4.33)]. The existence of a solution to this
set of relations in the case

v−2 − v+2 >

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−

is proved in [4, Section 4]. To conclude that this solution together with the ansatz
(3.17)-(3.20) and (3.32) defines in fact an admissible fan subsolution in the sense of
Definition 2.2, we only have to verify that ν− < ν1 = β < ν+. Indeed, from (3.22)
and (3.24) we deduce that

β − ν− =
ρ−
ρ1

(v−2 − ν−)

ν+ − β =
ρ+

ρ1
(ν+ − v+2)

and the proof is complete using [4, Lemma 4.6] which states that

v−2 − ν− > 0
ν+ − v+2 > 0.

This concludes the proof of Theorem 1.1.

Remark 3.1. It is not difficult to observe that [4, Theorem 2] transfers to our case
as well and we obtain in particular that there exists a Riemann initial data (1.3)
with v−1 6= v+1 such that the self-similar solution to the Euler system (1.1), (1.2)
is not entropy rate admissible. For the definition of entropy rate admissibility see
[4, Definition 1].

3.2. Proof of Theorem 1.3. Let us first recall [5, Theorem 1] here.

Theorem 3.2. Let p(ρ) = ργ , γ ≥ 1. Let ρ− 6= ρ+, ρ± > 0 and v+2 ∈ R be given

and let v−1 = v+1. There exists V = V (ρ−, ρ+, v+2, γ) <
√

(ρ+−ρ−)(p(ρ+)−p(ρ−))
ρ+ρ−

such that for all v−2 satisfying V < v−2−v+2 <
√

(ρ+−ρ−)(p(ρ+)−p(ρ−))
ρ+ρ−

there exists
infinitely many bounded admissible weak solutions to the Euler equations (1.1) with
Riemann initial data (1.3).
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The proof in [5] is based on the analysis of the set of identities and inequalities
(3.22)-(3.31) with the specific choice v−1 = v+1. A solution is proved to exist under
the condition in Theorem 3.2. In order to prove Theorem 1.3 we again search for a
single admissible fan subsolution and use the same ansatz (3.17)-(3.20) and (3.32)
as in the proof of Theorem 1.1. We argue the same way as before and the only
condition we have to ensure is that ν− < β < ν+. As it is described in [5, Section 3],

this is indeed the case at least on a small neighborhood of
√

(ρ+−ρ−)(p(ρ+)−p(ρ−))
ρ+ρ−

.
However, as it is shown in the examples in [5, Section 4], there are subsolutions
violating the condition β < ν+, so requiring this to hold yields a more restrictive
lower bound on v−2 − v+2, i.e. in general V (ρ−, ρ+, v+2, γ) ≤ V (ρ−, ρ+, v+2, γ).
Then Theorem 1.3 is proved.

3.3. Proof of Theorem 1.5. Having already proved Theorem 1.3 we can use
exactly the same arguments as in [9] to construct solutions in a general case. The
key idea of the proof is to patch together solutions to an artificial Riemann problem
constructed in Theorem 1.3 and a standard selfsimilar structure, either a rarefaction
wave or an admissible shock. More precisely, if the initial data of Theorem 1.5
satisfy

v−2 − v+2 =

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−
(3.41)

we follow the proof of [9, Theorem 6.2], whereas if the initial data satisfy

−
∣∣ ∫ ρ+

ρ−

√
p′(τ)
τ

dτ
∣∣ < v−2 − v+2 <

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−
(3.42)

we follow the proof of [9, Theorem 5.4].
In both cases we can assume without loss of generality that ρ− < ρ+ (see [9,

Remarks 5.1 and 6.1]) and our goal is to find an artificial state (ρM , vM ) such that
the Riemann problem A with initial data

(ρ0
A(x), v0

A(x)) :=

{
(ρ−, v−) if x2 < 0
(ρM , vM ) if x2 > 0,

(3.43)

has infinitely many bounded admissible weak solutions because of Theorem 1.3, i.e.
that (ρ−, v−) and (ρM , vM ) satisfy the assumptions of Theorem 1.3, and that the
Riemann problem B with initial data

(ρ0
B(x), v0

B(x)) :=

{
(ρM , vM ) if x2 < 0
(ρ+, v+) if x2 > 0,

(3.44)

consists of a single shock in the case (3.41) and of a single rarefaction wave in the
case (3.42). As was shown in [9] this can be done in the case when no contact
discontinuity appears. Since we now have Theorem 1.3, we can use it instead of
[9, Lemma 5.6] and indeed find the artificial state (ρM , vM ) in such a way that
vM1 = v+1 and ρM , vM2 are as in the proofs in [9].

By patching together solutions of Riemann problem A and a self-similar solution
of Riemann problem B exactly following the ideas of [9] we obtain infinitely many
bounded admissible solutions of the Riemann problem for the Euler system (1.1)
and (1.3).
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