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A STEADY STATE OF MORPHOGEN GRADIENTS FOR
SEMILINEAR ELLIPTIC SYSTEMS

EUN HEUI KIM

Abstract. In this paper we establish the existence of positive solutions to a

system of steady-state Neumann boundary problems. This system has been
observed in some biological experiments, morphogen gradients; effects of De-

capentaplegic (Dpp) and short gastrulation (Sog). Mathematical difficulties

arise from this system being nonquasimonotone and semilinear. We overcome
such difficulties by using the fixed point iteration via upper-lower solution

methods. We also discuss an example, the Dpp-Sog system, of such problems.

1. Introduction

We present a mathematical analysis on the model problem of morphogen gradi-
ents. Morphogens are molecules that diffuse from a local source to form a concen-
tration. The concentration determines the reactions of all cells and activates genes
to form patterns of cell differentiation [10]. Experiments in morphogen diffusions
to understand the pattern formations of tissue in developing animals give rise to a
broad range of systems of reaction-diffusion equations see for example [2, 4, 5, 9, 15].

This paper focuses on a mathematical analysis on a general system including
the model problem of morphogen gradients. More precisely, we establish the exis-
tence of positive solutions to the nonlinear steady state system arising morphogen
gradients. Interesting features of the system we study in this paper are that it is
nonquasimonotone, where few theories can be found for nonquasimonotone system
[1, 6, 7, 8] (note that although the first three references are systems with the zero
Dirichlet boundary conditions, the techniques therein can be employed in the Neu-
mann boundary conditions) and it has certain nonlinearities on the source terms.
As an example of such system we also discuss model equations arising in experi-
ments of morphogen. In particular it is of our interest to study the Dpp-Sog system
[5, 9], see Section 3, which has certain growth rates and nonlinearities, see structure
conditions for the general system in the following section. We note that to under-
stand the stabilities of the reaction-diffusion system, in this paper, we focus on the
steady state solutions.
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This paper is organized in two parts; first we state structure conditions and
establish an existence result for a class of elliptic systems. In the second part of
paper we discuss the model problem and outline a proof by constructing upper and
lower solutions to the model system.

2. A class of systems

In this section we show the existence of positive solutions to the following elliptic
system

∆u + f(x, u, v, w) = 0 in Ω,

∆v + g(x, u, v, w) = 0 in Ω,

∆w + h(x, u, v) = 0 in Ω,

∂u

∂n
=

∂v

∂n
=

∂w

∂n
= 0 on ∂Ω,

where the source terms f , g and h satisfy the following structure conditions:
(F) f(x, p, q, r) is LP in x ∈ Ω ⊂ RN with P > N and f(x, p, q, r) is locally

Lipschitz in p, q, r.
For p, q, r ≥ 0,

f(x, p, q, r) = f1(p, q, r) + f2(x, p, q, r), f(x, 0, q, r) ≥ f0(x) ≥ 0, (2.1)

f1(p, q, r) ≤ −λpγ (2.2)
where λ > 0 and γ > 1, and

|f2(x, p, q, r)| ≤ |f̃(q, r)|(|p|+ 1) + Cf , and 0 ≤ f0(x) ≤ Cf , (2.3)

with a positive constant Cf .
For (x, p, q, r) ∈ Ω× [0,∞)3, f(x, p, q, r) is nondecreasing in q and non-

increasing in r.
(G) g(x, p, q, r) is LP in x ∈ Ω ⊂ RN with P > N and g(x, p, q, r) is locally

Lipschitz in p, q, r.

g(x, u, v, w) = g(u, v, w) + g0(x). (2.4)

For (x, p, q, r) ∈ Ω× [0,∞)3, there exist positive constants Cg and g1 such
that

0 ≥ g(p, q, r) ≥ −Cg and 0 ≤ g0(x) ≤ g1. (2.5)
(H) h(x, p, q) is LP in x ∈ Ω ⊂ RN with P > N and h(x, p, q) is locally Lipschitz

in p, q. For (x, p, q) ∈ Ω× [0,∞)2, h(x, p, q) is nondecreasing in p and non-
increasing in q.

