
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 54, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF BOUNDED SOLUTIONS FOR NONLINEAR
DEGENERATE ELLIPTIC EQUATIONS IN ORLICZ SPACES

AHMED YOUSSFI

Abstract. We prove the existence of bounded solutions for the nonlinear

elliptic problem
− div a(x, u,∇u) = f in Ω,

with u ∈ W 1
0 LM (Ω) ∩ L∞(Ω), where

a(x, s, ξ) · ξ ≥ M
−1

M(h(|s|))M(|ξ|),
and h : R+→]0, 1] is a continuous monotone decreasing function with un-

bounded primitive. As regards the N -function M , no ∆2-condition is needed.

1. Introduction

Let Ω be a bounded open set of RN , N ≥ 2. We consider the equation

−div(a(x, u)M
−1

(M(|∇u|)) ∇u

|∇u|
) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where
M

−1
(M(

1
(1 + |s|)θ

)) ≤ a(x, s) ≤ β, (1.2)

with 0 ≤ θ ≤ 1, and β is a positive constant.
For M(t) = t2, existence of bounded solutions of (1.1) was proved under (1.2)

in [4] and in [5] when f ∈ Lm(Ω) with m > N
2 . This result was then extended in

[3], to the study of the problem

−div a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,
(1.3)

in the Sobolev space W 1,p
0 (Ω), under the condition

a(x, s, ξ) · ξ ≥ α

(1 + |s|)θ(p−1)
|ξ|p, (1.4)

when f ∈ Lm(Ω) with m > N
p .

In this paper, we prove the existence of bounded solutions of (1.3) in the setting of
Orlicz spaces under a more general condition than (1.4) adapted to this situation.
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The main tools used to get a priori estimates in our proof are symmetrization
techniques. such techniques are widely used in the literature for linear and nonlinear
equations (see [3] and the references quoted therein). We remark that our result is
in some sense complementary to one contained in [13].

As examples of equations to which our result can be applied, we list:

−div(
α

(e + |u|)γ log(e + |u|)
e|∇u|p − 1
|∇u|2

∇u) = f in Ω,

u = 0 on ∂Ω,

where α > 0, γ < 1 and M(t) = etp − 1 with 1 < p < N ; and

−div(
α

(1 + |u|)γ
|∇u|p−2∇ulogq(e + |∇u|) = f in Ω,

u = 0 on ∂Ω,

where α > 0 and 0 ≤ γ ≤ 1, here M(t) = tp logq (e + t) with 1 < p < N and q ∈ R.

2. Preliminaries

Let M : R+ → R+ be an N -function; i.e., M is continuous, convex, with M(t) >

0 for t > 0, M(t)
t → 0 as t → 0 and M(t)

t →∞ as t →∞. The N -function conjugate
to M is defined as M(t) = sup{st−M(t), s ≥ 0}. We will extend these N -functions
into even functions on all R. We recall that (see [1])

M(t) ≤ tM
−1

(M(t)) ≤ 2M(t) for all t ≥ 0 (2.1)

and the Young’s inequality: for all s, t ≥ 0, st ≤ M(s) + M(t). If for some k > 0,

M(2t) ≤ kM(t) for all t≥ 0, (2.2)

we said that M satisfies the ∆2-condition, and if (2.2) holds only for t greater than
or equal to t0, then M is said to satisfy the ∆2-condition near infinity.

Let P and Q be two N -functions. the notation P�Q means that P grows
essentially less rapidly than Q, i.e.

∀ε > 0,
P (t)
Q(εt)

→ 0 as t →∞,

that is the case if and only if

Q−1(t)
P−1(t)

→ 0 as t →∞.

Let Ω be an open subset of RN . The Orlicz class KM (Ω) (resp. the Orlicz
space LM (Ω)) is defined as the set of (equivalence class of) real-valued measurable
functions u on Ω such that:∫

Ω

M(u(x))dx < ∞ (resp.
∫

Ω

M(
u(x)

λ
)dx < ∞ for some λ > 0).

