
A COMPUTATIONAL CELLULAR AUTOMATON FOR MODELING
SURFACE WATER FLOW IN ROCKY MOUNTAIN NATIONAL PARK AND

THE WALNUT GULCH EXPERIMENTAL WATERSHED

THESIS

Presented to the Graduate Council of
Texas State University
in Partial Fulfillment of

the Requirements

For the Degree
Master of APPUED GEOGRAPHY

By

Jay A. Parsons, B.S.

San Marcos, Texas
May 2004

COPYRIGHT

By

Jay Alan Parsons

2004

ACKNOWLEDGEMENTS

I wish to thank my adviser, Dr. Mark Fonstad, for his enthusiasm and interest in

my research and academic career.

I would also like to thank my committee members, Drs. Sharolyn Anderson and

Deborah Bryan, for their patience and insight to help me throughs process.

I want to especially thank my wife, Viki. Her support and encouragement for

my return to school to pursue an advanced degree were invaluable.

This manuscript was submitted on April 19, 2004

TABLE OF CONTENTS

LIST OF TABLES...vii

LIST OF FIGURES...ix

CHAPTER

I. INTRODUCTION..1

n. LITERATURE REVIEW .. 6

Cellular Automata
CA Hydrological and Sediment transport models
Hydrological Models

III. METHODOLOGY...11

Required Inputs
Cellular Automata Model
Cellular Automation Rules
W ater Flow Direction
Boundary Conditions
Development tools
Model Output
Visualization
CA Flow

IV. Model Validation 27

Study Site: Walnut Gulch Experimental Watershed (WGEW)
Sub Watershed

v

Storm Event
Modeling the Storm Event
Model Inputs
Results
Simulation 1
Simulation 2
Simulation 3
Simulation 4
Simulation Discussion
Validation Discussion

V. Predicting runoff in the Rocky Mountain National P a rk 41

Forecasting at Site 1
Forecasting at Site 2
Discussion
Forecasting at Site 3
Discussion

VI. D iscussion..52

Model Improvements
Additional Validation
Improved Watershed Representation
Conclusion

APPEN D IX.. 55

REFERENCES...72

vi

LIST OF TABLES

TABLE PAGE

1. Infiltration rates for various soil types. Rate is the depth of water infiltrated in
one hour (FAO 2004)..14

2. Fields in the Cell object that are used to determine surface water flow....................16

3. Variables for slope and velocity equations...19

4. Equation 5 variables.. 19

5. Recorded Rain Event on August 4 ,1980 from precipitation gage #90. All times
are relative to 12:35... 32

6. Infiltration rates for simulations at site 1 .. 43

7. Manning's n value for simulations at site 2..46

8. Precipitation amounts of 30 minute storms for simulations at site 3....................... 49

9. Peak flows for the simulations at site 3 in RMNP...51

Vll

LIST OF FIGURES

FIGURE PAGE

1. Diagram of inputs and outputs for the surface water flow model............................ 3

2. Rocky Mountain National Park, CO (outlined in yellow) and three study sites
within the park (grayscale DEMs).. 4

3. Walnut Gulch Experimental Watershed is located in southeast Arizona (SWRC
2004)... 5

4. A Von Neumann neighborhood consist of the four cells (gray) directly above,
below and to the sides of the center cell (blue)...15

5. The cells directly above (N), below (S) and to the sides (W, E) are used to
calculate the slope of the center cell (blue)... 18

6. The entire water volume moves to the cell directly below the center cell...............20

7. Small matrix visualization shows the actual elevation values for each cell.
Pressing the "Step" button cycles the model through one iteration and
updates the cell values (visible when the cell is clicked)...23

8. Java 3D visualization of surface water flow over a study area. Cells with no
water are in brown and cells with the deepest water are bright green.................24

9. Sample hydrograph generated by surface water flow model..................................... 25

11. Flume #63011 and gauge #90 locations within the W alnut Gulch Experimental
Watershed (SWRC 2004).. 29

12. Sub-watershed (blue) within the WGEW. Red circles are flume locations
(SWRC 2004).. 29

vm

13.3D visualization of WGEW sub-watershed digital elevation model. Lowest
elevations are depicted in blue and the highest elevations are in red...................30

14. W ater flow over WGEW sub-watershed. The water (blue) is in channels
leading out of the watershed... 31

15. Intensity of the storm event that occurred on August 4 ,1980 34

16. Observed flow at flume #63011. The flow is first recorded at 34 minutes after
the storm starts and the peak occurs at 53 minutes.. 35

17. Comparison of Sim 1 hydrograph to observed hydrograph..................................... 36

18. Comparison of Sim 2 hydrograph to observed hydrograph..................................... 37

19. Sim 3 hydrograph and observed hydrograph..38

20. Sim 4 hydrograph relative to observed hydrograph... 39

21. Three study sites located in the Rocky Mountain National Park.............................42

22. Site 1 with 10 meter DEM and aerial image..43

23. Hydrograph for the three simulations performed at Site 1....................................... 44

24.3D visualization of surface water flow over site 1. Cells with the most water
are blue, cells with no water are green and intermediate water depths are
yellow.. 45

25. Site 2 with 10 meter DEM and aerial image..46

26. Hydrograph of three simulations at site 2... 47

27. Visualization of surface water flow at site 2. Cells with the most water are
blue while cells with no water are green.. 48

28. Site 3 in the RMNP with 10 meter DEM and aerial image... 49

IX

29. Hydrographs for the three simulations at site 3..50

30. Visualization of surface water flow at site 3 in RMNP..50

x

CHAPTER I

INTRODUCTION

Modeling surface water flow is an important part of hydrological studies.

Understanding how w ater flows over a terrain will help predict floods and

accurately predict and monitor the recharging of water reservoirs. This paper

describes a computational model that answers the research question, "Can

surface water flow be accurately modeled using Cellular Automata theory?"

Several techniques have been used to computationally model surface

water flow. The two primary techniques are kinetic and dynamic wave theory

(differential equations) and cellular automata(CA). Cellular automata models

are appealing to geographers due to their inherent spatial properties. In CA

models, the study area is divided into a grid or matrix of cells; each cell has its

own spatial properties based on its position within the m atrix. Cell behavior and

state is dictated by a set of rules. Much like Waldo Tobler's First Law of

Geography that states that all things are related, but nearby things are more

1

2

related than distant things (Tobler 1970), a cell's state is determined by its

neighborhood of nearby cells and the predetermined rules.

This paper describes the development and application of a computational

model based on cellular automata theory to simulate surface water flow over a

terrain for specific study areas. The computational model requires four data

inputs: a digital elevation model of a study area, either separate layers or

constant values for infiltration, surface roughness values and a precipitation

event to accurately portray surface water flow. Unlike most current cellular

automata models, this model is time explicit with attempts to model a

watershed's unsteady response to a precipitation event. The computational CA

model computes water flow and provides several means of visualization and text

based output. Figure 1 shows the input layers (or values) and output options of

die CA model.

3

Figure 1: Diagram of inputs and outputs for the surface water flow model.

Two study areas were modeled for this research, the Rocky Mountain

National Park (RMNP) in Colorado and the Walnut Gulch Experimental

Watershed (WGEW) in Arizona. The park is a useful study area due to its

limited development and availability of terrain data. In Figure 2, the Rocky

Mountain National Park is outlined in yellow and the digital elevation models

(DEMs) for the study sites are in grayscale. These sites were solely used for

simulations because of the limited amount of precipitation and flow data that

was available to validate the model for the area.

4

Figure 2: Rocky Mountain National Park, CO (outlined in yellow) and three study

sites within the park (grayscale DEMs).

The second study area is at the Walnut Gulch Experimental Watershed (WGEW)

in Arizona, shown in Figure 3. It is an excellent study site because researchers

from the Southwest Watershed Research Center (SWRC) were able to provide

storm event data to validate the model. This semi-arid watershed has limited

elevation changes and provides a unique contrast to the high relief, forested

watersheds in the RMNP.

5

Figure 3: Walnut Gulch Experimental Watershed is located in southeast Arizona

(SWRC 2004).

ARIZONA

Phoenix

Tucson AWt %

Walnut Gulch

CHAPTER II

LITERATURE REVIEW

The literature pertinent to the development of a CA model for surface

water flow falls into several categories: cellular automata, CA and hydrological

processes, and additional water flow models. The analysis of these previous

works will demonstrate the importance of modeling tools.

Cellular Automata

Stephen Wolfram wrote "Cellular Automata" in 1983 to describe how CA

models can be used to research and simulate complex systems. Wolfram

explains that CAs "m ay be considered as discrete idealizations of the partial

differential equations often used to describe natural systems. Their discrete

nature also allows an important analogy with digital computers: cellular

automata may be viewed as parallel-processing computers of simple

construction" (Wolfram 1983,2). He also describes CA as "discrete dynamical

systems with simple construction but complex self-organizing behavior"

6

7

(Wolfram 1984,1) much like natural systems such as surface w ater flow.

Wolfram believes that cellular automata theory replaces differential equations as

the basis for most current models of natural systems, "Cellular automata are

mathematical models for complex natural systems containing large numbers of

simple identical components with local interactions" (Wolfram 1984,1). This

statement characterizes the current state of hydrological modeling which is

divided into CA and differential equation techniques. Wolfram has written

many articles on cellular automata and their uses in modeling natural systems

that lay the foundation of CA research.