The condition (F) implies the source term can be separated in two parts based on
the growth rates in terms of u. We note that the conditions (2.2) and (2.3) can
be generalized further, namely the result still holds if we replace the assumptions
(2.2) and (2.3) to

lim
p→+∞

f(x, p, ·, ·)p−γ = −λ (2.6)

with λ > 0 and γ > 1. In fact the conditions (F)(G) and (H) implies that the
existence result of the system is governed by the first equation and the other two
equations act almost like “shadow” equations where such terminology was intro-
duced by [13].
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We use the upper-lower solutions method and the Schauder fixed point theorem
to establish the existence result [16, 3]. We point out that the upper-lower solutions
are not necessary in a classical sense, namely we allow them to be distributional
solutions for the corresponding inequalities. That is, we say u is a lower (upper)
solution if u ∈ C(Ω) satisfies

∆u + F (x) ≥ (≤)0 in D′(Ω),
∂u

∂n

∣∣
∂Ω

≤ (≥)0 a.e..

For x0 ∈ ∂Ω where the normal derivative is undefined we impose

∂u

∂n
(x0) ≡ lim

x→x0
sup(inf)

u(x0)− u(x)
|x0 − x|

≤ (≥)0,

where x0 − x and the normal at x0 is less than π/2 − δ for some fixed δ > 0. We
now establish the following existence theorem.

Theorem 2.1. For a given bounded open domain Ω ⊂ RN and if Ω is a region of
the class W 2,P then there exist ui, vi, wi ∈ C(Ω) ,i = 1, 2, upper-lower solutions in
a distributional sense, and exist u, v, w ∈ W 2,P (Ω) ∩ C1+α(Ω)-solutions such that
0 = u1 < u < u2, 0 ≤ v1 ≤ v ≤ v2 and 0 ≤ w1 ≤ w ≤ w2 in Ω.

Proof. We first construct a set of upper-lower solutions in a distributional sense to
the system. We find vi ∈ C(Ω), i = 1, 2, lower and upper solutions respectively.
Since 0 ≥ g(u, v, w) ≥ −Cg provided u, v, w ≥ 0 we find v1 (the lower solution to
v) to be a positive solution to

∆v1 − Cg + g0(x) ≥ 0 in D′(Ω),
∂v1

∂n

∣∣
∂Ω

≤ 0 a.e..

We find v2 > v1 (the upper solution to v) to be a positive solution to

∆v2 + g0(x) ≤ 0 in D′(Ω),
∂v2

∂n

∣∣
∂Ω

≥ 0 a.e..

This can be done by choosing integration constants for v1 and v2 correspondingly.
We now fix vi, i = 1, 2.

Now with v2 we find a positive solution w1 (the lower solution to w) which
satisfies

∆w1 + h(x, 0, v2) ≥ 0 in D′(Ω),
∂w1

∂n

∣∣
∂Ω

≤ 0 a.e..

With v2 and w1 we now find a positive solution u2 (the upper solution to u) to

∆u2 + f(x, u2, v2, w1) ≤ 0 in D′(Ω),
∂u2

∂n

∣∣
∂Ω

≥ 0 a.e..

Let φ be the first eigenfunction satisfying ∆φ + λ1φ = 0 with ∂φ/∂n = 0 on ∂Ω
λ1 > 0, and ‖φ‖∞ = 1. Then by letting u2 = K(φ + 2) ≥ 1 with a constant K > 1
to be determined we show u2 satisfies the last inequalities. More precisely since we
have f1(p, ·, ·) ≤ −λpγ with γ > 1 and thus

∆u2 + f(x, u2, v2, w1)

≤ −Kλ1φ− λ(K(φ + 2))γ + sup f̃(v2, w1)(Kφ + 2K + 1) + Cf

≤ Kλ1 − λKγ + sup f̃(v2, w1)(3K + 1) + Cf < 0

by taking K ≥ K1(λ1, γ, λ, sup f̃(v2, w1), Cf ) > 0. In fact u2 is the upper solution
in a classical sense.
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We now find w2 (the upper solution to w) such that w2 > w1 and it is a positive
solution to

∆w2 + h(x, u2, v1) ≤ 0, D′(Ω),
∂w2

∂n

∣∣
∂Ω

≥ 0 a.e..

