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ABSTRACT 

Hybrid organic-inorganic perovskites (HP) such as methylammonium lead halide (MHP) 

are an exciting class of semiconductors with compelling advantages for solar cell applications, 

such as strong absorption and very low cost.  HPs also exhibit balanced carrier mobilities, long 

carrier diffusion lengths, and shallow defect levels, making them even more attractive for 

photovoltaics and other optoelectronic devices.  However, HPs face two significant challenges, 

which may be related: a lack of material stability as well as anomalous and unpredictable charge 

carrier transport.  The performance of perovskite solar cells can vary wildly and unpredictably 

depending on their history of exposure to light, heat, mechanical stress, oxygen, or moisture, 

which raises serious questions about device reliability and the interpretation of experimental 

data. Furthermore, surfaces and grain boundaries likely play a fundamental role in charge 

transport, localization, and trapping in polycrystalline HP thin films.  Previous work 

demonstrated polaron formation using hybrid functionals leveraging density functional theory 

(DFT) when modeling MHP surfaces which may contribute to lattice instability.  Hybrid 

functionals are computationally expensive, creating a hurdle in studying polaronic effects in 

these materials.  Through alternative computational methods known as the Hubbard U 

correction, polarons were modeled in the bulk, which significantly reduced the need for 

computational resources. 

  In this work, DFT implemented in the Vienna Ab-initio Simulation (VASP) was used to 

model several MHP bulk materials and surfaces, including surface termination by different 

halides (Cl, Br, I) and methylammonium (MA).  These calculations used a semi-local exchange 

functional (PBEsol) and compared the results after implementing the Hubbard U correction 



 

ix 

(PBEsol+U) to verify the feasibility of extending the DFT+U model for modeling halide 

perovskite surfaces.  

A non-constant potential was eliminated in the vacuum by implementing dipole 

corrections.  The minimum vacuum size for the MAPbCl, MAPbBr, and MAPbI terminated slabs 

(both MAX and PbX) was determined to be 28.4 Å, 29.6 Å, and 31.56 Å using 7 monolayers.  

MA ions reoriented so that the NH3 group was pointing toward the vacuum within the Pb-X 

lattice using both PBEsol and PBEsol+U functionals in the bulk and all slab supercell models 

(with the latter functional reducing the amount of reorientation observed).  The Pb-halide bond 

lengths shrank in the bulk as well as for both surface slab terminations after adding a U 

correction.  The bulk band gaps for MAPbCl, MAPbBr, and MAPbI changed from 2.22 eV, 1.84 

eV, and 1.52 eV to 2.44 eV, 1.79 eV, and 1.27 eV after including an 8 eV U correction.  A 

smaller U value used for MAPbBr (4 eV) and MAPbI (1 eV) in the bulk resulted in band gaps 

much closer to experimental values, 1.83 eV and 1.5 eV.  MAPbCl experienced octahedral tilting 

that resulted in a tiny band gap increase while the MAPbBr and MAPbI bandgap shrank due to 

lattice contractions.  The 8 eV U correction changed the bandgap for the MAX terminated slabs 

from 1.68 eV, 1.39 eV, and 1.27 eV to 1.77 eV, 1.36 eV, and 1.07 eV for MAPbCl, MAPbBr, 

and MAPbI, respectively.  The 8 eV U value also changed the PbX terminated slab bandgaps for 

MAPbCl, MAPbBr, and MAPbI from 1.31 eV, 1.03 eV, 0.88 eV to 1.35 eV, 0.90 eV, and 0.61 

eV, respectively.  The smaller bandgaps for the PbX slabs were determined to be due to surface 

reconstruction caused by dangling bonds on the PbX surfaces.  The smaller bandgaps of the PbX 

slabs suggest the MAX surface would be less prone to radiative recombination occurring.  

Midgap states were not observed in the bulk nor in either the PbX or MAX surface slabs 

suggesting defect assisted recombination does not occur in the bulk nor the neutral surface slabs.  



 

x 

The DFT+U method was shown to significantly reduce computational resources for simulating 

surfaces, however, results show the U value needs to be individually reoptimized for each 

perovskite compound studied in this work as the U correction changes the physical bond lengths 

and electronic properties (band gap) of each compound differently in the bulk as well as both 

PbX and MAX slab supercells.   
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1. INTRODUCTION AND MOTIVATION 

MHPs exhibit qualities that make them a good candidate for optoelectronic material in 

LEDs [1], lasers [2], photovoltaic devices and photodetectors [3].  These qualities allowed MHP 

solar cells to experience a significant rise in efficiency over the past 13 years from 3% in 2009 to 

25% in 2022 [4].  MHP semiconducting material is created using Earth-abundant elements such 

as C, N, H, Pb, Br, and I.  Creating MHP semiconducting precursor ink is inexpensive and can be 

done at room temperature allowing for easy and cost effective device fabrication [5].  

One barrier preventing widespread MHP device adoption is device structure stability 

lifetime.  Exposure to oxygen, moisture, heat, mechanical stress, reverse bias, and light 

illumination causes the MHP structure to degrade [6].   

First principles Density Functional Theory (DFT) calculations have proven to be a 

reliable method for modeling the physical and electronic properties of various materials 

including perovskites.  This work aims to use DFT to compare the structural and electronic 

properties using a semi-local functional with a Hubbard U correction on the surface of MHP 

slabs using the supercell method.   

Perovskites are an abundant structural family of various compounds with an ABX3 

stoichiometry. The “B” ions are bonded by the “X” ion.  For halide perovskites, the “A” cation is 

often smaller than the “B” cation and forms an organic framework while the former forms an 

inorganic framework with the “X” anion.  In this study, CH3NH3
+ (methylammonium, MA) 

serves as the “A” site cation and Pb as the “B” cation.  Three halides (Cl, Br, and I) are then 

substituted for the “X” anion.  These elements are chosen based on criteria (such as the 

Goldschmidt tolerance factor in equation 1.1) that can predict which compounds would best form 

a perovskite structure.   
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t=
rA+rX

√2(rB+rX)
   (1. 1) 

Here, rA, rB are the ionic radius for the “A” and “B” cations while rX is the ionic radius of the 

anion.  The tolerance factor is used to confirm if the “A” site cation fits within the cavities of the 

BX3 framework.  The tolerance factor is a measurement of the amount of distortion (from ideal) 

of the perovskite structure (from the ideal cubic structure), so as the tolerance factor goes to 

unity, a perovskite becomes more cubic.  A tolerance factor of 1.00 < t < 1.13 is hexagonal, 0.9 < 

t < 1.0 is cubic, and 0.75 < t < 0.9 is orthorhombic [7].  MAPbCl has a tolerance factor of 0.94, 

MAPbBr has a tolerance factor of 0.93, and MAPbI has a tolerance factor of 0.91 [8] so all are 

expected to be nearly cubic or pseudo-cubic.  Figure 1.1 shows the MAPbI perovskite structure. 

 

Figure 1.1: MAPbI Perovskite Structure 

The electronic properties of semiconductors are dependent on the three-dimensional 

repetitive crystalline structure (lattice) of the material.  Charge carriers can interact with this 

ionic lattice (the Pb-halide bond is ionic) which may alter its structure.  This interaction is 

characterized by a quasiparticle called a polaron.  Localized “small” polarons are thought to 

contribute detrimental effects resulting in: structural instability (and degradation) at ambient 
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temperature and humidity, hysteresis for current vs voltage measurements, and a reduced power 

conversion efficiency [6].  This reduction in power conversion efficiency is caused by 

recombination centers created when a small polaron is trapped at a lattice site.  Delocalized 

“large” polarons are thought to contribute positively to the long charge carrier diffusion lengths, 

long charge carrier lifetimes, high defect tolerance, and enhanced charge carrier motion across 

grain boundaries for MAPbX devices [6].  To our knowledge, polaronic effects have only been 

modeled for slab surfaces of MAPbI using a semi-empirical hybrid functional [9].  Polaronic 

effects have been modeled using DFT+U in the bulk [10] for MAPbX (X = Cl, Br, I).  This work 

looks to expand the DFT+U method for use in modeling polarons in slab surface structures.  The 

DFT+U method was used to model different slab surface terminations and study the structural 

and electronic properties of MAPbCl, MAPbBr, and MAPbI. 

In Chapter 1, we covered some of the barriers currently facing the improvements of HPs, 

a brief on what a perovskite structure is, and the motivation for studying HP systems.  Chapter 2 

of this study covers DFT foundational topics, spin-orbit coupling,  dipole correction effects, 

Hubbard U corrections, and a background on polarons.  Chapter 3 presents the methodology used 

to conduct the DFT calculations.  Chapter 4 presents the results of the DFT modeling and 

analysis of the effects observed and conclusions are given in Chapter 5.  Chapter 6 provides a 

summary of perspectives on any future studies that may be performed.  Lastly, bulk structural 

optimization graphs and surface Pb-halide bond length tables are included in the Appendix 

Section. 
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2. TOWARDS DFT: THEORETICAL FUNDAMENTALS 

2.1 Crystal Structures and the Unit Cell 

In 1912 Max von Laue used XRD to show solids are composed of repetitive atomic 

structures [11]. These repetitive structures are called the crystalline structure.  A crystal is grown 

using these repetitive structures.  A unit cell is the smallest volume of these repetitive structures 

that constitute the crystalline structure.  A set of mathematical points called a lattice plus a basis 

of atoms attached to each lattice point constitute the crystalline structure.  A translation operator 

relates these points to one another 

T = u1a1 + u2a2 + u3a3 (2.1.1) 

where 𝑢1, 𝑢2, 𝑢3 are integers and 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are lattice vectors.  Every lattice point with s atoms 

and positions is given by: 

rj=xja1+xja2+zja3   (2.1.2) 

 These lattice points form the crystal.  This lattice is invariant such that:  

r'=r+u1a1+u2a2+u3a3 (2.1.3) 

where 𝑢1, 𝑢2, 𝑢3 are arbitrary integers and 𝒂1, 𝒂2, 𝒂3 are translation vectors (lattice vectors).   

There are 14 different lattice types [12].  

2.2 Quantum Mechanics 

Computational modeling starts with solving the time-independent non-relativistic 

Schrödinger equation.    

Ĥψ(ri,rl)=Eψ(ri,rl)   (2.2.1) 

Ĥ, (the Hamiltonian), is an energy operator acting on a wavefunction 𝜓 (called the 

eigenfunction).  E is the eigenvalue of Ĥ associated with the wavefunction 𝜓.  𝒓𝑖 and 𝒓𝑙 represent 

vectors that define electron and nuclei positions.  Solving the Schrödinger equation amounts to 
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finding the ground-state energy.  Doing so returns a set of energy values (called eigenvalues) of 

the eigenfunction.  For 𝜓 to be an eigenfunction an operator must act on it and return a multiple 

of the original wavefunction.  Wavefunctions that satisfy this criterion are called 

eigenvectors/eigenstates.  𝜓 can represent everything about an electron (and by extension the 

system).  Solving the wave equation for a system produces a set of wavefunctions as solutions 

where each solution applies to an electron.  Relativity can often be ignored because the speed of 

an electron is smaller than the speed of light.  Restricting our calculations to the ground-state 

energy of electrons causes the potential energy of the system to be constant, allowing time to be 

ignored.  The Hamiltonian operator for this version of the Schrödinger equation is the sum of all 

energy terms for potential and kinetic energy. 

Ĥ=El
kin+Ei

kin+Uli+Uij+Ulj   (2.2.2) 

The first two terms are the kinetic energy of the nuclei and electrons.  The final three terms are 

due to the attractive potential energies of electron-nuclei interactions, repulsive potential energies 

between electron-electron interactions, and the repulsive potential energies of nucleus-nucleus 

interactions. 

The Born-Oppenheimer Approximation can be used to further simplify the Schrödinger 

equation [13].  This approximation allows for the decoupling of nuclear and electronic dynamics.  

The nuclei are considered “stationary” due to their much larger mass (compared to the electrons).  

The electrons will respond to nuclear motion instantaneously and occupy the ground-state of that 

nuclear configuration.  A final simplification is made by ignoring atomic spin.  With these 

simplifications, the wavefunction of the Schrödinger equation now only depends on the electron 

positions at 𝑟𝑖. 