CA Hydrological and Sediment transport models

In 1997, Brad Murray and Chris Paola describe cellular models as

providing "the freedom for the system to evolve spatially and form complex

patterns without constraint" (Murray and Paola 1997,1002). This description

emphasizes that CA models contain no rules to govern the whole environment,

but the simple rules between a cell and its surrounding neighborhood dictate

how that cell changes. When each cell is modified in this manor, complex

systems may develop over the entire study area. Thus CA based models are

useful for systems with spatially complex, self-organizing patterns (Murray and

Paola 1997). Murray and Paola developed a cellular model to simulate the

8

creation of braided rivers over time by modeling sediment transport with water

flow (Murray and Paola 1994). Their model is essentially a "channel" model in

that the water from one cell can flow only to the three lower cells.

R. Thomas and A. P. Nicholas (2001) expanded on the work begun by

Murray and Paola. They sought to improve on previous work by "presenting a

new scheme for routing flow in geomorphological models, and by assessing the

performance of this approach using both field data and the predictions of a

hydrologic model that solves the shallow water form of the Navier-Stokes

equations" (Thomas and Nicholas 2001,180). While they still only route

discharge downstream, their model moves the discharge to five downstream

cells as opposed to three in M urray's model. The authors also incorporate

several techniques to correct errors in the cellular routing scheme. One

technique is to modify how the local bed slope is used in determining direction

of discharge through an additional modifier to the local bed slope. The authors

believe that "use of the local bed slope is problematic since it may be either

positive or negative, and is likely to provide only an estimate of the local energy

slope" (Thomas and Nicholas 2001,181). An additional correction is added to

correct the situation where all of the discharge from the five upstream cells is

routed to a single cell making that single cells w ater depth relatively large.

9

In an article published in 2001, Wei Luo describes LANDSAP, a cellular

automata model for landscape evolution simulation. Luo explains that "the

cellular automata approach is ideal for simulating long-term landscape evolution

that involves multiple interacting processes" (Luo 2001,363). LANDSAP uses

the Gilbert model for surface runoff, originally developed by Chase in 1992. This

model "applies simple rules iteratively to individual cells of a digital topographic

grid after storm events (termed précipitons) randomly fall on the grid" (Luo

2001,363). Luo added groundwater sapping rules to the model to add the effects

of seepage to tire erosion model.

Thomas Coulthard wrote his thesis on a steady-state cellular automata for

water flow and sediment transport in 1999. The primary purpose of this CA was

to model landscape evolution. To achieve this end, Coulthard had to model

sediment flow and hydrological processes. Every CA must have rules to dictate

cell state; Coulthard's rules included consideration for hydrologic routing,

hydraulic routing, fluvial erosion, fluvial deposition, slope processes and mass

movement (Coulthard 1999). He also required very high resolution DEMs to

simulate channel erosion; this created a massively large m atrix for the CA to

process. To minimize processing time, Coulthard utilized a technique where

only a portion of the cells within the matrix were processed at each iteration.

10

Hydrological Models

In 2003, Mark S. Johnson et al. compared two different hydrological

models, Hydrological Simulation Program-FORTRAN (HSPF) and Soil Moisture

Routing (SMR) models, for surface flow over time. Neither of the models

discussed are CA based, but they provide interesting insight into runoff models.

The authors describe the primary difference between the two models as how

they define surface runoff, which can be modeled "as either (1) infiltration excess

(or Hortonian) overland flow, or (2) saturation-excess overland flow" (Johnson et

al. 2003, 57). Both models require a significant amount of calibration of

parameters that "have a large effect on runoff volume" that require detailed

knowledge of the study area. These parameters include: timing control,

interflow, and surface and soil moisture storage and losses. In one model,

"overland flow is treated as a turbulent flow process and is simulated by the

Chezy-Manning equation and average values of roughness, length and slope for

the overland flow" (Johnson et al. 2003, 61). The second model treats runoff as a

"response to saturation excess-the moisture in excess of soil moisture in excess of

the soil-moisture storage capacity after moisture is routed from each grid cell

laterally by subsurface lateral flow and vertically by percolation and

evapotranspiration" (Johnson et al. 2003,61).

CHAPTER III

METHODOLOGY

The development of a time-based computational watershed model

involves two primary components: the calculation of water movement and the

visual presentation of the results. The water movement component was

developed by creating a cellular automaton to calculate water velocities and

depths and move the water through the study area. The computational model

described below has several specific goals that dictate how it was developed.

The first goal was the ability to model surface water flow at multiple study areas.

This required minimizing the amount of site specific inputs that must be

gathered. The second goal of this model was to achieve a real-time based model

that could be compared to recorded precipitation events. This combination

could enable many researchers and hydrologists to model their own watersheds

with limited resources.

11

12

Required Inputs

The initial version of this modeling tool was developed based on a site

within the Rocky Mountain National Park. However, it was developed such that

surface water flow can be simulated for any study site with the required inputs.

Only minimal data layers are required to model a site's surface water flow: a

DEM, infiltration, and a Manning's n value for roughness. A digital elevation

model (DEM) is the primary layer required to calculate slope and flow direction.

An infiltration layer or a constant representing the average infiltration value for

the entire site is required to determine the amount of surface w ater absorbed

through the soil. A roughness layer or an average infiltration value for the entire

site is needed for the calculation of water depth and velocity.

Digital elevation models (DEMs) are the prim ary data input for a study

site. High resolution DEMs are necessary to accurately predict surface water

flow over the given terrain. The minimal horizontal spatial resolution of the

DEM must be 10 meters while the vertical elevation value (height) resolution

must be 1 meter or less. DEMs for the study area can be cropped and corrected

in any GIS or remote sensing software package. The DEM should then be

exported into an ASCII file format. These tasks can be accomplished either with

general GIS/remote sensing software or with the software tool, 3DEM from

Visualization Software LLC, which is available for free on the internet.

Another required input is the hydraulic roughness coefficient for the land

surface in the study area. One form of input is a standard (average) Manning's n

value for the entire site. This should be accurate enough for research in most

simple, uniform watersheds. However, more complicated research may require

detailed roughness values for different sections of the study area. A "friction"

data layer can be developed by classifying ground cover in the study area and

associating a roughness value for each ground cover type. For example, areas

with exposed rock will have a low friction value of 0.011 while areas with dense

growth may have a friction value of 0.2. The ground cover layer should then be

exported as an ASCII file.

The final required input is an infiltration value for the study site. This

value describes the maximal amount of surface water lost to infiltration (soil

absorption) per time unit. This value may be input as one average value for the

entire study area or an "infiltration" layer may be created based on soil

classification. Table 1 shows the varying infiltration rates for different soil types.

13

14

Table 1: Infiltration rates for various soil types. Rate is the depth of water

infiltrated in one hour (FAO 2004).

Soil type Basic infiltration rate (mm/hour)

Sand less than 30

sandy loam 20-30

loam 10-20

clay loam 5-10

clay 1 -5

Cellular Automata Model

In 1984, Stephen Wolfram described cellular automata as "examples of

mathematical systems constructed from many identical components, each

simple, but together capable of complex behavior. From their analysis one may,

on the one hand, develop specific models for particular systems, and, on the

other hand, hope to abstract general principles applicable to a wide variety of

complex systems." This statement describes how simple rules and cell-based

actions of cellular automata can model complex surface water flow.

A cellular automata model consists of a two-dimensional matrix of cells, a

neighborhood definition, and a set of rules. The CA described here contains a

matrix of cells depicting a spatial "cell" or area of the terrain the size of the DEM

cell resolution with properties pertaining to its elevation and water volume. The

neighborhood selected for this model is the Von Nuemann neighborhood. The

Von Neumann neighborhood consists of the cells directly above, below and to

the sides, shown in gray, of the center cell in question as shown in Figure 4.

Figure 4: A Von Neumann neighborhood consists of the four cells (gray) directly

above, below and to the sides of the center cell (blue).

15

While water could actually flow to the cells diagonal to the center cell, this

simplification was necessary for the initial development of the surface water flow

CA. Because of the dispersive nature of water, this simplification will likely not

adversely affect the final results of the model. The model disperses water to all

four neighbors to ensure proper water movement. The rules for water movement

will depend on cell elevation, water depth, water velocity and the Manning's

equation.

Most existing CA models for water flow are based on "steps" and

"précipitons". In these models the "steps" are not actual time increments and the

"précipitons" do not correlate to actual water volumes. Due to their abstract

16

units, these models are difficult to compare to real-world watersheds and

precipitation events. This model uses actual time in increments of 1 second, or

fractions of a second, and calculates water volume based on realistic

precipitation events. The selection of a 1 second (or less) increment is based on

the availability of 10 meter spatial resolution digital elevations models and

realistic time it takes to traverse a 10 meter cell.

The CA described in this paper was developed in the object oriented

programming language Java. The primary object in the model is the cell object.

The cell object depicts the state of a particular cell within the two-dimensional

matrix. A description of the cell object and its fields are listed in Table 2.

Table 2: Fields in the Cell object that are used to determine surface water flow.

Field Type Description

nValue float Manning's n value for the cell

elevation float elevation from DEM

waterDepth float depth of the water (precipitation is added to this field)

surfaceElev float elevation + waterDepth

cellSlope float slope calculated using surfaceElev and neighborhood

vol float amount of water in cell

futureVol float storage field for water moving into this cell (acts as a buffer layer)

movabelVol float amount of water that can move

toCells List cells to receive water from this cell

releaseTime integer Number of iterations to hold the water before releasing it to neighboring
cells

countTme integer Number of iterations since cell clock was reset. Compare to releasetime
to determine if it is time to release water

17

Additional objects include: NeighborhoodOp, CellMatrix and W aterFlow.

