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VARIATIONAL METHODS FOR A RESONANT PROBLEM
WITH THE p-LAPLACIAN IN RY

BENEDICTE ALZIARY, JACQUELINE FLECKINGER, PETER TAKAC

ABSTRACT. The solvability of the resonant Cauchy problem
—Apu = im(z))|ulP2u+ f(z) inRY; wue DVPRY),

in the entire Euclidean space RY (N > 1) is investigated as a part of the
Fredholm alternative at the first (smallest) eigenvalue A1 of the positive p-
Laplacian —A, on DLP(RY) relative to the weight m(|z|). Here, A, stands
for the p-Laplacian, m: R4+ — R4 is a weight function assumed to be radially
symmetric, m # 0 in Ry, and f: RNV — R is a given function satisfying a suit-
able integrability condition. The weight m(r) is assumed to be bounded and to
decay fast enough as r — +o00. Let 1 denote the (positive) eigenfunction as-
sociated with the (simple) eigenvalue A1 of —Ap. If [pn fo1 dz = 0, we show
that problem has at least one solution u in the completion D%P (RN ) of CL(RN)
endowed with the norm ([pn [Vul? dx)/P. To establish this existence result,
we employ a saddle point method if 1 < p < 2, and an improved Poincaré
inequality if 2 < p < N. We use weighted Lebesgue and Sobolev spaces with
weights depending on ¢1. The asymptotic behavior of p1(x) = ¢1(|z|) as
|z| — oo plays a crucial role.

1. INTRODUCTION

Spectral problems involving quasilinear degenerate or singular elliptic opera-
tors have been an interesting subject of investigation for quite some time; see e.g.
DRABEK [3] or FUCIK et al. [10]. In our present work we focus our attention on the
solvability of the Cauchy problem

~Apu = Am(z) [ulP2u+ f(z) in RY; u € DVP(RY), (1.1)

in the entire Euclidean space RY (N > 1). Here, A, stands for the p-Laplacian
defined by A,u = div(|Vu[P72Vu), 1 < p < N, X € R is the spectral parameter,
m: RN — R, is a weight function assumed to be radially symmetric, m # 0 in RV,
and f: RN — R is a given function satisfying a suitable integrability condition. We
look for a weak solution to problem in the Sobolev space D'P(RY) defined to
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be the completion of C!(RY) under the Sobolev norm

1/p
Jullosseny ™ ([ 19t ar) ™
RN

If the weight m(z) is measurable, bounded and decays at least as fast as |2|P~°
as |z| — oo, with some § > 0, the Sobolev imbedding D*?(RY) — LP(RY;m)
turns out to be compact, where LP(R™;m) denotes the weighted Lebesgue space
of all measurable functions u: RY — R with the norm

def p 1/p
el 2o oy (/ u(@) m(x)dz) " < oo.
RN
Hence, the Rayleigh quotient

AL Y inf {/ |Vu|P dz: u € DYP(RY) with / |ulP mdz = 1} (1.2)
RN RN

is positive and gives the first (smallest) eigenvalue Ay of —A,, relative to the weight

m. Now take f from the dual space D=7’ (RN) of DVP(RN), p' = p/(p — 1), with

respect to the standard duality (-, -) induced by the inner product on L#(R™). If

—00 < A < A1 then the energy functional corresponding to equation (1.1)),

TIx(u) def ;17 /RN [VulP doe — %/}RN |ul? m(z)dz — /]RN f(@)udz (1.3)

defined for u € DVP(RY), is weakly lower semicontinuous and coercive on D*P(RY).
Thus, J» possesses a global minimizer which provides a weak solution to equation
D).

The critical case A = A1 is much more complicated when p # 2 because the
linear Fredholm alternative cannot be applied. First, one has to have sufficient
information on the first eigenvalue \;; we refer the reader to FLECKINGER et al. [8]
Sect. 2 and 3] or STAVRAKAKIS and DE THELIN [2I]. One has

—Appr = hm(a) [ P20 i RY; € DYPRY)\ {0}, (1.4)

and the eigenvalue \; is simple, by a result due to ANANE [I, Théoréme 1, p. 727]
and later generalized by LINDQVIST [I4] Theorem 1.3, p. 157]. Moreover, the
corresponding eigenfunction (7 can be normalized by ||$01||Lp(RN;m) =landp; >0
in RN, owing to the strong maximum principle [24, Prop. 3.2.1 and 3.2.2, p. 801]
or [25, Theorem 5, p. 200]. We decompose the unknown function u € DP(RY) as
a direct sum

uw=ull- o1 +u'  where

i T (1.5)
ul = / uwe p(z)de € R and / u' @ p(z)de =0,
RN RN

with the weight p(z) given by p def " ?m. Tt is quite natural that we treat the
two components, ull and ", differently. The linearization of the equation

~Apu =\ m(z) [ulP2u+ f(z) in RY; u € DVP(RY), (1.6)

about ull - o1, and the corresponding “quadratization” of the functional .7; \,, Play an
important role in our approach. We will also see that the orthogonality condition

/fgal,udacz/ feP tmdz =0 (1.7)
RN RN



EJDE-2004/76 VARIATIONAL METHODS FOR A RESONANT PROBLEM 3

for f and ¢ relative to the measure p(x) dx is sufficient, but not necessary for the
solvability of problem .

Similarly as in DRABEK and HOLUBOVA [5] for 1 < p < 2, in FLECKINGER and
TAKAC [9] for 2 < p < oo, and in TAKAC [22] 23] for any 1 < p < oo, where
the domain ©Q C RY is bounded, we apply the calculus of variations using the
direct sum in order to obtain a solution to equation (L.6). We use entirely
different variational methods to treat the two cases 1 <p < 2and 2 <p < N: In
the former case we apply a saddle point method from [5l [22] 23], whereas in the
latter case we use a minimization method due to [9] which is based on an improved
Poincaré inequality. Our variational methods are different from the standard ones
because the functional Jy, needs not satisfy the Palais-Smale condition if f obeys
the orthogonality condition (L.7); cf. DEL PINO, DRABEK and MANASEVICH [I7]
Theorem 1.2(ii), p. 390].

This paper is organized as follows. In Section [2] we mention some elementary
properties of the first eigenfunction ¢; and introduce basic function spaces and
notation. Section |3| contains our main results on the solvability of problem ,
Theorem 1] for 2 < p < N and Theorem 3.3 for 1 < p < 2 < N, and some
properties of the energy functional J» needed to establish the solvability, as well.
Naturally, our approach requires the compactness of several Sobolev imbeddings
in RV with weights (Proposition |3.6) which we prove in Section In Section
we establish a few auxiliary results for the quadratization of J,,. We use this
quadratization to verify the improved Poincaré inequality (Lemma for2 <p<
N in Section [} From this inequality we derive Theorem [3.1] in Section [/} For
1 < p < 2 the quadratization of Jy, is employed in a saddle point method to prove
Theorem in Section [§] Finally, some asymptotic formulas for the eigenfunction
1 near infinity are established in the Appendix (Proposition [9.1)).

The rate of decay of ¢i(x) as || — oo is, in fact, the main cause for our
restriction p < N. The case p > N seems to require a different technique.

2. PRELIMINARIES

We now put our resonant problem (1.6)) into a rigorous setting. Set R, = [0, 00).
For z € RN we denote by 7 = || > 0 the radial variable in RY.

2.1. Hypotheses. We assume 1 < p < N throughout this article unless indicated
otherwise. Furthermore, the weight m is assumed to be radially symmetric, m(z) =
m(|z]), z € RN, where m: Ry — R is a Lebesgue measurable function satisfying
the following hypothesis:
(H) There exist constants 6 > 0 and C' > 0 such that

0 <m(r) < (1 +r)p+o
Remark 2.1. In fact, in hypothesis above, instead of m(r) > 0 for almost
all 0 < r < oo, it suffices to assume only m > 0 a.e. in RY and m does not
vanish identically near zero, i.e., for every 1o > 0 we have m % 0 in (0,ro).
However, if m = 0 on a set S C Ry of positive Lebesgue measure, then the
weighted spaces H,, = Lz(RN;goﬁFQm), LP(RY;m), etc. defined below become
linear spaces with a seminorm only. Moreover, all functions from their dual spaces
Hl, = L*(RY; <p?7pm’1), LP (RN m~1/®=1) etc., respectively, must vanish iden-
tically (i.e., almost everywhere) in the “spherical shell” {x € RV : |z| € S}. This

for almost all 0 < r < oo. (2.1)
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would make our presentation much less clear; therefore, we have decided to leave
the necessary amendments in our arguments to an interested reader.

2.2. The first eigenfunction ;. Under hypothesis , the first eigenvalue Ay of
—A, on RV relative to the weight m(]z|) is simple and the eigenfunction ¢ asso-
ciated with A; is commonly called a “ground state” for the Cauchy problem .
The simplicity of A\; forces o1 (z) = ¢1(|z|) radially symmetric in RY. Hence, the
eigenvalue problem is equivalent to

B N-1 _ -
~ (i P20 = = [l [P~} = Mm(r) @} ™" for > 0;

(o)
subject to / I ()P dr < oo and  pi(r) — 0 as r — oo.
0

It can be further rewritten as

— (PN TP = Aom(r) PN TR T for v > 05 (2.2)
¢1(r) = 0asT—0 and ¢i(r) —0asr — oo. ’

Recalling hypothesis , from (2.2)) we can deduce the following simple facts.

Lemma 2.2. Let 1 < p < N and let hypothesis H be satisfied. Then the function
N-—1

ri— 11 (r): Ry — R is continuous and decreasing, and satisfies ¢} (r) < 0 for

all r > 0.

To determine the asymptotic behavior of ¢1(r) as r — oo, we will investigate the
corresponding nonlinear eigenvalue problem in Appendix @ Higher smooth-
ness of p1: Ry — (0,00) can be obtained directly by integrating equation :
1 € CHP(R,) with 8 = min{1, p%l} We refer to MANASEVICH and TAKAC [15]
Eq. (33)] for details.