Ĥψ(ri)=Eψ(ri)   (2.2.3) 
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Due to the Born-Oppenheimer approximation, the nuclei terms are dropped from the 

Hamiltonian. 

Ĥ=Ei
kin+Uli+Uij   (2.2.4) 

Substituting in the kinetic energy, electron-nuclei attractive potential interaction, and repulsive 

electron-electron interactions terms (using atomic units) and the resulting Hamiltonian is:  

Ĥ=-
1

2
∑ ∇i

2

n

i

- ∑ ∑
Zl

| r
li
 |

n

i

N

l

+
1

2
∑

1

| r
ij
 |

n

i ≠ j

 
  (2.2.5) 

(A list of atomic units is given in the Appendix.)  N and n are the number of nuclei and electrons 

in the system and 𝑍𝑙 are the nuclei charges.  The double sum indicates the interactions occur 

from all electrons to all nuclei.  The ½ term is added as a correcting factor to account for double 

counting.  Substituting this Hamiltonian into the Schrödinger wave equation gives the many-

body electronic Schrödinger equation: 

[-
1

2
∑ ∇i

2

n

i

- ∑ ∑
Zl

| r
li
 |

n

i

N

l

+
1

2
∑

1

| r
ij
 |

n

i ≠ j

]  ψ(ri)=Eψ(ri) 
  (2.2.6) 

 This equation gives the electronic structure of a system.  The dimensionality of this problem 

makes it extremely difficult to solve numerically. 

2.3 Hartree Method – One-electron model 

 The electronic wavefunction for the many-body Schrödinger equation is a function of 

each of the spatial coordinates of each of the electrons.  This is a 3N dimensionality, where N is 

the number of electrons in the system.  Studying a single atom of Pb results in a wave function 

with 246 dimensions.  The wave function for a nanocluster of 100 Pb atoms would require 

23,600 dimensions, truly a difficult calculation.  The problem can be simplified by assuming 
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each electron is independent and interacts with other electrons in an averaged way (also called a 

mean-field).  This method is known as the Hartree method.  The wave equation then looks like 

this: 

(-
1

2
∇2 + Uext(r) + UH(r)) ψ(r)=Eψ(r)   (2.3.1) 

where: 𝑈𝑒𝑥𝑡(𝒓) is the attractive electron-nuclei interaction and 𝑈𝐻(𝒓) is the Hartree repulsive 

potential between each electron and the electron mean-field.  Using this simplified method, 

Douglas Hartree introduced the self-consistent field method for solving the wave equation [14].  

Using this simplistic approximation method, he was able to calculate the ground-state energy of 

hydrogen (-13.6 eV) but failed to do so for other atomic systems.  These failures were a result of 

not incorporating Pauli’s exclusion principle nor including the exchange and correlation energies 

of these alternate atomic systems.  Exchange and correlation energies are discussed in section 

3.5.3.  

2.4 Hartree-Fock Equations 

 The Hartree Method was soon refined by Vladimir Fock into the Hartree-Fock Method.  

Fock was able to express a wavefunction that included the missing pieces from the Hartree 

method by approximating it as a linear combination of non-interacting one-electron 

wavefunctions as a Slater determinant [15].  The Slater determinant incorporated anti-symmetry 

and Pauli’s exclusion principle.  The generalized Slater determinant (not including spin) is: 

ψ(r1,r2,…rn) = 
1

√n!
[

ψ
1
(r1) ⋯ ψ

n
(r1)

⋮ ⋱ ⋮
ψ

1
(rn) ⋯ ψ

n
(rn)

] 
  (2.4.1) 

 The wave equation including the Slater determinant becomes: 

(-
1

2
∇2 + Uext(r) + Uij(r)) ψ(r) = Eψ(r) 

  (2.4.2) 
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where 𝑈𝑖𝑗(𝑟) represents the “true” electron-electron interaction which contains both classical and 

quantum terms.  Multiplying by the complex conjugate and integrating over all space gives the 

energy: 

E = ∑ ∫ ψ
i
*(r) (-

1

2
∇i

2 + Uext(r) + Uij(r)) ψ
i
(r)dr   (2.4.3) 

Solving this equation gives a sum for all the contributing energies. 

E = Ekin + Eext + EH + Ex   (2.4.4) 

where 𝐸𝐻 is the Hartree energy (Coulomb energy due to electron-electron interactions) and 𝐸𝑥 is 

the exchange energy.  𝐸𝑥 is negative, lowers the total energy, and gives a better approximation of 

the ground-state energy.  The exchange energy is a result of the Slater determinant and anti-

symmetry.  Additionally, Fock used the variational process to improve the wavefunction.  This 

process is as follows.  Assuming no degenerate states, there is only one ground-state energy for a 

given system.  Continuously minimizing the system energy (with respect to the wavefunction) 

will eventually return the ground-state energy.  Therefore, the initial approximated 

wavefunctions of the Slater determinant approach the wavefunctions that truly calculate the 

ground-state energy.  The self-consistent method for the HF method is iterative (whereas the 

Hartree method is not).  The HF method is another good step toward solving the many-body 

Schrödinger equation, however, it is limited in the size of the system that can be studied [16].  

Additionally, the HF method does not account for electron correlation.  Electron correlation 

occurs when electrons with the same spin tend to remain separated. 

2.5 DFT Foundations: Electron Density 

 The key concept of DFT is electron density.  This is the number of electrons per unit 

volume at a point.  Electron densities are observable whereas wavefunctions are not.  Therefore, 
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leveraging the electron density as the single variable for electronic system calculations presents a 

very real and viable method for material modeling compared to the previous wavefunction based 

methods.  In DFT, electrons are assumed to be non-interacting in a decoupled coordinate system 

represented as a sum over a set of occupied noninteracting Kohn-Sham (KS) orbitals: 

ρ(r) = ∑ | ϕ
i
(r) |

2

i

 = 2 ∑ | ϕ
i
(r) |

2

occ

i

 
  (2.5.1) 

The amplitudes of each orbital are converted to a positive density of electrons.  Integrating over 

all space gives the total number of electrons (n): 

n = ∫ ρ(r) dr 
  (2.5.2) 

Adding up the overlapping atomic electron densities resembles the electron densities of solids 

allowing for a solid to be modeled (only roughly at this stage).  The electron density of a system 

can also be used to represent the wavefunction and orbital.  It is also related to potentials, 

energies, and (by extension) all system properties.  

2.5.1 Hohenberg-Kohn Theorems 

Hohenberg and Kohn proposed two theorems that showed a link between electron 

density, external energy, the Hamiltonian, and the wavefunction [17].  The first theorem states 

the ground-state electron density solely determines a unique external potential.  This means 

different external potentials always generate different electron densities.  Deducing the total 

energy (or other properties) is possible by focusing on the ground-state properties of a system 

using the electron density at a given external potential.   

The second Theorem provided an energy minimization method and used the variational 

principle to search for the ground-state of a system.  Like the HF Method, minimizing the system 
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energy with varying electron density eventually leads to the lowest energy state.   

2.5.2 One-electron systems 

 In 1965, using the Hohenberg and Kohn theorems, Kohn and Sham used a fictitious one-

electron system to solve the many-body Schrödinger time-independent wave equation [18].  

Starting with a full Hamiltonian (in atomic units): 

Ĥ = −
1

2
∑ 𝛻𝑖

2

𝑛

𝑖=1

− ∑ ∑
𝑍𝑙

| 𝒓𝑖 − 𝒓𝑙 |

𝑛

𝑖=1

𝑁

𝑙=1

+
1

2
∑

1

| 𝒓𝑖 − 𝒓𝑗  |

𝑛

𝑖 ≠ 𝑗

 
  (2.5.2.1) 

where 𝒓𝑖 and 𝒓𝑗 are electron coordinates and 𝒓𝑙 are the nuclei coordinates.  The Hartree potential 

is the last term and contains interactions that are difficult to calculate.  Kohn and Sham assumed 

each electron was non-interacting and the system was in the ground-state.  They then 

decomposed the energies of n electrons and regrouped them into a framework of independent 

electrons.  The interacting n-electron system was mapped to a non-interacting one-electron 

system (for a given external energy).  Thus equation 3.4.4 becomes: 

E = (E
kin

non
 + Ekin

int ) + Eext + (EH + Ex + Ec
int) 

(2.5.2.2) 

Here 𝐸𝑘𝑖𝑛
𝑛𝑜𝑛 and 𝐸𝑘𝑖𝑛

𝑖𝑛𝑡  replaced the 𝐸𝑘𝑖𝑛 term and represent noninteracting and interacting 

correlated kinetic energies. 𝐸𝑐
𝑖𝑛𝑡 represents a new correlation energy which the HF method does 

not account for. Grouping the interacting terms where 𝐸𝑐 = 𝐸𝑐
𝑖𝑛𝑡 + 𝐸𝑘𝑖𝑛

𝑖𝑛𝑡  and  

𝐸𝑥𝑐 = 𝐸𝑥 + 𝐸𝑐  shows the total energy to be: 

E=Ekin
non+Eext+EH+Exc (2.5.2.3) 

where 𝐸𝑥𝑐 is the exchange-correlation energy and 𝐸𝑐 is the correlation energy.  The non-

interacting kinetic energy (𝐸𝑘𝑖𝑛
𝑛𝑜𝑛) term can be calculated using equation 3.5.2.4.  (Recall Kohn 

and Sham assumed the system was non-interacting).  This energy accounts for the largest 

percentage of the total kinetic energy in the system.   
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Ekin
non=-

1

2
∑ ϕ

i

*
(r)∇2

n

i=1

ϕ
i
(r) 

  (2.5.2.4) 

The external energy (attractive electron-nuclei Coulomb interaction) and the Hartree energy 

(electron and electron density interactions) are both a functional of the electron density and are 

represented by the following equation(s): 

Eext[ρ(r)]= ∫ ϕ
*(r) Uext(r)ϕ(r)dr= ∫ Uext(r) ρ(r)dr   (2.5.2.5) 

EH[ρ(r)]= ∫ UH(r) ρ(r)dr=
1

2
∬

ρ(r)ρ(r')

| r-r' |
drdr'   (2.5.2.6) 

Notice the Hartree energy has double integrals and represents the mean-field for all electrons on 

all other electrons.  This leads to a double counting of the energy for an electron and is called 

self-interaction.  This interaction is unphysical and is corrected in the exchange energy term.   

2.5.3 Exchange-correlation energy 

The exchange-correlation energy is also a functional of the electron density.  Recall the 

exchange-correlation energy is a sum of two energies: 

Exc=Ex+Ec   (2.5.3.1) 

where 𝐸𝑥 is the exchange energy between electrons with the same spin and 𝐸𝑐 is the correlation 

energy between electrons with a different spin.  The exchange energy can be thought of as an 

interaction over the distance between an exchange hole and the electron density.  Orbital 

antisymmetry for electrons with the same spin causes spatial separation between them resulting 

in a reduction of electron density.  This electron density reduction is called an exchange hole 

(also referred to as a Fermi Hole) and results in a reduction in the repulsion between electrons 

thus lowering the energy of the system.  This separation of electrons removes the self-interaction 

(double counting) in the Hartree energy. [19]  
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The correlation energy is a result of the correlation hole (also called a Coulomb Hole).  

Electrons with differing spins avoid each other when occupying the same orbital because of the 

same negative charge.  This reduces the electron density around the electron(s) resulting in a 

small attractive energy.  The exchange and correlation holes are known collectively as the 

exchange-correlation hole (XC).  The exchange hole will alter the size of the XC hole while the 

correlation hole will alter the shape.  The exchange hole is dominant when electron density is 

high while the correlation hole increases in importance when electron density is low.   

 The exchange energy is represented by: 

Ex=-
1

2
∑ ∬

ϕ
i
(r)*ϕ

j

*
(r')ϕ

i
(r')ϕ

j
(r)

| r-r' |
drdr'

n

ij

   (2.5.3.2) 

The exchange-correlation energy is the smallest contributor to the total energy but is important 

because it is involved in the atomic changes of solids such as bonding, spin-polarization, and 

band gap formation [16].  The exchange energy can be calculated using equation 2.5.3.2 but 

doing so requires using the HF method which scales badly for large systems and becomes 

computationally prohibitive.  For this reason, the exchange-correlation is approximated and 

solved analytically.  Although the exact exchange functional is not known, there must exist a 

functional which gives the exact ground-state energy and density. 

