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EXISTENCE OF BOUNDED SOLUTIONS FOR NONLINEAR
DEGENERATE ELLIPTIC EQUATIONS IN ORLICZ SPACES

AHMED YOUSSFI

ABSTRACT. We prove the existence of bounded solutions for the nonlinear
elliptic problem
—diva(z,u,Vu) = f in Q,
with u € W L () N L°(2), where
———1
a(z,5,8) - &> M M(h(|s]))M(I€]),

and h : RT—]0,1] is a continuous monotone decreasing function with un-
bounded primitive. As regards the N-function M, no As-condition is needed.

1. INTRODUCTION

Let © be a bounded open set of RY, N > 2. We consider the equation

—div(ale, )T QI(Vu)) o) =/ in @,
u=0 on 0%,
where 1
—1
(M(W)) <a(z,s) < B,

with 0 < 0 <1, and ( is a positive constant.

(1.1)

(1.2)

For M (t) = t2, existence of bounded solutions of (1.1)) was proved under (1.2
in [4] and in [5] when f € L™(Q) with m > &. This result was then extended in

[3], to the study of the problem
—diva(z,u,Vu) = f in Q,
u=0 on 01,

in the Sobolev space W, (), under the condition
«
. P

when f € L™(Q) with m > %.

(1.3)

(1.4)

In this paper, we prove the existence of bounded solutions of (|1.3) in the setting of
Orlicz spaces under a more general condition than (|1.4) adapted to this situation.
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2 A. YOUSSFI EJDE-2007/54

The main tools used to get a priori estimates in our proof are symmetrization
techniques. such techniques are widely used in the literature for linear and nonlinear
equations (see [3] and the references quoted therein). We remark that our result is
in some sense complementary to one contained in [I3].

As examples of equations to which our result can be applied, we list:

di o elVul” — 1v 0
T e T Tegle e v VW =S O
u=0 on 0,
where a > 0, vy < 1 and M(t) = e —1 with 1 < p < N; and
—div(ﬁ\vuv’”vulog%e L |Vu)=f inQ,

u=0 on 01,
where a > 0 and 0 <y <1, here M (t) =t log? (e +t) with 1 < p < N and g € R.

2. PRELIMINARIES

Let M : RT — R* be an N-function; i.e., M is continuous, convex, with M (t) >
0 fort >0, MT@ — 0ast— 0and @ — 00 as t — o0o. The N-function conjugate
to M is defined as M (t) = sup{st — M(t),s > 0}. We will extend these N-functions
into even functions on all R. We recall that (see [1])

1

M(t) <tM (M(t)) <2M(t) forallt>0 (2.1)
and the Young’s inequality: for all s, > 0, st < M(s) + M(t). If for some k > 0,
M(2t) < kM(t) for all t> 0, (2.2)

we said that M satisfies the As-condition, and if holds only for  greater than
or equal to tg, then M is said to satisfy the As-condition near infinity.

Let P and @Q be two N-functions. the notation P<() means that P grows
essentially less rapidly than @, i.e.

P
Ve > 0, ﬂ—ﬂ) as t — oo,
(et)

that is the case if and only if
Q')
P=i(t)
Let © be an open subset of RY. The Orlicz class K/ () (resp. the Orlicz
space Ljs(Q)) is defined as the set of (equivalence class of) real-valued measurable

functions u on {2 such that:

—0 ast— oo.

u(z)
/QM(u(x))dx < 00 (resp./Q M(T)dx < oo for some A > 0).

Endowed with the norm

lu|[ar = inf{X > 0: / M(@)dm < o0},
Q
Ly (92) is a Banach space and K/(2) is a convex subset of L/ (€2). the closure in
L (Q) of the set of bounded measurable functions with compact support in € is

denoted by Ep ().
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The Orlicz-Sobolev space WLy () (resp. WEp(€)) is the space of functions
u such that w and its distributional derivatives up to order 1 lie in L;(€2) (resp.
This is a Banach space under the norm

lwlli,0r = Z [D%ul 5

la<1

Thus, WLy () and WE () can be identified with subspaces of the product
of (N + 1) copies of L/ (£2). Denoting this product by IIL,;, we will use the weak
topologies o(I1L s, I1Ey;) and o(IIL s, ITLy;).

The space Wi Ep () is defined as the norm closure of the Schwartz space D(2)
in W'Ey () and the space WLy (Q) as the o(IILy, [IE;) closure of D(€) in
WL ().