The NeighborhoodOp object contains static methods to perform neighborhood

operations such as calculation of cell slope and determining flow direction. The

CellMatrix object contains methods and fields that pertain to every cell in the CA

matrix such as: printing various outputs, cell size, and spatial properties. Finally,

the WaterFlow object is the object external applications will utilize to create and

control the CA model.

Cellular Automaton Rules

The CA rules for water movement within the surface water flow model

are based on notes written by Mark Fonstad in 2003 and are as follows:

infiltration rule, water velocity, and water flow direction (Fonstad 2003). The

infiltration rule is based in the infiltration rate that is either input for the entire

watershed as a constant value or input as a layer so that each cell has its own

infiltration rate.

vol = vol - inf (Equation 1)

Equation 1 states that each cell loses a particular amount of surface water volume

at each time increment due to infiltration.

Water depth is calculated using Equation 2.

depth = vol
length * width

(Equation 2)

18

Cell slope is calculated using the Zevenbergen and Thome's method in Equation

3:

Figure 5: The cells directly above (N), below (S) and to the sides (W, E) are used to

calculate the slope of the center cell (blue).

N

w □ E

s

The variables W, E, N and S represent the surface elevation values for the cells in

Figure 5.

(- W + E) /
s /2 * width

hss(N-sy
n / 2* width

slope(s) = ^ g 2 + h 2 (Equation 3)

Water velocity is calculated using the Equation 4. Each variable is described in

Table 3.

19

. depth2/3 * 4 svel = —--------------
n

(Equation 4)

Table 3: Variables for slope and velocity equations

vel velocity of water in the cell

width width of cell

depth water depth

s cell slope

n Manning's n value for surface friction

The alarm clock, or time needed to traverse the cell is determined with Equation

5. Each variable for Equation 5 is described in Table 4.

t = w^ / ^ ei (Equation 5)

Table 4: Equation 5 variables

t time in seconds

width width of cell in meters

vel velocity in meters per second

Water Flow Direction

The direction to move water volume once it has traversed the cell is

determined by surface elevation values. Any neighboring cell with a surface

20

elevation lower than that of the center cell will receive a portion of the water.

Neighborhood cells with surface elevation values less than center cell's surface

elevation receive a percentage of the volume based on their relative height

difference. The "receiving" cells are stored in the toCells field of the cell object.

The example in Figure 6 shows that the entire water volume in the center

cell will move to the lower cell once its release clock has triggered movement.

Figure 6: The entire water volume moves to the cell directly below the center cell.

Boundary Condition

The CA model utilizes an "absorbing" boundary to control flow. The

outermost cells of the matrix will store any water moved into them. These

boundary cells will store the water (excluding the amount infiltrated) leaving the

study area matrix in the futureVol field. The water in these "border cells" is not

allowed to affect the flow of water not in the border. Tracking the amount of

21

water moved into the boundary cells will identify the location and quantity of

water as it leaves the study area.

Development Tools

The CA for modeling surface water flow was developed in Java (see

Appendix). The primary reason for selecting Java as the development language

is the ability to utilize the same code base within a variety of stand alone

applications on various operating systems. Developing the tool in Java also

enables a user interface that can be launched from a web browser.

Model Output

The computational model outputs the w ater levels at specified time

intervals for further analysis. The model can save the water volume matrix as an

ASCII file that could then be read into third-party visualization and analysis

tools. Users of the model also have the ability to select a single cell to monitor

flows, acting as a flow gauge in a stream. Discharge values for the gauge cell are

then output to generate a simulated hydrograph.

Visualization

While the CA surface water flow component is separate from

visualization, visualization is necessary to communicate the resulting surface

22

water flow effectively. Several forms of visualization were developed based the

size of the elevation matrix. These alternate forms of visualization serve a

variety of purposes such as: explaining water movement with small matrices, 3D

visualization of an entire watershed or drainage area, and hydrographs of flow

generated from a "gauge cell".

Small sites, less than 11 by 11 cells square, can be displayed in a table

form. This level of visualization is essential to describe and educate how water

flow is determined. Figure 7 shows an example of a small site and the initial

elevation values for each cell. The "Step" button will increment the model clock

by one second.

23

Figure 7: Small matrix visualization shows the actual elevation values for each cell.

Pressing the "Step" button cycles the model through one iteration and updates the

cell values (visible when the cell is clicked).

Medium sized sites, up to 350 by 350 cells, can be displayed in a Java 3D

application. This visualization, shown in Figure 8, is intended as the primary

form of visualization; however, the computation performance limits it to the

smaller sites. In this visualization, the different water depths are shown with

differing colors, dark brown for minimal water depths and green for the greatest

depths. The "3D" visualization was written in Java and utilizes VisAD; VisAD

(Visualization and Algorithm Development) is an open-source Java component

library for data visualization and analysis (VisAD 2004).

24

Figure 8t Java 3D visualization of surface water flow over a study area. Cells with no

water are in brown and cells with the deepest water are bright green.

The water volume values for large sites, over 350 by 350 cells, must be

read into third party applications. This is accomplished by saving each time-

based water volume matrix as an image. The water volume matrix image can

then be overlaid onto the study area's DEM. The resulting images could be

combined into animated gifs to show water flow over time.

Another useful output from the model is a hydrograph. Users are able to

designate a single cell as a "gauge cell"; water depths, water velocities and

discharge rates are then output for that cell. Those values can then be pulled into

25

a charting program to build a chart that shows the simulated hydrograph as seen

in Figure 9.

Figure 9: Sample hydrograph generated by surface water flow model.

Simulated Hydrograph

80
▲

▲
70 A A

* a a A A A A

_ 60 . . ‘ *
A A A

^ 50
<D
a>

▲

A A | a Simulation

I 40 ^ A
A *

Q A

30

20
V A

▲ * A

A

10 a a A
a a

o - - ~ A ^ _____ ^

C 10 20 30 40 50 60 70 80
Time (minutes)

26

CA Flow

The logical flow of the surface water flow component is described in the

following steps:

I. Initialize Matrix from input values

II. Loop through matrix with the following steps per cell

1. Add precipitation

2. Subtract infiltration

3. Calculate water depth

4. Calculate water velocity

5. Calculate time required to traverse cell and set alarm

6. Check alarm to see if time met

a) Yes

i. determine flow direction

ii. determine movable volume

iii. move water to receiving cells futureVol field

b) no

iv. increment cell counter

7. Add to vol from futureVol and clear futureVol

8. Output CA state.

III. Check exit condition (time to model watershed response)

IV. Output state of CA (for visualization or file storage)

CHAPTER IV

MODEL VALIDATION

Validating a surface water flow model is a difficult task due to the lack of

detailed watershed information and the lack of storm-based, time-explicit

reading from precipitation and flow gauges. Validation must be accomplished

before any results from the model can be trusted to predict discharges from

hypothetical precipitation events. The primary challenge with validating a

surface water flow model is obtaining detailed observations for both

precipitation and flow. The model described here works most efficiently for

short, intense storm events which require high-resolution, time-explicit

precipitation and discharge measurements. Understanding the time specific

conditions (such as current am ount of moisture in soil) at the time of the event

may also be necessary to understand the observed watershed response. While 10

meter spatial resolution is available for many areas, it may not be accurate

enough to show the elevation changes and define stream channels within a

watershed. After a lengthy search, the required data was found at the W alnut

27

28

G ukh Experimental Watershed (WGEW) in Arizona. This section describes the

watershed, the storm event used in validation and how the model results

compare to the observed flows.

Study Site: Walnut Gulch Experimental Watershed (WGEW)

The Walnut Gulch Experimental Watershed in Arizona (encompassing

Tombstone, AZ) is operated by the Southwest W atershed Research Center and is

considered a large outdoor research laboratory. Research began at the

experimental watershed in 1953 and that research has contributed much to the

understanding of semi-arid watersheds. Facts about the watershed include:

• is the most densely gauged semi-arid watershed in the world

• is approximately 150 square kilometers

• contains nearly 100 recording precipitation gauges

• contains 25 flumes and weirs to measure flow

Sub Watershed

A sub-watershed within the WGEW was used to validate the model. The

watershed above flume 63011 is approximately 8.24 square kilometers and

contains precipitation gauge #90 near its center (Figure 11). The sub-watershed

29

conditions are described as 20% covered by desert shrubs and 80% desert

grasses(SWRC 2004).

Figure 11: Flume #63011 and gauge #90 locations within the Walnut Gulch

Experimental Watershed (SWRC 2004).

The watershed that drains into flume 63011 is in blue in Figure 12.

Figure 12: Sub-watershed (blue) within the WGEW. Red circles are flume locations

(SWRC 2004).

30

The elevations for the sub-watershed were cropped from a DEM covering the

entire WGEW. Figure 13 shows a visualization of the sub-water shed. The

elevations range from 1418 meters (shown in blue) to 1604 meters (shown in red).

Figure 13:3D visualization of WGEW sub-watershed digital elevation model. Lowest

elevations are depicted in blue and the highest elevations are in red.

Figure 14 is a visualization of water flow through the study area. A "digital

gauge" was placed at cell 45,1 to produce the hydrographs seen in the

simulations of the watersheds response to a storm event.

Figure 14: Water flow over WGEW sub-watershed. The water (blue) is in channels

leading out of the watershed.

31

Gauge
Cell

Storm Event

Researchers at the WGEW provided rain gauge data and discharge data

for a specific storm event that occurred on August 4,1980. The summer rain

events that occur are typical of semi-arid areas; the storms are usually very

intense and have a short duration. A storm of this type occurred on August 4,

1980, with 1.68 inches of precipitation over two hours and 44 minutes after the

rain event started. The majority of the precipitation fell in the first 47 minutes of

the event. Table 5 is the recording of the cumulative precipitation amount over

time from gauge 90 near the center of the sub-watershed for the rain event.