2.6 Kohn-Sham Equations 

The total energy of a system is now expressed as a functional of the electron density 

(except for the non-interacting term, 𝐸𝑘𝑖𝑛
𝑛𝑜𝑛): 

E[ρ(r)]=Ekin
non[ϕ(r)]+Eext[ρ(r)]+EH[ρ(r)]+Exc[ρ(r)]   (2.6.1) 

This equation can be minimized to find the ground state using the differentiation of functionals, 

the variational principle, and a Lagrange multiplier.  Using the variational principle, the variation 
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of the energy functional(s) is zero when the energy is minimized. 

0=
δE[ρ(r)]

δϕ
i

*
(r)

 
  (2.6.2) 

0=
δ

δϕ
i

*
(r)

(E[ρ(r)]- ∑ λij

ij

[∫ ϕ
i

*
(r) ϕ

j
(r)dr]) 

  (2.6.3) 

 (𝜆 ensures orthonormality for the orbitals.)   

0=
δEkin

non

δϕ
i

*
(r)

+ [
δEext

δρ(r)
+

δEH

δρ(r)
+

δExc

δρ(r)
]

δρ(r)

δϕ
i

*
(r)

- ∑ λijϕj
(r)

j

   (2.6.4) 

Simplifying the equation results in the Kohn-Sham equations: 

0= (-
1

2
∇2+Uext+UH+Uxc-λi) ϕ

i
(r)   (2.6.5) 

0= (-
1

2
∇2+Ueff-ϵi) ϕ

i
(r)   (2.6.6) 

where 𝑈𝑒𝑓𝑓 is the effective potential that manipulates the noninteracting ground-state electron 

density so that it is identical to the interacting system.  The associated Schrödinger wave 

equation now becomes: 

[-
1

2
∇2+Ueff(r)] ϕ

i
(r)=ϵiϕi

(r)   (2.6.7) 

where the KS Hamiltonian is:  

ĤKS=-
1

2
∇2+Ueff   (2.6.8) 

The KS eigenvalues, 𝜖𝑖, represent the energies of each electron and describe various properties 

such as the band structure and density of states.  After removing the double counting error, the 

sum of the KS eigenvalues is the actual total energy of the system. 
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E= ∑ ϵi-EH[ρ(r)]+Exc[ρ(r)]- ∫
δExc

δρ(r)
ρ(r)dr

i

   (2.6.9) 

2.7 Exchange-correlation functionals 

 Recall, the exact functional for 𝐸𝑥𝑐 is unknown, therefore approximations are used to 

make up for this shortcoming and are an active topic of research.  For solids, the XC energy can 

be either local or semi-local functionals.  The next few sections will cover a few of the 

commonly used XC functionals and provide benefits and drawbacks to each type.  These 

functionals include the Local Density Approximation (LDA), Generalized Gradient 

Approximation (GGA), and hybrid functionals.   

2.7.1 Local Density Approximation (LDA) 

 LDA is a local functional.  This means the functional does not depend on the density 

gradient of the functional.  LDA assumes the density in the local area containing the electron is 

homogenous throughout the system.  The exchange energy is represented by the following 

analytical form (where C is constant): 

Ex
hom(ρ)=-Cρ

1
3(r)    (2.7.1.1) 

The surveyed area is broken into uniform pieces of electron densities.  The exact exchange and 

correlation energies can be calculated using the HF method, however, common practice dictates 

these energies are approximated using the simple analytical form.  The final values are summed 

to calculate the total energy for the XC energy. 

Exc
LDA[ρ(r)]=Ex

LDA[ρ(r)]+Ec
LDA[ρ(r)]   (2.7.1.2) 

LDA is exact for densities which vary slowly and work well for covalent and simple metallic 

systems.  Known numerical values from quantum Monte Carlo calculations for a homogenous 
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gas are interpolated allowing 𝐸𝑥𝑐
ℎ𝑜𝑚[𝜌(𝒓)] to be parameterized.  Multiplying 𝐸𝑥𝑐

ℎ𝑜𝑚[𝜌(𝒓)] by the 

local electron density and integrating over all space gives the XC energy. 

Exc
LDA[ρ(r)]= ∫ ρ(r) E

xc

hom

[ρ(r)]   (2.7.1.3) 

= ∫ ρ(r) [Ex
hom[ρ(r)]+Ec

hom[ρ(r)]] dr   (2.7.1.4) 

Taking the derivative of the energy functional gives the XC potential: 

Uxc
LDA[ρ(r)]=

δExc
LDA

δρ(r)
   (2.7.1.5) 

LDA is an older function and has fallen out of use with the advent of newer functionals.  

Unfortunately, LDA is prone to many shortcomings including underestimating lattice constants 

(called overbinding) and band gap values. [20] Overbinding results in an overestimation of the 

cohesive energy and the bulk modulus of solids.  Band gaps are underestimated due to only 

partial cancellation of self-interaction.   

2.7.2 Generalized Gradient Approximation (GGA) 

 GGA is a semi-local functional, so it depends on the density gradient of the functional.  

This is needed because systems (generally) are not homogeneous.  GGA accounts for both local 

and semi-local information.  The GGA XC functional is expressed in a form that satisfies various 

physical constraints.  GGA is based on LDA and incorporates an enhancement factor 

(corresponding to the gradient of the electron density) that directly modifies the LDA energy.   

Exc
GGA[ρ(r),s]= ∫ ρ(r) E

x

GGA

[ρ(r)]ρ(r)F(s)dr   (2.7.2.1) 

where: 
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s=C
| ∇ρ(r) |

ρ4/3(r)
 

  (2.7.2.2) 

F(s) typically varies from 1.0 to 1.6 for solids when s is in the range of 0-3 [21].  GGA provides 

better values for bond lengths by resolving the overbinding issues of LDA but can still 

underestimate the band gap. 

2.7.3 Perdew-Burke-Ernzerhof revised for solids (PBEsol) 

The GGA PBE (not the same as PBEsol) functional was introduced in 1996 and provided 

more accurate results compared to LDA and other early GGA functionals.  PBE resolved the 

under binding of LDA but introduced an overbinding (meaning it overestimates lattice 

constants).  Given this dilemma, the creators of PBE released the PBEsol functional in 2008 with 

the explicit intent of providing accurate equilibrium properties for solids and surfaces.  PBE and 

PBEsol are extremely similar.  The main difference between them are two terms used in the 

enhancement factor F(s) and 𝐸𝑐. 

The enhancement factor for GGA approximations has the form (as s → 0): 

F(s)=1+μs2+ … 

  (2.7.3.1) 

As previously stated GGA was built on LDA so it must recover the uniform gas limit.  Given this 

constraint, μ is limited to a value of ~0.2195.  Likewise, 𝐸𝑐 is given by: 

Ec[ρ(r)]= ∫ ρ(r) E
c

GGA

[ρ(r)]+βt2(r)+ …dr 
  (2.7.3.2) 

Most GGA approximations chose 𝛽 so the uniform gas limit is recovered making 𝛽 = 0.0667.  

This value works well for the exchange energy of free atoms.  PBEsol revised these values to μ = 

10/18 and 𝛽 = 0.046, respectively [22].  These values provide a better estimation of surface 

energies.  PBEsol becomes exact under intense compression where 𝐸𝑥 is dominant (compared to 
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𝐸𝑐) which minimizes error cancellation between 𝐸𝑥 and 𝐸𝑐.  This work used the GGA functional 

PBEsol (Perdew-Burke-Ernzerhof revised for solids) to perform DFT calculations.   

2.7.4 Hybrid functionals 

 Hybrid functionals are exchange-correlation functionals that mix an amount of the 

accurate exchange energy from the HF method (by default in VASP) with a local or semi-local 

density functional.  Hybrid functionals describe systems with rapid electron density variations or 

with long-range van der Waals interactions and are best suited for modeling bond energies, 

chemical transition-state barriers, and band gaps [16].  A transition-state is defined as a 

thermodynamic bottleneck experienced by a system in a chemical reaction going from the 

reactant state to the product state. [23] There are two types of hybrid functionals: unscreened and 

range-separated (screened).  The unscreened hybrid functional, PBE0, is considered non-

empirical.  Range-separated functionals (such as HSE03, HSE06, and HSESol) are more 

commonly used in solid-state physics and are considered semi-empirical.  Hybrid functionals 

incorporate corrections to the self-interaction error and have been used to model polarons. [9]  

Unfortunately, hybrid functionals incur a high computational cost, and identifying the correct 

exchange values can be time-consuming. 

2.8 Projector Augmented Wave Pseudopotentials 

 Pseudopotentials mimic the characteristics of potentials for atoms.  These approximated 

potentials combine and “freeze” the nucleus and core electrons resulting in simpler and quicker 

DFT calculations.  The core electrons can be treated like this because they are bound tightly to 

the nuclei in a deep potential well.  This configuration means the core electrons are unaltered (for 

the most part) when system conditions change.  Valence electrons, however, are affected by 

changes in the system.  A valence wavefunction oscillates rapidly near the nucleus due to the 
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deep well.  A linear transformation can be used to create a well-behaved function without 

oscillations.  Modeling the nodes of this rapidly oscillatory (RO) wavefunction is 

computationally expensive so a modulating function for the frozen nuclei and core electrons is 

used.  This function reduces the computational cost and is called pseudization.  The distance 

from the center of the nucleus to the outermost pseudized electrons is called the augmentation 

sphere.  The basis set for this transformation operator has the following basis sets: 

RO partial wave, Pseudo partial wave, and a projector function.  (Partial waves are plane waves 

decomposed into a series of spherical waves.)  The RO partial wave will provide solutions to the 

Schrödinger equation.  The Pseudo partial wave is identical to the RO partial wave outside the 

augmentation sphere but is also well-behaved inside of it.  The projector function ensures the 

pseudo partial waves are solutions to the Schrödinger equation as well.  The KS equation (using 

pseudopotentials) is now: 

[-
1

2
∇2+UPP[ρ(r)]] ψ

i
PP(r)=ϵiψi

PP(r) 
  (2.8.1) 

where:  

ρ(r)= ∑ | ψ
i

PP(r) |
2

i

 
  (2.8.2) 

 In 1994 F. Blochl proposed Projector-augmented wave (PAW) potentials which aimed to 

leverage frozen core potentials while maintaining the accuracy of RO potentials. [12] The charge 

density for PAW is no longer the actual charge density but is instead a pseudo-charge density.  

This is due to the approximation sum of the atomic contributions inside the augmentation sphere.  

Blochl’s implementation of PAW potentials is: 

Exc
B =Exc[ñv+ñcore]+ ∑(Exc

a [nv
a+ncore

a ]-Exc
a [nv

a+ñcore
a ])

a

 
  (2.8.3) 
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where ñ𝑣 is the valence density and ñ𝑐𝑜𝑟𝑒 is the core density. 

In 1998, Kresse and Joubert modified Blochl’s PAW implementation by adding a valence 

compensation charge density [24]. 

Exc
K =Exc[ñv+ñcore+n]+ ∑(Exc

a [ñv+ncore
a ]-Exc

a [ñv+ñcore
a +n])

a

   (2.8.4) 

This was done to make PAW’s relationship explicit with DFT. 

2.9 Periodic Boundary Conditions and the Slab Model 

 The structure of a solid is a periodic crystal.  To reduce computational cost DFT relies 

heavily on this periodicity of solids by reducing the size of a solid to a supercell made up of 

several periodic unit cells.  Periodic boundary conditions (PBCs) extend the supercell to infinity.  

The supercell extended by PBCs then can be used to simulate a bulk solid with a reduced 

computational cost.  This method means the KS equations need only be solved in that single 

supercell.  PBCs can be used for neutral slabs with no dipole moment.     