2.3. Notation. The closure and boundary of a set S C R¥ are denoted by S

and 0S5, respectively. We denote by B, o {z € RN: |z| < o} the ball of radius
0< o< o0.

All Banach and Hilbert spaces used in this article are real. Given an integer k& > 0
and 0 < a < 1, we denote by C*(R™) the linear space of all k-times continuously
differentiable functions u: RY — R whose all (classical) partial derivatives of order
< k are locally a-Hélder continuous on RY. As usual, we abbreviate C*(RY) =
C*O(RN). The linear subspace of C*(R™) consisting of all C* functions u: RY — R
with compact support is denoted by CF(R™N).

For 1 < p < 2 we denote by D,, the normed linear space of all functions
u € DV2(RY) whose norm

fullo,, ([ 16t aDP29uto) Paz) (2.3

is finite. Hence, the imbedding D,, — D?(RY) is continuous. For p = 2 we set
D,, = DV3(RY). Finally, for 2 < p < N we define D, to be the completion of
D'P(R™) in the norm (2-3). Thus, the imbedding D*?(R") — D,,, is continuous.

For 1 < p < N we denote by H,, the weighted Lebesgue space of all measurable
functions u: RY — R with the norm

def B 1/2
Jull#., = (/ Juf? o dex> < 00
RN
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and with the inner product
(u,v) 4, def /RN uv? > mdr  for u,v € Hy,.

The imbedding H,, — LP(RY;m) is continuous for 1 < p < 2, and LP(RY;m) —
H,, is continuous for 2 < p < N, by Lemma The Hilbert spaces Dy, and H,,,
will play an important role throughout this article.

We use the standard inner product in L?(RY) defined by (u,v) 2o Jpn uvdz
for u,v € L?(RY). This inner product induces a duality between the Lebesgue
spaces LP(R™;m) and ) (RY;m~1(P=1)) where 1 < p < oo and 1 < p’ < oo with
% + i = 1, and between the Sobolev space D'(RY) and its dual D=1#"(RN), as
well. Similarly, Df, (H,, , respectively) stands for the dual space of D, (H,,).
We keep the same notation also for the duality between the Cartesian products of
such spaces.

2.4. Linearization and quadratic forms. As usual, [ is the identity matrix from

RN*N the tensor product a ® b stands for the (N x N)-matrix T = (a;b;)1;—,
whenever a = (a;).; and b = (b;)Y; are vectors from RY, and (-, - )g~ denotes

the Euclidean inner product in RY. We introduce the abbreviation

a2+ (p—2)222) foracRY )\ {0} (2.4)

Afa) =

|af?

We set A(0) o e RVXN for all 1 < p < oco. For a # 0, A(a) is a positive

definite, symmetric matrix. The spectrum of the matrix |a|?>~?A(a) consists of the
eigenvalues 1 and p — 1. For all a,v € RY \ {0} we thus obtain

(A(a)v, v)gn

0 <min{l, p—1} < Al 2|2

< max{l, p—1}. (2.5)

The following auxiliary inequalities are Lemma A.2 (p > 2) and Remark A.3
(p < 2) from TAKAC [22, p. 235], respectively; their proofs are straightforward.
First, for any 2 < p < oo, there exists a constant ¢, > 0, such that for arbitrary
vectors a, b, v € R we have

1
¢p- ( max |a+ sb|)p_2|v\2 < / (A(a+sb)v,v)(1—s)ds
0=s=l 0 (2.6)
p—1 p—2,_ 2
< — .
=5 (0?3%(1 la+ sb|)" " |v]
On the other hand, given any 1 < p < 2, there exists a constant ¢, > 0, such that

for arbitrary vectors a,b,v € RY, with |a| + |b| > 0, we have

1

p— 1 p—2 2

——( max |a+ sb| [v]* < / (A(a+ sb)v,v)(1—s)ds
2 (ogsg1 ) 0

2 2.7)
<c¢p- (Orgsai(l la+ sb|)""|v|%.

These inequalities are needed to treat the linearization of —A, at ¢; below.

Next, as in [22] Sect. 1], we rewrite the first and second terms of the energy func-
tional Jy, using the integral forms of the first- and second-order Taylor formulas;
we set

F(u) défl/ |Vu\pdx—ﬁ/ |ulP mdz, ue DVP(RN). (2.8)
P Jr~y b Jry
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We need to treat the Taylor formulas for p > 2 and 1 < p < 2 separately.
Case p > 2. Let ¢ € DVP(RYN) be arbitrary. We take advantage of eq. (1.4) to
obtain J(¢1) = 0 and consequently

1
Flor+0) = [ 4 Flor+s0)ds
/ / (01 +59) P72V (01 + 5¢) - Vodads (2.9)

_ p—2
)\1/0 /RN lo1 + sé|P~%(p1 + s@)pmda ds.

Similarly, applying (1.4]) once again, i.e., F'(¢1) = 0, we get
Fle1+¢) = (0, 9) (2.10)

where Qg4 is the symmetric bilinear form on the Cartesian product [D1?(RY)]?
defined as follows: Given any fixed ¢ € D?(RY), we set

Qp(v,w) def /RN <[/01 A(V(p1+59))(1 - s)ds] Vo, Vw>RN dz o)

1
*Al(pfl)/ﬂw [/0 |s01+8¢|p72(1fs)ds]vwmdx

for all v,w € DYP(RY). In particular, when v = w in RY | one obtains the quadratic
form Qy(v,v). If also ¢ = 0 then

1 1
Qo(v,v) = 3 /RN (A(Vp1)Vu, Vo) dz — §A1(p -1 /RN VP P mdr. (2.12)

The imbedding D*?(RN) «— D,, being dense, we extend the domain of the sym-
metric bilinear form Qy defined by to all of Dy, x D, ; see e.g. Karo [12}
Chapt. VI, §1.3, p. 313].

Note that, due to the radial symmetry of ¢, formula yields

A(Ve) =[P 21+ (-2 750 with Voi=¢lnT  (213)

for every x € RY with r = |z| > 0. Furthermore, our definition (1.2)) of A\; and
eq. (2.10) guarantee Q;4(p, ) > 0 for all t € R\ {0}. Letting ¢ — 0 we arrive at

Qo(¢,¢) >0 for all ¢ € DLP(RN). (2.14)

Case 1 < p < 2. Since D, — DVP(RY) in this case, given any fixed ¢ € D*P(RY),
we define the symmetric bilinear form Qg4 on the Cartesian product D,, x D,

by formula (2.11)). Notice that the first integral in (2.11) converges absolutely
by inequality (2.7). The absolute convergence of the second integral in (2.11) is

obtained by similar arguments using also the continuity of the imbedding D, —
H,,, by Lemma

3. MAIN RESULTS

Recall that 1 < p < N throughout this article unless indicated otherwise.
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3.1. Statements of Theorems. The following two theorems are the main results
of our present article.

Theorem 3.1. Let2 < p < N. If f € D/ satisfies (f, 1) = 0, then problem (1.6)

¥1
possesses a weak solution u € DP(RN),

This is a part of the Fredholm alternative for —A, at A;. The proof is given in
Section |7l In a bounded domain Q C R¥, this theorem is due to FLECKINGER and
TAKAC [9, Theorem 3.3, p. 958].

The orthogonality condition (f, p1) = 0 is sufficient, but not necessary to obtain
existence for problem provided p # 2, according to recent results obtained in
DRABEK, GIRG and MANASEVICH [4, Theorem 1.3] for N = 1, in DRABEK and
HoruBovA [B, Theorem 1.1] for any N > 1 and 1 < p < 2, and in TAKAC [23]
Theorems 3.1 and 3.5] for any N > 1.

Example 3.2. For 2 < p < N, the hypothesis f € Dfp | is fulfilled, for example,
if f=f1+ f2 where fi € L*(B.;m™1) and f; = 0 in RV \ B., and f, = 0 in
B. and f, € L*(RN \ Ba;T7N+%) for some 0 < ¢ < 1. This claim follows
from the imbeddings in Lemma [£.4] combined with the asymptotic formulas in
Proposition where H{, = L? (RN; @iipmfl) is the dual space of H,,, and
L? (RV; || 7P¢3?) is the dual space of L2 (RY; [} [Pei?).

Theorem 3.3. Let N > 2 and 1 < p < 2. Assume that f# € D=1 (RN) satisfies
(f#,01) =0 and f# #£0 in RN. Then there exist two numbers § = §(f#) > 0 and

0 = o(f*) > 0 such that problem with f = f# + (mgo’f_l has at least one
solution whenever A € (A, — 0, \1 +0) and ¢ € (-0, 0).

The proof of this theorem is given in Section [§]

Remark 3.4. In the situation of Theorem [3.3] if A € (A1 — 4, A1) and ¢ € (—o, 0),
then problem (1.1 has at least three solutions uy, us,us € DVP(RY), such that

/ uztpf_lmdm</ u1apf_1mdx</ us ¥t mde,
RN RN RN

uq is a saddle point (which will be obtained in the proof of Theorem and usg, ug
are local minimizers for the functional Jy on DV'P(RY). The proof of this claim is
given in Section after the proof of Theorem [3.3

Example 3.5. For 1 < p < 2, the hypothesis f € D/, is fulfilled if |z| f(z) €
LP (RN) with p’ = p/(p — 1), by the imbedding D*P(RN) — LP(RN;|z|"?) in
Lemma

The proofs of both theorems above hinge on the following imbeddings with
weights.

Proposition 3.6. Let 1 < p < N and let hypothesis be satisfied. Then the
following two imbeddings are compact:

(a) DYP(RY) = LP(RVym);

(b) Dy, — Hy,

The proof of this proposition is given in Section [d] The reader is referred to
BERGER and SCHECHTER [2], Proof of Theorem 2.4, p. 277], FLECKINGER, GOSSEZ,
and DE THELIN [0}, Lemma 2.3], or SCHECHTER [19} [20] for related imbeddings and
compactness results.
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3.2. Properties of the corresponding energy functional. Weak solutions in
DYP(RY) to the Dirichlet boundary value problem with f € DL (RVN)
correspond to critical points of the energy functional 7y, : DY?(RY) — R defined
in (L.3) with A = A;. Owing to the imbeddings in Proposition all expressions in
(1.3) are meaningful. For the cases 2 < p < N and 1 < p < 2 < N, the geometry of
the functional Jy, is completely different; cf. FLECKINGER and TAKAC [9, Theorem
3.1, p. 957] and DRABEK and HOLUBOVA [B, Theorem 1.1, p. 184], respectively, in
a bounded domain  C RV,

In the former case, we have the following analogue of the improved Poincaré
inequality from [9, Theorem 3.1, p. 957], which is of independent interest.