32

Table 5: Recorded Rain Event on August 4,1980 from precipitation gage #90. All

times are relative to 12:35.

Time Depth (inches)

0 0.00

25 0.00

28 0.05

31 0.13

32 0.20

33 0.34

35 0.45

36 0.59

39 0.72

41 0.86

44 0.99

45 1.05

49 1.20

51 1.24

60 1.48

64 1.52

67 1.57

72 1.61

81 1.65

93 1.66

169 1.67

189 1.68

370 1.68

33

Modeling the Storm Event

Modeling a specific storm event over a watershed is a difficult challenge.

Precipitation amounts vary spatially and temporally. The precipitation gauge for

this watershed is near the center of the sub-watershed. This may not account for

rain that does not fall equally over the study area and cases where the direction

of the storm's movement may impact runoff rates.

Researchers from the WGEW provided a detailed recording of a storm

event that occurred on August 4 ,1980. The discharge data was obtained from

flume #63011 and the precipitation data came from rain gauge #90.

A specific control program was created to model the exact precipitation

event recorded on gauge 90. A series of if..then statements moderated the

precipitation rate over time to control the storm's intensity. For example, 0.05

inches of rain fell between the times 25 and 28 minutes. Then another 0.08 fell

between 28 and 31 minutes, this process continued until the storm was split into

time periods and intensities. Figure 15 shows the duration and intensity of the

event.

34

Figure 15: Intensity of the storm event that occurred on August 4,1980.

Model Inputs

The WGEW provided a DEM of the entire watershed and locations of the

flumes and gauges. The author cropped the DEM to the sub-watershed that

drained into flume 63011. Since infiltration rates and roughness values were not

explicitly known for the area, several simulations were run using various values

for the unknown inputs. Infiltration rates used were based on known soil types

for the watershed and the range of infiltration rates for the know types of soils.

Results

Multiple simulations were performed to determine the impact of varying

the unknown parameters of roughness and infiltration sensitivity analysis. The

Manning's n value for roughness varied between 0.01 and 0.02 while the

infiltration rate varied between 0 mm/hour and 10.8 mm/hour. The results from

each simulation are then compared to the observed flow recorded from the

flume. The observed flow is shown in Figure 16. A peak of 25.29 cubic meters

per second (cms) occurred at 53 minutes after the start of the storm event.

Figure 16: Observed flow at flume #63011. The flow is first recorded at 34 minutes

after the storm starts and the peak occurs at 53 minutes.

35

Simulation 1

The results of the first simulation (Sim 1), shown in Figure 17,

demonstrate how the model reacts to a constant infiltration rate of 7.2 mm/hour

and 0.01 for a Manning's n roughness value. In Sim 1, the peak discharge of

36

26.59 cubic meters per second (cms) occurred at a time of 36 minutes after the

storm event began. The simulated hydrograph is similar to the observed

hydrograph; the peak values are close but the peak in the simulation occurs 17

minutes earlier than in the observed.

Figure 17: Comparison of Sim 1 hydrograph to observed hydrograph.

Simulation 2

Simulation 2 (Sim 2), shown in Figure 18, shows the result of a constant

infiltration rate of 7.2 mm/hour and a Manning's n value of 0.02. In this

simulation, a peak discharge of 18.46 cms occurred at 42 minutes after the event

started. The hydrograph from this simulation is much "flatter" than the

observed. The peak discharge of the simulation is 6.83 cms less than the

observed.

37

Figure 18: Comparison of Sim 2 hydrograph to observed hydrograph.

45

40 -
• Observed Q (cms)
O Sim 2 Q (cms)

35

30

E
25

20

15

10

5

D O •
• •

o°| *g o •

i L e — — i — _ ----------r<xxxxxxax8ShTx ftooooc&x

25 50 75

Time (Minutes)

100 125 150

Simulation 3

Simulation 3, seen in Figure 19, shows the results of an infiltration rate of

10.8 mm/hour and a Manning's n value of 0.01, results depicted in Figure 19. In

this simulation, a peak discharge of 32.13 cms occurred at 40 minutes. The

hydrograph from this simulation maintains the shape of the observed

hydrograph but peaks 13 minutes early for an additional 6.84 cms.

38

Figure 19: Sim 3 hydrograph and observed hydrograph.

Simulation 4

Simulation 4, shown in Figure 20, shows the result of no infiltration and a

Manning's n value of 0.01. This simulation showed the highest peak value of

40.95 cms at 36 minutes. The general shape of the simulated hydrograph is

consistent with the observed hydrograph but the peak is 17 minutes early with a

high discharge rate 15.66 cms greater than the observed.

39

Figure 20: Sim 4 hydrograph relative to observed hydrograph.

Validation Discussion

The results of the surface water flow model show that the model closely

simulates the observed data. While not exactly precise, the model is highly

accurate considering the limitations of the input data. 10 m eter DEMs limit the

accuracy of any water flow model and they cannot depict the spatial

characteristics of a semi-arid watershed, such as precise channel hydraulics. The

simulated hydrographs show peak earlier than the observed, this may be due to

the spatial attributes of the storm. The lag between the start of the storm event

and discharge flow at the flume might be due to the storm starting in the upper

40

portions of the watershed. Simulation 1 appears to have the hydrograph most

similar to the observed hydrograph with an infiltration rate of 7.2 mm/hour and

a Manning's n roughness value of 0.01.

CHAPTER V

PREDICTING RUNOFF IN THE ROCKY MOUNTAIN

NATIONAL PARK

The original purpose of the cellular automata based surface water flow

model was to predict runoff in the Rocky Mountain National Park. Unlike the

Walnut Gulch Experimental Watershed, storm event data is not available to

validate the model for this study area. Until the model can be validated against

historical precipitation and discharge data, the output described here can only be

used for general forecasting purposes. The Rocky Mountain National Park is an

interesting study area because of its diverse terrain. The park has elevations

ranging from 8,000 feet to over 14,000 feet (RMNP 2004). The park also contains

a variety of landscape ranging from flat grassland areas to steeply slope rock

fields at the mountain peaks (RMNP 2004). Three drainage areas in the park

were identified as study sites and used in separate simulations. The three sites

are shown in Figure 21.

41

42

Figure 21: Three study sites located in the Rocky Mountain National Park.

RMNP Border ° ,2- 4J - » V r r - i

Site 1 is the largest site with a grid of 632 by 651 cells and an elevation range of

2869 meters to 4135 meters. Site 2 consists of a grid of 308 by 500 cells. The

elevation ranges from 2698 meters to 3938 meters. Site 3 consists of a grid of 238

by 344 cells with an elevation ranging from 2846 meters to 3562 meters. The

ground cover at the sites consists of barren rocks, tundra grasses, limber pine,

lodgepole pine, Engleman spruce and field grasses.

43

Forecasting at Site 1

Figure 22: Site 1 with 10 meter DEM and aerial image.

R M N P S ite l R M N P S ite l

Three simulations were performed at site 1 to demonstrate the effects of

altering the infiltration rates on flow rates. The precipitation rate was held to

1.417 inches in 30 minutes and the Manning's n value for roughness was held

constant at .03 for the three simulations. The infiltration rate increased with each

simulation, as seen in Table 6.

Table 6: Infiltration rates for simulations at site 1.

S im u latio n In filtra tio n rate

Sim 1 3 .6 m m /hour

Sim 2 7.2 m m /hour

Sim 3 10.8 m m /hour

4 4

Figure 23 shows the resulting hydrograph from the three simulations at site 1.

The increasing infiltration rate had a slight effect on the peak discharges. As the

infiltration rate increased, the peak discharge value decreased. Figure 24 shows

a 3D perspective of the study area and gauge location.

Figure 23: Hydrograph for the three simulations performed at Site 1.

Simulations at Site 1

700

600

500

400o
05
<3 300 £
» 200
Q

100
♦ ♦

♦

0 ry\rvv
20 40 60 80

♦ Sim 1

■ Sim 2

Sim 3

Time (minutes)

Figure 24:3D visualization of surface water flow over site 1. Cells with the most

water are blue, cells with no water are green and intermediate water depths are

45

yellow.

Gauge
Cell

46

Forecasting at Site 2

Figure 25: Site 2 with 10 meter DEM and aerial image.

R M N P S ite 2 R M N P S ite 2

0 0 3 0 6 12L
— — i Kilometers

Three simulations were performed at site 2 to get a range of possible flows

over time for a single rain event. The simplified rain event simulated a constant

intensity storm event that dropped 0.036 meters (1.417 inches) in 30 minutes.

Infiltration was held at a constant 7.2 mm/hour, but the Manning's n value for

roughness varied with each simulation.

Table 7: Manning's n value for simulations at site 2

S im u latio n n valu e

Sim 1 .01

Sim 2 .02

Sim 3 .03

Fig u re 26 sh ow s the resu ltin g h y d ro g rap h s for each sim ulation.

Figure 26: Hydrograph of three simulations at site 2.

Simulations at Site 2 with increasing Manning's n
value

£ 150 # ♦ ♦♦o. ♦♦ ♦ ♦ ♦ ♦ ♦ Run 1
o A ♦ ♦g> 100 - ■ ■ Run 2
re * ■ ■ ■ * n É.co . ■ ■ ♦ ■ ■ ■ Run 3
.ÎS 50 - - ■O

n ♦ rnul ♦ ♦ f-v r\ r \ r \ r \ r\ n , f

0 10 20 30 40 50 60

Time in minutes

Figure 27 shows a "3D" visualization of surface water flow over site 2.