2.9.1 Reciprocal Lattice and the First Brillouin Zone 

 Recall that pseudopotentials speed up DFT calculations by “eliminating” electrons from 

the calculation.  Likewise, a Brillouin zone can be used to reduce the system further.  The first 

BZ is a coordinate system used to characterize the behavior of electrons.  Characterizing the 

system in the reciprocal lattice (RL) makes it easier than in real space.  The grid of the RL is 

matched to the wave vectors.  This means RL points define allowed wave vectors.  (This is like 

identifying positional points in a real lattice.)  Information transformed from real space to 

reciprocal space shrinks.  This is done by expanding the KS wavefunctions and electron density 

using a Fourier series.  The Fourier transform of the wavefunction is given by: 

Uk(r)= ∑ Ck(G)e
iGr

G

 
  (2.9.1.1) 
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where 𝐶𝑘(𝐺) is the Fourier complex numbers of the replacement wavefunctions.  Fast Fourier 

transformations discretize the charge distribution onto a finite grid in reciprocal space.  𝑒𝑖𝑮𝑟 is 

the phase factor at each G (RL vector) representing a plane wave in space perpendicular to G.  

Similarly, other quantities such as the electron density can be transformed.  The first BZ can be 

thought of as an RL unit cell.  K-points outside of the first BZ are folded back into the first BZ 

via the RL vector so DFT calculations can focus purely on the first BZ.    

2.9.2 Irreducible Brillouin Zone and KPOINTS 

Rotation and inversion symmetry also speed up DFT calculations by creating an 

irreducible Brillouin zone (IBZ).  The IBZ can be represented by a minimum number of distinct 

k-points.  Any point in the IBZ can represent a k-point so there are an infinite number of k-

vectors.  These k-vectors are well-behaved in the IBZ so a smaller sample can be used.  For large 

systems, the IBZ volume is small and only a few k-points are needed to describe the sampled 

zone.  Two types of commonly used k-point meshes are the Monkhorst-Pack (MP) [25] and a 

“Regular” mesh centered at the Gamma Point (GP).  The MP method creates k-points evenly 

spaced in the IBZ.  The Regular mesh is commonly used for large systems as it is 

computationally efficient.  This is due to the gamma central point being located at k = 0 where 

the real and reciprocal coordinates coincide.  Wavefunctions at this point are real and so complex 

number evaluation is not needed.   

2.9.3 Bloch Theorem 

 The topic of free atoms was briefly mentioned in Section 2.7.3.  A free atom is an atom 

that has minimal interaction with other electrons and nuclei inside a bulk structure and travels 

freely within the solid.  The Bloch theorem allows the KS orbitals to be rewritten and solved for 

each k and band index in a matrix equation.  Since the structure of a solid is periodic its 
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properties are also periodic.  Therefore, the electron density is periodic (and invariant) since it 

depends on position 

ρ(r)= ρ(r+R) 
  (2.9.3.1) 

where 𝑹 is a lattice translational vector. 

While the magnitude of the wavefunction will be periodic the wavefunction will not be 

due to associated complex numbers.  Wavefunctions have a plane wave of the form (with C as a 

constant): 

ψ(r)=Ceikr 
  (2.9.3.2) 

Bloch mapped these plane waves to the periodic structure of a solid [26].  This made the plane 

waves quasi-periodic.  He also introduced a periodic function (𝑢𝑘(𝑟)) with the same periodicity 

as the potential.   

𝜓𝑘(𝒓) = 𝑢𝑘(𝒓)𝑒𝑖𝑘𝒓 
  (2.9.3.3) 

This allowed a new phase factor to be included in the wavefunction. 

ψ
k
(r+R)=uk(r+R)eik(r+R) 

  (2.9.3.4) 

𝜓𝑘(𝒓 + 𝑹) = 𝜓𝑘(𝒓)𝑒𝑖𝑘𝑹 
  (2.9.3.5) 

The new plane wave differs by a periodic modulation implying free electrons are simply 

perturbed free electrons allowing for all relevant properties to be expressed in periodic forms in 

real space.  Substituting equation 3.9.1 into 3.9.3.3 and simplifying gives: 

ψ
k
(r)= ∑ Ck(G)e

i(k+G)r

G

   (2.9.3.6) 

This form is a superposition of multiple plane waves differing by G, where G is a reciprocal 

lattice vector.  The Bloch theorem allows a small piece of a solid to be used for reliable DFT 

calculations. 
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 KS orbitals come in many shapes, so approximating them as a linear combination of 

simple plane waves makes DFT calculations of large crystalline materials easier.  Plane waves 

are a nonlocal basis set (meaning they span all space).  The charge density is a quantity from the 

KS theorem and thus can be expanded using plane waves by squaring the expanded orbitals: 

ρ(r)= ∑ ρ(G)e
iGr

G

   (2.9.3.7) 

Summing over G in equation 2.9.3.7 will be infinite, however, introducing a cutoff energy (Ecut) 

truncates the plane wave basis set.  The cutoff energy is defined as: 

Ecut ≥
1

2
(k+G)

2   (2.9.3.8) 

The Ecut will vary per system and must be optimized using convergence testing to ensure the 

specified energy is high enough for accurate results.  Gcut is a spherical radius in reciprocal space 

which represents the plane wave.  Charge density is quadratic in the wavefunction so charge 

density calculations in reciprocal space require the Fourier grid to contain all wave vectors up to 

2Gcut otherwise wrap-around errors occur. 

2.9.4 Band structure, Band gap, and Density of States 

 Plotting all KS orbitals and energies for a supplied set of k-points allows for the creation 

of band structure and density of states (DOS) plots.  The band structure shows how electrons 

travel through the material and displays the electronic states along high symmetry lines in the 

IBZ.  Valence electrons in solids form energy bands separated by energy ranges where no 

electron states exist called a band gap.  Waves propagating in a crystal experience Bragg 

diffraction and form the band gap as there is no solution to the Schrödinger equation in this 

range.  This creates two separated band regions above and below the highest occupied energy 

level called the Fermi level (energy).  Bands above the Fermi energy are unoccupied and called 
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the conduction bands.  Bands below the Fermi energy are occupied and called valence bands.  

Excited electrons transition from the valence band to the conduction band when external energy 

is supplied.  The conduction and valence bands that are closest to the Fermi energy are called the 

conduction band minimum (CBM) and the valence band maximum (VBM).  A DOS diagram 

provides the number of electronic states per unit energy range.  The DOS is essential for 

determining carrier concentrations and energy distributions in a semiconductor.  Figures 2.9.4a 

and 2.9.4b show a sample band structure and DOS plot. 

 

  

Figure 2.9.4a: Example Band structure 

including band gap 

Figure 2.9.4b: Example DOS including band 

gap 

2.9.5 Surfaces, Slabs, Supercells, and Dipole Corrections 

A flat surface is created by cutting a bulk crystal material.  This cutting will expose the 

atoms in the plane where the cutting occurred.  In this work, the atoms at the surface will be in 

contact with a vacuum region.  Surface simulations can be modeled using a supercell method.  

This method is comprised of a slab that is infinite and periodic in a parallel direction and finite in 

the perpendicular direction to the surface.  Electronic properties are being investigated in this 

work so the slab supercell model was used as it allows for band formation with correct 

dispersions.  Figure 2.9.5 depicts the supercell model with a slab in the center of the supercell 

and a vacuum region above and below the slab with a surface layer highlighted in yellow. 
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Figure 2.9.5: Supercell model containing a surface slab atomic structure 

Many materials can have an asymmetric structure when creating surfaces using the slab 

model.  The slab model includes a supercell representing a thin film oriented on a specific facet 

that is separated by a vacuum region.  The asymmetrical structure of the surfaces is due to 

different arrangements of the atoms on the top and bottom surfaces resulting in differing 

electrostatic potentials for each surface.  This potential difference induces an artificial electric 

field in the vacuum represented as a non-constant potential shown in Figure 2.9.6.   
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Figure 2.9.6: Non-constant potential in vacuum due to an artificial electric field 

The artificial electric field is non-physical as the potential in a vacuum should be constant 

throughout since there is no electric field present.  This effect can be compensated for by 

applying a planar dipole layer in the middle of the vacuum thereby negating the artificial electric 

field [27].  The size of the vacuum will need to be optimized until a constant potential is 

achieved.  Additionally, the slab model presents two additional problems the dipole corrections 

resolve.  Firstly, the supercell is being modeled using infinitely uniform plane waves whereas the 

surface creates a finite dimensionality.  Secondly, certain slab terminations simulate a “cutting” 

of the material which results in broken “dangling” bonds violating the assumption of an infinite 

crystal that serves as a basis for the usage of periodic boundary conditions.   

2.10 Energy Corrections in DFT 

 The first step in DFT calculations is optimizing the bulk unit cell of the system being 

studied.  LDA and GGA have shortcomings that provide a close approximation for structural and 
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electronic properties.  Hybrid functionals provide better approximations but can be 

computationally prohibitive.  Additionally, there is the need to account for relativistic effects for 

heavy atoms such as Pb.  The following section will discuss a method to improve the LDA and 

GGA approximations with a Hubbard U correction and will address how to incorporate 

relativistic effects such as spin-orbit coupling (SOC) to account for the heavy atoms.   

2.10.1 Relativistic mass-velocity, Darwin, and SOC corrections 

Equation 3.10.1.1 shows the fully relativistic Hamiltonian.     

Ĥ=Ĥ0- 
1

2mc2

p4

4m2
+

ħ
2

8m2c2
∇2v(r)+

ħ

4m2c2
σ*(∇v(r) X p)   (2.10.1.1) 

The terms (from left to right) are the non-relativistic Hamiltonian, the mass-velocity term, the 

Darwin term, and the spin-orbit interaction term.  The mass-velocity term correction for the 

variation of mass with the velocity of the electron results in a small decrease in kinetic energy as 

evidenced by the negative sign.  The Darwin term (proposed by C.G. Darwin, the grandson of 

Charles Darwin, in 1928 [28]) is a correction to the non-local interaction between the electron 

and the Coulomb field.  This term smears the potential felt by the electron resulting in a change 

in the electron’s potential energy.  The last term is the spin-orbit coupling term.  The mass-

velocity and Darwin terms together are often called the scalar relativistic corrections and are 

included by default in the VASP PAW POTCARs. [29] [30] [31] Note that to perform full 

relativistic calculations the SOC correction must be included.  Here, Ĥ0 is the default scalar 

relativistic Hamiltonian included in VASP which includes the mass-velocity and Darwin 

correction terms.   

Ĥ= Ĥ0+ ĤSOC (2.10.1.2) 
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ĤSOC=
e2

8πε0

1

m2c2r3
L*S (2.10.1.3) 

The SOC effect increases as atomic mass increases. [32] Previous work has shown that SOC 

effects should be incorporated when modeling Pb-based halide perovskites. [33] 

2.10.2 Hubbard U Correction (DFT + U) 

 The Hubbard U correction is an empirical correction to the delocalized charge 

distributions in DFT.  DFT includes self-interaction errors which result in delocalized charge 

distributions [34].  In 1963 John Hubbard proposed that systems with strongly localized orbitals 

have an extra-repulsive interaction [35].  This occurs in the d and f orbitals of strongly correlated 

metals.  In this work, the U correction was considered to provide a better description of halide p-

orbital interactions.  This approach of adding a U correction to the halide p-orbitals was 

previously used in the bulk by Welch et al [10], and similarly, it was also used to study polarons 

in TiO2. [36] The Hubbard U correction is a corrective term that can be employed with local or 

semi-local functionals.  Leveraging HF-like methodology, the repulsive energy is added to the 

KS Hamiltonian to shift the localized orbitals.  The DFT+U method ensures the cancellation of 

the self-interaction error in semi-local approximations.  Adding the U correction provides 

improved results for electronic properties while only slightly increasing computational times 

compared to local and semi-local functional calculations.  The U correction is significantly 

quicker than hybrid functionals but the results are not as precise.  There are a couple of different 

versions of the Hubbard model implemented in VASP.  The Dudarev model simplifies the 

Hubbard model while producing relevant results [37].  It is given by: 

EDFT+U=ELSDA+
(U-J)

2
∑ [(∑ nm1,m1

a

m1

) - ( ∑ nm1,m2
a nm2,m1

a

m1,m2

)]

a

   (2.10.2.1) 
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The U term represents the strength of the effective on-site Coulomb interactions.  J is the 

strength of effective on-site exchange interactions.  The U and J terms replace the intra-atomic 

coulomb and exchange integrals in the local or semi-local functional.  n is the occupation 

number(s) while m1 and m2 are electronic states with spin a. [38] In the Dudarev model, J = 0.  