Lemma 3.7. Let 2 < p < N and let hypothesis be satisfied. Then there exists
a constant ¢ = ¢(p, m) > 0 such that the inequality

/ |Vu|pdx—)\1/ |ulP m(x) dz

RN RN

>l [ Va@P v Pde s [ 9T do)
RN RN

holds for all u € DVP(RY).

(3.1)

Here, a function u € DVP(RY) is decomposed as the direct sum . If the
constant ¢ in is replaced by zero, one obtains the classical Poincaré inequality;
see e.g. GILBARG and TRUDINGER [I1], Ineq. (7.44), p. 164]. In analogy with the
case p = 2, the improved Poincaré inequality guarantees the solvability of the
Cauchy boundary value problem in the special case when f € DZP | satisfies
<f7 901> = 0.

On the other hand, the “singular” case 1 < p < 2 < N is much different and has
to be treated by a minimax method introduced in TAKAC [22] Sect. 7]. It uses the
fact that the functional Jy, still remains coercive on

Dle(RN)T & {u € D'P(RV): /

ugo’fflmdxzo}, (3.2)
RN

the complement of lin{y;} in D*P(RY) with respect to the direct sum (L.F)), viz.
DYP(RN) =lin{p;} @ DV"P(RM)T.

The following notion introduced in DRABEK and HOLUBOVA [5], Def. 2.1, p. 185]
is crucial.

Definition 3.8. We say that a continuous functional £: DV?(RY) — R has a
simple saddle point geometry if we can find u,v € DVP(RY) such that

/ u@’l’_lmdx<0</ v 'mdz  and
RN RN

max{&(u), £(v)} < inf {E(w): w € DVP(RN)T}.

Note that on any continuous path 6: [~1,1] — D?(RY) with §(—1) = u and
0(1) = v there is a point w = O(tg) € DYP(RN)T for some t; € [~1,1]. Hence,
max{&(u), E(v)} < E(w) shows that the function £ o #: [-1,1] — R attains its
maximum at some ¢ € (—1,1).

The following result is essential; in fact it replaces Lemma [3.7} For a bounded
domain Q C RY, it was shown in DRABEK and HOLUBOVA [5, Lemma 2.1, p. 185].
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Lemma 3.9. Let 1 < p < 2 < N. Assume f € D2 (RN) with (f, 1) = 0
and f # 0 in RN. Then the functional Jy, has a simple saddle point geometry.
Moreover, it is unbounded from below on DVP(RY).

Its proof will be given in Section
For 1 < p < 2 we will obtain a weak solution to problem (1.1) by showing that
the “minimax” (or rather “maximin”) expression

o Ta(ror +ul) (3.3)

By = sup inf
a<r<b ul €DLP(RN)T

provides a critical value (3 for the energy functional J, defined in . Here a,b
(—00 < a <0< b< o) are provided by the simple saddle point geometry of Jy,
established in Lemma above. Formula is justified by Lemma (§6.1)
whenever —oo < A < Ay, and f € D-Lr (RY). We will provide a simple sufficient
condition for the criticality of 8y in Lemma (§8.2)). This condition is verified in
the setting of our Theorem [3.3] as a consequence of Lemma [3.9]

4. PROOF OF PROPOSITION [3.6]
To prove this proposition, we need a few preliminary results.

4.1. Some imbeddings with weights. We begin with the classical Hardy in-
equality (KUFNER [I3] Theorem 5.2, p. 28]) which reads

[u(z)|\» p p/ 1 N
—— ) dr < (—— VulPdz, wuwe D P(RY). 4.1
L < Gy [ v ®Y). (@)
In particular, the imbedding D'?(RY) — LP(R¥;|z|~P) is continuous.
Next, we show the continuity of some more imbeddings.
Lemma 4.1. Let 1 < p < N and let hypothesis be satisfied. Then the following
imbeddings are continuous:
DY (RYN) — LP(RY; |z|7P) — LP(RY;m); (4.2)
DIPRN) < L7 (RY) © LP(RY;m), (43)
where p* = Np/(N — p) denotes the critical Sobolev exponent.
Proof. The imbedding LP(RY; |z|7P) < LP(R™;m) follows from inequality (2.1)).
By a classical result (GILBARG and TRUDINGER [I1, Theorem 7.10, p. 166]), the
imbedding DV?(RY) < LP"(RY) is continuous. Notice that (p/p*) + (p/N) = 1.

Finally, given an arbitrary function v € C(RY), we combine the Holder inequality

with (2.1)) to estimate

» o p/p* N/p p/N
[ul? mdz < |u|? dx m"/Pdx
RN RN RN

<o [ ar)"" ( R ar)”".

The continuity of the imbedding LP™ (RN) — LP(RN;m) follows because CO(R™)
is dense in LP" (RN). O
Lemma 4.2. Let hypothesis be satisfied. Then we have the following imbed-
dings:

(i) Hy, — LP(RY;m) if 1 <p<2;
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(i) My, = L2RN;m) if p=2;
(iii) LP(RY;m) — H,, if 2<p < N.
Proof. We need to distinguish between the cases 1 <p <2 and 2 <p < N.

Case p < 2. Let u € CO(RY) be arbitrary. We apply Holder’s inequality again to
estimate

p/2 (2—p)/2
/ [ulf mdx < (/ u? wﬁ)_2mdx) (/ gofmdx) = ||u||€_[m,
RN RN RN

by [en @i mdz = 1. The space CJ(RY) being dense in H,,, the imbedding in
Part (i) follows.
Case p > 2. As above, for u € C2(RY) we estimate

2/p (p—2)/p
[oertmas< ([ urmae) ([ otmae) " = Julf e
RN RN RN

The lemma is proved. O

Lemma 4.3. Let hypothesis be satisfied. The following imbeddings hold true:
(i) Dy, — DY?(RY) if 1<p<2;
(i) Dy, = DV2(RY) if p=2;
(iii) DY (RN) — D, if 2<p < N.
Proof. Again, we distinguish between the cases 1 <p <2 and 2 <p < N.
Case p < 2. Let u € CL(RY) be arbitrary. Hélder’s inequality yields

[ vl ds= [ 19 (0] g )| d
RN RN

p/2 (2—p)/2
< ([ valleipan) ([ )
RN RN
2— 2
=2 i,

by [en [#1]Pdz = A1, The desired imbedding in Part (i) now follows from the
density of CH(RY) in D, .
Case p > 2. Given u € CO(RY), we estimate

2/p (r—2)/p
[ vl lemr2ac< ([ varas) ([ eilra)
RN RN RN

—2
= AT )3,
This proves the lemma. U

Lemma 4.4. Let 1 < p < N and let hypothesis be satisfied. Then both
imbeddings Dy, — Hy, and Dy, — L (RN |0} |Pp1?) are continuous.

Proof. We need to distinguish between the cases 1 <p <2 and 2 <p < N.

Case p < 2. Since D,, — DV2(RY) with gp’l(r)r% - — %c as r — 0o,
by , the linear subspace of D,,, consisting of all functions with compact support
is dense in D,,. So take an arbitrary function v € D,, with compact support.
Using u € DV2(RY) and the properties of o1, we deduce that both integrals below

converge:

/ u? |} [P o1 % de < oo and / u? P2 mdz < oo.
RN RN
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Consequently, we are allowed to apply the weak formulation of the eigenvalue prob-
lem (1.4)) with the test function u?/p; € DYH(RY) to compute

2 P=2m(r) dx
M [ @ e me) d
= [ u@P ) ) da

xT ’Z,L2
- / P2 o) S V(L) da
RN '

¥1
ou u dp1 , u \2
=2 LP2 ’——dx—/ P29 2= (—) da.
/RN |1 $1 r o1 - |1 Y1 or (801)
Adding the last integral and estimating the second last one by the Cauchy-Schwarz
inequality, we arrive at

/\1/ u2<p’f_2mdx+/ u? | |P o172 da
RN RN

5u 9 1/2 1/2
< /p—2 (22 20 1p, —2 )
<2 [ 12 Gtan) ([ e ler et an) (4.4)
ou .\ 2 1
<92 /|p—2 d 7/ 20 P —2d
< /RNI%\ (3,) dz+3 . |4 P 1 da,

and therefore,
_ 1
Al/ u? oy 2mdﬂﬂr*/ u® i [P 7 ? da
RN 2 RN
ou, 2
<2 P2 (==) " dz < 2|ul% .
<2 [ I (G de <2uld,

It follows that both imbeddings Dy, — M, and Dy, — L2 (RY;|p}|Pei?) are
continuous.

Case p > 2. The linear space C}(RY) is dense in both D'?(RY) and D,,, by
definition. So take an arbitrary function u € C}(RY). The same procedure as for
p < 2 above leads us to the inequalities in . Again, both imbeddings D,, —
H,, and Dy, — L? (RN; ¢} [Py ?) are continuous. The lemma is proved. O

(4.5)

Next we will show that our hypothesis guarantees also the compactness
of both imbeddings D'P(RY) — LP(RY;m) and D,, — H,, for 1 < p < N.
In order to prove this compactness, given any p € (0,00), we introduce a cut-off
function 9,: Ry — [0,1] as follows: Take any C' function ¢;: Ry — [0,1] such
that 1 (r) =1for0 <r <1,91(r) =0for2 <r < oo,and ¢j(r) <0for1l <r < 2.