Endowed with the norm

‖u‖M = inf{λ > 0 :
∫

Ω

M(
u(x)

λ
)dx < ∞},

LM (Ω) is a Banach space and KM (Ω) is a convex subset of LM (Ω). the closure in
LM (Ω) of the set of bounded measurable functions with compact support in Ω is
denoted by EM (Ω).
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The Orlicz-Sobolev space W 1LM (Ω) (resp. W 1EM (Ω)) is the space of functions
u such that u and its distributional derivatives up to order 1 lie in LM (Ω) (resp.
EM (Ω)).

This is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Thus, W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the product
of (N + 1) copies of LM (Ω). Denoting this product by ΠLM , we will use the weak
topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ).

The space W 1
0 EM (Ω) is defined as the norm closure of the Schwartz space D(Ω)

in W 1EM (Ω) and the space W 1
0 LM (Ω) as the σ(ΠLM ,ΠEM ) closure of D(Ω) in

W 1LM (Ω).
We say that a sequence {un} converges to u for the modular convergence in

W 1LM (Ω) if, for some λ > 0,∫
Ω

M(
Dαun −Dαu

λ
)dx → 0 for all |α| ≤ 1;

this implies convergence for σ(ΠLM ,ΠLM ).
If M satisfies the ∆2-condition on R+ (near infinity only if Ω has finite measure),

then the modular convergence coincides with norm convergence. Recall that the
norm ‖Du‖M defined on W 1

0 LM (Ω) is equivalent to ‖u‖1,M (see [10]).
Let W−1LM (Ω) (resp. W−1EM (Ω)) denotes the space of distributions on Ω

which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω)
(resp. EM (Ω)). It is a Banach space under the usual quotient norm.

If the open Ω has the segment property then the space D(Ω) is dense in W 1
0 LM (Ω)

for the topology σ(ΠLM ,ΠLM ) (see [10]). Consequently, the action of a distribu-
tion in W−1LM (Ω) on an element of W 1

0 LM (Ω) is well defined. For an exhaustive
treatments one can see for example [1] or [12].

We will use the following lemma, (see[6]), which concerns operators of Nemytskii
Type in Orlicz spaces. It is slightly different from the analogous one given in [12].

Lemma 2.1. Let Ω be an open subset of RN with finite measure. let M , P and Q
be N -functions such that Q�P , and let f : Ω×R → R be a Carathéodory function
such that, for a.e. x ∈ Ω and for all s ∈ R,

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator
Nf , defined by Nf (u)(x) = f(x, u(x)), is strongly continuous from P (EM , 1

k2
) =

{u ∈ LM (Ω) : d(u, EM (Ω)) < 1
k2
} into EQ(Ω).

We recall the definition of decreasing rearrangement of a measurable function
w : Ω → R. If one denotes by |E| the Lebesgue measure of a set E, one can define
the distribution function µw(t) of w as:

µw(t) = |{x ∈ Ω : |w(x)| > t}|, t ≥ 0.

The decreasing rearrangement w∗ of w is defined as the generalized inverse function
of µw:

w∗(σ) = inf{t ∈ R : µw(t) ≤ σ}, σ ∈ (0,Ω).
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It is shown in [15] that w∗ is everywhere continuous and

w∗(µw(t)) = t (2.3)

for every t between 0 and ess sup |w|. More details can be found for example in
[2, 13, 14].

3. Assumptions and main result

Let Ω be an open bounded subset of RN , N ≥ 2, satisfying the segment property
and M is an N -function twice continuously differentiable and strictly increasing,
and P is an N -function such that P�M .

Let a : Ω× R× RN→RN be a Carathéodory function satisfying, for a.e. x ∈ Ω,
and for all s ∈ R and all ξ, η ∈ RN , ξ 6= η,

a(x, s, ξ) · ξ ≥ M
−1

M(h(|s|))M(|ξ|) (3.1)

where h : R+→R∗
+ is a continuous monotone decreasing function such that h(0)≤1

and its primitive H(s) =
∫ s

0
h(t)dt is unbounded,

|a(x, s, ξ)| ≤ a0(x) + k1P
−1

M(k2|s|) + k3M
−1

M(k4|ξ|) (3.2)

where a0(x) belongs to EM (Ω) and k1, k2, k3, k4 to R∗
+,

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0. (3.3)

Let A: D(A)⊂W 1
0 LM (Ω)→W−1LM (Ω) be a mapping (non-everywhere defined)

given by
A(u) := −div a(x, u,∇u),

We are interested, in proving the existence of bounded solutions to the nonlinear
problem

A(u) := −div(a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,
(3.4)

As regards the data f , we assume one of the following two conditions: Either

f ∈ LN (Ω), (3.5)

or
f ∈ Lm(Ω) with m = rN/(r + 1) for some r > 0,

and
∫ +∞

.