48

Figure 27: Visualization of surface water flow at site 2. Cells with the most water are

blue while cells with no water are green.

Gauge
Cell

Discussion

The simulations at site 2 show the affect of altering the roughness value on

the discharge values for the site. The increasing roughness value reduces the

peak discharge value at the gauge cell. The peak discharges occurred at similar

times, but for smaller values with the larger roughness values.

49

Forecasting at Site 3

Figure 28: Site 3 in the RMNP with 10 meter DEM and aerial image.

R M N P S ite 3 R M N P S ite 3

zzjKiometei zzj?tfornetei

Three simulations were performed at site 3. Each simulation had a

constant infiltration rate of 7.2 mm/hour and a Manning's n value of 0.03, but

precipitation amounts for a 30 minutes storm were steadily increased. The

precipitation amount for the 30 minute storms are shown in Table 8.

Table 8: Precipitation amounts of 30 minute storms for simulations at site 3.

S im u latio n P recip ita tio n am o u n t

Sim 1 1 .417 in ch es

S im 2 1 .772 in ch es

S im 3 2 .126 inches

50

Figure 29: Hydrographs for the three simulations at site 3.

Site 3 with increasing precipitation rate

05
E
05
05>_(Q£O
05

350
300
250
200

150
100

50
0 'W

0

■ . ■ - ■ ♦ . a
t U » t "

10 20 30
Time (minutes)

a u i
40 50

r\-A
60

Figure 30: Visualization of surface water flow at site 3 in RMNP.

Gauge
Cell

51

Discussion

The increased precipitation rate caused a dramatic increase in the peak

discharge values. Table 9 shows the precipitation amounts and corresponding

peak discharges. Simulation 2 shows that the increasing precipitation amount

greatly increases peak flow but the timing of the flow is similar to the flow of

Simulation 2. However, Simulation 3 shows that additional increases in

precipitation amount eventually change the timing of peak flows. The peak flow

for Simulation 3 occurs at 8 minutes after the storm begins as opposed to 26

minutes of Simulation 2.

Table 9: Peak flows for the simulations at site 3 in RMNP.

Simulation Precipitation Peak Discharge (cms) Peak Time

Sim 1 1.417 inches 33.95 24

Sim 2 1.772 inches 170.22 26

Sim 3 2.126 inches 312.87 8

CHAPTER VI

DISCUSSION

The surface water flow model described in this paper was based on

cellular automata theory and developed in Java. The validation of the model

against the observed precipitation event and discharge values from the Walnut

Gulch Experimental Watershed in Arizona proves that cellular automata is a

viable theory for modeling surface water flow. Modeling in Rocky Mountain

National Park shows that the CA approach is useful for hydrologic forecasting.

Model Improvements

The model described here was developed as a simplified modeling tool

and several improvements would greatly improve the performance and accuracy

of the model. Masking off non-watershed areas of the DEM would greatly

improve processing time. Currently, every cell in the DEM is processed for

water flow but only the cells within the watershed are necessary. Multithreading

the program would improve the model's processing time on high performance

machines. Allowing the user to select more than one cell as a "gauge cell" would

give user the ability to observe the flow at various points within the study area.

52

Incorporating an additional set of cellular automata rules to model subsurface

water movement would increase the current model's ability to simulate longer

storm flows with a high baseflow component.

Additional Validation

Continued validation against various watersheds should be performed to

ensure model accuracy. This paper describes validation against one storm event

over one watershed. While this validation was very helpful, comparing against

multiple types of watershed shapes, ground cover, sizes and soil types is

necessary to completely validate the model.

Improved Watershed Representation

The current representation of watersheds leaves much to be desired for

modeling purposes. Ten meter resolution DEMs are the current standard

elevation source for watershed modeling. Higher resolution DEMs would

improve model accuracy by detailing small elevation changes within the

watersheds that are currently lost in the 10 m eter DEMs. It is believed that

channel definition would also improve model accuracy. W ater would collect in

channels and move rapidly through the system. Remote sensing may also

53

provide spatial parameters such as the spatial distribution of infiltration and

hydraulic roughness.

Conclusion

Cellular automata theory has proven to be a valid theory for surface water

flow modeling. The time-explicit model described here uses inputs such as

DEMs, infiltration rates, roughness values to model a watershed's response to a

given precipitation event. Once validated for a watershed, the model can then be

used to predict the flow and water height for possible precipitation events.

54

APPENDIX

JAVA CLASSES

55

package jap.ca.time;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.math.Biglnteger;
import java.text.NumberFormat;
import java.util.Calendar;

/*♦
* a author jparsons*
* This control progam is specific to the walnut gulch watershed
* It is an atempt to mimic the precipittion event exactly.*
* ! Event o f 8/4/80

! All gage elapsed times relative to 12:35*
* BEGIN GAGE 90
SAT = 0.124
X = 558018.9. Y = 272479.4
N = 23
TIME DEPTH !(in) min from start|depth diff in m| nr per sec this

0 0.00
25 0.00 0
28 0.05 3
31 0.13 6
32 0.20 7
33 0.34 8
35 0.45 10
36 0.59 11
39 0.72 14
41 0.86 16
44 0.99 19
45 1.05 20
49 1.20 24
51 1.24 26
60 1.48 35
64 1.52 39
67 1.57 42
72 1.61 47
81 1.65 56
93 1.66
169 1.67
189 1.68

370 1.68
END
*
*
*/

public class WalnutGulch {

private AsciiReader reader;
private ConfigReader cfgReader;
private DEMHeader demHeader;
private TCell[][] hood;
private String fileName, cfgName;
private WaterFlow wf;
private Calendar start,finish;
private double precipRate,manningsN=0.0f, cellSize=0.0f;
private Biglnteger hydroInterval=BigInteger.valueOf(120);
private double infilRate=0.0f;
private int secRain, secRun, gaugeRow, gaugeCol;
private int iterRun,iterRain, iterlnterval, factor;

public static void main(String[] args)
{

WalnutGulch t=null;
if(args.length<l)
{

System.out.println("Need <config file>");
System.exit(0);

}
try{

t=new WalnutGulch(args);
t.initMatrix();

}catch(Exception ex)
{

System.out.println) "Error initializing "+ex.toString());
System.exit(0);

}
t.runModelQ;

public WalnutGulch(String[] args)
{

cfgName=args[0];
}

Ox

public void initMatrix()
{

readC onfig(cfgN ame) ;
//Store config values locally
fileName=cfgReader.getDEMName();
precipRate=cfgReader.getPrecipRate();
infilRate=cfgReader.getInfilRate();
gaugeRow=cfgReader.getGaugeRow();
gaugeCol=cfgReader.getGaugeCol();
secRun=cfgReader.getSecsRun();
secRain=cfgReader.getSecsRain();
manningsN=cfgReader.getManningsN();
cellSize=cfgReader.getCellSize();
factor=cfgReader. getF actor() ;
hydroInterval=BigInteger.valueOf(cfgReader.getInterval());

System.out.println(" iteration per sec = "+factor);
iterRun=secRun"“factor;
iterRain=secRain*factor;
hydroInterval=BigInteger.valueOf(cfgReader.getInterval()"“factor);
precipRate=precipRate/factor;
infilRate=infilRate/factor;

demHeader=new DEMHeader();
readDEM(fileName);
if (manningsN > O.Of)

wf= new WaterFlow(manningsN, cellSize);
else

{
System.out.println(" Invai id Manning's n value");
System .exit(l);

}
System, out. println(" Precip rate:"+precipRate+" Infiltration rate:"+infilRate);
hood=wf.initData(reader.getDemArray());

private void runModelQ
{

start=Calendar.getInstance();
System.out.println("Starting model for "+secRun+" seconds. Rain for "+secRain+"

secs");
System.out.println(" model iteration "+iterRun+". Rain iteration "+iterRain);
System.out.println("Precipitation rate:"+precipRate+" infiltration rate:"+infilRate);
System.out.println(" discharge every "+hydroInterval+" iterations");
NumberFormat nf=NumberFormat.getlnstance();

double velocity=0.Of, vol=0.0f;
inttim e=0;
double slope=0.0f;
double rainDepth=0.0f;
for(int i=0; i<iterRun; i++)
{

//Is this control program, rain is more explicitly controlled
//iterRain is the entire storm event
if(i < iterRain)
{

if (i<(l 81 * factor))
{

wf.addPrecipitationDepth(.00000706f/factor);
rainDepth=rainDepth+.00000706f/factor;

} else if(i<(361 * factor))
{

wf. addPrecipitationDepth(. 00001129f/factor);
rainDepth=rainDepth+00001 129f/factor;

} else if(i<(421 "“factor))
{

wf.addPrecipitationDepth(.00002963f/factor);
rainDepth=rainDepth+.00002963f/factor;

} else if(i<(481 * factor))
{

wf.addPrecipitationDepth(.00005927f/factor);
rainDepth=rainDepth+.00005927f/factor;

} else if(i<(601 * factor))
{

wf.addPrecipitationDepth(.00002328f/factor);
rainDepth=rainDepth+.00002328f/factor;

} else if(i<(661 "“factor))
{

wf.addPrecipitationDepth(.00005927f7factor);
rainDepth=rainDepth+.00005927f/factor;

}else if(i<(841 "“factor))
{

wf.addPrecipitationDepth(.0 0 001834f7factor);
rainDepth=rainDepth+00001834f7factor;

} else if(i<(961 "“factor))
{

wf.addPrecipitationDepth(.00002963f/factor);
rainDepth=rainDepth+.00002963f/factor;

}else if(i<(l 141 "“factor))
{

nf.setMaximumFractionDigits(6);