Finally since w2 > 0 and v1 > 0, we let u1 ≡ 0 so that u1 (the lower solution to u)
satisfies

∆u1 + f(x, u1, v1, w2) ≥ f0(x) ≥ 0.

We now define a set S ⊂ C1(Ω)× C1(Ω)× C1(Ω);

S =
{
(u, v, w) : u1 ≤ u ≤ u2, v1 ≤ v ≤ v2, w1 ≤ w ≤ w2 in Ω,

‖u‖C1(Ω) ≤ A, ‖v‖C1(Ω) ≤ B, ‖w‖C1(Ω) ≤ C

∂u

∂n
=

∂v

∂n
=

∂w

∂n
= 0 on ∂Ω

}
.

The set S is clearly closed, bounded and convex. Define a map T on S such that

∆Tu−MTu + f(x, u, v, w) = −Mu (2.7)

∆Tv + g(x, u, v, w) = 0 (2.8)

∆Tw + h(x, u, v) = 0 (2.9)
∂Tu

∂n
=

∂Tv

∂n
=

∂Tw

∂n
= 0 on ∂Ω , (2.10)

where M is a positive constant so that fu + M ≥ 0 for u, v, w,∈ S and fu is the
Lipschitz constant of f in u. Such M can be found independently to u since u1 ≤
u ≤ u2 and f ∈ C0,1. Since f , g and h are uniformly bounded in L∞ with respect
to u, v and w, there exist unique solutions Tu, Tv and Tw in W 2,P ∩C1,β(Ω) with
β = 1−N/P , see for the existence of the unique solution in [11, Proposition 7.18]
and the solution space [3, Theorem 7.26] to (2.7), (2.8) and (2.9) correspondingly,
and thus the map T is well-defined.

We first show the map T satisfies the first inequalities. First since v, w ∈ S,
evaluate u1 = 0 we get

∆u1 + f(x, u1, v, w) ≥ f0(x) ≥ 0

and

0 ≤ ∆(u1 − Tu)−M(u1 − Tu)−Mu + f(x, u1, v, w)− f(x, u, v, w)

≤ ∆(u1 − Tu)−M(u1 − Tu) + (fu + M)(u1 − u)

≤ ∆(u1 − Tu)−M(u1 − Tu),

since u ∈ S and fu + M ≥ 0 by the choice of M > 0. In fact since u1 satisfies
the last inequality point-wise and also holds the zero Neumann boundary condition
point-wise as well, we can apply the strong maximum principle [3, Theorem 3.5] to
get u1 − Tu < 0 or u1 − Tu ≡ c for some constant c. Since M > 0 the constant c
must be zero and since ∆u1 6≡ ∆Tu thus we get Tu > u1 in Ω.

To show u2 be an upper solution, we evaluate

0 ≤ ∆(Tu− u2) + f(x, u, v, w)− f(x, u2, v2, w1) + Mu−MTu

≤ ∆(Tu− u2)−M(Tu− u2) + (fu + M)(u− u2) + fv(v − v2) + fw(w − w1)

≤ ∆(Tu− u2)−M(Tu− u2),
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since u, v, w ∈ S, fu + M ≥ 0, and fv ≥ 0 and fw ≤ 0 where fv and fw are
some bounded functions. Now since ∂(u2 − Tu)/∂n ≥ 0 on ∂Ω we apply the same
argument as before to get u2 > Tu in Ω. Therefore u1 < Tu < u2 in Ω.

We also show v1 ≤ Tv ≤ v2 and w1 ≤ Tw ≤ Tw2 by using u, v, w ∈ S and
the differential inequalities of vi and wi. More precisely as before we have ∆(v1 −
Tv) ≥ 0 in D′(Ω). By the weak Maximum principle [3, Corollary 3.2] we get
supΩ(v1 − Tv) ≤ sup∂Ω(v1 − Tv)+. Now suppose there exist a constant k > 0 and
a point x0 ∈ ∂Ω such that

sup
∂Ω

(v1 − Tv)+ = (v1 − Tv)(x0) = k.