(
t

M(t)
)rdt < +∞.

(3.6)

We will use the following concept of solutions:

Definition 3.1. Let f∈ L1(Ω), a function u∈ W 1
0 LM (Ω) is said to be a weak

solution of (3.4), if a(·, u,∇u) ∈ (LM (Ω))N and∫
Ω

a(x, u,∇u) · ∇v dx =
∫

Ω

fv dx

holds for all v ∈ D(Ω).

Our main result is the following.

Theorem 3.2. Under the assumptions (3.1), (3.2), (3.3) and either (3.5) or (3.6),
there exists at least one weak solution of (3.4) in W 1

0 LM (Ω) ∩ L∞(Ω).
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Remark 3.3. In the case where M(t) = tp, with p > 1, assumptions (3.5) and
(3.6) imply that m > N

p . Our result extends those in [5] and [4] where M(t) = t2

and [3] where M(t) = tp, with p > 1.

Remark 3.4. Note that the result of theorem (3.1) is independent of the function
h which eliminates the coercivity of the operator A. The result is not surprising,
since if we look for bounded solutions then the operator A becomes coercive.

Remark 3.5. The principal difficulty in dealing with the problem (3.4) is the non
coerciveness of the operator A, this is due to the hypothesis (3.1), so the classical
methods used to prove the existence of a solution for (3.4) can not be applied (see
[11] and also [9]). To get rid of this difficulty, we will consider an approximation
method in which we introduce a truncation. The main tool of the proof will be
L∞ a priori estimates, obtained by mean of a comparison result, which then imply
the W 1

0 LM (Ω) estimate, since if u is bounded the operator A becomes uniformly
coercive.

4. Proof of theorem 3.2

For s ∈ R and k > 0 set: Tk(s) = max(−k,min(k, s)) and Gk(s) = s − Tk(s).
Let {fn} ⊂ W−1EM (Ω) be a sequence of smooth functions such that

fn → f strongly in Lm∗
(Ω)

and
‖fn‖m∗ ≤ ‖f‖m∗ ,

where m∗ denotes either N or m, according as we assume (3.5) or (3.6), and consider
the operator:

An(u) = −div a(x, Tn(u),∇u).

By assumption (3.1), we have

〈An(u), u〉 =
∫

Ω

a(x, Tn(u),∇u) · ∇u dx

≥ M
−1

(M(h(n)))
∫

Ω

M(|∇u|)dx.

Thus, An satisfies the classical conditions from which derives, thanks to the fact
that fn∈W−1EM (Ω), the existence of a solution un∈W 1

0 LM (Ω), (see [11] and also
[9]), such that ∫

Ω

a(x, Tn(un),∇un) · ∇vdx =
∫

Ω

fnvdx (4.1)

holds for all v∈ W 1
0 LM (Ω). To prove the L∞ a priori estimates, we will need the

following comparison lemma, whose proof will be given in the appendix.

Lemma 4.1. Let B(t) = M(t)
t and µn(t) = |{x ∈ Ω : |un(x)| > t}|, for all t > 0.

We have for almost every t > 0:

h(t) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

−µ′n(t)

µn(t)1−
1
N

B−1
( ∫

{|un|>t} |fn|dx

M
−1

(M(1))NC
1/N
N µn(t)1−

1
N

)
(4.2)

where CN is the measure of the unit ball in RN .
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step 1: L∞-bound. If we assume (3.5), using the inequality
∫
{|un|>t} |fn|dx ≤

‖f‖Nµn(t)1−
1
N , (4.2) becomes

h(t) ≤ 2M(1)(−µ′n(t))

M
−1

(M(1))NC
1/N
N µn(t)1−

1
N

B−1
( ‖f‖N

M
−1

(M(1))NC
1/N
N

)
.