We define 9,(x) = 1,(r) ef ¥1(r/o) for all z € RY and r = |z|. Notice that its
radial derivative ¢, (1) = (1/0) ¥ (r/0) satisfies

[y (r)| < Crr~t for all 7 > 0, (4.6)

where C1 = 2 - supg, [¢]| < o0 is a constant. Obviously, 1,(r) =1 for 0 <r < p,
Po(r) = 0 for 20 < r < oo, and w'g(r) < 0 for p < r < 20. Now we define

the corresponding cut-off operator T},: L (RY) — LY(RY) by T,u def ou for all

loc

u € L. (RY). These linear operators are uniformly bounded from D'?(RY) (D,,,
respectively) into itself for all o > 0 sufficiently large as is shown in the following

lemma.
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Lemma 4.5. Let 1 < p < N and let hypothesis be satisfied. Then there ezist
constants Cy > 0, C3 > 0 and Ry > 0, such that for all p > Ry we have

lgtll proany < Cs llullproqesy for all u € DIP(RY); (4.7)

lvoullp,, < Csllullp,, for allu € Dy,. (4.8)

Proof. We give the proof for the case 1 < p < 2 only and leave minor changes for
2 < p < N to the reader. Let ¢ > 0. For an arbitrary function u € D*?(RY) we
have

V(1hou) = y(r) Vu(x) + u(x) i, (r) r~lz for x € RN and r = |z|.

Therefore, by the Minkowski inequality followed by (4.6) and the Hardy inequality
(4.1), we have

1ot prr ey = (/RN [V (%ou)[” dx>1/p

< (/RN [ol? |V ul? dfff)l/er (/RN A dm)l/p (4.9)

1/p
< [lull proyy + (A(/N [u(@)[? |x[7P dx)
R
< CQ ||u||D1,p(RN)a

where Cy = 14 pCy /(N — p). This proves (4.7)).
Similarly, for every u € D, we have

leulo,, = ([ 164P~ 2V () da)
1/2 12
< ([, et iwua) s (e ar)

RN RN

1/2
<lullo,, + ([ et 2ty as)

1/2

(4.10)
The last integral is estimated as follows. Using the limit formula (9.21) we have

N —
o7 eh| > 2(7? for all r > Ry, (4.11)

p—1r

where R; > 0 is a sufficiently large constant. We combine this inequality with (4.6))
to conclude that

|1y ()| < Cy o1 tey| forall 7 > Ry, (4.12)

where Cy = 2(p — 1)C1/(N — p). Applying this estimate to the last integral in
(4.10)), and recalling 1, (r) = 0 whenever 0 < r < p, for every ¢ > R; we get

1/2
lglo,, < lullo,, +Cs( [ leiPlerl 20 az) "

Finally, we invoke inequality (4.5)) to estimate the last integral. The desired estimate
(4.8) follows with the constant C3 > 0 given by C3 =1 + 2C}. a

Denoting by J (J,,, respectively) the continuous imbedding
DVP(RN) — LP(RN;m) (D,, — H,, ), we now show that the operators

JT,: DYP(RY) — LP(RY;m) (Jor Ty Dy, — Hy,y)
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converge to J (J,,) in the uniform operator topology as ¢ — oc.

Lemma 4.6. Let 1 < p < N and let hypothesis be satisfied. Then, as o — oo,
we have

(1 —vo)ullLe@nim)y — 0 uniformly for [lulprr@~y) < 1; (4.13)
(1= tg)ulls,, — 0 wuniformly for |[ullp, <1. (4.14)
Proof. From hypothesis we get
crp C
m(r)rP < d < for all r > 0.

T (IT4r)pte T (141)0
Hence, for any o > 0,

/ lulPmda < Lé/ |u|? || 7P da
lz|>0 (1+0) \m|>g

C
Sw( ) [|u ||D1p(RN

by the Hardy inequality (4.1). Letting ¢ — oo we obtain the convergence (4.13).
Similarly as above, we combine hypothesis and inequality (4.11]) to compare
the weights

p—2 P
<,0/1 (r) m(r_) < Csr < Cs 5 forallr > Ry,
[ ()P er(r)=2 = (L+r)p*s = (L r)
where ( )
_2p—1)p
Cs = ( N> )'e.

We use this inequality to estimate the second integral on the left-hand side in (4.5]),
thus arriving at

~ 1+9)° -
n [ mae s S [ mar <2l
RN 5 ‘:E|ZQ

for every p > R;. Letting 9 — oo we obtain the conclusion (4.14]) immediately. O

4.2. Rest of the proof of Proposition According to Lemmas [£.1] and [4-4]
it remains to show that the imbeddings DV?(RY) < LP(RY;m) and D,, — H,,
are compact. We take advantage of the well-known approximation theorem (see
Kato [12, Chapt. III, §4.2, p. 158]) which states that the set of all compact linear
operators S: X — Y, where X and Y are Banach spaces, is a Banach space. In
our setting this means that, by Lemma [£.6] it suffices to show that the operators

JT,: D"*(RY) — LP(RY;m) and J,, T,: Dy, — H

Y1
respectively, are compact for each ¢ > 0 large enough.

Recall B, = {z € RN: |z] < r} for 0 < r < co. A function u € L?(B,) or
u € L2(RN \ B,;m), respectively, is naturally extended to all of RY by setting
u(z) =0 for all z € RN \ B, or for all x € B,. We observe that

Wy P(B,) = {u € D'"P(RY): u = 0 almost everywhere in RV \ B,.}
and set

Dy, (Br) o {u € D,,: u=0 almost everywhere in R \ B,.}.
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Clearly, Wy (B,) is a closed linear subspace of D*P(R) and the same is true of
Dy, (By) in Dy, .
Proof of Part (a). By Lemma the cut-off operators

T,: DYP(RY) — Wy (By,) C D'P(RY)

are uniformly bounded for all ¢ > R;. Furthermore, the imbedding WO1 P(Bgp) —
LP(Bsy,) being compact by Rellich’s theorem, and LP(Bs,) — LP(RY;m) being
continuous by (2.1), we conclude that JT,: D'?(RY) — LP(RN;m) is compact as
well, whenever o > R;.

Proof of Part (b). We need to treat the two cases 1 < p < 2and 2 < p < N
separately.

Case p < 2. By Lemma the operators T,: D,, — Dy, (B2,) C Dy, are
uniformly bounded for all ¢ > R;. Furthermore, the imbedding D, (Ba,) —
W&’Q(ng) is continuous by 7, def inf (¢, o) |©1|P~2 > 0. Finally, the imbedding
W, %(Ba,) < L?(Ba,) being compact by Rellich’s theorem, and L?(Ba,) < H,,
being continuous by , we conclude that J, T,: D, — H,, is compact as well,

whenever o > R;.
Case p > 2. First, taking an arbitrary function u € C*(R") with compact support,

we derive inequalities (4.4) and (4.5). In particular, inequalities in (4.4)) entail

~ L Ou.a 1/2 _ 1/2
w [ e <a( [ Gt ([ el o)

2 7 -2 1/2
<2ulp,, ([ el ortar)

(4.15)
We need to show that, besides inequalities (4.5)), we have also
/ I[P o7 u?de < 9-log (@1(0)> Nul|3, for every R > 0. (4.16)
Br e1(R) e

To this end, fix any ' € RY with |2/| = 1, and take x = 72’ with 0 < r < R.
We use eq. (2.2) to compute

N ()P o1 (r) T u(ra’)? = — (erl . oy
- _/0’" % [N 0 (5) P21 (5)' 01 (s) ) u(sa’)?] ds
=\ /07'm(s) sVl (5)P 2 u(sa’) 2 ds

+ /OT V-1 o, ()P S01(S)72 u(s:c’)Q ds

b2 [ AP i) uls) B s s
0 S
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Estimating the last integral by the Cauchy-Schwarz inequality, we have

NP ()l < A0 [ () (s P (s 5 s

0
+2/ 11 (8)|P p1(s) 2 u(sa’)? sV ds
0

" ou ?
! p—2 [ 2 / N-1
+ [Taer? (Gren) o ras

Next, setting y = sz’, we integrate this inequality with respect to 2’ over the unit
sphere S; = dB; C RY endowed with the surface measure o to get

PV ()P oy ()T u(ra)? do (2’
PP 1 (1) /Sl< 2 do ()

SAl/ u? wﬁ’_dey+2/ u? | [P o1 dy (4.17)
B

ou 2
rp—2 (22 2 2 _ 2
+ /B IRl (5) o < Sl + s, =91,

by ineq. (4.5). Finally, upon multiplication by —} /@1 followed by integration over
0 <r < R, we arrive at the desired inequality .

Again, by Lemma [4.5] the operators T,,: Dy, — Dy, (Ba,) C D, are uniformly
bounded for all o > R;. In order to show that JT,: D, — H,, is compact, it
suffices to verify that the imbedding D, (B2,) — H,, is compact. So let o > Ry
be fixed.

Consider an arbitrary bounded sequence {u, }52; in the Hilbert space D, (Ba,).
Hence, there exists a weakly convergent subsequence denoted again by {u, 52,
ie, up, — u in Dy, (Bg,) as n — oo. Replacing u, — v by wu,, we may assume
u, — 0 weakly in Dy, (Bg,). In addition, we may assume |[u,|p, < 1 for all
n=1,2,.... Next, we show that u, — 0 strongly in L? (ng; |g0’1|p<p1_2). Choose
€ > 0. Fix Ry > 0 small enough, such that

9~10g( ©1(0) )Sg’

¢1(Ro)
by lim, o ¢1(r) = ¢1(0) > 0. Hence, inequality (4.16)) entails
/ | [P o2 u? da < S forn=12,.... (4.18)
BRO 2

Since 7, inf(r, 20 [¢1P72 > 0, by Lemma the sequence {u,}52; is
bounded in the Sobolev space W'2(By, \ Bg,), by inequalities ({.5). The imbed-
ding W2(Bsg, \ Br,) — L*(Ba, \ Br,) being compact by Rellich’s theorem, we
conclude that u,, — 0 strongly in L?(Ba, \ Bg,). Consequently, there is an integer
ng > 1 large enough, such that

/ | [P o2 u? da < S for every m > ny. (4.19)
B2,\BR, 2

We combine estimates (4.18)) and (4.19) to obtain

/ | [P o7 u de < e for every n > ng.
2

e
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This means that u,, — 0 strongly in L? (Ba,; |<p’1|p<p1_2). Finally, from inequality
we deduce u,, — 0 strongly also in H,,,. Hence, the imbedding D, (B2,) —
H,, is compact as claimed.