We say that a sequence {u,} converges to u for the modular convergence in
WLy (Q) if, for some A > 0,

/ M(M)dx — 0 forall |of <1,
Q )\
this implies convergence for o (ILL s, IILy;).

If M satisfies the Az-condition on R™ (near infinity only if 2 has finite measure),
then the modular convergence coincides with norm convergence. Recall that the
norm || Dul|ps defined on Wi Ly (Q) is equivalent to ||ul|1 s (see [10]).

Let W—1L17(Q) (resp. W 'E77(€)) denotes the space of distributions on €
which can be written as sums of derivatives of order < 1 of functions in L7;(12)
(resp. Eg7(€)). It is a Banach space under the usual quotient norm.

If the open (2 has the segment property then the space D(2) is dense in W L, (2)
for the topology o(IILys,IILy;) (see [10]). Consequently, the action of a distribu-
tion in W~1L17(Q) on an element of W{ Ly (€2) is well defined. For an exhaustive
treatments one can see for example [I] or [12].

We will use the following lemma, (see[6]), which concerns operators of Nemytskii
Type in Orlicz spaces. It is slightly different from the analogous one given in [12].

Lemma 2.1. Let Q be an open subset of RN with finite measure. let M, P and Q
be N-functions such that Q<K P, and let f: QxR — R be a Carathéodory function
such that, for a.e. x € Q0 and for all s € R,

|f(,8)] < c(@) + kP~ M (kals]),
where k1, ko are real constants and c(x) € Eg(Y). Then the Nemytskii operator
Ny, defined by Ny(u)(z) = f(x,u(x)), is strongly continuous from P(E, 1712) =
{u € Ly (Q):du, Ep(R2)) < é} into Eq(Q).
We recall the definition of decreasing rearrangement of a measurable function

w : ) — R. If one denotes by |E| the Lebesgue measure of a set F, one can define
the distribution function i, (t) of w as:

p(t) = {z € Qs fw(x)| > 2}, ¢ >0.

The decreasing rearrangement w* of w is defined as the generalized inverse function
of fiy:
w*(o) =inf{t e R: uy(t) <o}, o€(0,9).
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It is shown in [I5] that w* is everywhere continuous and

w* (b)) = t (2.3)
for every t between 0 and esssup |w|. More details can be found for example in
[2, 13 [14].

3. ASSUMPTIONS AND MAIN RESULT

Let © be an open bounded subset of RN, N > 2, satisfying the segment property
and M is an N-function twice continuously differentiable and strictly increasing,
and P is an N-function such that P<M.

Let a: Q x R x R¥N RN be a Carathéodory function satisfying, for a.e. = € €,
and for all s € R and all £, n € RN, &€ #£ 1,

—1
a(z,s,§)-& =M ~M(h(|s]))M(|¢]) (3.1)
where h : RT—R*% is a continuous monotone decreasing function such that h(0)<1
and its primitive H (s fo t)dt is unbounded,
— —1
where ag(x) belongs to E5;(Q) and ki, ko, k3, ks to R,
(a(x,s,f) _a'(xasan)) : (5_7]) > 0. (33)

Let A: D(A)CWg Ly (Q)—W ! Li7(Q) be a mapping (non-everywhere defined)
given by
A(u) := —diva(z,u, Vu),
We are interested, in proving the existence of bounded solutions to the nonlinear

problem
A(u) = —div(a(z,u, Vu) = f in Q,

u=0 on 09, (3.4)
As regards the data f, we assume one of the following two conditions: Either
fe L), (3.5)
or
feL™Q) withm=rN/(r+1) for some r > 0,
(3.6)

+oo t
d —)"dt .
an / (M (t)) < +00
We will use the following concept of solutions:

Definition 3.1. Let fe LY(Q), a function ue WiLy(Q) is said to be a weak
solution of (3.4), if a(-,u, Vu) € (L77(€2))" and

/a(x,u,Vu)~Vvdx:/fvdx
Q Q
holds for all v € D(Q).

Our main result is the following.

Theorem 3.2. Under the assumptions (3.1)), ., and either or (3.6),

there exists at least one weak solution of (3.4) in Wy LM(Q) NL>(Q )
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Remark 3.3. In the case where M(t) = tP, with p > 1, assumptions (3.5) and
(3.6) imply that m > %. Our result extends those in [5] and [4] where M (t) = ¢
and [3] where M (t) = tP, with p > 1.