LA

wf.addPrecipitationDepth(.00001834f7factor);
rainDepth=rainDepth+.00001834f/factor;

}elsc if(i<(1201*factor))

{
wf.addPrecipitationDepth(.00002540f/factor);
rainDepth=rainDepth+.00002540f/factor;

}else if(i<(1441 ♦factor))

{
wf. addPrecipitationDepth(. 000015 88f/factor);
rainDepth=rainDepth+.00001588f/factor;

} eise if(i<(1561 *factor))
{

wf.addPrecipitationDepth(.00000847f/factor);
rainDepth=rainDepth+,00000847f/ factor;

} eise if(i<(2101 ’"factor))
{

wf.addPrecipitationDepthf0 0 0 0 1 129f/factor);
rainDepth=rainDepth+.00001129f/factor;

} eise if(i<(2341 *factor))

{
wf.addPrecipitationDepth(.00000423f/factor);
rainDepth=rainDepth+.00000423f/factor;

} eise if(i<(2521 ♦factor))
{

wf.addPrecipitationDepth(.00000706f/factor);
rainDepth=rainDepth+.00000706f/factor;

} eise if(i< (2821 * factor))
{

wf.addPrecipitationDepth(.00000339f/factor);
rainDepth=rainDepth+.00000339f7factor;

} eise if(i<(3361 ♦factor))

{
wf.addPrecipitationDepth(.0000188f7factor);
rainDepth=rainDepth+.0 0 0 0 0 188f/factor;

} eise if(i<(4081*factor))
{

wf.addPrecipitationDepth(.00000035f/factor);
rainDepth=rainDepth+. 0000003 5i/factor;

} eise if(i<(8641 ♦factor))

{
wf.addPrecipitationDepth(.00000006f/factor);
rainDepth=rainDepth+.00000006f/factor;

Jelse if(i<(9841 *factor))
{

wf.addPrecipitationDepthf00000021 f/factor);
rainDepth=rainDepth+.00000021 f/factor;

}
}
wf.removelnfiltrationDepth(infilRate);
wf.run();

Biglnteger bT=Biglnteger.valueOf(i);

if(bT.mod(hydroInterval).intValue() < 30)
{

vol=vol+wf.getCellsVol(gaugeRow,gaugeCol);
velocity^velocity+wf.getCellsVelocitylgaugeRow^augeCol);

Jelse if (bT.mod(hydrolnterval).intValue()==30)
{

System.out.println(i+" Avg " +bT.divide(hydroInterval)+""+ nf.format(vol/30)+"
velocity: "+nf.format(velocity/30));

vol=0.0f;
velocity=0.0f;
time=0;
slope=0.0f;

}
finish=Calendar.getlnstance();
long millis=finish.getTimeInMillis()-start.getTimeInMillis();
System.out.println();
System.out.println("........................ ");

System.out.println("Time to complete for "+secRun+" sec model: "+millis/1000+"
seconds");

System.out.println("A total of "+rainDepth+" fell over"+ secRain+" seconds");
wf.printFinalQ;

public void writeVolumeMatrix()
{

String filename=new String("flow/FlowGrid.txt");
double min=0.0f;
double max =1 .Of;
double value;
//Loop to find max and min
for (int row = 0; row <hood.length ; row++)

for(int col=0; col<hood[0].length; col++)
{

min=Math.min(min,hood[row][col].getVol());
max=Math.max(max,hood[row][col].getVol()); 00

}
System.out.println("Max volume: "+max+" Min volume:"+min);

‘«■y{
BufferedWriter file=new BufferedWriter(new FileWriter(filename));

for (int ii = 0; ii <hood.length ; ii++)

{
for(int col=0; col<hood[0].length; col++)

{
value=hood[ii][col].getVol();
file.write(Double.toString(value));
file.write("::");

}
file.write("\r\n");

}
file.flush();
file.close();

} catch (Exception ex)

{
System.out.println("Error writing file"+ex.toString());

}
private void readDEM(String filename)
{

reader = new AsciiReader(fileName);
reader.readHeader();
reader.readElevations();
demHeader.LengthX = reader.getRasterSize().width;
demHeader. Length Y = reader.getRasterSize().height;
demHeader.missing = (double) reader.getMissingValue();
demHeader.min = (double) reader.getMinimum();
demHeader.max = (double) reader.getMaximum();
System.out.println(" rows x cols\t{min. max}\tres in m missing value");
System.out.println(" "+demHeader.LengthY + " x " + demHeader.LengthX + " {"+

demHeader.min+ ", "+ demHeader.max + "}\t"+ demHeader.missing);

}
private void readConfig(String name)
{

cfgReader=new ConfigReader(name);

}
}

'O

package jap.ca.time;

import java.util.Iterator;

!**
* ©author jparsons
*

* Test Cell properties and Neighboorhood Operator
*

*

*

* General Process
*

* 1. Create matrix of Cells with elevation <initData>

* <Loop>
* 2. Insert initial amount of precip
* 2.5 Subtract infiltration
* 3. Intial data
* calc waterdepth
* calc discharge direction & amounts
* 4. Move current Cell's discharge to movableQ
* 5. Move discharge from movableQ to destination cell's futureQ
* 6. Write sum of futureQ to cellQ
* <End Loop>

* #y

public class WaterFlow
{

TCell[][] matrix;
double cellWidth=0.0f;
boolean notFirst= false;
long timeCount=0;
double manningsN=0.05f;
double totalFallenVol=O.Od;
double totlnfil=0.0d;

public WaterFlow(double friction, double cellsize)

manningsN=friction;
cellWidth=cellsize;
System.out.println("^Setting Mannings N: "+manningsN+ Setting

CellSize:"+cellWidth);
}

public TCell[][] initData(double[][] elevations)
{

System.out.println("Entering WaterFlow.initData() setting N
value: "+manningsN);

//Create 2D matrix of TCells
matrix=new TCell[elevations.length][elevations[0].length];
for (int row=0; row<elevations.length; row++)

for (int col=0; col<elevations[0].length; col++)
{

matrix[row][col]=new TCell(elevations[row][col]);
matrix[row] [col] .setManningsN (manningsN);
matrix[row][col].row=row;
matrix [row] [col]. col-col;
matrix[row][col].setCellSize(cellWidth);

}
return matrix;

public void run()
{

process();
moveDischarge();

}

public double getCellsVol(int row,int col)
1

return matrix [row] [col]. getVol();
)

public double getCellsDepth(int row, int col)
{

return matrix[row][col].getWaterDepth();

public double getCellsVelocity(int row,int col)

I
double f=matrix [row] [col] .getV elocity ();
return f;

private void process()

{
timeCount++;
TCell[][] matrix2=new TCell[3][3];
for (int row=l;row<matrix.length-l; row++)

for (int col=l; col<matrix[0].length-1; col++)

{
//Currently Building a Moore neighborhood,
//This is ok for now, will only use subset (Von Nuemann)
if(matrix[row][col].getVol() > O.Of)
I

ma trix2 [0] [1]=ma trix [row-1] [col];
matrix2 [1] [0]=matrix [row] [col-1];
matrix2 [1] [1]=ma trix [row] [col];
matrix2[l][2]=matrix[row][col+l];
matrix2[2][l]=matrix[row+l][col];

i f(ma trix [row] [col] .new Volume())
{

TNeighborhoodOp.cellSlope(matrix2, cellWidth);
matrix[row][col].newVolume=false;

}
matrix[row][col].incrementTime();
if (matrix[row][col].alarm())
{

TNeighborhoodOp.dischargeDirectionMin(matrix2, cellWidth);

}
}

}
matrix2=null;
notFirst=true;

private void moveDischarge()
I

for (int row=l;row<matrix.length-l; row++)
for (int col=l; col<matrix[0].length-l; col++)

{
if (matrix[row][col].getVol() > O.Of)
{

if (matrix[row][col].getQtoCells() !=null)
f

Iterator iter=matrix[row][col].getQtoCells().iterator();
if (iter != null)
{

double cellDischarge=0.0f;
while(iter.hasNext())
{

DischargeTCell dc=(DischargeTCell)iter.next();
double f=(dc.getQFract()ifmatrix [row] [col] .getMovable V olQ);
dc.getCell().setFutureVol(f);

}
matrix[row][col].resetMovableQ();
matrix[row][col].QtoCells=null;
//NOTE added Mar 22
i f(matrix [row] [col]. getVol()<=0. Of)
{

matrix[row][col].resetTime();
matrix[row][col].releaseTime=0;

}

//This moves from the futureVol to actual Volume.
//This step is used to replace access every neighbor to get vol.
//Without futureVol, each cell must be "touch" many more times

//Not moving water in border cells to regular volume
//that was cause high surface elevations...essentially a dam

for (int row=l;row<matrix.length-l; row++)

{
if (matrix[row][col].getFutureVol() > O.Of)
{

for (int col=l; col<matrix[0].length-1; col++)

matrix[row][col].setVol(matrix[row][col].getVol()+matrix[row][col].getFutureVol());
matrix[row][col].resetFutureVol();

}
}

}

public void borderDischarge()
{

double totalDischarge=O.Of;
for (int col=0; col<matrix[0].length; col++)
I

totalDischarge=totalDischarge+matrix[0][col].getVol();
totalDischarge=totalDischarge+matrix[matrix.length-l][col].getVol();

}
for (int row=0; row<matrix.length; row++)
I

totalDischarge=totalDischarge+matrix[row][0].getVol();
totalDischarge=totalDischarge+matrix[row][matrix[0].length-l].getVol();

!