Then we integrate between 0 and s, we get

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

B−1
( ‖f‖N

M
−1

(M(1))NC
1/N
N

) ∫ s

0

−µ′n(t)
µn(t)1−

1
N

dt;

hence, a change of variables yields

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

B−1
( ‖f‖N

M
−1

(M(1))NC
1/N
N

) ∫ |Ω|

µn(s)

dt

t1−
1
N

.

By (2.3) we get

H(u∗n(σ)) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

B−1
( ‖f‖N

M
−1

(M(1))NC
1/N
N

) ∫ |Ω|

σ

dt

t1−
1
N

.

So that

H(u∗n(0)) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

B−1
( ‖f‖N

M
−1

(M(1))NC
1/N
N

)
N |Ω|1/N .

Since u∗n(0) = ‖un‖∞, the assumption made on H (i.e., lims→+∞ H(s) = +∞)
shows that the sequence {un} is uniformly bounded in L∞(Ω). Moreover if we
denote by H−1 the inverse function of H, one has:

‖un‖∞ ≤ H−1
( 2M(1)

M
−1

(M(1))NC
1/N
N

B−1
( ‖f‖N

M
−1

(M(1))NC
1/N
N

)
N |Ω|1/N

)
. (4.3)

Now, we assume that (3.6) is filled. Then, using the inequality∫
{|un|>t}

|fn|dx ≤ ‖f‖mµn(t)1−
1
m

in (4.2), we obtain

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

∫ s

0

−µ′n(t)
µn(t)1−

1
N

B−1
( ‖f‖m

M
−1

(M(1))NC
1/N
N µn(t)

1
m− 1

N

)
dt.

A change of variables gives

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

∫ |Ω|

µn(s)

B−1
( ‖f‖m

M
−1

(M(1))NC
1/N
N σ

1
m− 1

N

) dσ

σ1− 1
N

.

As above, (2.3) gives

H(u∗n(τ)) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

∫ |Ω|

τ

B−1
( ‖f‖m

M
−1

(M(1))NC
1/N
N σ

1
m− 1

N

) dσ

σ1− 1
N

.

Then, we have

H(‖un‖∞) ≤ 2M(1)

M
−1

(M(1))NC
1/N
N

∫ |Ω|

0

B−1
( ‖f‖m

M
−1

(M(1))NC
1/N
N σ

1
m− 1

N

) dσ

σ1− 1
N

.
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A change of variables gives

H(‖un‖∞) ≤ 2M(1)‖f‖r
m

(M
−1

(M(1)))r+1NrC
r+1
N

N

∫ +∞

c0

rt−r−1B−1(t)dt,

where c0 = ‖f‖m

M
−1

(M(1))NC
1/N
N |Ω|

1
rN

. Then, an integration by parts yields

H(‖un‖∞) ≤ 2M(1)‖f‖r
m

(M
−1

(M(1)))r+1NrC
r+1
N

N

(B−1(c0)
cr
0

+
∫ +∞

B−1(c0)

( s

M(s)
)r

ds
)
.

The assumption made on H guarantees that the sequence {un} is uniformly bounded
in L∞(Ω). Indeed, denoting by H−1 the inverse function of H, one has

‖un‖∞ ≤ H−1
( 2M(1)‖f‖r

m

(M
−1

(M(1)))r+1NrC
r+1
N

N

(B−1(c0)
cr
0

+
∫ +∞

B−1(c0)

( s

M(s)
)r

ds
))

.

(4.4)
Consequently, in both cases the sequence {un} is uniformly bounded in L∞(Ω), so
that in the sequel, we will denote by c the constant appearing either in (4.3) or in

(4.4), that is

‖un‖∞ ≤ c. (4.5)

Step 2: Estimation in W 1
0 LM (Ω). It is now easy to obtain an estimate in

W 1
0 LM (Ω) under either (3.5) or (3.6). Let m∗ denotes either N or m according as

we assume (3.5) or (3.6). Taking un as test function in (4.1), one has∫
Ω

a(x, Tn(un),∇un) · ∇undx =
∫

Ω

fnundx.