Remark 3.4. Note that the result of theorem (3.1)) is independent of the function
h which eliminates the coercivity of the operator A. The result is not surprising,
since if we look for bounded solutions then the operator A becomes coercive.

Remark 3.5. The principal difficulty in dealing with the problem is the non
coerciveness of the operator A, this is due to the hypothesis , so the classical
methods used to prove the existence of a solution for can not be applied (see
[T1] and also [9]). To get rid of this difficulty, we will consider an approximation
method in which we introduce a truncation. The main tool of the proof will be
L a priori estimates, obtained by mean of a comparison result, which then imply
the W¢ Ly (Q) estimate, since if u is bounded the operator A becomes uniformly
coercive.

4. PROOF OF THEOREM

For s € R and k > 0 set: Ti(s) = max(—k, min(k,s)) and Gi(s) = s — Ti(s).
Let {f,} C W™ 1E3(Q) be a sequence of smooth functions such that

fn— [ strongly in Lm*(Q)

and

[ fallme < 1 llmes
where m* denotes either IV or m, according as we assume or , and consider
the operator:
Ap(uw) = —diva(z, T, (u), Vu).

By assumption (3.1)), we have

(An(u),u) = / a(z, Ty (u), Vu) - Vudz
Q
> M (M(h(n))) [ M(|Vul)da.
Q
Thus, A,, satisfies the classical conditions from which derives, thanks to the fact
that f,eW 1 E37(Q), the existence of a solution u, €Wy Ly (Q), (see [I1] and also

[9]), such that
/ a(x, Ty (un), Vuy,) - Vodz = / fovdx (4.1)
Q Q

holds for all ve W Lps(€2). To prove the L™ a priori estimates, we will need the
following comparison lemma, whose proof will be given in the appendix.

Lemma 4.1. Let B(t) = @ and pn(t) = {z € Q : |uy(x)| > ¢}, for all t > 0.

We have for almost every t > 0:

1] un |5ty [ nld
1 2M(1) - Han () Jigualzey 1l ) (4.2)

S M M (M1<M<1>>N0;/Nun(t>l‘fv

where C is the measure of the unit ball in RN .
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step 1: L°°-bound. If we assume ({3.5)), using the inequality f{lun\>t} | fldz <
£l v ()=~ (E2) becomes
2M (1) (—pin (1)) ,1( | £llv )
- 375 1 —_ .
M (MO)YNCY Y )% N (()NCYY
Then we integrate between 0 and s, we get
H(s) < 2M(1) - 1£1lv )/ A
Y v 1 )
M M@)NeN T \ET)NCYN o () x

hence, a change of variables yields

. 2M (1) 1 1fllv e
He) < M (Ma)NeYN <M1(M(1))NO}V/N) /Ms) o~

By (23) we get

oM (1)

71< £l > )/'Q dt_
my)NeYN T Ty NeN S Bew

So that
u* 2M(1) -1 ||f||N 1/N
O = S e (J\fl(zw(l))f\fCiJN)NIQI |

Since u}(0) = ||un|/co, the assumption made on H (i.e., limy_, 4o H(s) = +00)
shows that the sequence {u,} is uniformly bounded in L°°(€). Moreover if we
denote by H~! the inverse function of H, one has:
2M(1) 71( [/l v
MH(M)NCYY MH(My)NCYN

Now, we assume that (3.6]) is filled. Then, using the inequality

/ Faldz < | llmpin(£)
{|un|>t}

[unlloo < Hﬁl( >N|Q|1/N>. (4.3)

in (4.2]), we obtain

\ 2M (1) S (t) 1fllm
HUSM_I(M(I))NC}V/N/O PR (M_l )

A change of variables gives

H(s) 2M() “ - 1l )do
5) = 571 1/N ——1 1/N 11 1_1-
M (M))NCy ™ Jun(s) M (M)NCYNom—x/o'"N
As above, (2.3)) gives

o (r 2M(1) . £ llm do
(7)) < M—l(M(l))Nc}V/N/T <M_1(M(1))NC’]1V/N0$—J§)01—}V'

Then, we have

2M(1) o 1/l do
H(||un[o0) < B
(fnlloo) < MI(M(l))NC}V/N/O <M1(M(1))NCJIV/NU’1”IIV)01

S
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A change of variables gives