public void addPrecipitation(double precip)
I

for (int row=l; row<matrix.length-l; row++)
for (int col=l; col<matrix[0].length-1; col++)
f

totalFallenV ol=totalFallenV ol+precip;
matrix[row][col].setVol(matrix[row][col].getVol()+precip);

}
}

//switched to this method for adding precip,
double tempVol=0.0f;
double totPrecip=0.0f;
public void addPrecipitationDepth(double precip)

totPrecip=totPrecip+precip;
tempVol=precip*(cellWidth*cellWidth);
for (int row=l; row<matrix.length-l; row++)

for (int col=l; col<matrix[0].length-1; col++)
1

totalFallenVol=totalFallenVol+tempVol;
matrix[row][col].setVolNoCalc(matrix[row][col].getVol()+tempVol);

}

public void addCellPrecipitation(double precip)
{

totalFallenVol=totalFallenVol+precip;
matrix[35][35].setVol((matrix[35][35].getVol())+precip);
}

r
* Subtrac infiltration rate from all cells,
* if those cells have < infiltration rate
* set Vol to 0 and add only that amount to totallnfiltrated
7

private void removelnfiltration(double infil)
I

for (int row=0; row<matrix.length; row++)
for (int col=0; col<matrix[0].length; col++)
{

if(matrix[row][col].getVol() > infil)
{

totInfil=totInfil+infil;
matrix[row][col].addInfiltratedVol(infil);
matrix[row][col].setVol(matrix[row][col].getVol()-infil);

¡else
I

totInfil=totInfil+matrix[row][col].getVol();
matrix[row][col].addInfiltratedVol(matrix[row][col].getVol());
matrix[row][col].setVol(O.Of);

public void removeInfiltrationDepth(double infil)
I

temp V ol=inf il^(cellW id th*cell Width);
for (int row=0; row<matrix.length; row++)

for (int col=0; col<matrix[0].length; col++)
{

if(matrix[row][col].getVol() > tempVol)
{

totInfil=totInfil+tempV ol;
matrix[row][col].addInfiltratedVol(tempVol);
matrix[row][col].setVol(matrix(row][col].getVol()-tempVol);

}else
{

totInfil=totInfil+matrix[row][col].getVol();
matrix[row] [col] .addlnfiltrated V ol(matrix [row] [col] .getV ol());
matrix[row][col].setVol(O.Of);

}

public double getMatrixVol()
{

double dvol=0.0d;
for (int ii = 0; ii cmatrix.length ; ii++)

for (int jj = 0;jj<matrix[0].length; jj++)
dvol = dvol+matrix[ii][jj].getVol();

return dvol;

public double getInfiltrationVol()
{

return totlnfil;
I

public double getlnteriorVolQ

double dvol=0.0d;
for (int ii = 1; ii <matrix.length-l ; ii++)

for (int jj = l;jj<matrix[0].length-1; jj++)
dvol = dvol+matrix[ii][jj].getVol();

return dvol;
}

public double getBorderVol()
{

double dvol=0.0d;
for (int jj = 0;jj<matrix[0].length-1; jj++)
{

dvol = dvol+matrix[0][jj].getVol();//+matrix[0][j)|.getFutureVol();
dvol = dvol+matrix[matrix.length-l][jj].getVol();//+matrix[matrix.length-

l][jj].getFutureVol();
>

for (int ii = 0; ii <matrix.length-l ; ii++)
{
dvol = dvol+matrix[ii][0].getVol();//+matrix[ii][0].getFutureVol();

dvol = dvol+matrix[ii][matrix[0].length-
1].getVol();//+matrix[ii][matrix[0].length-1],getFutureVol();

}

return dvol;

public double getMovedBorderVol()
I

double dvol=0.0d;
for (int jj = 0;jj<matrix[0],length-1; jj++)
{

dvol = dvol+matrix[0][jj].getFutureVol();
dvol = dvol+matrix[matrix.length-l][jj].getFutureVol();

for (int ii = 0; ii <matrix.length-l ; ii++)

dvol = dvol+matrix[ii][0].getFutureVol();
Oxu>

dvol = dvol+matrix[ii][matrix[0]. length-1], getFutureVol();

)

return dvol;
}

public void printMaxCellBorderVol()
I

double max=0.0d;
TCell tc=null;
for (int jj = 0;jj<matrix[0].length-1; jj++)

{
if(matrix[0][jj].getFutureVol() > max)
{

max=matrix[0][jj].getFutureVol();
tc=matrix[0][jj];

if(matrix[matrix.length-l][jj].getFutureVol() > max)
I

max=matrix [matrix, length-1] [jj] .getFu tureV ol();
tc=matrix[matrix.length-l][jj];

for (int ii = 0; ii <matrix.length-l; ii++)
(

if(matrix[ii][0].getFutureVol() > max)
I

max=matrix[ii][0].getFutureVol();
tc=matrix[ii][0];

if(matrix[ii][matrix[0].length-1],getFutureVol() > max)
{

max=matrix[ii][matrix[0].length-1].getFutureVol();
tc=matrix[ii][matrix[0].length-1];

System.out.println("Border Cell with maximum volume: "+ max+ cell:
+tc.row+", +tc.col);

public void printMaxCellInteriorVol()
(

double max=0.0d;
TCell tc=null;
for (int ii = 1; ii cmatrix.length-1; ii++)
for (int jj = l;jj<matrix[0],length-1; jj++)
{

if(matrix[ii][jj].getVol() > max)
{

max=matrix[ii][jj].getVol();
tc=matrix[ii][jj];

}
}

if(tc != null)
System.out.println("Interior Cell with maximum volume: "+ max+ cell:

'+tc.row+”,"+tc.col);

public float[] getDepthArray()
{

float[] samples = new float[matrix.length*matrix[0].length];
int index = 0;
for (int ii = 0; ii cmatrix.length; ii++)
{

for (int jj = 0;jj<matrix[0].length; jj++)
I

samples[index] = (float)matrix[ii][jj].getWaterDepth();
index++;

}

return samples;
Os
-t-

public double[] getlnfiltrationArrayO

double[] samples = new double[matrix.length*matrix[0].length];
int index = 0;
for (int ii = 0; ii <matrix.length; ii++)
{

for (int jj = 0;jj<matrix[0]. length; jj++)
{

samples[index] = matrix[ii][jj].getInfiltratedVol()/(cellWidth*cell Width);
index++;

return samples;
}

public double[] getDisplayArray()
{

double[] samples = new double[matrix.length*matrix[0].length];
int index = 0;
for (int ii = 0; ii cmatrix.length; ii++)
I

for (int jj = 0;jj<matrix[0].length; jj++)
{

samplesfindex] = matrix[ii][jj].getVol();
index++;

)

return samples;

o\

package jap.ca.time;

import java.util.ArrayList;
import java.util.Iterator;

* ("'author jparsons
* This class contains static methods to perform neighborhood operations

7

public class TNeighborhoodOp {

/*
* cellSlopef...)
* Cell Slope is calculated using Zevenbergen and Thornes method
7

public static double cellSlope(TCell[][] neighborhood, double cellWidth)
I

double slope=0.0f;
try{

double g= -1 "neighborhood [1] [0] .getSurfaceElevQ +
neighborhood[l][2].getSurfaceElev();

g=g/(2*cell W id th);

double h= (neighborhood[0][l].getSurfaceElev() -
neighborhood[2][l].getSurfaceElev()) / (2*cellWidth);

slope=(double)Math.sqrt(Math.pow(g,2) +Math.pow(h,2));
if (0.0f=slope)

slope=0.0001f; //set a default slope
(catch(Exception ex)

' {
System.out.println("Error calculating cell slope.");
System.out.println(ex.toStringO);

}
//Go ahead and store slope here as well as return it
neighborhood[l][l].setCellSlope(slope);
return slope;

//Modify This method for Von Nueman neighborhood and time based movement
//Will determine the direction of flow and amount to move.
//Stage 1. Move to one cell
// Determine cell with greatest slope
// Store as the DischargeCell in ArrayList..may add new more cells

//Stage 2. Diffuse all cells to lower than center
// Add all cells lower than center to arraylist

public static ArrayList dischargeDirectionMin(TCell[][] hood, double cellWidth)
(

ArrayList al=new ArrayList();
TCell centerCell=hood[l][l];
double diff =0.0f;
double diffMin=0.0f; //needed to calculate amount to move
double totSlope=0.0f;
double sumElevDiff=0;

//pick direction
TCell receiver=null;
diffMin=centerCell.getSurfaceElev() - hood[0][l].getSurfaceElev() ;
if (diffMin > 0)
{

al.add(new DischargeTCell(hood[0][l], diffMin));
sumElevDiff=diffMin;

Jelse
diffMin=Float.MAX_VALUE; //set high

diff=centerCell.getSurfaceElev() - hood[l][0].getSurfaceElev();
if (diff >0)
{

diffMin=Math.min(diffMin,diff);
sumElevDiff=sumElevDiff+diff;
al.add(new DischargeTCell(hood[l][0], diff));

}

diff=centerCell.getSurfaceElev() - hood[l][2].getSurfaceElev();
if (diff > 0) Oo

diffMin=Math.min(difiMin,diff);
sumElevDiff=sumElevDiff+diff;
al.add(newDischargeTCellihoodJl]^], diff));

diff=centerCell.getSurfaceElev() - hood[2][l].getSurfaceElev();
if (diff >0)
{

diffMin=Math.min(diffMin/diff);
sumElevDiff=sumElevDiff+diff;
al.add(new DischargeTCell(hood[2][l], diff));