The total energy will depend on U and J, so it is not meaningful to compare total energies with 

differing U and/or J values.  The LDAUL tag specifies which atom and orbital to apply the U 

correction to.  There are four options:  -1 (no on-site interaction terms added), 1 (p orbital), 2 (d 

orbital), 3 (f orbital).  Each atomic species will need to have a U value specified. 

2.11 Polarons Basics 

Phonons are the quanta of ion vibrations (lattice distortions) in a crystal. Electrons 

moving in the crystal interact with the phonons and this interaction is called electron-phonon 

coupling.  In 1933 Lev Landau proposed an electron could be trapped by lattice distortions. [39] 

The term polaron was later coined by Solomon Pekar who further advanced Landau’s polaron 

concept.  Pekar proposed an electron “dressed” by lattice polarizations would move through the 

crystal with increased effective mass [40].  Today, polarons are thought of as the combination of 

a charge carrier (not just an electron) and the resulting induced polarization around the charge 

carrier.  Polarons are fermionic quasiparticles.   

Polarons which localize in a single unit cell are called small and move incoherently.  The 

incoherent movement is due to the small polaron needing to overcome a potential barrier when 

moving from one lattice position to the next.  Small polarons effectively hop from one location 

to the next.  Polarons which delocalize across multiple cells are called large and move 

coherently. [41] Additionally, the charge carrier associated with the polaron will alter how the 

surrounding ions adjust their positions based on the charge of the surrounding ions.  Positively 



 

29 

charged ions will attract towards a negative charge carrier but repel away from a positive charge 

carrier.  This is demonstrated in Figure 2.11.  

 

Figure 2.11: Lattice Distortion caused by an Electron Polaron (left) and Hole Polaron (right) 
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3. SIMULATION METHODS 

3.1 Computational Details 

 This work used the Vienna Ab Initio Simulation Package (VASP) version 5.4.1 for both 

SOC and non-SOC calculations.  PAW pseudopotentials with the PBEsol (semi-local) functional 

were used.  Several files need to be created to run a VASP calculation including INCAR, 

POTCAR, POSCAR, and KPOINTS.  The INCAR file provides input parameters that control 

how the calculation is performed.  The KPOINTS file dictates how the 1st BZ is sampled.  The 

POSCAR file contains the structural information for the compound/material being studied.  The 

POTCAR contains pseudopotential information for each specific element to be used in the 

calculation.  The order of the elements in the POSCAR and the POTCAR must match to run a 

successful calculation.  VASP offers a couple of different pseudopotentials and PAWs to use.  

The PAWs are concatenated (appended) together to create the POTCAR.  All pseudopotentials 

used were PAW_PBE.  The Pb_d PAW was chosen over the standard Pb PAW.  This treats the 

semi-core 5d states as valence states resulting in higher accuracy [42].  The bulk system is the 

starting point for all DFT calculations so it is imperative to ensure it is correctly modeled.  

Parameters such as the lattice constant, bulk modulus, and band gap can be used to check/verify 

if the structure is correctly modeled by matching against experimentally measured quantities.     

3.2 Unit Cell Geometric Optimization 

A pseudo-cubic unit cell POSCAR consisting of 12 atoms was taken from a GitHub 

repository from the Materials Design group at Imperial College London [43].  There are three 

commonly studied temperature-dependent polymorphs of MHPs: orthorhombic, tetragonal, and 

pseudo-cubic [6].  Specifically, MAPbI becomes pseudo-cubic at temperatures above 328 K 

[44].  Experiments show that the pseudo-cubic geometry has the benefit of maintaining a 
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uniform alignment of PbI3 octahedra [45].  The rotation of MA cations causes MHPs to display a 

pseudo-cubic structure rather than a cubic structure [45].   

Computational simulations perform numerical integrations over finite grids and infinite 

series.  As the number of operations approaches infinity, so too does the time required to perform 

them.  As such, the numerical calculations are truncated by selecting kinetic energy cut-off (Ecut 

or ENCUT) and the integration grid size for reciprocal space (k-point mesh).  Firstly, 

convergence calculations to determine an appropriate KPOINT mesh size and kinetic energy cut-

off (Ecut) were run.  For KPOINT mesh size optimization, a minimum mesh size of 2x2x2 and a 

maximum of 9x9x9 were tested using an increasing 1x1x1 mesh size increment.  (All meshes 

were Γ-centered.)  The largest energy value from the POTCAR was used as the ENCUT (cut-off 

energy) value in the INCAR file for KPOINT mesh optimization.  To optimize the ENCUT 

value, a minimum energy of 250 eV and a maximum of 700 eV was used with increments of 50 

eV.  The cell shape and cell volume were held fixed by setting the ISIF tag to 2 in the INCAR.  

The ISIF tag specifies which degrees of freedom are allowed to change.  These degrees of 

freedom include ionic positions, cell volume, and cell shape.     

After optimizing the KPOINT mesh and ENCUT value, the lattice constant for each bulk 

material was determined.  The lattice scaling factor in the POSCAR was varied from 95% to 

105% (with increments of 1%) using the conjugate gradient algorithm for ionic relaxation. The 

conjugate gradient method moves ions in the negative direction of the gradient.  After 

determining the initial result, subsequent minimization steps are used until the forces acting on 

the ions are orthogonal with the previous step. [46] Setting the IBRION tag to 2 directs VASP to 

use the conjugate gradient method.  Setting the NSW tag to an integer value specifies the number 

of subsequent minimization steps to use for the minimization algorithm.  Ionic minimization was 
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allowed to run until all forces were smaller than 0.01 eV by setting the EDIFFG tag in the 

INCAR.  The equilibrium volume for each unit cell of all MHPs leveraged the Birch-Murnaghan 

equation of state fit to calculate the lattice constant as well as the bulk modulus.  (Details follow 

in the next section.)  The optimized KPOINT mesh, ENCUT energy, and lattice constant values 

were then used to create a fully optimized unit cell structure for use in a self-consistent 

calculation for the electronic structure of each system.  To use the PBEsol functional, an 

additional tag (GGA = PS) needs to be added to the INCAR file.  This overrides the default 

exchange functional supplied in the POTCAR.  As of the writing of this document the exchange 

functional tag in the POTCAR (LEXCH) should not be changed.  Note the CONTCAR file 

contains the final atomic positions after the job has finished running.  Figure 3.1 shows the 

resulting optimized unit cell for MAPbI. 

 

Figure 3.1: Optimized MAPbI Bulk structure 

3.2.1 Birch-Murnaghan equation of state 

 Identifying the optimized k-point mesh and ENCUT is straightforward.  Calculating the 

equilibrium volume, bulk modulus, and lattice constant is more involved.  The bulk modulus is 

the amount of volume change based on the pressure applied.  The equilibrium volume is 

determined by fitting the Birch-Murnaghan equation parameters to the data.  The equilibrium 

volumes are then plotted as a volume-energy curve and the Birch-Murnaghan equation of state is 
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used to fit the data.  The Birch-Murnaghan equation was proposed in 1947 and provides a 

relationship between the volume of a body and the pressure exerted on it [47].   

E(V)=E0+
9

16
V0B0 {[(
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V
)

2
3

-1]

3

B0
' + [(

V0

V
)

2
3

-1]

2

[6-4 (
V0

V
)

2
3

]} 
  (3.2.1.1) 

Here, 𝐸0 is the minimum energy of the curve, 𝐵0 is the bulk modulus, 𝑉0 is the ground state 

volume, and 𝐵0
′  is the partial derivative of the bulk modulus with respect to pressure.   

3.3 Bulk Electronic Properties 

 Generating electronic properties is a two-step process.  First, the CONTCAR from the 

optimized unit cell was used as the POSCAR to create a charge density by running a self-

consistent field (SCF) job with no ionic relaxation.  The density of states (DOS) and band 

structure calculations were then performed using the charge density from the SCF job while 

keeping it constant throughout the run.  The tetrahedron method was used for the DOS 

calculations while Gaussian smearing was used for the band structure.  The Gaussian smearing 

width for band structure jobs was 0.001 eV.  The k-points used for a band structure calculation 

are as follows: M1-R-X1-M2-R-X2-M3-R-X3-Γ-R-M1 (see figure 3.3.1).   

 

Figure 3.3.1: K-points used for band structure 
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After the initial DOS calculation, it was decided to run additional DOS calculations while 

increasing the NEDOS value.  This value specifies the number of grid points used to evaluate the 

DOS.  A larger value gives a better evaluation (at the expense of additional computation time).  

The default NEDOS value of 301 was unable to resolve all peaks sufficiently.  A final NEDOS 

value of 10000 was chosen as an increase beyond that number did not result in a marked 

improvement.   

Additional calculations leveraging the Hubbard U correction as well as the HSESol 

hybrid functional were performed for additional data comparison of band gap and band structure 

values in the bulk.  For calculating band structures for the hybrid jobs, additional k-points with 

zero weight were used.  This method is referred to as the 0-weight (Fake) SCF procedure. [48] 

This involves running a standard DFT band structure calculation at the PBE level to 

automatically generate a k-point mesh (IBZKPT), charge density file (CHGCAR), and 

wavefunction (WAVECAR) file.  These additional files are used as inputs for the hybrid 

functional band structure calculations.  HSESol calculations used an HF exact exchange value of 

25%.  The hybrid job used Gaussian smearing and removed symmetry.  To save time while 

running hybrid calculations, the PRECFOCK tag was set to fast.  The PRECFOCK tag is used to 

define which FFT grid is used to calculate the exact exchange contributions.  This provides good 

accuracy for the energy while only introducing a small noise level in the forces (below 0.01 

eV/Å).  [49] 

Previous work done to identify the correct U value in the bulk for MAPbX perovskites 

(using PBE) found that 8 eV provided the best results using band gap and hybrid ionic force 

matching. [10] This optimized U value was used to perform the PBEsol+U calculations in this 

work.  The U values for C, H, and N were each set to -1 (meaning no correction was added) for 
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all calculations using the LDAUL tag in the INCAR.  (Specifics on the LDAUL tag can be found 

in section 2.10.2)  The U value was added to the p orbitals for the different halides.  The 

simplified DFT+U method introduced by Dudarev was used.  The bulk PBEsol+U calculations 

were then run again incorporating spin-orbit coupling by adding the LSORBIT tag.  The python 

package pymatgen was then used to calculate the band gap [50].  Both HSESol and PBEsol+U 

calculations included non-spherical contributions for gradient corrections inside the PAW 

spheres by setting the LASPH tag to true.  Aspherical charge density contributions arise when 

using hybrid and Hubbard U calculations and must be included to calculate accurate total 

energies and band structures.   

3.4 Surface Slab and Selective Dynamics 

 Two types of surfaces can be created depending on which plane of atoms the crystal is 

cut at.  A 7-layer slab was created using VESTA [51] for two separate terminations, PbX and 

MAX (where X = Cl, Br, I), from the CONTCAR of a structurally optimized unit cell.  A 

termination refers to where the slab ends and is determined by the atoms that construct the 

surface layer of the slab after it has been cut/sliced.  Scanning tunneling microscopy (STM) 

measurements of an orthorhombic MAPbI thin film grown on Au surfaces showed the surface 

was terminated with an MAI layer. [52] X-ray photoelectron spectroscopy (XPS) measurements 

also showed that surface terminations will depend on the humidity present in the environment.  