M) € —— 2O [ s s,

= —

(M (M) HINTCT e

£l
M (M)NCY N R

2M (1)1 £, B M) [T sy
H(||up|loo) < 1 r + ds ).
(funlloc) (M_l(M(l)))TJrlNTCNN( o /BI(CO)<M<S)> )

where ¢y = . Then, an integration by parts yields

The assumption made on H guarantees that the sequence {u,, } is uniformly bounded
in L°°(£2). Indeed, denoting by H~! the inverse function of H, one has

-1 2M DAl B~'(co) [T s \r
Un|loo < H ) . ds) ).
e ((Ml(M(l)))T-I—lNT'C]VN ( ch i /Bl(c[)) (M(s)) ))

(4.4)
Consequently, in both cases the sequence {uy,} is uniformly bounded in L*(2), so
that in the sequel, we will denote by ¢ the constant appearing either in (4.3)) or in

(4.4), that is

unlleo < e (4.5)

Step 2: Estimation in W{L,/(Q). It is now easy to obtain an estimate in
W¢ Ly (Q) under either (3.5) or (3.6). Let m* denotes either N or m according as

we assume (3.5)) or (3.6). Taking wu,, as test function in (4.1)), one has
/a(x,Tn(un),Vun) -Vupdr = / fnundx.
Q Q
Then by (3.1) and (4.5)), we obtain

1
|l f | [
—1

M (M(h(c)

/ M(|Vun|)dz < (4.6)
Q

Hence, the sequence {u,} is bounded in W{ Ly (). Therefore, there exists a
subsequence of {uy,}, still denoted by {u,}, and a function u in WLy () such
that

U —u  in Wy Ly (Q) for o(TI1Lar, TES7) (4.7)
and
Uup, — u in Ep () strongly and a.e. in Q. (4.8)

Step 3: Almost everywhere convergence of the gradients. Let us begin
with the following lemma which we will use later.

Lemma 4.2. The sequence {a(z, T, (uy), Vu,)} is bounded in (Ly7(S2))™.

Proof. We will use the dual norm of (LM(Q))N Let ¢ € (Ep ()N such that
lellar = 1. By (3.3) we have

(a(x,Tn(un), Vuy) —a(z, T (un), k%)) . (Vun — k—i) > 0.
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Let A =1+ k1 + ks, by using (3.2)), (4.5)), (4.6) and Young’s inequality we get
/ a(x, T (un), Vuy)pdz
Q

< k4/ a(z, Ty (un), Vuy,) - Vu, de — k4/ a(z, Ty (uy), £) -Vu, dz
Q Q k4

+/ a(x,Tn(un), £) : ng.’E
Q k4

e | QT
Wl 9

MM (h(c))
+ (1 + ka) (/Qﬂ(ao(x))da: + klw_lM(kzc)\m) + k3(1+ k) + A,

< kacl|f |- |77 + By

which completes the proof. ([l

From (4.5) and (4.8) we obtain that u € WLy (Q) N L>®(), so that by [8
Theorem 4] there exists a sequence {v;} in D(Q) such that v;—u in W3 L ()
as j—oo for the modular convergence and almost everywhere in ), moreover
oo < (N + Do

For s > 0, we denote by x; the characteristic function of the set

Q; ={z € Q:|Vu;(z)| < s}
and by x*® the characteristic function of the set 2 = {z € Q : |Vu(z)| < s}. Testing
by u, —v; in (4.1)), we obtain
/ a(z, T (un), Vi) - (Vu, — Vuj)de = / fr(un —vj)de (4.9)
Q Q

Denote by €;(n,j), (i =0,1,...), various sequences of real numbers which tend to
0 when n and j — oo, i.e.

lim lim ¢(n,j) =0.

Jj—00 n—00

For the right-hand side of (4.9)), we have
/ fn(un —vj)dz = €(n, j). (4.10)
Q
The left-hand side of (4.9)) is written as
/ a(z, Ty (un), Vuy,) - (Vu, — Vo,) de
Q
z/ (a(m,Tn(un),Vun) — a(m,Tn(un),ijX;)) . (Vun — ijxj) dx
Q
(4.11)
—|—/ a(x, Tn(un), Vuix;) - (Vun, — Vu,xj)de
Q

— / a(z, Tp(un), Vuy,) - Vo, dz
Qs

We will pass to the limit over n and j, for s fixed, in the second and the third
terms of the right-hand side of (4.11). By Lemma we deduce that there exists
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I € (L37(€2))" and up to a subsequence a(z, Ty, (un ), Vu,,) — I weakly in (L37(€2))