Since v1 and Tv are continuous, we can find a set Ωk such that Ωk = {x ∈ Ω :
(v1 − Tv) < k} and Ωk ∩Ω = x0. We now apply Hopf lemma in Ωk, Lemma 3.4 in
[3], to get

0 ≥ ∂v1

∂n
(x0) ≥ lim inf

x→x0

v1(x0)− v1(x)
|x0 − x|

>
∂Tv

∂n
(x0) = 0.

The contradiction is apparent. Thus there is no such k > 0,(hence sup∂Ω(v1 −
Tv)+ = 0) and thus Tv ≥ v1. Similarly we get the rest of inequalities, and for i =
1, 2, Tv 6≡ vi and Tw 6≡ wi. This shows the map T satisfies the first inequalities in S.
(In the case if we find ui,i = 1, 2 as lower/upper solutions in a distributional sense
we apply the same arguments as we did for v1−Tv to get the desired inequalities.)

We show the map T is compact, satisfies the second inequalities (this leads T
being into), and continuous in S to get a fixed point in S. The map is compact since
the source term is uniformly bounded in u, v and w. To be precise, since u, v, w ∈ S
and the source terms f , g and h are uniformly bounded in L∞, thus we apply the
LP -theory [11, Proposition 7.18] to obtain the uniform bounds of the solutions Tu,
Tv, and Tw in W 2,P (Ω) for given P > N , namely, ‖Tu‖W 2,P ≤ C(N,P, M)‖f‖LP ,
‖Tv‖W 2,p ≤ C(N,P )‖g‖LP , and ‖Tw‖W 2,p ≤ C(N,P )‖h‖LP . Apply imbedding
theory [3, Theorem 7.26] to get the uniform bounds of the solutions Tu, Tv, and Tw
in C1,α(Ω) where 0 < α < 1−N/P is independent of solutions. Since we now have
C1,α(Ω) bounds uniformly in Tu, Tv and Tw we simply let their uniform bounds
to A, B and C respectively. Thus T maps S into. Furthermore, T (S) ⊂ C1,α(Ω)
which is precompact in C1(Ω) with 0 < α < 1−N/P . This leads T is compact in
S. Finally to show the map T is continuous, we take convergence sequences ui, vi

and wi and show that the sequences Tui, Tvi and Twi have limits in S. Calculate

∆(Tui − Tuj)−M(Tui − Tuj) + f(x, ui, vi, wi)− f(x, uj , vj , wj) + M(ui − uj)

= ∆(Tui − Tuj)−M(Tui − Tuj) + (fu + M)(ui − uj)

+ fv(vi − vj) + fw(wi − wj)

Since Tui, vi, wj are in S and M > 0 the LP -theory [11] leads to

|Tui − Tuj |W 2,P ≤ C(|ui − uj |L∞ + |vi − vj |L∞ + |wi − wj |L∞)

and this implies Tui is a Cauchy sequence in W 2,P (Ω) and thus (by imbedding)
the sequence Tui has a limit in S. Similarly vi and wi have limits in S as well.
Therefore there exists a fixed point Tu = u, Tv = v and Tw = w in S. Now apply
regularity arguments [3] to obtain W 2,P (Ω) ∩ C1,α(Ω)-solutions. This completes
the proof. �
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We note that the regularity of the solutions can be improved to C2,α(Ω) if we
allow
f(x, . . . ), g(x, . . . ), h(x, . . . ) ∈ C0,β(Ω) and ∂Ω ∈ C2,γ for some 0 < β, γ < 1.

3. An example: Morphogen gradients

In this section we present a biological example of the system where the details
of modeling viewpoints can be found in [5, 9, 10, 12, 14, 15].

In multicellular systems, experiments suggest that the Drosophila wing disc of
fly depends on the decapentaplegic (Dpp) gene [10]. In development of the Dpp
concentration, proteins including short gastrulation (Sog) activate to inhibit Dpp.
As a result of the activation of Sog, Dpp decreases its activity [12, 14, 15]. It is of
our interest to understand mathematical structures, in particular the steady state
solutions, on the model problem of the Dpp-Sog system. In fact, the model prob-
lem also includes effects of the co-inhibitor twisted gastrulation (Tsg), extracellular
protease tolloid (Tld) and a second ligand screw (Scw) [12, 14]. For a mathematical
simplification, this paper focuses only on the effect of Dpp and Sog. It is noted by
[5] that although the mathematical simplification may reduce the biological factors
the numerical simulation suggests that the simplified system preserves the funda-
mental features of the model system. More precisely we consider the following
system on the interval Ω ≡ (0, 1) ⊂ R