We have completed the proof of Proposition [3.6

5. PROPERTIES OF THE QUADRATIZATION AT (o1

In this section we state a few analog results to those in TAKAC [22] Sect. 4] that
are employed later in the proofs of Theorem and Lemma
Note that inequality (2.5)) entails

min{1, p — 1}”1}”2@¢1 < /N<A(V¢1)VU,VU>RN dz < max{l, p — 1}”’0”%@1 (5.1)
R

for v € Dy,,. Several important properties of D,, are established below. The
following result is obvious.

Lemma 5.1. We have Qo(p1,1) =0 and 0 < Qo(v,v) < oo for all v € D, .

We denote by A, the Lax-Milgram representation of the symmetric bilinear
form 2- Qg on Dy, x D, (see [I12, Chapt. VI, Eq. (2.3), p. 323]). In our setting
this means that Ay, : Dy, — D, is a bounded linear operator such that

(Ap,v,w) =2- Qo(v,w) for all v,w € D, (5.2)
Identifying the dual space of Dg, with D,, (see YOSIDA [26, Theorem IV.8.2,
p. 113]), we find that A, is selfadjoint in the following sense:

(Agp,v,w) = (v, Ay, w) for all v,w € D, .
Note that our definition of Qg yields Ay, 1 = 0. Since the imbedding Dy, — H.,,
is compact, the null space of A, denoted by

ker(Ay, ) = {v € dom(Ay,): Ay, v =0}

is finite-dimensional, by the Riesz-Schauder theorem [12, Theorem I11.6.29, p. 187].

Lemma [5.1] provides another variational formula for A, namely,
f]RN <A(v@1)vuv VU>RN dx
(0= 1) fan Jul? f* mda
cf. eq. (1.2]). This is a generalized Rayleigh quotient formula for the first (smallest)
eigenvalue of the selfadjoint operator (p—1)"1 Ay, + X\ @fﬁzm: D,, — Dy, , where
A,, has been defined in (5.2). The following result determines all minimizers
for (5.3)):

Proposition 5.2. Let 1 < p < N and let hypothesis be satisfied. Then a
function u € Dy, satisfies Qo(u,u) = 0 if and only if uw = k1 for some constant
Kk €R.

Alzinf{ :OiueD%}, (5.3)

The analogue of this proposition for a bounded domain Q C RY with a suffi-
ciently regular boundary 99 is due to TAKAC [22, Prop. 4.4, p. 202]. Our proof of
Proposition [5.2] below is a simplification of that given in [22].

Proof. Proof of Proposition[5.2| Recall that the embedding Dy, < H,,, is compact,
by Proposition [3.6(b). Let u be any (nontrivial) minimizer for A, in (5.3). If u
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changes sign in RY, denote u* = max{u,0} and v~ = max{—u, 0}. Then we have,
using GILBARG and TRUDINGER [I1, Theorem 7.8, p. 153],

Jan (ut)? gplf_Z mdx . Jan (A(Ve1)Vu™, Vut)py d

o e w2 w§_2mdx (p = 1) fon (@h)2 " mde
fRN PP mda . fRN (V<p1)Vu_ Vu~ )g~ dz
fRNuzgol mdx p—1) fRN 2P 2 mde
(f]RN (ut)2 ™ Zmda fRN oh mdx)/\ .y
Jon u2 V2 mdz Jan u2 P Emda Lo

Consequently, both u™ and «~ are (nontrivial) minimizers for A;.
Next, we show that if u € ker(A,,) then u is a constant multiple of ¢;. Since
@1 satisfies (1.4)), it is of class C°° in RY \ {0}, by classical regularity theory

[I1, Theorem 8.10, p. 186]. Now, for each v € R fixed, consider the function

Uy ety - vp1 in RN, Then both v* and v belong to ker(A,,) and thus satisfy

the equation
—V - (A(Ve1)VoE) = Mi(p — 1)} *moE >0 in RV \ {0} (5.4)

Again, we have vﬂf € C(RY \ {0}). So we may apply the strong maximum
principle [II, Theorem 3.5, p. 35] to eq. (5.4 to conclude that either v:y" =0in
RV \ {0}, or else vl > 0 throughout RY\ {0}, and similarly for v . This means
that sign(u— 1) = const in RV \ {0}. Moving 7 from —o0 to 400, we get u = K¢y
in RY \ {0} for some constant x € R. This means u = k¢, in D, , as claimed. O

6. AN IMPROVED POINCARE INEQUALITY (2 <p < N)

We need a few more technical tools from FLECKINGER and TAKAC [9, Sect. 5]
to prove Lemma [3.7} Although our present situation requires only a few changes in
the space setting in [9], we provide complete proofs of all results for the convenience
of the reader.

Remark 6. 1 Except when u!l = 0, we may replace u € DVP(RY) by v =u/ul in
inequality (3.1] and thus restate it equivalently as follows, for all vT € DP(RY)
with fRNv e tmdx = 0:

0 (@) = Flor+ v ) 2 (0T, + 10 I rsr)) - (61)

This remark indicates that our proof of inequality (3.1]) should distinguish be-
tween the cases when the ratio [|u” || pro @)/ |ull] is bounded away from zero by a
constant v > 0, say,

||UT||D1’P(RN)/|UH| >,
and when it is sufficiently small, say,

[w Do @ny /Jull| <~
where v > 0 is small enough. The former case is treated in a standard way analogous
to (1.2), whereas the latter case requires a more sophisticated approach based on
the second-order Taylor formula (2.11)) applied to the expression Q,r (vT, UT) on
the left-hand side in (6.1)) where v = u/ull. For either of these cases we need a
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separate auxiliary result: We derive two formulas for Rayleigh quotients outside
and inside an arbitrarily small cone around the axis spanned by ¢1, respectively.

6.1. Minimization outside a cone around ¢;. We allow 1 < p < N throughout
this paragraph. Given any number 0 < v < 0o, we set

def
¢, {ue DRY): uT[proy) <]},
¢ fue DUPER): [T ooy = Al

Note that C, is a closed cone in D"#(R") and C/, is the closure of C¢, the comple-

ment of C, in D?(RY). We consider also the hyperplane

C’mdéf{ueDl’p(RN):u”:0}: ﬂ .

0<y<oo

For 0 < v < 0o we define

VulP dx
A, g fﬂwi: ¢\ {ovh. 6.2
2 s € O (0] (62)

The next result is an analogue of [9, Lemma 5.1, p. 963] proved for a bounded
domain Q C RY.

Lemma 6.2. Let 1 <p < N and 0 <y < oo. Then we have Ay > A;.

Proof. Assume the contrary, that is, A, = A; for some 0 < v < oo. Pick a
minimizing sequence {u, };2; in C) such that

/ |unPmde =1 and / [Vup|Pde — A1 as n — oo.
RN RN

Since DLP(]RN ) is a reflexive Banach space, the minimizing sequence contains a
weakly convergent subsequence in D'P(R™) which we denote by {u,}3°; again.
Consequently, u,, — u strongly in L?(R™;m), by Proposition a), and Vu, —
Vu weakly in [LP(RY)]N as n — co. We deduce that [y |u[P mdz =1 and
AP < |Vl vy < liminf [V, || po@yy = A7
< IVl ey < i [V || Lo ) o
As the standard norm on the space D'P(RY) is uniformly convex, by Clarkson’s

inequalities, we must have u,, — u strongly in D?(R¥), by the proof of Milman’s
theorem (see YOSIDA [26, Theorem V.2.2, p. 127]). This means that

— p—1 — p—1
u‘,ll—/ Up, P mdx—>u”—/ up;  mdz,
RN RN

u! = up —ulr — u' =u—ullp; strongly in DVP(RY),

as n — oo. The set C!, being closed in D'*(RY), we thus have u € C.,.

On the other hand, from |ul|zs@y;m) = 1 and [|[Vu|| pr@y) = A}/”, combined
with the simplicity of the first eigenvalue \;, one deduces that u = £¢1, a contra-
diction to u € ny. The lemma is proved. ([



EJDE-2004/76 VARIATIONAL METHODS FOR A RESONANT PROBLEM 19

6.2. Minimization inside a cone around ¢;. For ¢ € D*?(RY) ¢ #£ 0 in RV,
let us define

(b g AT 0055 59) o

”‘b”DLP(L«NﬁO Jan {fol lp1 + s¢[P=2(1 — s) dS} |2 m dz
(077 m)=0

with the abbreviation (2.4]). Using the quadratic form Q4 defined in (2.11), we
notice that

(6.3)

A—X(p—1)= liminf 2(,¢) > 0.
190010, [ | [ o1 + s6P=2(1 = ) ds] [6[2 m de
(.07~ m):

The next result parallels [9 Lemma 5.2, p. 964] shown for a bounded domain
Q C RN,

Lemma 6.3. Let 2<p< N. We have A > \i(p — 1).

Before giving the proof of this inequality, we first recall that the kernels of the

quadratic forms Qg(v,v) and Qg (v, v) defined in (2.11)) and (2.12)), respectively, can
be compared by inequalities (2.6 for p > 2, and (2.7)) for p < 2, so that we can use

the Hilbert space D, not only for Qy but also for Q.
Next, we introduce the following notations where t € R and ¢ € DYP(RY):

Putto) 2 [ [ [l stol =21 - ) as]?mat

1
def
t = A t 1—s)d d
Priee)™ [ ([ A+ so) - 9as] 76, v9) ao
Hence, equation ([6.3]) takes the form
A= liminf Pilt, 9)

||¢||D1,p(RN)_’O PO(tv ¢)
(¢85 ' m)=0

with any fixed ¢t € R\ {0}.