9

N

for o([1 L7, [1 Em). Since Vujxa\as € (Ern(Q))Y, we have by letting n — oo,

—/ a(z, T (un), Vuy,) - Vojdo — — [-Vu;da.
o\Q: o\Q:

Using the modular convergence of v;, we get as j — oo

—/ 1-Vvjdr — — - Vudzx.
Q\Q8 O\Q°

Hence, we have proved that the third term

—/ a(z, Ty (un), Vuy,) - Vodr = —/ l-Vudr + e1(n,j).
Q\Qs Q\Qs

For the second term, as n — oo, we have

(4.12)

/ a(x, T (un), ijx‘;) . (Vun — ijx‘;) dx — / a(x, u, ijx‘;)- (Vu — ijxj) dx
Q Q

since a(z, T (un), Vujx§) — a(x,u, Vo;x3) strongly in (Eq7(Q))Y as n — oo by
lemma and ([4.8)), while Vu,, — Vu weakly in (Ly(Q))Y by (4.7). And since

Vujx; — Vux?® strongly in (Ep ()N as j — oo, we obtain

/ a(z,u, Vo;x3) - (Vu— Vou;x5) de — 0
Q

as j — oo. So that
/ a(x, Tn(un), Vuix;) - (Vun — ijxj) dx = ea(n, 7).
Q

Consequently, combining (4.10)), (4.12)) and (4.13)), we obtain

/Q (a(, Ty (un), Vun) — a(@, T (un), Vo;x3)) - (Vun — Vojx;) do

:/ l-Vudz + e3(n, j).
Q\Q¢

On the other hand

/ (a(z, Th(un), Vuy) — a(z, Tn(u,), Vux®)) - (Vu, — Vux®) dz

(Cl vun) - a(a:, Tn(un)v VU]‘X;)) : (vun - ijxj) dx
Q
/ a(z, Ty (uy), Vuy) - (ijxj — Vux®) dz

Q
/ a(x ), Vux?®) - (Vu, — Vux®) dz

Q

+ [ 4l Tulwn), Tox) - (Vi = TyxS) do

2

(4.13)

(4.14)
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We can argue as above in order to obtain
/Qa(x,Tn(un), Vuy,) - (VU]-X; — Vuxs) dx = e4(n, j),
[ @l Tulun). Ve - (V= V) do = es(n. ).
/Qa(x,Tn(un), Vuix;) - (Vu, — ijxjf) dz = eg(n, 7).
Then, by we have

/Q (a(z, Tr(un), Vun) — a(z, Tn(uy), Vux®)) - (Vu, — Vux®) dz

=e7(n,j) +/ l-Vudz.
o\Q=

For r < s, we write

0< / (a(z, Ty (tn), Vi) — a2, Ty (), V) - (Vup — V) da
< / (a(z, T (1), Vun) — a(, Ty (un), V) - (Vu, — V) da
= / (alw, T (un), Vun) = a(@, T (un), Vux®)) - (Vi — Vuy®) da
< /Q (alz, Ty (un), Vi) — a(z, Tn(un), Vux®)) - (Vu, — Vux®) dz

<t [, b
Q\Q=

Which implies by passing at first to the limit superior over n and then over j,

0< limsup/r (a(z, Tn(un), Vun) — a(z, Tn(uyn), Vu)) - (Vu, — Vu) de

n—oo

< / l-Vudz.
Q\Q°

Letting s — +o0 in the previous inequality, we conclude that as n — oo,
/ (a(@, T (tn), V) — alz, To(n), Vi) - (Vi — V) dz — 0. (4.15)
ar

Let B,, be defined by
B, = (a(z, T, (un), Vuy) — a(z, T, (uy), Vu)) - (Vu, — Vu).

As a consequence of , one has B, — 0 strongly in L'(Q"), extracting a
subsequence, still denoted by {u,}, we get B, — 0 a.e in Q". Then, there exists
a subset Z of Q" of zero measure, such that: B,(x) — 0 for all z € Q" \ Z. Using
, we obtain for all z € Q" \ Z,

Bu(w) = M M(h(e)) M([Vun(@))—er(@) (14 7 M(ks Vun (@)]) + [V (2)])

where ¢ is the constant appearing in (4.5) and ¢;(z) is a constant which does
not depend on n. Thus, the sequence {Vu,(z)} is bounded in RY, then for a
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subsequence {u, ()}, we have
vun/(m) — & in RNv
(a(z, u(z),§) — a(z,u(z), Vu(x))) - (§ = Vu(z)) =0.