Then by (3.1) and (4.5), we obtain∫
Ω

M(|∇un|)dx ≤ c‖f‖m∗ |Ω|1− 1
m∗

M
−1

(M(h(c)))
. (4.6)

Hence, the sequence {un} is bounded in W 1
0 LM (Ω). Therefore, there exists a

subsequence of {un}, still denoted by {un}, and a function u in W 1
0 LM (Ω) such

that

un ⇀ u in W 1
0 LM (Ω) for σ(ΠLM ,ΠEM ) (4.7)

and

un → u in EM (Ω) strongly and a.e. in Ω. (4.8)

Step 3: Almost everywhere convergence of the gradients. Let us begin
with the following lemma which we will use later.

Lemma 4.2. The sequence {a(x, Tn(un),∇un)} is bounded in (LM (Ω))N .

Proof. We will use the dual norm of (LM (Ω))N . Let ϕ ∈ (EM (Ω))N such that
‖ϕ‖M = 1. By (3.3) we have(

a(x, Tn(un),∇un)− a(x, Tn(un),
ϕ

k4
)
)
·
(
∇un −

ϕ

k4

)
≥ 0.
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Let λ = 1 + k1 + k3, by using (3.2), (4.5), (4.6) and Young’s inequality we get∫
Ω

a(x, Tn(un),∇un)ϕdx

≤ k4

∫
Ω

a(x, Tn(un),∇un) · ∇un dx− k4

∫
Ω

a(x, Tn(un),
ϕ

k4
) · ∇un dx

+
∫

Ω

a(x, Tn(un),
ϕ

k4
) · ϕdx

≤ k4c‖f‖m∗ |Ω|1− 1
m∗ + k4λ

c‖f‖m∗ |Ω|1− 1
m∗

M
−1

M(h(c))

+ (1 + k4)
( ∫

Ω

M(a0(x))dx + k1MP
−1

M(k2c)|Ω|
)

+ k3(1 + k4) + λ,

which completes the proof. �

From (4.5) and (4.8) we obtain that u ∈ W 1
0 LM (Ω) ∩ L∞(Ω), so that by [8,

Theorem 4] there exists a sequence {vj} in D(Ω) such that vj→u in W 1
0 LM (Ω)

as j→∞ for the modular convergence and almost everywhere in Ω, moreover
‖vj‖∞≤(N + 1)‖u‖∞.

For s > 0, we denote by χs
j the characteristic function of the set

Ωs
j = {x ∈ Ω : |∇vj(x)| ≤ s}

and by χs the characteristic function of the set Ωs = {x ∈ Ω : |∇u(x)| ≤ s}. Testing
by un − vj in (4.1), we obtain∫

Ω

a(x, Tn(un),∇un) · (∇un −∇vj)dx =
∫

Ω

fn(un − vj)dx (4.9)

Denote by εi(n, j), (i = 0, 1, . . . ), various sequences of real numbers which tend to
0 when n and j →∞, i.e.

lim
j→∞

lim
n→∞

εi(n, j) = 0.

For the right-hand side of (4.9), we have∫
Ω

fn(un − vj)dx = ε0(n, j). (4.10)

The left-hand side of (4.9) is written as∫
Ω

a(x, Tn(un),∇un) · (∇un −∇vj) dx

=
∫

Ω

(
a(x, Tn(un),∇un)− a(x, Tn(un),∇vjχ

s
j)

)
·
(
∇un −∇vjχ

s
j

)
dx

+
∫

Ω

a(x, Tn(un),∇vjχ
s
j) · (∇un −∇vjχ

s
j)dx

−
∫

Ω\Ωs
j

a(x, Tn(un),∇un) · ∇vj dx

(4.11)

We will pass to the limit over n and j, for s fixed, in the second and the third
terms of the right-hand side of (4.11). By Lemma 4.2, we deduce that there exists
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l ∈ (LM (Ω))N and up to a subsequence a(x, Tn(un),∇un) ⇀ l weakly in (LM (Ω))N

for σ(
∏

LM ,
∏

EM ). Since ∇vjχΩ\Ωs
j
∈ (EM (Ω))N , we have by letting n →∞,

−
∫

Ω\Ωs
j

a(x, Tn(un),∇un) · ∇vjdx → −
∫

Ω\Ωs
j

l · ∇vjdx.

Using the modular convergence of vj , we get as j →∞

−
∫

Ω\Ωs
j

l · ∇vj dx → −
∫

Ω\Ωs

l · ∇u dx.