∂A

∂t
= ∆A− hLA(1−B)− hLSAD + fLB + (fLS + gLS)C + vOL

∂B

∂t
= hLA(1−B)− (fL + gL)B

∂C

∂t
= ∆C + hLSAD − (fLS + gLS)C

∂D

∂t
= ∆D − hLSAD + fLSC + vOS

with zero Neumann boundary conditions. Here A and B are the concentrations of
free ligand and of receptor-bound ligand of Dpp, respectively, and C and D are the
concentrations of the degradation of the bound complex and of the destruction of
the inhibitors Sog, respectively. Coefficients hL etc are positive constants (biological
factors) and vOL = vLH(1/2 − x) and vOS = vSH(x − 1/2) where vL and vS are
positive constants and H is the Heaviside function, where the Heaviside functions
incorporate that ligand A is produced on the half of the domain, i.e., in the dorsal
half of the embryo, and the new factor D is produced on the other half of the
domain, i.e., the ventral half of the embryo, see [5, 12, 14] for details.

To understand the stabilities of the governing system, we consider the steady
state system:

∆A− hLA(1−B)− hLSAD + fLB + (fLS + gLS)C + vOL = 0 (3.1)

hLA(1−B)− (fL + gL)B = 0 (3.2)

∆C + hLSAD − (fLS + gLS)C = 0 (3.3)

∆D − hLSAD + fLSC + vOS = 0 (3.4)

with zero Neumann boundary conditions. Now notice that using equation (3.2) we
can write (3.1) to

∆A− hLSAD − gLB + (fLS + gLS)C + vOL = 0. (3.5)
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Define v = A + C and denote u = A so that C = v− u and from (3.5) and (3.3) to
get

∆v − gLB + vOL = 0. (3.6)

Also define w = C + D such that D = w − v + u and from (3.5) and (3.4) to get

∆w − gLS(v − u) + vOS = 0. (3.7)

From (3.2) we get

B =
hLA

hLA + fL + gL
=

u

u + α
≡ B(u)

where α = (fL + gL)/hL > 0, and thus B is increasing in u. Finally we obtain an
equivalent system in the following;

∆u− hLSu(w − v + u)− gLB(u) + (fLS + gLS)(v − u) + vOL = 0 (3.8)

∆v − gLB(u) + vOL = 0 (3.9)

∆w − gLS(v − u) + vOS = 0 (3.10)
∂u

∂n
=

∂v

∂n
=

∂w

∂n
= 0 (3.11)

Note that in (3.8) for u, v, w ≥ 0 we have

f(x, 0, v, w) = (fLS + gLS)v + vOL ≥ vOL ≥ 0 ,

f1(u, v, w) = −hLSu2 − hLSuw − gLB(u)− (fLS + gLS)u < −hLSu2 ,

f2(x, u, v, w) = hLSuv + (fLS + gLS)v + vOL,

and clearly all the conditions in (F) hold.
Also in (3.9) and in (3.10), we have g(x, u, v, w) = −gLB(u)+vOS which satisfies

the conditions in (G) provided u ≥ 0, and h(x, u, v) = −gLS(v−u)+vOS which holds
the conditions (H) as well. Thus we establish the existence of positive solutions to
the system (3.8)-(3.10) in the following theorem. Since the proof follows exactly as
in the Theorem 2.1 we only construct upper-lower solutions explicitly.

Theorem 3.1. There exist positive solutions to the steady state system (3.8)–(3.10)
and (3.11).

Proof. Since the proof follows exactly as in Theorem 2.1 we only construct a set of
upper-lower solutions to the system. We first find vi, i = 1, 2, distributional lower
and upper solutions respectively. Since 0 ≤ B(u) < 1 provided u ≥ 0 we find v1

(the lower solution to v) to be a positive solution to

v′′1 − gL + vLH(1/2− x) ≥ 0 ,

where H is the Heaviside function. Set

v1 =

{
gL

x2

2 x ∈ [0, 1/2]

gL
(x−1)2

2 x ∈ (1/2, 1]

so that v1 is positive and continuous on (0, 1), and ∂v1/∂n = 0 at x = 0 and x = 1.
Since vL > 0 and v′′1 = gL a.e in (0, 1), the inequality holds.