The MAI termination was realized below 35% and the PbI was realized at higher humidity 

levels. [53] For these reasons, both surface terminations were modeled.  The PbX slab 

termination (depicted in figure 3.4.2) was comprised of 39 atoms while the MAX slab 

termination (see figure 3.4.3) had 45.  A vacuum was added “on top” of the slab so the supercell 

method can be used.  The slab structure was shifted “to the middle” (roughly) so that vacuum 
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was on the top and the bottom of the slab inside of the supercell.  The “top” and “bottom” of the 

slab contact the vacuum, so the slab has two surfaces.  Multiple supercells with vacuums of 

varying sizes were created.  The vacuum size variances were needed to decide the optimal 

vacuum size using selective (molecular) dynamics (plus dipole corrections) to ensure the top and 

bottom surfaces did not interact with each other.  (That scenario would be an unphysical 

situation.)  Selective dynamics specified (per atom) whether atomic coordinates were allowed to 

change during relaxation for structural simulations.  The bottom 3 layers of the slab were held 

fixed to mimic a bulk structure while the top 4 surface layers were allowed to move.  Structural 

relaxation was run until the structures were fully electronically relaxed with an energy 

minimization break condition of 1x10-6  eV using tetrahedron smearing.  Supercell calculations 

used a 6x6x2 k-point mesh.  Figure 3.4.1 shows a layer-by-layer description of which layers 

were held fixed and which were allowed to move.  Figures 3.4.2 and 3.4.3 show the supercells 

with differing PbX and MAX slab terminations.   
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Figure 3.4.1: MAPbI Supercell showing relaxation strategy by layer 

 

 

 

 

 

 

    

Figure 3.4.2: PbX Terminated Supercells with 5 units of vacuum: 

MAPbCl (left,) MAPbBr (middle), MAPbI (right) 

 



 

38 

 

 

 

 

 

    

Figure 3.4.3: MAX Terminated Supercell with 5 units of vacuum: 

MAPbCl (left,) MAPbBr (middle), MAPbI (right) 
 

3.4.1 Surface Slab Local Potential and Vacuum optimization 

 After the slabs were relaxed using selective dynamics, dipole corrections were applied to 

the neutral supercells as recommended by VASP. [54] The CONTCAR from the relaxed (using 

selective dynamics) slabs was used as the POSCAR for the first dipole correction calculation.  

The dipole correction was calculated in the third lattice vector (z-axis) direction (since the 

vacuum added to the supercells was in this direction).  The Potential-and-Forces correction (2nd 

dipole step) was then added.  The python program MacroDensity (created by the Materials 

Design Group at Imperial College London) [55] was used to extract the planar average potential 

data and then plotted using python.  The vacuum which exhibited the least deviation from a 

constant value was chosen.  This process was performed for both PbX and MAX (where X = Cl, 

Br, I) slab terminations.  (Note the potential-and-forces correction step cannot currently be 

applied to charged supercells.)   
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4. RESULTS AND DISCUSSION 

4.1 PBEsol and PBEsol+SOC Bulk Results 

 

Previous work to optimize the U value leveraged band gap matching as well as ionic 

force matching with a hybrid functional. [10] Insufficient time prevented a re-optimization of the 

Hubbard U value using ionic force comparisons with hybrid functionals; however, band 

structures were studied various U values in the bulk on all halide bulk materials with the aim of 

investigating changes in the band gaps due to different U values. 

Unit cell geometric calculations determined the best gamma-centered k-point mesh size 

was 6x6x6 with a plane wave energy cut-off value (ENCUT) of 500 eV for use with all MHPs.  

Graphs of the convergence calculations are in the Appendix.  The calculated lattice constants and 

bulk moduli values are given in Tables 4.1.1 and 4.1.2.   

Table 4.1.1: Lattice Constants using PBEsol 

Lattice 

Constant 
This work (Å) 

Other DFT Studies 

(Å) 
Experimental Values (Å) 

MAPbCl 5.68 5.68 [56] 5.68 [57], 5.68 [58] 

MAPbBr 5.93 5.92 [56] 5.90 [57], 5.91 [59], 5.92 [58] 

MAPbI 6.31 6.29 [60] 6.33 [57], 6.27 [61], 6.311 [58] 

MAPbI - 6.3*[46] - 

* PBE (cubic) with modified POTCARs 

Table 4.1.2: Bulk Modulus using PBEsol 

Bulk 

Modulus 
This work (GPa) Other DFT Studies (GPa) Experimental Values (GPa) 

MAPbCl 16.81 17.0 [56] - 

MAPbBr 15.96 15.9 [56] 16.8 [62] 

MAPbI 13.29 15.6 [56] 13.1-13.3 [62], 13.9 [63] 

MAPbI - 16.6* [46] - 

* PBE (cubic) with modified POTCARs 
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The lattice constants for all the halides fell within <1% of other DFT studies and reported 

experimental values.  MAPbCl, MAPbBr, and MAPbI had a calculated cell volume of 183.48 

Å3, 208.90 Å3, and 251.31 Å3, respectively. 

The calculated bulk modulus for MAPbCl and MAPbBr both fell within 1% of other DFT 

studies.  The calculated bulk modulus for MAPbI improves on the value compared to other DFT 

studies and was within <1% for experimental values.  The bulk modulus from the previous work 

in the bulk overestimated the bulk modulus by 25% for MAPbI. [46] Recall the bulk modulus is 

a measure of a materials resistance to uniform compression.   Bulk modulus fitting graphs are in 

the Appendix Section. 

Lattice constant optimization and bulk modulus calculations that included SOC and U 

corrections (U = 8 eV) were performed on a bulk MAPbI system.  The calculated lattice constant 

for SOC was 6.30 Å with a bulk modulus of 39.34 GPa.  The lattice constant for PBEsol+U (U = 

8 eV) was 6.33 Å with a bulk modulus of 13.06 GPa.  The lattice constant and bulk modulus 

calculated values for PBEsol+U (U = 8 eV) were close to the PBEsol values.  Structural 

parameter optimization did not include the U correction, given how closely the resulting values 

were for PBEsol+U and PBEsol.  Non-SOC calculations resulted in a closer match to 

experimental values for the bulk modulus, so the non-SOC optimized bulk structures were used. 

The band gap is an essential property for photovoltaic applications.  Therefore, achieving 

a good band gap and band structure for the bulk was imperative for comparison with 

experimentation.  As previously stated, SOC affects the band gap of these perovskites as it 

breaks degenerate bands apart.  All elements in these halide perovskites have a p orbital except 

for hydrogen. As such, the SOC effect will be present for C, N, Pb, Cl, Br, and I.  C and N have 

small masses, so the SOC effect is negligible.  In Figures 4.1.1 we show the band structures for 
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MAPbCl, MAPbBr, and MAPbI obtained using PBEsol and PBEsol+SOC functionals.  Table 

4.1.3 shows the atomic mass of each element. [64] 

Table 4.1.3: Atomic Mass Values 

Element Atomic Mass (AMU) 

C 12.022 

N 14.0067 

H 1.00797 

Pb 207.2 

Cl 35.453 

Br 79.904 

I 126.9045 

The largest energy contribution occurs in Pb due to the large SOC effect on the p orbital 

splitting in the conduction band.  As the halide size increased, so did the SOC energy 

contribution.  The SOC splitting was smallest in chlorine and largest in iodine.  Adding SOC to 

the PBEsol calculation for MAPbCl reduced the band gap by 40% from 2.2243 eV to 1.3504 eV.  

Likewise, MAPbBr and MAPbI experienced a 45% and 35% reduction, respectively.  

Unfortunately, adding the SOC correction at a GGA level (alone) did not reproduce the band gap 

for these halide perovskites.  Studies showing the use of quasi-particle approximations (GW) and 

SOC can reproduce the experimental band gap value, but these calculations are computationally 

expensive and are not covered in this work. [65] [66] Fortunately, the scalar-relativistic 

POTCARs used by VASP cancel out errors between the relativistic SOC and the GGA functional 

resulting in a fairly good band gap and band structure description. [67] [68] Additionally, as 

determined by other studies, the inclusion of SOC does not significantly alter the structural 

properties (such as the lattice constant) in the bulk, confirmed by previous work. [67] [69] [70] 

Thus, SOC effects were neglected for the remainder of this work.  SOC Band structures are 

shown in Figures 4.1.1a, 4.1.1b, and 4.1.1c. 



 

42 

 

Figure 4.1.1a: MAPbCl band structure PBEsol vs PBEsol+SOC 

corrections 
 

 

Figure 4.1.1b: MAPbBr band structure PBEsol vs PBEsol+SOC 

corrections 
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Figure 4.1.1c: MAPbI band structure PBEsol vs PBEsol+SOC 

corrections 

Characterization of the bonding between the MA+ ion and the Pb-X inorganic lattice was 

performed using a slice of the charge density for each halide perovskite.  The spherical electron 

distribution around the Pb and I atoms suggest an ionic bond characterization while the distortion 

and overlapping electron distributions in the MA+ ion suggest a covalent bond between C and N.  

This is confirmed by previous work for halide perovskites. [71]  The atoms in the PbX row show 

a Pb atom in the center surrounded by the halide atoms.  The atoms in the MAX row show the 

halide in the center surrounded by MA+ cations.  Table 4.1.4 shows the charge density slice.   
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Table 4.1.4: Bulk Charge Density Slices 

Bonds MAPbCl MAPbBr MAPbI 

 

PbX 

   

 

MA+ 

   

 

Electronic structure information about the material being studied can be analyzed using a 

density of states plot.  Plotting the partial density of states (PDOS) using PBEsol demonstrates 

the halide (Cl, Br, and I) p and the Pb p orbitals are the primary contributors to the top of the 

valence band and the bottom of the conduction band, respectively.  These orbitals are responsible 

for photoexcitation in a solar cell.  Photons interact with electrons in the halide p orbitals 

exciting them to states in the Pb p orbital.  The PDOS for the bulk of all three halides shows the 

MA ion does not contribute to the band edges directly.  Figures 4.1.2a, 4.1.2b, and 4.1.2c show 

the density of states plots at the band edges. 
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Figure 4.1.2a: MAPbCl Bulk PDOS using PBEsol 

 
Figure 4.1.2b: MAPbBr Bulk PDOS using PBEsol 
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Figure 4.1.2c: MAPbI Bulk PDOS using PBEsol 

 

Specifically, the valance band gap edges are composed of hybrid bonds for X-p (X = Cl, 

Br, and I), Pb-s, and Pb-p orbitals for all three compounds.  The halide p orbitals for the hybrid 

bonds were Cl-p, Br-p, and I-p.  The conduction bandgap edges were a hybrid bonding of Pb-p, 

X-p, and X-s orbitals.  As the size of the halide increased a broadening of the DOS occurred 

coinciding with a reduction in the intensity beginning at the Fermi energy to -1.5 eV for 

MAPbCl.  MAPbBr also displays a broadening from the Fermi energy to -1.2 eV.  A broad band 

in the band structures results in a lower intensity caused by a larger variation in the energy.  

MAPbI shows the least broadening in the PDOS indicating less hybridization.   

4.2 PBEsol+U Bulk Electronic Results 

To investigate the effect of the U value on charge localization, an incrementally 

increasing U value (increments of 2) was added to the halide p orbitals in the bulk.  This data 

was used to perform a comparison of the band gap with experimental values and compare them 

against other XC functionals.  As the U value increased, the band gap for the MAPbBr bulk 

shrank up to 3% but increased for the MAPbCl bulk up to 10%.  At 8 eV, the bandgap for the 
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MAPbCl bulk was within 1% of the band gap for the PBEsol functional with no U correction 

applied.  For the MAPbI bulk, as U increased up to 8 eV, the band gap deviated significantly 

from experimental values resulting in a 19% decrease from the PBEsol value.  Based on band 

gap data, the best U values were 8 eV, 4eV, and 1eV for MAPbCl, MAPbBr, and MAPbI, 

respectively.  These values were chosen as they provided band gap values closest to 

experimental values.  The U value used in this work (4 eV) for MAPbBr was close to the U value 

used by Kovalenko et al (5 eV) in their study of MAPbBr. [72] Recall U values were needed to 

remove the self-interaction error which results in delocalized charge distributions in local and 

semi-local functionals.  These bandgap results are depicted in Figures 4.2.1a to 4.2.1c. 