Furthermore, due to inequalities (2.6)), the expressions Py (¢, ¢) and Py (t, @), respec-
tively, are equivalent to

Noft,) ™ [ (o7 el ¢ ma

= [ AT mda 0,
and
Nt 9) % / (V172 + [HP=2V6P~2) | V9|2 da
RN

= 615, + 1t 21l D10 @)
that is, there are two constants ¢y, ¢y > 0 independent from ¢ and ¢ such that

aa Ni(t,¢) < Pi(t,0) < caNi(t,¢); i=0,1. (6.4)
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Proof of Lemma[6-3. On the contrary, assume that A < \;(p — 1). Pick a mini-
mizing sequence {¢,}°2, in DYP(RN) such that ¢, # 0 in RN, (¢, 0" 'm) =0,
||¢n||D1,p(RN) — 0, and

P1(17¢n)
— A< X(p—1) asn— o0
Po(Lén) =
Next, set t, = Po(1,¢,)"/? and V,, = ¢, /t, for n = 1,2,.... Hence, we have

tn — 0, Po(tn, Va) =1, and Py (t,, Vi) — A as n — oo. Inequalities guarantee
that both sequences [[V,[p,, and tqlfli(2/p)||VnHD1,p(RN) are bounded, and so we
may extract a subsequence denoted again by {V,,}52; such that V,, = V weakly
in D,, and =@y 4 weakly in D'P(RM) as n — oo. Using the imbedding
DVP(RN) — D, , we get z = 0 in RV. Furthermore, both imbeddings D*?(RV) —
LP(RY;m) and Dy, — H,,, being compact by Proposition we have also V,, —
V strongly in ‘H,, and t,lf(2/p)Vn — 0 strongly in LP(RN;m). It follows that
(V,"""m) = 0 and

1

Po0.V) =5 [ A dr— 1,
RN

P10,V) = 5 (A(Vo)VV, VV) < & < i(p— 1)

Consequently, Proposition forces V = ke in RV, where x € R is a constant,
% # 0 by Po(0,V) = 1. But this is a contradiction to (V, %~ 'm) = 0. We conclude
that A > A (p — 1) as claimed. O

6.3. Proof of Lemma If u € DYP(RYN) satisfies (u,¢1) = 0, then equa-
tion (|6.2)) implies
A

/ |[Vul|P do — )\1/ [uPmdz > (1--—) / |Vul|P dz
RN RN Aoo RN
)\1 T
=(1 - — p
( Aoo)/]RN [Vu'|Pda

where A1 /Ao < 1 by Lemmal6.2] Thus, we may assume (u, 1) # 0 and so we need
to prove only inequality . We will apply Lemmas and to the following
two cases, respectively.

Case ||UTHD1,p(RN > 7: Here, v > 0 is an arbitrary, but fixed number. In analogy
with inequality above, we have

(6.5)

/ |V301+VUT|pdw—)\1/ lor + v |Pmda
RN RN
A

> (1- —)/ Vo1 + Vo' |Pde > c,y/ Vo |Pdx
Ary RN RN

(6.6)

for all vT € DVP(RY) such that (vT, " 'm) = 0 and lvT || pro®ay = 7, where
¢y > 0 is a constant independent from v'. The last inequality follows from the

boundedness of the orthogonal projections u — ull - ¢; and v — ' in DYP(RN).
Recalling the imbedding D'?(RY) — D, , we deduce from that inequal-

ity (6.1)) is valid provided [[v" || pro@y) > 7.
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Case ||v" | pro@yy < 7: Here, v > 0 is sufficiently small. According to equa-

tion (6.3) and Lemmawe have
Qv v ) =Pi(1,0") = M(p—1)Po(1,v")

> (1 - w)ﬂ(lﬂﬁ) (6.7)
é-N(1,v")

forall T € D'P(RV) such that (v, ¥ 'm) = 0 and [vT | pr.o@yy < 7, where y >
0 is sufficiently small and & > 0 is a constant independent from v . Recall that the
expressions P;(1,v") and NV;(1,v") (i = 0,1) have been defined after Lemma
From (6.7) we deduce that inequality (6.1) is valid also when [[v" || p1oga) < 7.

Remark 6.4. Assume 2 <p < N and let f € D), satisfy (f, 1) = 0. Recall that
DY (RN) < D,,. Although the functional Jy,, defined in with A = Ay, is no
longer coercive on D*P(RY), it is still not only bounded from below, but also “very
close” to being coercive on the weighted Sobolev space D, , as a direct consequence
of improved Poincaré’s inequality . This property of Jx, will be used in the

next section to prove the existence theorem (Theorem [3.1)) for problem (/1.6)).

>

7. PROOF OF THEOREM [3.1]

Our proof of Theorem combines the improved Poincaré inequality (3.1)) with
a generalized Rayleigh quotient formula. To this end, we may assume that f € Dfp L
satisfies f # 0 in RY and (f,¢1) = 0. Define the number My, for 0 < My < oo, by

M sup [(fsv)[P

veD P (RN) Jan IVOPdz — Ay [on [0[Pmda

vg{kp1: KER}
Clearly, M; > 0. Moreover, inequality (3.1]) entails

P TP
O < W sy 10 ey < €y ([ 190 dz =2 [l m o)

for all v € DYP(RY), where Cy = ¢! Hf”]j:)—lm’(RN)
My < Cf < oo. In a similar way we arrive at

2
=2 (o) < 1o 2 (£l ) 0TI,

= C}( |VolP dz — A\ |v|pmdx) for all v € DLP(RN)’
RN RN
(7.2)

(7.1)

is a constant. This shows that

where '} = c’l(||Jt||D;)1)2 is a constant, and || - ||D;1 stands for the dual norm on
Dg,,. (From (7.1) and inequality (7.2) we can draw the following conclusion: If
v € DYP(RY) is such that v" # 0 in RV and
[(f,v) [P
Jen IVO[Pdz — Ay [on [0[Pmde

> =My,

1
2
then (f,v) # 0 and

[olP=2 < 2(Ch /M) | (£ 0) % < (P 0T 152 v
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where C} = [2(C}/M;)]H/ =2 [fll p-1.0 oy is a constant, i.e.,
o1 < C o7 prsany- (7.3

Next, take any maximizing sequence {v,}>°; in DV?(RY) for the generalized
Rayleigh quotient (7.1)), that is, v,] # 0 in R and

|(f, vn) P
Jan [Vop|Pde — Ay [on |vn P mda

— My asn— oo. (7.4)

Since both, the numerator and the denominator are p-homogeneous, we may assume
[vnll pr.e@yy = 1 for all n > 1. The Sobolev space D'P(RY) being reflexive, we
may pass to a convergent subsequence v, — w weakly in D"P (RN ); hence, also
v, — w strongly in LP(RY;m), by Proposition a), and (f,v,) — (f,w) as
n — co. We insert these limits into to obtain

/|Vw\pdx—)\1/ |w\pmdm§1—)\1/ |w|pmdx=M}?1\<f,w>|p. (7.5)
RN RN RN

In particular, we have w # 0 in RY, therefore also w' # 0 by , and conse-
quently |(f,w)| # 0 by (7.5). We combine with to get [on |[Vw|Pdz = 1.
Hence, the supremum M} in is attained at w in place of v.

Finally, we can apply the calculus of variations to the inequality

/ |Vv|pdm—)\1/ \v|pmdx—MJfl|<f,v)|p20 for v € DVP(RY)
RN RN

to derive
—Apw — Ay m|wP?w = M;H(f, w)[P2(f,w) - f(z) inRY.
ef

It follows that u M}/(p_l)(f, w)~! - w is a weak solution of problem ([1.6]).
Theorem is proved.

8. PROOF OF THEOREM [3.3]

In contrast to the case 2 < p < N in Section [6, Remark [6.4] for 1 < p < 2
the functional Jy, will turn out to be unbounded from below on D''?(RY) along
curves “close” to 791 as T — 400, even though it still remains coercive on the
complement D'P(RN)T of lin{p;} in D'P(RY) defined in . Again, we take
advantage of the direct sum D'P(RY) = lin{p;} & D*P(RV)" defined in (L.5).
These facts show that the functional 7y, has a simple saddle point geometry. Such
a scenario is typically suitable for a saddle point theorem which guarantees the
existence of a critical point for J,, by means of a minimax formula for a critical
value of J,. Here we make use of a “very direct” minimax method introduced
in TAKAC |22, Sect. 7] which does not require any Palais-Smale condition. In this
section we adapt this method to our setting. In a closely related work DRABEK and
HoruBoVA [B, Theorem 1.1] applied the saddle point theorem from RABINOWITZ
[18, Theorem 4.6, p. 24] to establish an existence result for problem when
Q c RY is a bounded domain and 1 < p < 2.

As we allow the function f € D=%?'(RY) in the energy functional to vary,
we write T (u) = Ja(u; f).
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8.1. Simple saddle point geometry. For A = )\; it will be convenient to use the
notation

Er(u) &f I, (u; f)  for u € DMP(RY).

Proof of Lemma[3.9 We infer from Lemma that Ao > A7 in formula .
This shows that the functional &; is coercive on C., = DP(RM)T. Hence, be-
ing also weakly lower semicontinuous, £ possesses a global minimizer ug over
Dl,p(RN)T’
Er(ug) = weDli,rr}fRN)T Er(w) > —o0.
Now let us look for the functions u and v, respectively, in Definition [3.§ in the

forms of
uy = 7901 + 7P with 7 € (0, 00) sufficiently large, (8.1)

where ¢ € C}(RY) is a function chosen as follows:
(®) (f,¢) =1 and 0 ¢ K where

def
K =supp(¢) = {x € RN: ¢(x) #0} (CRY)
denotes the support of ¢.