}

//If there is only one discharge cell
if(al.size() — 1)
1

DischargeTCell dc=(DischargeTCell)al.get(0);
dc.qFract=l;

double depthDiff=0.0f;
if(dc.getCell().getIsBorderCell())
{

depthDiff=(centerCell.getSurfaceElev()-dc.getCell().getSurfaceElev());
Jelse

depthDiff=diffMin;

double
volume=cellWidth*cellWidth*Math.min(depthDiff,centerCell.getWaterDepth());

centerCell.setMovableVol(volume);
centerCell.QtoCells=al;

Jelse if (lal.isEmptyO)
I

//If >1 receiving (discharge) cells
Iterator iter=al.iterator();
while(iter.hasNext())
{

DischargeTCell dc=(DischargeTCell)iter.next();
dc.qFract=dc.diff/sumElevDiff;

}
double depthDiff=diffMin;

double
volume^ellWidth^cellWidth^Math.minidepthDift/centerCell.getWaterDepthO);

centerCell. setMovable V ol(volume);
centerCell.QtoCells=al;

Jelse if (al.isEmptyO)
{

al=null;
)

return al;

package jap.ca.time;

import java.util.*;
J**
* («»author jparsons
*

7

public class TCell

static int factor = 1; //default number of iterations per sec
double N; //default Manning's N value
double CellWidth = O.Of; //default cell size in meter
double elevation; //value from DEM
double cellSlope = .OOOlf; //default slope value
double waterDepth;
double surfaceElev;
private double voi;
double futureVol;
double movableVol;

//calculated water depth
//elev+waterdepth

//amount of water currently in cell in cubic m
//amount of water moving into the cell

//amount of water that will move
public ArrayList QtoCells = null; //list of cells to receive water (and amount)
double velocity; //calculated velocity
double totlnfil; //total amount of infiltrated water
boolean borderCell = false; //set to true if it is a border cell
boolean newVolume = false; //set to true if the cell get more water
private boolean wasDry = false; //for continuous code
public int releaseTime = 1; //number of iterations to hold water in a cell
public int countTime = 0; //count iterations for this cell

//DEBUG only....store row and col within matrix
public int row;
public int col;
//DEBUG

public TCell(double e) {
elevation = e;
surfaceElev = e;

}

static public void setFactor(int f) {

factor = f;

r
* Needed for continuous flow
7

public void setWasDry(boolean b) {
wasDry = b;

}

r
* Needed for continuous flow
7

public boolean getWasDry() {
return wasDry;

}

public double getElevation() {
return elevation;

}

public double getManningsN() {
return N;

)

public void setManningsN(double friction) {
N = friction;

/* Uncomment if watershed mask is ever implemented
public boolean getInWatershed()
1

return inWatershed;

public void setlnWatershedfboolean w)
I

inWatershed=w;

7 oo

public double getCellSope() {
return cellSlope;

}

public void setCellSlope(double s) (
cellSlope = s;

}

public double getWaterDepth() (
return waterDepth;

}

public void setWaterDepth(double w) (
waterDepth = w;

}

public double getSurfaceElev() {
return surfaceElev;

}

public void setSurfaceElev(double s) {
surfaceElev = s;

)

public double getVol() {
return vol;

}

/*
* setVol()
* set the amount of water volume in the
* perform calculations
* waterdepth
* velocity
* set new Volume to true
7

public void setVol(double s) {
if (s < O.Of)

s = O.Of; //catch rounding errors

vol = s;
calcWaterDepth();
setVelocityO;
newVolume = true;

I*
* setVolNoCalc()
* reduce the number of calculations per iteration with this version
* must be used carefully

7
public void setVolNoCalc(double s) {

if (s < O.Of)
s = O.Of; //catch rounding errors

vol = s;

newVolume = true;

public boolean newVolume() {
return newVolume;

)

public double getMovableVol() {
return movableVol;

)

public void setMovableVol(double f) {
movableVol = f;

r
* resetMovableQO
* set how much volume is left in cell after water movement
7

public void resetMovableQO I
double voli = vol - movableVol;
if (volf < O.Of)

setVol(O.Of);

else
setVol(volf);

movableVol = O.Of;
//Note: Could reset count here if too fast

public double getFutureVol() {
return futureVol;

1

public void resetFutureVol() {
futureVol = O.Of;

}

public void setFutureVol(double s) {
futureVol = futureVol + s;

}

public ArrayList getQtoCells() {
return QtoCells;

}

public void printCell() {
System.out.println("Cell position:" + row + + col);
System.out.println(" Elevation :" + elevation);
System.out.println(" Cell slope :" + cellSlope);
System.out.println(” Water Depth :" + waterDepth);
System.out.println(" Surface Elev:" + surfaceElev);
System.out.println(" Velocity :" + velocity);
System.out.println(” Release tim e:" + releaseTime);

r
* Calculate the water depth in the cell
* add to elevation for surfaceElev
* Depth=volume/(length*width)
V

public void calcWaterDepth() {
if (vol > O.Of) {

waterDepth = vol / (CellWidth * CellWidth);

surfaceElev = elevation + waterDepth;
) else {

waterDepth = O.Of;
surfaceElev = elevation;

public void incrementTime() {
countTime++;

}

/*
* alarm()
* check to see if it is time to move water
7

public boolean alarm() {
if (countTime >= releaseTime)

return true;
else

return false;
}

public void resetTime() I
countTime = 0;

}

//Velocity
private double hydrR;
private double vel;

r
* setVelocity()
* Calculate velocity
* and set release time
7

public void setVelocity() {
//double velocity=0.0f;
if (vol = O.Of) {

velocity = O.Of;
releaseTime = 1;

} else {
hydrR = Math.pow(waterDepth, .66666667);
vel = hydrR * Math.pow(cellSlope, .5f);

//vel is in meters per sec
vel = vel / N;
velocity = (double) vel;
//this is relase time in fractions of a second
releaseTime = (int) Math.round((CellWidth / vel) * factor);
//(C E L L WIDTH_lSec/Cell Width));
if (releaseTime < 1)

releaseTime = 1;

public int getReleaseTime() {
return releaseTime;

}

public double getVelocity() {
return velocity;

}

public void addInfiltratedVol(double v) (
totlnfil = totlnfil + v;

}

public double getInfiltratedVol() {
return totlnfil;

}

public void setIsBorderCell(boolean b) {
borderCell = b;

I
public boolean getIsBorderCell() {

return borderCell;
}

public double getCellSize() (
return CellWidth;

public void setCellSize(double f) (
CellWidth = f;

REFERENCES

Coulthard, T. J. 1999. Modelling Upland Catchment Response to Holocene
Environmental Change. Unpublished Phd Thesis. University of Leeds.

Crave, A. and P. Davy. 2001. A stochastic "precipiton" model for simulating
erosion/sedimentation dynamics. Computers & Geosciences 27, no. 7 :815-827.

Fonstad, Mark. 2003. A Time-based CA: Notes from Moscow. Personal
Communication.

Food and Agriculture Organization of the United Nations (FAO). Irrigation Water
Management: Irrigation Methods. Available on-line.
http://www.fao.org/docrep/S8684E/s8684e00.htm.

Johnson, Mark, William F. Coon, Vishal K. Metha, Tammo S. Steenhuis, Erin S.
Brooks and Jan Boll. 2003. Application of two hydrologic models with
different runoff mechanisms to a hillslope dominated watershed in the
northeastern US: a comparison of HSPF and SMR. Journal of Hydrology 284:57-
76.

Luo, Wei. 2001. LANDSAP: a coupled surface and subsurface cellular automata
model for landform simulation. Computers & Geosciences TI, no. 3:363-367.

Murray, A. Brad and Chris Paola. 1994. A cellular model of braided rivers. Nature
371, no. 1:54-59.

Murray, A. Brad and Chris Paola. 1997. Properties of a cellular braided-stream
model. Earth Surface Processes and Landforms 22:1001-1025.

Rocky Mountain National Park (RMNP). 2004. Available on-line.
http://www.nps.gov/romo/index.html.

Rocky Mountain National Park GIS Data (RMNP GIS). 2004. Data acquired from
Rocky Mountain National Park GIS Program. Estes Park, Colorado.

72

http://www.fao.org/docrep/S8684E/s8684e00.htm
http://www.nps.gov/romo/index.html

73

Southwest Watershed Research Center (SWRC). Walnut Gulch Experimental
Watershed. [Online]. Available from
http://www.tucson.ars.ag.gov/unitAVatershedsAVGEW.htm.

Thomas, R. and A.P. Nicholas. 2002. Simulation of a braided river flow using a
new cellular routing scheme. Geomorphology 43:179-195.

Tobler, Waldo. 1970. A computer movie simulating urban growth in the Detroit
region. Economic Geography 46, no. 2 :234-240.

VisAD Home Page. 2004. VisAD. Available on-line.
http://www.ssec.wisc.edu/~billh/visad.html.

Wolfram, Stephen. 1983. Cellular Automata. Los Alamos Science. 9:2-21.

Wolfram, Stephen. 1984. Universality and Complexity in Cellular Automata.
Physica D. 10:1-35.

http://www.tucson.ars.ag.gov/unitAVatershedsAVGEW.htm
http://www.ssec.wisc.edu/~billh/visad.html

VITA

Jay Alan Parsons was born in San Angelo, Texas, on January 17,1972.

He graduated from Midland High School in Midland, Texas. He received a

Bachelor of Science in Computer Science from Texas A&M University in May

1995. After completing his undergraduate degree, he worked as a software

developer in Lewisville and Austin, Texas. In January, 2001, he entered the

Graduate College at Texas State University-San Marcos.

Permanent Address: 3009 Overland Street

Round Rock, Texas 78681

This thesis was typed by the author.