 
Figure 4.2.1a: MAPbCl band gap 

 
Figure 4.2.1b: MAPbBr band gap 
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Figure 4.2.1c: MAPbI band gap 

Next, a comparison of electronic changes in the total and partial density of states (TDOS 

and PDOS) as well as the band structure is presented.  The TDOS and PDOS for the halide 

perovskite bulk structures are shown in Figures 4.2.2a to 4.2.4b.   
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Figure 4.2.2a: MAPbCl Bulk TDOS 

 

Figure 4.2.2b: MAPbCl Bulk PDOS 
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Figure 4.2.3a: MAPbBr Bulk TDOS 

 

Figure 4.2.3b: MAPbBr Bulk PDOS 
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Figure 4.2.4a: MAPbI Bulk TDOS 

 

Figure 4.2.4b: MAPbI Bulk PDOS 

Given that no alternative U value was determined for MAPbCl using band gap matching, 

a comparison between the PBEsol and PBEsol+U (U = 8 eV) functionals was done using Figure 

4.2.2a and 4.2.2b.  Figures 4.2.3a to 4.2.4b give a comparison between U values of 4 eV and 8 

eV for MAPbBr and 1 eV and 8 eV for MAPbI.  As expected, the U correction that was added to 

the halide p-orbital caused a broadening of the valence band edges and an energy shift in the 
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conduction bands.  Broadening of the halide p orbital resulted in a lowering of the DOS intensity 

at the band edges.  This showed a reduction in the number of states that can be occupied in this 

region.  The conduction band edge for MAPbCl was shifted to a higher energy level by 4.3%.  

The MAPbBr conduction band edge energy was reduced by 2.3% going from a U value of 4 eV 

to 8 eV.  Additionally, the MAPbI conduction band edge saw a reduction of 15% going from a U 

value of 1 eV to 8 eV.  This demonstrated that as the size of the halide increased, the effect of the 

U value on the system increased (as expected.)  Adding the U correction does not alter the 

contribution by the MA ion at the band edges (contribution remained non-existent).  Conduction 

band edge shifting was expected as the halide p-orbital was hybridized with the pb p-orbital and 

therefore is a contributor to the band edge.   

A discussion concerning the band gap values calculated in the bulk using various 

functionals follows.  The PBEsol functional provided a band gap in good agreement with other 

DFT studies as seen in Tables 4.2.1a to 4.2.1c.   

Table 4.2.1a: Bandgaps for MAPbCl 

Theory Level This Work (eV) DFT Studies (eV) Experimental (eV) 

PBEsol 2.22 2.34 [78], 2.46 [79] 

3.11 [78] 

PBEsol+SOC 1.35 - 

PBEsol+U (8 eV) 2.44 - 

HSESol 3.17 3.08 [80]* 

- - - 
 *HSE 

Table 4.2.1b: Bandgaps for MAPbBr 

Theory Level This Work (eV) DFT Studies (eV) Experimental (eV) 

PBEsol 1.84 1.8 [78], 1.95 [79] 

2.33 [81], 2.35 [78] 

PBEsol+SOC 0.89 0.8** [33] 

PBEsol+U (4 eV) 1.83 - 

PBEsol+U (8 eV) 1.79 - 

HSESol 2.57 2.61* [80]  
**PBE 
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Table 4.2.1c: Bandgaps for MAPbI 

Theory Level  This Work (eV) DFT Studies (eV) Experimental (eV) 

PBEsol 1.52 1.6 [79], 1.57 [78]  

1.55 [78] 

PBEsol+SOC 0.57 0.56** [45], 0.5**[33] 

PBEsol+U (1 eV) 1.50 - 

PBEsol+U (8 eV) 1.27 - 

HSESol 2.10 2.10 [80] * 

 

However, the band gap was underestimated compared to experimental values due to 

overbinding common in semi-local functionals. [73] Comparing the PBEsol functional band gaps 

with experimental values, MAPbCl, MAPbBr, and MAPbI had a difference of 28%, 20%, and 

1.6%, respectively.  The MAPbCl band gap difference was reduced to 22% after adding the U 

value of 8 eV.  U values of 4 eV and 8 eV for MAPbBr changed the band gap difference to 22% 

and 24%, respectively.  The MAPbI band gap differences were also changed to 3.2% and 18% 

using U values of 1 eV and 8 eV.  The band structures for the three MHPs  in Figures 4.2.5a to 

4.2.5c demonstrated how HSESol separated the top valence band from the second valence band.  

The amount of energy separation between bands decreased from MAPbCl to MAPbBr and 

finally to MAPbI.  This separation was present but less pronounced in the PBEsol band 

structures but adding the U value increased this band separation energy at the expense of the 

band gap value.  This energy separation corresponded to the low-intensity areas seen in the DOS 

at the band edges.  This means the HSESol functional produced orbitals with a greater variation 

of energy compared to the semi-local functionals in the bulk.  Additionally, the U values also 

increased this orbital energy variation but to a lesser extent.  From the data, it was evident that as 

the halide size increased, the broadening of the bands near the band gap edge increased after 

adding the U correction.  The band gap remained at the R k-point (and direct) for both the 

PBEsol and PBEsol+U functionals as shown in Figures 4.2.5a to 4.2.5c 
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Figure 4.2.5a: MAPbCl Bulk Band structure 

 

Figure 4.2.5b: MAPbBr Bulk Band structure 
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Figure 4.2.5c: MAPbI Bulk Band structure 

Previous work attributed lattice contraction to an increased metal-halide orbital overlap that 

raised the bands to lower energy levels and decreased the band gap. [74] Band gap reduction and 

band energy shifting were experienced for MAPbI and MAPbBr for all U values used compared 

to the PBEsol band gap.  This could be attributed to lattice contraction as previously reported.  

The band gap for MAPbCl increased.  Previous work has demonstrated that octahedral tilting 

reduced metal-halide orbital overlap which increased the band gap and resulted in deeper energy 

states. [61]  Octahedral tilting was experienced in the bulk lattice of MAPbCl.  Octahedral tilting 

is present when a rotation of the inorganic PbX lattice occurs. [75] The band structure and band 

gap were altered differently for each HP.   

HSEsol provided the closest bulk band gap value to experiment for MAPbCl compared to 

PBEsol and the PBEsol+U values.  However, HSEsol overestimated the band gaps for MAPbBr 

and MAPbI compared to experimental values.  This overestimation behavior was expected as the 



 

56 

exact exchange value (α) was shown to be material-dependent and therefore will need to be fine-

tuned for each perovskite compound. [76] It could be argued that the overestimation of the band 

gap for MAPbI is preferable, as the addition of SOC to the system would reduce the band gap 

closer to experimental values.  Meggiolaro and Angelis achieved a band gap of 1.58 eV for bulk 

MAPbI using HSE06 with SOC and an exact exchange value (α) of 0.43. [77]    

As previously mentioned, hybrid functionals require more computational time than semi-

local functionals to complete.  Figure 4.2.6 displays the computational time required to complete 

a band structure job for each functional.   

 

Figure 4.2.6: Bulk Bandstructure Jobs Comparisons 

Adding a U value of 8 eV increased the total computation time by 8 minutes while the hybrid 

functionals saw a 5-fold increase in computational time for a 12-atom bulk system.  Considering 

time constraints, the U value method was used instead of hybrid functionals for the remainder of 

this work.   
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4.2.1 Bulk Structural Results 

Adding the 8 eV U correction to the PBEsol bulk shifted the Pb atom in the negative x (a-

axis into the paper) direction and shifted the CH3 molecule (of the MA ion) in the negative z (c- 

axis) direction, towards the halide atoms.  The Pb atom shifting caused a change in the Pb-X (X 

= Cl, Br, and I) bond lengths and angles for all perovskites.  For example, the shifting of the Pb 

atom in MAPbCl coincided with a bond elongation from 2.8464 Å to 2.8835 Å in the Pb-Cl bond 

on the positive side of the Pb atom as seen in Figure 4.2.1.1a.  Additionally, a Pb-Cl bond length 

reduction occurred, from approximately 2.86 Å to 2.81 Å on the negative x-axis.  These bond 

length changes for the Pb-Cl bond were the largest in bond lengths for all perovskites using any 

functional.  This same scenario (of the Pb atom shifting that coincided with bond elongation and 

reduction) between the Pb-Br and Pb-I bonds also occurred (as well as MA ion reorientation).  

The amount of shifting for the Pb atoms and MA ions decreased as the halide size increased for 

both PBEsol and PBEsol+U functionals.  These effects are shown in Figures 4.2.1.1a to 4.2.1.1c 

below where a reduction in the amount of shifting of the Pb atom occurred using the smaller U 

values (4 eV and 1 eV) for MAPbBr and MAPbI. 

 
Figure 4.2.1.1a: MAPbCl PBEsol (left) vs PBEsol+U (8 eV) (right) Bond Length comparison 

(Å) 
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Figure 4.2.1.1b: MAPbBr PBEsol+U Bond Length comparison (Å) | Left U=4 eV, Right U=8 

eV  

 

 

Figure 4.2.1.1c: MAPbI PBEsol+U Bond Length comparison (Å) |  Left U =1 eV, Right U =8 

eV 

The largest bond length changes occurred for MAPbCl which resulted in a lattice contraction in 

the negative x direction for the bulk.  As a result of this contraction, octahedral tilting also 

occurred in the inorganic lattice.  The octahedral tilting increased the band gap for the bulk 

MAPbCl.  Lattice contraction was also seen in MAPbBr and MAPbI although to a smaller 

extent.  However, no lattice tilting was observed in MAPbBr and MAPbI, so the band gap was 

reduced.  These results suggest octahedral tilting takes precedence over lattice contraction when 

calculating band gap values as previous studies have also shown. [74]  

The average bond length for the 6 Pb-X bonds was calculated as it provided an easy way 
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to visualize lattice contraction holistically and is shown in Figures 4.2.1.2a to 4.2.1.2c.   

  
Figure 4.2.1.2a: MAPbCl Bulk Bond Length 

Comparisons 

Figure 4.2.1.2b: MAPbBr Bulk Bond Length 

Comparisons 

 
Figure 4.2.1.2c: MAPbI Bulk Bond Length Comparisons 

The average bond length for Pb-Cl was calculated to be approximately 2.85 Å using the PBEsol 

functional and suffered a reduction of 0.09% after adding the 8 eV U value.  Both the PBEsol 
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and PBEsol+U values matched well with the experimental value of 2.84 Å for the Pb-Cl bond 

length. [58] Similarly, the average bond lengths for Pb-Br and Pb-I were approximated to be 2.98 

Å and 3.17 Å using PBEsol.  These values were reduced by 0.05% and 0.04% after adding an 8 

eV U correction.  These Pb-Br and Pb-I bond lengths (using 8 eV) were close to the 

experimentally measured powder X-ray diffraction values of 2.97 Å and 3.16 Å, respectively. 

[58]  The band gap matched U values for MAPbBr and MAPbI (4 eV and 1 eV) resulting in a 

slightly longer bond length for the Pb-Br and Pb-I bonds compared to the 8 eV U value as shown 

in Table 4.2.1.1.   

Table 4.2.1.1: Average Bulk Pb-X Bond Length 

Perovskite PBE* (Å) PBEsol* (Å) 

PBEsol+U* (Å) 

Experiment (Å) 1 eV 4 eV 8 eV 

MAPbCl 2.77 2.855 - - 2.852 2.84 [58] 

MAPbBr 3.01 2.979 - 2.978 2.977 2.97 [58] 

MAPbI 3.19 3.170 3.170 - 3.169 3.16 [58] 
 *Calculated values from this work 

The longer bond length values calculated using 1 eV and 4 eV were expected as they do not 

“restrict” the charge density as much as the 8 eV U value.  The bond length changes experienced 

in the bulk ranged from 0.001 for Pb-Br and Pb-I to 0.003 for Pb-Cl (considerably small), yet the 

electronic properties (such as band gap) were affected.  Given this relationship, a correct U value 

optimized using the PBEsol functional needs to be calculated individually for each perovskite 

system. 