Hence, we have proved that the third term

−
∫

Ω\Ωs
j

a(x, Tn(un),∇un) · ∇vjdx = −
∫

Ω\Ωs

l · ∇udx + ε1(n, j). (4.12)

For the second term, as n →∞, we have∫
Ω

a(x, Tn(un),∇vjχ
s
j) ·

(
∇un −∇vjχ

s
j

)
dx →

∫
Ω

a(x, u,∇vjχ
s
j) ·

(
∇u−∇vjχ

s
j

)
dx,

since a(x, Tn(un),∇vjχ
s
j) → a(x, u,∇vjχ

s
j) strongly in (EM (Ω))N as n → ∞ by

lemma 2.1 and (4.8), while ∇un ⇀ ∇u weakly in (LM (Ω))N by (4.7). And since
∇vjχ

s
j → ∇uχs strongly in (EM (Ω))N as j →∞, we obtain∫

Ω

a(x, u,∇vjχ
s
j) ·

(
∇u−∇vjχ

s
j

)
dx → 0

as j →∞. So that∫
Ω

a(x, Tn(un),∇vjχ
s
j) ·

(
∇un −∇vjχ

s
j

)
dx = ε2(n, j). (4.13)

Consequently, combining (4.10), (4.12) and (4.13), we obtain∫
Ω

(
a(x, Tn(un),∇un)− a(x, Tn(un),∇vjχ

s
j)

)
·
(
∇un −∇vjχ

s
j

)
dx

=
∫

Ω\Ωs

l · ∇u dx + ε3(n, j).
(4.14)

On the other hand∫
Ω

(a(x, Tn(un),∇un)− a(x, Tn(un),∇uχs)) · (∇un −∇uχs) dx

=
∫

Ω

(
a(x, Tn(un),∇un)− a(x, Tn(un),∇vjχ

s
j)

)
·
(
∇un −∇vjχ

s
j

)
dx

+
∫

Ω

a(x, Tn(un),∇un) ·
(
∇vjχ

s
j −∇uχs

)
dx

−
∫

Ω

a(x, Tn(un),∇uχs) · (∇un −∇uχs) dx

+
∫

Ω

a(x, Tn(un),∇vjχ
s
j) ·

(
∇un −∇vjχ

s
j

)
dx.
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We can argue as above in order to obtain∫
Ω

a(x, Tn(un),∇un) ·
(
∇vjχ

s
j −∇uχs

)
dx = ε4(n, j),∫

Ω

a(x, Tn(un),∇uχs) · (∇un −∇uχs) dx = ε5(n, j),∫
Ω

a(x, Tn(un),∇vjχ
s
j) ·

(
∇un −∇vjχ

s
j

)
dx = ε6(n, j).

Then, by (4.14) we have∫
Ω

(a(x, Tn(un),∇un)− a(x, Tn(un),∇uχs)) · (∇un −∇uχs) dx

= ε7(n, j) +
∫

Ω\Ωs

l · ∇udx.

For r ≤ s, we write

0 ≤
∫

Ωr

(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u) dx

≤
∫

Ωs

(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u) dx

=
∫

Ωs

(a(x, Tn(un),∇un)− a(x, Tn(un),∇uχs)) · (∇un −∇uχs) dx

≤
∫

Ω

(a(x, Tn(un),∇un)− a(x, Tn(un),∇uχs)) · (∇un −∇uχs) dx

≤ ε7(n, j) +
∫

Ω\Ωs

l · ∇udx.

Which implies by passing at first to the limit superior over n and then over j,

0 ≤ lim sup
n→∞

∫
Ωr

(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u) dx

≤
∫

Ω\Ωs

l · ∇udx.

Letting s → +∞ in the previous inequality, we conclude that as n →∞,∫
Ωr

(a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u) dx → 0. (4.15)

Let Bn be defined by

Bn = (a(x, Tn(un),∇un)− a(x, Tn(un),∇u)) · (∇un −∇u) .