The existence of ¢ is verified as follows. Since f € D~1¥ (RN) satisfies f # 0
in RV, there is a function ¢g € CI(RY) such that (f, o) = 1. On the contrary
to (@), suppose that the support Ky = supp(¢g) of ¢o always contains 0 € RY.
This is equivalent to saying that (f,¢) = 0 whenever ¢ € C}(RY) is such that
0 ¢ supp(¢). Now choose a C! function ¢: Ry — [0,1] such that ¢(r) = 1 if

0<r<1,0<9Y(r)<1ifl<r<2 and ¢(r) =0if 2 < r < co. Define
Y () def P(nlz|) for all # € RY; n = 1,2,.... Then 0 ¢ supp((1 — v¥n)¢o)
which yields (f, (1 — ¢n)do) = 0. Hence (f, ¥ndo) = (f, do) = 1. However, this is

contradicted by [[1n o p1.pmyy — 0 as n — oo, which follows easily from

IV (¥ndo)llLe@yy < l[Pollnoe @) IVl Lo @yy + IV G0l Loo @y [[90n || e (mvy
with both

IVnllLe @y = nlf(N/p)HV?/JHLP(RN) — 0,

[¥nllo@yy =1~ NP Y| Lo @y — 0

asn—o00, by 1l <p<2<N.
So let ¢ € CH(RY) satisfy condition (®). For 7 € (0,00) we compute

/ Ut apf_lmdx:ir—&—Tl_(p/g)/ P mdu, (8.2)
RN RN
by [en ¢f mdz = 1. It follows that
/ u_ @ Pmdr <0< / uy @ Pmdz  for all 7 > 0 large enough.
RN RN

Next we use egs. (2.10) and (2.11)) together with (f, 1) = 0 to obtain
Ef(ug) = I, (Frpr + 77 #Pg) =
Qirrr2g(#:8) = 7' 6) = Qurovrag(9,0) — 770/,

We recall that the quadratic forms Q. —»/24 are given by formula (2.11)). Since
infx V1| > 0, infg o1 > 0, and ¢ is supported in K C RY \ {0}, we conclude

(8.3)
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that both summands in Q, —»/24(¢,#) are bounded independently from 7 > 7,
provided 1y € (0, 00) is large enough. Finally, from (8.3) we deduce that £f(u+) —
—o0 as T — 400. The conclusion of the lemma follows. (]

8.2. A minimax method. We allow 1 < p < N throughout the entire paragraph
even though we apply the results to the minimax expression in only for p < 2.

We assume that 0 < A < A —nand f € D—Lr (RN). Here, 7 is an arbitrary,
but fixed number with 0 < 7 < Ao, — A1. Furthermore, in view of Lemma with
v = Yy, we find a constant 0 < v, < oo large enough, so that A, > A, — %77, and
set 1

c=3 (1 - (A — n)A;ﬁl) > 0.

Note that for any fixed 7 € R the functional u' +— Jy(7¢; +u') is coercive on
the (closed linear) subspace D'?(R™)T of DLP(RV). This claim follows from the
following inequalities which are valid whenever |7| <T < 5, ' lu" || pr.ogx), for any

fixed T € (0, 00):

/ V(rgr +uT)Pdz — (Ao — 1) / (rr +uT) P mda
RN RN

Ao —
> (1 — 77)/ IV(rp1 +u")P dz
Yn RN

Ao —
> (1~ Tn> 176 Nz gyy = 171 [V o) |

>c IlvuT”iP(RN) —Cr,

with another constant 0 < ¢y < oo depending solely on 7. The first inequality
in is easily derived from formula . Consequently, any global minimizer
u! for the functional u' — J\(7¢1 +u') on DM (RM)T satisfies the estimate
|ul | pro@yy < Cr < 0o, where Cr is a constant independent from A € [0, Ao — 7]
and 7 € [-T,T]. Such a global minimizer always exists and verifies the Euler-
Lagrange equation

= Dp(r1 +ug) = Am() [Ter +uf [P (ror +ug)

8.5
= (@) + ¢ m(x) p1 ()P i RY, (8.5)

with a Lagrange multiplier ¢, € R. Thus, we may define
AEE  min Tl +ul). (8.6)

uwTeDLp(RN)T

In the rest of our proof of Theorem [3.3|in we will show that for 1 < p < 2 the
function jy: R — R attains a local maximum under the conditions of Theorem [3.3

In analogy with the notation Jy(u) = Jx(u; f), we write also j\(7) = jx(7; f) if
f € D17 (RN) varies, to avoid possible confusion.

Lemma 8.1. Let 1 <p < N. The mapping
(T ) e AT ) R x [0,Ag — ] x DTV(RY) R (8.7)

is continuous. In particular, if 0 <T < oo and K is a compact set in D1 (RN),
then

{jA('?f):[_T’T]_)R: (Avf)e[07Aoo_77]XK} (8'8)
is a family of (uniformly) equicontinuous functions.
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Proof. Let 7, — 70 in R, pup, — po in [0,Ase — 7], and f,, — fo in D’l’p,(RN)
as n — o0o. Suppose that j,, (7; fn) does not converge to j,,(70; fo) as n — oc.
Passing to a subsequence if necessary, we may assume

l%nniigf |j,un (Tns fn) — Juo (70; fo)| > 0. (8.9)

Consider any global minimizer u,, for the functional u' — J, (T.1 +u'; fn)
on DYP(RN)T: n =1,2,.... The sequence {u, }22; is bounded in D'?(RY), by
ineq. , and hence, it contains a weakly convergent subsequence (indexed by n
again) u, — w' in DYP(RM)T as n — oco. ;From the weak lower semicontinuity
of Jx on DVP(RY) we obtain

liminf j,, (75 fn) = liminf Jy, (1 + u,) 3 fn)
> Jouo (Top1 + w5 f0) > Guo (705 fo)-

On the other hand, if ua— is any global minimizer for the functional u” — T (Top1+
u'; fo) on DYP(RN)T | then one has

(8.10)

llmsupjun (Tn;f’l’b) S llm jﬂfn (Tn(pl + u(—)r; fTL)
n—oo neo (8.11)

= Tuo (T001 + g 5 o) = o (03 fo)-
We combine inequalities (8.10) and (8.11) to get
lim jun (Tn§ fn) = juo (TO§ fO)
n—oo

which contradicts (8.9)). The continuity of (7, A, f) — jx(7; f) is proved.
Finally, the equicontinuity of the family (8.8)) is a consequence of the uniform
continuity of the mapping on the compact set [-T,7T] x [0, Ao — 5] x K. O

Remark 8.2. We claim that in the proof of Lemma w' is a global minimizer for

the functional u” — J,, (to1 +u'; fo) on DVP(RY)T and we have also u,] — w'

strongly in DVP(RY) as n — oo. First of all, (8.10]) and (8.11)) imply

Fn (T fr) = Ty (Tnp1 + 03 ) = Touo (Totp1 + w5 fo) = Fpu (703 fo)-

T_\wT

Combining this result with 7,, — 79, g — po, frn — fo in D-Lv (RM), u,}

weakly in DVP(RY), and u,) — w' strongly in LP(RY;m), we arrive at
HTnSOl + uZHDLp(RN) — HTogol + wTHDLP(RN) as n — o0.

Thus, the uniform convexity of the standard norm on D*?(RY) forces 7,01 +u, —
Topr +w ' strongly in DP(RY). Our claim now follows as 7,, — To.

Obviously, if the function jy: R — R has a local minimum at some point 7y € R,
and u is a global minimizer for the functional v + Jy(ro¢1+u") on DYP(RN)T,
then ug = 7op1 + ug is a local minimizer for J) on D*?(RY) and thus a weak
solution to problem (L.I)). Our next lemma displays a similar result if j has a local
mazimum at 79 € R; it claims that §) in is a critical value of 7).

Lemma 8.3. Let 0 < A < Ay —n and f € D=V (RN). Assume that the function
in: R — R attains a local maximum By at some point 19 € R. Then there exists
u(—)r € DYP(RM)T such that u(—)'— is a global minimizer for the functional u' +—
In(topr +u') on DVP(RM)T wy = 79001 + ua— is a critical point for Jx, and

I (ug) = Ba.
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Proof. Given an arbitrary numerical sequence {7,}52 ; with 7,, — 79 in Rasn — oo
and 7, # 19 for all n > 1, we can deduce from Remark that this sequence

contains a subsequence denoted again by {7, }>2 ;, such that foreachn =0,1,2,...,

u, is a global minimizer for the functional u' + J\(The1 +u') and u,] — ug

strongly in DVP(R™) as n — oo. It follows that

In(Tatpr + 1) — Ta(ropr +up ) < Ta(Tapr +u,) ) — Ta(Topr +ug) (8.12)
= ja(1n) — jx(10) <0 '

for all integers n > 1 sufficiently large; again, we may assume it for all n > 1.
On the other hand, denoting

n(s) & 001+ u) + s(7 — o)1 for 0<s<1n>1,
we have
‘7)\(7—"901 +U;Lr) - jA(T0§01 +u;Lr) = (Tn - TO) f()l <j)/\(¢n(5))v 901> ds

where

(Ta(on(s)) 1) = [ | 19057 Tn(s) - Viada
A 0P ons) prmde— [ ferda,

Since ¢, (s) — ug = Tow1 + ug strongly in DP(RY) and uniformly for 0 < s < 1,

we arrive at
(771*7'0)71 [jA(Tnle +UI)*\7A(T0801 +UI)] (8.13)
— (Ix(w), v1) = Co @1l rmym) =G0 as n — oo,

where

(Tx(ug), p1) = / |Vug|P~2 Vug - Vi da
RN

— )\/ |u0|p_2u0301 mdx —/ fprdx
RN RN

and (p € R is the Lagrange multiplier given by 73 (uo) = (o m@f_l.

Finally, if we choose 7, such that the sign of (7, — 79) does not change for all

n=1,2,..., then (8.12) and (8.13)) yield ¢y, < 0 if sgn(r, — 79) = 1, and (o > 0 if

sgn(r, — 79) = —1. Since both alternatives are possible, we conclude that {; = 0
which shows Jj (ug) = 0, i.e., ug is a weak solution to problem (1.6)) as desired. In
particular, J(ug) is a critical value of 7. O

Remark 8.4. As an easy consequence of (8.12)), (8.13)) in the proof of Lemma
we conclude that the function jy: R — R is differentiable at 7o with j4(79) = 0.