We find v2 (the upper solution to v) to be a positive solution to

v′′2 + vLH(1/2− x) ≤ 0.
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Similar calculation as before we set

v2 =

{
−vL

x2

2 + c1 x ∈ [0, 1/2]
−vL

x2

2 + vLx + c2 x ∈ (1/2, 1]

so that ∂v2/∂n = 0 at x = 0 and x = 1 and v′′2 = −vL a.e. in (0, 1). We can find
integration constants c1 and c2 so that v2(1/2) = −vL

8 + c1 = −vL

8 + vL

2 + c2 to get
v2 is continuous on [0, 1] and v2 > v1 that is c1 and c2 satisfy

c1 >
vL

8
+

gL

8
, and c2 >

3vL

8
+

gL

8
.

We now fix the integration constants ci, i = 1, 2.
With the v2 we just found, we look for a positive solution w1 (the lower solution

to w) to
w′′1 − gLSv2 + vSH(x− 1/2) ≥ 0.

Set

w1 =

{
gLS max v2

x2

2 x ∈ [0, 1/2]

gLS max v2
(x−1)2

2 x ∈ (1/2, 1]

so that ∂w1/∂n = 0 at x = 0 and x = 1 and w′′1 = gLS max v2 a.e and w1 is positive
and continuous on (0, 1).

With v2 and w1, we now find a positive solution u2 (the upper solution to u).
By letting u2 = K(cos(πx) + 2) ≥ 1 with some large K > 1 we can see that u2

satisfies

u′′2 + f1(u2, v2, w1) + f2(x, u2, v2, w1)

≤ u′′2 − (hLS minw1 + fLS + gLS)u2 − hLSu2
2

+ hLS max v2u2 + (fLS + gLS) max v2 + vLH(1/2− x)

≤ −Kπ2 cos(πx)− hLSK2(cos(πx) + 2)2

+ hLS max v2K(cos(πx) + 2) + (fLS + gLS) max v2 + vL

≤ −hLSK2 + (3hLS max v2 + π2)K + (fLS + gLS)max v2 + vL < 0

by taking K = max{6hLS max v2 + 2π2, [h−1
LS2((fLS + gLS)max v2 + vL)]1/2}.

We now find w2 (the upper solution to w) to be a positive solution to

w′′2 − gLSv1 + gLSu2 + vSH(x− 1/2) ≤ 0.

Since min v1 = 0 and max u2 = 2K we can let w2 be a positive solution to

w′′2 + gLS2K + vSH(x− 1/2) ≤ 0.

Again we let

w2 =

{
−(gLS2K + vS)x2

2 + d1 x ∈ [0, 1/2]
−(gLS2K + vS)( 1

2x2 − x) + d2 x ∈ (1/2, 1]

so that ∂w2/∂n = 0 at x = 0 and x = 1 and w′′2 = −(gLS2K + vS) a.e. in
(0, 1). This again brings two integration constants and so we choose them such that
w2 > w1 and w2 is continuous on [0, 1]. Namely, we find d1 > (gLS2K + vS)/8 +
(gLS max v2)/8 and d1 = (gLS2K + vS)/2 + d2 where d2 holds d2 > 3(gLS2K +
vS)/8 + (gLS max v2)/8.

Finally since now we have v1 ≥ 0 it is easy to see that f(x, 0, v1, w2) = (fLS +
gLS)v1 + vLH(1/2 − x) ≥ vLH(1/2 − 1) ≥ 0 and thus we let u1 = 0 so that
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u′′1 + f(x, 0, v1, w2) ≥ 0. Clearly 0 = u1 < u2, and ∂u1/∂n ≤ 0 at the boundary.
Therefore, by Theorem 2.1 there exist solutions u1 < u < u2, v1 ≤ v ≤ v2 and
w1 ≤ w ≤ w2 and this completes the proof. �
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