As a consequence of (4.15), one has Bn → 0 strongly in L1(Ωr), extracting a
subsequence, still denoted by {un}, we get Bn → 0 a.e in Ωr. Then, there exists
a subset Z of Ωr, of zero measure, such that: Bn(x) → 0 for all x ∈ Ωr \ Z. Using
(3.2), we obtain for all x ∈ Ωr \ Z,

Bn(x) ≥ M
−1

M(h(c))M(|∇un(x)|)−c1(x)
(
1 + M

−1
M(k4|∇un(x)|) + |∇un(x)|

)
,

where c is the constant appearing in (4.5) and c1(x) is a constant which does
not depend on n. Thus, the sequence {∇un(x)} is bounded in RN , then for a
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subsequence {un′(x)}, we have

∇un′(x) → ξ in RN ,

(a(x, u(x), ξ)− a(x, u(x),∇u(x))) · (ξ −∇u(x)) = 0.

Since a(x, s, ξ) is strictly monotone, we have ξ = ∇u(x), and so ∇un(x) → ∇u(x)
for the whole sequence. It follows that

∇un → ∇u a.e. in Ωr.

Consequently, as r is arbitrary, one can deduce that

∇un → ∇u a.e. in Ω. (4.16)

Step 4: Passage to the limit. Let v be a function in D(Ω). Taking v as test
function in (4.1), one has∫

Ω

a(x, Tn(un),∇un) · ∇vdx =
∫

Ω

fnv dx.

Lemma 4.2, (4.8) and (4.16) imply that

a(x, Tn(un),∇un) ⇀ a(x, u,∇u) weakly in (LM (Ω))N for σ(ΠLM ,ΠEM ),

so that one can pass to the limit in the previous equality to obtain∫
Ω

a(x, u,∇u) · ∇vdx =
∫

Ω

fv dx.

Moreover, from (4.5) and (4.8) we have u ∈ W 1
0 LM (Ω) ∩ L∞(Ω). This completes

the proof of theorem 3.2.

Remark 4.3. Note that the L∞-bound in step 1 can be proven under the weaker
assumption

‖f‖m,∞ = sup
s>0

s
1
m−1

∫ s

0

f∗(t)dt < ∞,

which is equivalent to say that f belongs to the Lorentz space L(m,∞). Indeed,
one can use the inequality∫

{|un|>t}
|fn|dx ≤

∫ µn(t)

0

f∗(t)dt

(see [13, 14]) in (4.1) to obtain: If f belongs to L(N,∞), then

h(t) ≤ 2M(1)(−µ′n(t))

M
−1

(M(1))NC
1/N
N µn(t)1−

1
N

B−1
( ‖f‖N,∞

M
−1

(M(1))NC
1/N
N

)
,

and if we assume that f belongs to L(m,∞) with m < N and∫ +∞

.

( t

M(t)
) m

N−m dt < +∞,

we obtain

h(t) ≤ 2M(1)(−µ′n(t))

M
−1

(M(1))NC
1/N
N µn(t)1−

1
N

B−1
( ‖f‖m,∞

M
−1

(M(1))NC
1/N
N µn(t)

1
m− 1

N

)
.

As above, starting with those inequalities we obtain the desired result. Observe
that when h is a constant function, this L∞-bound was proved in [13].
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5. Appendix

In this section, we prove lemma 4.1 based on techniques inspired from those in
[13].

Proof of Lemma 4.1. Testing by v = Tk(Gt(un)), which lies in W 1
0 LM (Ω) thanks

to [7, Lemma 2], in (4.1) one has∫
{t<|un|≤t+k}

a(x, Tn(un),∇un) · ∇undx ≤ k

∫
{|un|>t}

|fn|dx.

Then (3.1) yields

1
k

∫
{t<|un|≤t+k}

M
−1

M(h(|un|))M(|∇un|)dx ≤
∫
{|un|>t}

|fn|dx.

Letting k → 0+ we obtain

− d

dt

∫
{|un|>t}

M
−1

M(h(|un|))M(|∇un|)dx ≤
∫
{|un|>t}

|fn|dx, (5.1)

for almost every t > 0. The hypotheses made on the N -function M , which are
not a restriction, allow to affirm that the function C(t) = 1

B−1(t) is decreasing and
convex (see [13]). Hence, Jensen’s inequality yields

C
(∫

{t<|un|≤t+k} M
−1

(M(h(|un|)))M(|∇un|)dx∫
{t<|un|≤t+k} M

−1
(M(h(|un|)))|∇un|dx

)

= C
(∫

{t<|un|≤t+k} B(|∇un|)M
−1

(M(h(|un|)))|∇un|dx∫
{t<|un|≤t+k} M

−1
(M(h(|un|)))|∇un|dx

)

≤

∫
{t<|un|≤t+k} M

−1
(M(h(|un|)))dx∫

{t<|un|≤t+k} M
−1

(M(h(|un|)))|∇un|dx

≤ M
−1

(M(h(t)))(−µn(t + k) + µn(t))

M
−1

(M(h(t + k)))
∫
{t<|un|≤t+k} |∇un|dx

.