8.3. Rest of the proof of Theorem We deduce from Lemma[3.9] that there
exist a,b € R such that a < 0 < b and

max{j, (a; [7), ja, (b5 f%)} < jin, (0; f7).

The “continuity” Lemma shows that there exist numbers § = §(f#) > 0 and
0 = o(f#) > 0 such that also with f = f# + Cmgo’l)_l we have

max{jx(a; f), jx(b; f)} < (05 f)
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forall A € (\; — 8, A\ +0) and all ( € (—o,0). Now we can apply Lemma to
conclude that the functional Jy(-; f) possesses a critical point u; = 711 + u] ,
with some 71 € (a,b) and u{ € D*?(RN)T. This proves Theorem 3.3

Proof of Remark[3.4) If A < A1 then we have j\(7; f) — +o00 as |7| — oco. Conse-
quently, for A € (A\; — 4, A1) and ¢ € (—p, 0), the continuous function jx(-; f): R —
R possesses also a local minimizer in each of the intervals (—oo, 1) and (71, 00), say,
75 and 73, respectively. Our definition of j (- ; f) now shows that us = o1 +ug and
u3 = 7301 +uq are local minimizers for Jy(-; f), with some ug ,uq € D'P(RN)T,
as claimed. (]

9. APPENDIX: ASYMPTOTICS OF THE EIGENFUNCTION ©1

To determine the asymptotic behavior of the first eigenfunction ¢; of the p-
Laplacian A, on RY subject to a weight m(|z|), for 1 < p < N, we consider a
strictly positive, radially symmetric function u: RY — (0,00) of class C!, u(zx) =
u(r) with r = |z|, z € RY, which satisfies the following partial differential equation
(in the sense of distributions on RY):

—Apu=m(lz))uP~t  for x € RY; w(|z]) — 0 as |z| — oco. (9.1)
We weaken the strict positivity in hypothesis on the weight m as follows:
(H’) There exist constants 6 > 0 and C' > 0 such that

C
and m # 0 in R,.
Under this hypothesis, we are able to establish the following asymptotic behavior
of u(r) and u/(r) as r — oo.

for almost all 0 <r < oo, (9.2)

Proposition 9.1. There exists a constant ¢ > 0 such that

lim (u(r) r%) =, (9.3)
lim (u’(r)rgjll) = —% c. (9.4)
For the related Cauchy problem,
—Apu(|z]) = f(u(|z]) for z € RY; u(|z]) = 0 as |z| — oo, (9.5)
with f(u) > 0 for u > 0 sufficiently small, the inequalities
u(r)r% >c¢; >0 and - u'(r)rg:ll > >0

for all sufficiently large r > 0 (with some constants ¢; and ¢3) have been established
in the work of N1 and SERRIN [I6], Theorem 6.1]. Their method of proof applies
also to our case. For the inequality

~Apu <m(lz))uP™t for x € RY;  w(z) — 0 as |z] — oo, (9.6)

with u(z) not necessarily radially symmetric, u(z) > 0, but with the weight m(r)
decaying at infinity faster than ours, an upper estimate on the decay of u at infinity
can be found in FLECKINGER, HARRELL and DE THELIN [7, Theorem IV.2].

In the proof of Proposition [9.1] we need a few auxiliary results.
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The Cauchy problem (9.1)) is equivalent to

N -1
_ =2, /\ _ /p—2/: p—1 f >0‘
(Ju'[P~=u") — [u P20 = m(r)u orr ; 9.7)
u'(r)—>0asr—0 and u(r) —0asr— oo.
This problem can be rewritten as
— (PN PR = m(r) PN T uPT for > 0;
(9.8)

w(r)—0asr—0 and wu(r)—0asr— oco.

We reduce this second-order differential equation to a first-order equation by intro-
ducing the Riccati-type transformation

forr >0, U(0) < 0. (9.9)

U =] Z((:)) - Z((:))

N—-1

By , the function 7 +— =1 «/(r) is nonincreasing for 0 < r < oo which implies
u’(r) <0 for all > 0, and therefore also U(r) > 0. Hence, for r > 0,

/ /! ! " !
U'(r) = ~p = 02| = o= 0 = ()]
e (WPey pot

U(r)s.
r ulP—2u r (r)?

Inserting the second derivative expression from equation , we arrive at
0'(r) = ==L V() + L V)7 )0
This is a differential equation for the unknown function U which we rewrite as
U'(r) = T v (V)7 - —=F

”
An upper bound for U(r) is obtained first:

) +m(r)rP~t for r > 0. (9.10)

Lemma 9.2. We have

det ;[N —p
U < =
(T)_CN’p (p—l

Proof. Clearly, by (9.9), the function U: Ry — R is continuous and, by (9.10), it
is differentiable almost everywhere with the derivative U’ being locally bounded.

Now, in contradiction with (9.11)), suppose that there exists a number rq > 0 such
that U(ro) > cn,p. Let

)p_l for allr > 0. (9.11)

def
r1 = sup{r’: ' > 1o and U(r) > ey, forall ro <7 <71’}

Next we show that r; = co. Indeed, equation with U(r) > cnp and m(r) >0
for ro < r < ry implies U'(r) > 0. This shows that the function U(r) is strictly
increasing for ro < r < r1. Consequently, 11 < oo would yield U(r1) = cn,p <
U(rg) < U(ry) which is impossible.

Hence, there is a constant v > 0 such that the expression inside the parenthesis

in eq. (9.10) satisfies

> ’yU(r)ﬁ for all r > ry.
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Applying this inequality to equation (9.10)) we obtain

p—1

’YU(T)P% for all r > r.
T

U'(r) >

We integrate this inequality over the interval [rg,r] to get

1

U(rg) 71 — U(r)fplf1 >« log(r/rg) for all r > rg.

Recalling U(r) > 0 and letting » — oo, we arrive at U(ro)_ﬁ > +o00, which is a
contradiction. Inequality (9.11)) is proved. |

Define the function

def p—1 /N —p .
a(r) = . (p — U(r) ) for r > 0. (9.12)
Note that a(r) > 0 by Lemma[9.2] and
_N-p u'(r) d Nop
alr) = =+ (= 1) 5 = (0= 1) gotog (u(r) o)

We substitute this function into eq. (9.10) and use integrating factor to integrate
it over any interval [rq, r] with ro > 0 fixed and r > ry. We thus obtain

T .
U(r)—U(ro)e” Jrpals)ds / m(s) sP~ e [ a®dt gg (9.13)
ro
Furthermore, we introduce the abbreviation
N-—p
T -1
A(r) e / a(s)ds=(p—1) log L% for r > ro. (9.14)
" ulro)ry
Lemma 9.3. We have a(r) > 0 for all r > 0 and
/ a(r)dr < oo for every ro > 0. (9.15)
70

Proof. The function A(r) is nondecreasing for o < r < oco. Now, suppose that
lim, o A(r) = +00. From equation (9.13]) we deduce

0<U(r)—Ulrg) e 4 < / m(s)sP~Le= A=A s for r > o, (9.16)

To

Due to our hypothesis , we are allowed to apply Lebesgue’s dominated conver-
gence theorem to the last integral to obtain, as r — 0o, 0 < lim,_,», U(r) <0, i.e.,
lim, o U(r) =0.

This shows that, given any number 1 such that 0 < n < N — p, there exists a
number 7, > ¢ such that

a(r) = p-l (JZ:f

r
Since 7¢ is arbitrary, ro > 0, we may take 79 = r,,. Upon integration, we get

1 N—-p—
fU(r)F) > A Sl all r > 7.
r

A(r)>(N—-p—n) /T % = log ((r/rO)N_p_") for all r > ro. (9.17)
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We apply inequalities (9.2)) and (9.17) to equation (9.13) to obtain for all 7 > 0,
p—1 o
U(r) <UGro) (=) N””)+C/ ° )(Np")ds

To 1 + 5 P+5 (9 18)
< U(To)( ) (N—p—n) + M (T.prfnfé . TN_p—n—zS) .
To N—-p—n-9§ 0

Note that in inequality (9.2), the constant § > 0 may be chosen arbitrarily small;
we choose it such that 0 < 6 < N — p — 7. Hence, (9.18) yields

U(r) < Cor~? for all 7 > rq,
where Cy > 0 is a constant. With our definition of U we have equivalently
u'(r
~u(r)

Upon integration we get

~—

1 s
<cy! r~ 151 forall v > 1.

_ 5
~log U(T) < C(/) (7,0 p—1 _ Tfﬁ) for all r > rg,

u(ro)

where C’é > 0 is a constant. Recalling u(r) — 0 as r — oo, we arrive at +oo <

Chro S which is absurd. The proof of the lemma is complete. O
Finally, we determine the limit of the function U at infinity.

Lemma 9.4. We have

lim U(r) = enyp = ( )P (9.19)

r—00 p— 1
Proof. The limit
Afoe) < 1im A(r) = / a(r) dr
ro

exists and satisfies 0 < A(00) < oo, by (9.14)) and (9.15). We apply this fact and
hypothesis to equation ({9.13]) to obtain the existence of the limit

T—00

U(o0) % tim U(r) = U(TO)B_A(OC)JF/ m(s) sP~ L e"(ACI=AG) 4 (9.20)

To
using Lebesgue’s dominated convergence theorem. We have U(oo) < ¢n,p by (9.11)).
However, if U(o0) < cn,p then there exist constants v > 0 and r; > ro such that

p—1/N-—p
a(r) = T (p—l

But this inequality contradicts (9.15). We have proved (19.19). O
Finally, we are ready to derive formulas and .

Proof of Proposition[9.1, We combine and ( - ) to conclude that the limit
def . N-p ==£
co = lim log (u(r) -1 / (ro) TO” )

exists and satisfies 0 < ¢y < 0o. The desired formula (9.3)) follows immediately with

Ur)m )>% for all 7 > r1.

N—p
¢ X e ou(rg)ry " > 0. The convergence formula (9.19) reads
!/
N —
—r (r) — P asr — oo (9.21)

u(r) p—1
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We combine this result with (9.3) to get (9.4). The proposition is proved. O
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