Since a(x, s, &) is strictly monotone, we have £ = Vu(z), and so Vu,(r) — Vu(z)
for the whole sequence. It follows that

Vu, — Vu a.e. in Q.
Consequently, as r is arbitrary, one can deduce that
Vu,, — Vu a.e. in . (4.16)

Step 4: Passage to the limit. Let v be a function in D(2). Taking v as test
function in (4.1), one has

/a(x,Tn(un),Vun)-Vvdxz / favdz.
Q Q
Lemma [£.2] ({4.8) and (4.16) imply that

a(z, T (uy), Vuy) = a(z,u, Vu)  weakly in (L37(Q))Y for o(IlLyz, 11EN),

so that one can pass to the limit in the previous equality to obtain

/a(w,u,Vu)-Vvdxz / fudaz.
Q Q

Moreover, from (4.5) and (4.8) we have u € W3 Ly (Q) N L>(Q2). This completes
the proof of theorem

Remark 4.3. Note that the L°°-bound in step 1 can be proven under the weaker
assumption

S
I£1mee = supst [ (0t < oc,
5> 0

which is equivalent to say that f belongs to the Lorentz space L(m,oc0). Indeed,
one can use the inequality

l"n(t)
/ fulde < / £ (bt
{|lun|>t} 0

(see [13][14]) in (4.1) to obtain: If f belongs to L(N,o0), then

2M (1) (—py, (1)) 71( Il £l N 00 )
M (MA)NCYN () M (M@)NCYN

and if we assume that f belongs to L(m, co) with m < N and

+oo t _m
/ (=) V" dt < +oo,

M(t)
we obtain
2M (1) (—pn (1)) 1 I £ llm, 00
h 1 — 1 7 1 1 /"
0= M (MO)NCYN (8™ (M (M(l))chlv/Nﬂn(t)m_N)

As above, starting with those inequalities we obtain the desired result. Observe
that when h is a constant function, this L>°-bound was proved in [13].
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5. APPENDIX
In this section, we prove lemma based on techniques inspired from those in

I3].

Proof of Lemma[].1 Testing by v = T} (G¢(un)), which lies in W Ly(£2) thanks
to [7, Lemma 2], in (4.1)) one has

/ a(z, Ty (un), Vuy) - Vupdr < k | frld.
{t<|un|<t+k} {lun|>t}
Then (3.1]) yields
1 ——1
E/ T M () M (| V) < / \fulda.
{t<|un|<t+k} {lun|>t}
Letting k — 0T we obtain
d — 1
- 3 M) M (Vandz < [ alde, (5)
{lun|>t} {lun|>t}

for almost every t > 0. The hypotheses made on the N-function M, which are
not a restriction, allow to affirm that the function C(t) = B%l(t) is decreasing and

convex (see [13]). Hence, Jensen’s inequality yields

f{t<\u"|§t+k}ﬂ_1( (h(lunl)) (Vun|)dx)

)M

Joectuntcrsny M (M ((|un]))| Vg |dz

Jit<tun<eemy <|Vun|>M “(M(n <|un|>>>|wn|dm)
"M (h(|un]))) Vg |dee

“(

=C
( f{t<\un\<t+k}
f{t<|un|§t+k}M_1( (h(lunl)))dz

—1

< —

f{t<|un|§t+k}
M M (B(O) (—palt +8) + ()
< M_l(M(h(t+ k)))f{t<|un\§t+k} |V, |dx

Taking into account that M_l(M(h(t))) < M_l(M(l))7 using the convexity of C
and then letting £ — 0%, we obtain for almost every t > 0,

1 —1

M (M(A(1)) M (M)~ [0 150y |Vtinlde)
—Hn (1) .
- *% f{|un\>t} [Vu|da

Now we recall the following inequality from [13]:
d

7 o) [Vu,|dz > NC’l/N L (t )1_% for almost every ¢ > 0. (5.2)
Unp [>
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The monotonicity of the function C, (5.1 and (5.2]) yield
1

—1

M (M(h(t)))

< —i1 (1) - Jtualzny ol )
_— 1 —_ 1 :
M (MO)INCY N ()™ NI (M Q)NCYN (1)
Using (2.1) and the fact that 0 < h(¢) < 1, we obtain (4.2). O
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