Taking into account that M
−1

(M(h(t))) ≤ M
−1

(M(1)), using the convexity of C
and then letting k → 0+, we obtain for almost every t > 0,

M
−1

(M(1))

M
−1

(M(h(t)))
C

(− d
dt

∫
{|un|>t} M

−1
(M(h(|un|)))M(|∇un|)dx

M
−1

(M(1))(− d
dt

∫
{|un|>t} |∇un|dx)

)
≤ −µ′n(t)
− d

dt

∫
{|un|>t} |∇un|dx

.

Now we recall the following inequality from [13]:

− d

dt

∫
{|un|>t}

|∇un|dx ≥ NC
1/N
N µn(t)1−

1
N for almost every t > 0. (5.2)
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The monotonicity of the function C, (5.1) and (5.2) yield
1

M
−1

(M(h(t)))

≤ −µ′n(t)

M
−1

(M(1))NC
1/N
N µn(t)1−

1
N

B−1
( ∫

{|un|>t} |fn|dx

M
−1

(M(1))NC
1/N
N µn(t)1−

1
N

)
.

Using (2.1) and the fact that 0 < h(t) ≤ 1, we obtain (4.2). �

References

[1] R. Adams; Sobolev spaces, Academic Press Inc, New York, (1975).
[2] C. Bennett, R. Sharpley; Interpolation of operators, Academic press, Boston, (1988).

[3] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti; Existence results for nonlinear

elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., IV. Ser. 182, No.1,
(2003), 53-79.

[4] A. Alvino, V. Ferone, G. Trombetti; A priori estimates for a class of non uniformly elliptic
equations, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998), 381-391.

[5] L. Boccardo, A. Dall’Aglio, L. Orsina; Existence and regularity results for some elliptic

equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46-suppl., (1998),
51-81.

[6] A. Elmahi, D. Meskine; Nonlinear elliptic problems having natural growth and L1 data in

Orlicz spaces , Ann. Mat. Pura Appl. 184, No. 2, (2005), 161-184.
[7] J.-P. Gossez; A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. Sympos.

Pure Math. 45, Amer. Math. Soc., (1986), 455-462.

[8] J.-P. Gossez; Some approximation properties in Orlicz-Sobolev spaces, Stud. Math. 74,
(1982), 17-24.

[9] J.-P. Gossez; Surjectivity results for pseudo-monotone mappings in complementary systems,

J. Math. Anal. Appl. 53, (1976), 484-494.
[10] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly)

increasing coefficients, Trans. Amer. Math. soc. 190, (1974), 163-205.
[11] J.-P. Gossez, V. Mustonen; Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal.,

Theory Methods Appl. 11, (1987), 379-392.

[12] M. Krasnosel’skii, Ya. Rutikii; Convex functions and Orlicz spaces, Groningen, Nordhooff
(1969).

[13] G. Talenti; Nonlinear elliptic equations, Rearrangements of functions and Orlicz spaces, Ann.

Mat. Pura Appl., IV. Ser. 120, (1979), 159-184.
[14] G. Talenti; Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa (4) 3, (1976),

697-718.
[15] Talenti, G.: Linear elliptic P.D.E’s: Level sets, rearrangements and a priori estimates of

solutions, Boll. Un. Mat. Ital. 4-B(6), (1985), 917-949.

Ahmed Youssfi

Department of Mathematics and Informatics, Faculty of Sciences Dhar El Mahraz,
University Sidi Mohammed Ben Abdallah, PB 1796 Fez-Atlas, Fez, Morocco

E-mail address: Ahmed.youssfi@caramail.com


	1. Introduction
	2. Preliminaries
	3. Assumptions and main result
	4. Proof of theorem 3.2
	5. Appendix
	References