4.3 Supercell Vacuum Optimization for Surface Slabs 

 

After optimizing the bulk parameters using PBEsol, supercells were created from the 

fully optimized bulk unit cells which included varying sizes of vacuum.  One unit of vacuum had 
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the same volume as 1 unit cell of each perovskite.  In this figure, the purple potential line showed 

the non-corrected supercell matched exactly the potential of the supercell with Dipole corrections 

only (meaning no Potential-and-Forces Corrections applied).  This suggested that MAPbX 

perovskites are not polar compounds.  This agreed with other experiments. [82] Using Dipole 

corrections only did not result in a constant potential in the vacuum region of the supercell, so 

the Potential-and-Forces Corrections were applied.  It was determined 3 units of vacuum were 

insufficient for any MAPbX system after applying dipole and potential-and-forces corrections to 

the neutral supercells. The potential in the vacuum was not constant indicating an interaction 

between the top and bottom of the slab. [83]  Figure 4.3.1 shows the potential versus distance 

across the supercell in the z-direction.   

 
Figure 4.3.1: MAPbI PbI Termination with 3 units vacuum and Dipole 

Corrections 

The vacuum size was increased until the dipole corrections applied to the neutral supercells 

showed a near-constant potential inside the vacuum.  These results are shown in Figures 4.3.2a to 
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4.3.4b respectively for MAPbCl, MAPbBr, and MAPbI.      

 

Figure 4.3.2a: MAPbCl Vacuum Optimization Potential: PbCl termination 

 
Figure 4.3.2b: MAPbCl Vacuum Optimization Potential: MACl termination 
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Figure 4.3.3a: MAPbBr Vacuum Optimization Potential: PbBr Termination 

 

 

 
Figure 4.3.3b: MAPbBr Vacuum Optimization Potential: MABr Termination 
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Figure 4.3.4a: MAPbI Vacuum Optimization Potential: PbI Termination 

 

 

 

Figure 4.3.4b: MAPbI Vacuum Optimization Potential: MAI Termination 

As the vacuum size increased the potential gradually trended towards a constant (ignoring the 

dipole step discontinuity).  Increasing the size of the vacuum will increase computation time.  

Therefore, a fine balance between an acceptable value of the deviation of the potential in the 

vacuum and the time required to complete the calculation was needed.  The change in the 

potential in the vacuum is merely a difference in the potential at the top and the bottom surfaces.  
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subtracted resulting in the “corrected” potential difference.  Figure 4.3.5 compares the vacuum 

potential difference for differing vacuum sizes after applying both Dipole and Potential-and-

Forces corrections.  Table 4.3.1 displays the values used in Figure 4.3.5. 

 

Figure 4.3.5: MAPbI Vacuum Corrected Potential Difference | PbI Termination 

Table 4.3.1: MAPbI Vacuum Potential Difference | PbI Termination 

Vacuum 

size 

No Correction 

(eV) 

Dipole 

Correction  

(eV) 

Potential Forces 

Correction (eV) 

Step Size 

(eV) 

Corrected 

Potential 

Difference 

(eV) 

3 0.21 0.21 14.2 - 14.2 

4 0.33 0.33 1.75 0.79 0.96 

5 0.45 0.45 0.82 0.8 0.02 

7 0.53 0.53 0.79 0.79 0 

9 0.57 0.57 0.79 0.79 0 

 

A vacuum size of 5 was chosen as the potential difference was only marginally larger compared 

with 7 and 9 units of vacuum.  Table 4.3.2 shows the size of the discontinuity step and the 

calculated “corrected” potential difference over the vacuum region for each slab.  The MAX 

slabs had smaller “corrected” potential differences in the vacuum compared to the PbX slabs.   
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Table 4.3.2: Potential Difference for 5 units vacuum 

Termination Step Size (eV) 
Corrected Potential 

Difference (eV) 

PbCl 1.83 0.072 

MACl 2.30 0.049 

PbBr 1.33 0.034 

MABr 1.79 0.001 

PbI 0.8 0.020 

MAI 0.81 0.004 

 

4.4 Slab Surface Structural Results 

As demonstrated by the PDOS for the bulk, the band edges arise from the bonding of Pb 

and halide p orbitals which means the inorganic lattice is responsible for electronic excitation. 

[66]  Thus, an analysis of the Pb-X bond lengths was conducted.  Specific bond length calculated 

values are in the Appendix for both PbX and MAX terminated slabs in Tables 7.5 to 7.9  

Although the MA cation is not a contributor at the band edges of these halide perovskites, it does 

indirectly affect the structural features of the inorganic PbX cage.  Three mechanisms influence 

the MA ion interaction with the inorganic PbX cage.  These mechanics include an electrostatic 

potential between the positive (MA) cation and the negative PbX cage, an electrostatic 

contribution due to charge-dipole interaction, and an additional electrostatic contribution.  The 

final electrostatic contribution source is currently disputed between an induced dipole interaction 

(called the Debye force) [71] or hydrogen bonding [84] [85].  The orientation of the MA+ ion for 

the PbX and MAX terminations was situated in the same direction as in the bulk.  Namely, the 

dipole moment of the cation was pointing out away from the supercell towards the vacuum.  This 

structural configuration was used because it produced band gap values in good agreement with 

experimental results in the bulk. 

Following relaxation using the PBEsol functional, the MA+ cations in layers 2 and 4 
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reoriented so that the NH3 group was pointing towards the vacuum.  The MA+ ion at layer 2 (just 

under the surface PbX layer) shifted more so than the MA+ at layer 4 (located deeper in the 

supercell structure).  The shifting of the cation was greatest in the PbCl terminated slab 

compared to the PbBr and PbI slabs.  Adding the 8 eV U value to the PbCl slab calculations 

decreased the shifting of the cation in layer 4 but the MA+ ion in layer 2 was unaltered.  Both 

MA ions in layers 2 and 4 experienced a reduction in the shifting by the same amount for the 

PbBr and PbI slabs.  The smaller U values (1 eV and 4 eV) allowed for a greater reorientation of 

the MA+ compared to the 8 eV U value.   

Results discussing how the U correction affected the MAPbX inorganic lattice structures 

are presented next.  The distance from the first fixed layer (layer 5) and the top surface layer 

(layer 1) increased by .032 Å, 0.007 Å for the PbCl and PbBr slabs but shrank by 0.07 Å for the 

PbI slab. Adding a U value of 8 eV resulted in a reduction of 0.02 Å, 0.03 Å, and 0.06 Å for the 

PbCl, PbBr, and PbI slabs between these layers compared to PBEsol.  All three PbX slabs 

experienced a bond elongation between the Pb and halide bond in the 4-5 and 2-3 bilayers and a 

contraction of the Pb-halide bond in the 1-2 and 3-4 bilayers.  This change in bond lengths 

resulted in a shrinking of the lattice cavity above the MA+ ion and an expansion below the MA+ 

ion.  This shrinking and expansion of the bonds also occurred after adding the 8 eV U value.  

Adding the U values of 1 eV and 4 eV also resulted in a shrinking above and an expansion below 

the MA+ ion.  However, the bond lengths using these smaller U values were larger than the 8 eV 

bond lengths.  This allowed for a greater reorientation of the MA+ ion within the lattice as was 

mentioned earlier.   

The MA+ ion is surrounded by the Pb-X lattice and the reorientation is dictated 

(partially) by the amount of volume in the Pb-X cavity.  A decreasing halide size increased the 
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inorganic lattice cavity volume and also increased the reorientation of the MA+ ion. [86] Adding 

the U correction decreased the amount of charge density surrounding the halide atoms which 

resulted in a weaker attraction between the hydrogen atoms of the NH3 group and the halide.  

This resulted in a reduction in the reorientation of the MA+ ion as the U value increased.  

Adding the U value seems to suggest that hydrogen bonding was the predominant interaction 

force dictating MA+ ion reorientation as opposed to the alternately suggested Debye force 

previously mentioned.  Figures 4.4.1 to 4.4.3 show the resulting structures.  Tables 4.4.1 to 4.4.3 

show the comparison between the PBESol values and the changes incurred after adding the 8 eV 

U correction.   
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Table 4.4.1: PbX Term. | Layers 1 to 5 Distance 

System PBEsol 

(Å) 

PBEsol+U (Å) Difference 

(Å) 1 eV 4 eV 8 eV 

MAPbCl 11.39212 - - 11.33502 -0.0571 

MAPbBr 11.87877 - - 11.84382 -0.03495 

MAPbBr 11.87877 - 11.86805 - -0.01072 

MAPbI 12.54496 - - 12.58282 0.03786 

MAPbI 12.54496 12.53787 - - -0.00709 
 

Figure 4.4.1: 

MAPbI PbI slab 

Pb layers 1 to 5 

distance 

 

 

 

Table 4.4.2: PbX Term. | Layers 1 to 3 Distance 

System PBEsol 

(Å) 

PBEsol+U (Å) Difference 

(Å) 1 eV 4 eV 8 eV 

MAPbCl 5.65539 - - 5.6231 -0.03229 

MAPbBr 5.91135 - - 5.89501 -0.01634 

MAPbBr 5.91135 - 5.90169 - -0.00966 

MAPbI 6.24593 - - 6.2684 0.02247 

MAPbI 6.24593 6.24191 - - -0.00402 
 

Figure 4.4.2: 

MAPbI PbI slab 

Pb layers 1 to 3 

distance 

 

 

 

Table 4.4.3: PbX Term. | Layers 3 to 5 Distance 

System PBEsol 

(Å) 

PBEsol+U (Å) Difference 

(Å) 1 eV 4 eV 8 eV 

MAPbCl 5.73847 - - 5.71446 -0.02401 

MAPbBr 5.96779 - - 5.94911 -0.01868 

MAPbBr 5.96779 - 5.96682 - -0.00097 

MAPbI 6.29912 - - 6.31481 0.01569 

MAPbI 6.29912 6.29601 - - -0.00311 
 

Figure 4.4.3: 

MAPbI PbI slab 

Pb layers 3 to 5 

distance 
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The MA+ ion shifted by the same amount for both PBEsol and PBEsol+U (8 eV) at layer 

1 (which was in contact with the vacuum) for the MACl terminated slab.  However, for the 

MABr and MAI slabs, the MA+ ion shifted more using PBEsol than it did for PBEsol+U.  This 

was attributed to the U value altering the charge density in the same manner as in the PbX slabs.  

The NH3 end of MA+ ion at layer 1 reoriented towards the vacuum.  The MA+ ions in the layer 

1 surface were not confined by the inorganic lattice and were in direct contact with the vacuum.  

Therefore, they had a greater volume for reorientation resulting in a larger reorientation of the 

MA+ ions in the MAX terminations as opposed to the PbX terminations.  MA+ ion reorientation 

has been reported in recent studies. [86] [87] Torres and Rego reported the MAX surface 

termination configuration showed the greatest effects from relaxation in their study. [88] This 

result was confirmed in this work as the combination of the MA+ ion reorientation and the 

shifting of the Pb-X lattice was larger in the MAX slab than in the PbX slab.  Again, smaller U 

values (1 eV and 4 eV) resulted in a larger MA+ ion reorientation due to the increased cavity 

volume created by slightly larger bond lengths in the Pb-X lattice.  MA ion reorientation has 

been confirmed on MAI surfaces using STM.  The reorientation of these surface MA ions are 

proposed to weaken surface polarity and should be considered a stabilizing force for surface 

structures. [52] Using STM, the underlying Pb-X layer was observed to move in plane or 

upwards. [89]   

The MACl and MABr terminated slabs saw a reduction in the distance between layers 1 

and 5 by 0.45%, and 0.25% after adding the 8eV U value.  Like the PbX terminated slabs, there 

was a reduction in the bond lengths “above” the MA+ ion and an elongation “below” it for the 

MACl and MABr terminated slabs.  The MAI terminated slab did not display this behavior.  

Instead, the distance between layer 1 and layer 5 increased by 0.3%.  The 4-5 bilayer in the MAI 
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slab did show a reduction in bond length but the 2-3 bilayer experienced a bond length 

expansion.  Using smaller U values again resulted in longer bond lengths for the MABr and MAI 

slabs compared to the 8 eV U value.  Figures 4.4.4 to 4.4.7 show the resulting structures..  Tables 

4.4.4 to 4.4.7 show a comparison between the values obtained using the PBESol and PBEsol+U 

functionals. 

 

 

 

Table 4.4.4: MAX Term. | Layers 1 to 5 Distance 

System PBEsol 

(Å) 

PBEsol+U (Å) Difference 

(Å) 1 eV 4 eV 8 eV 

MAPbCl 11.5709 - - 11.51901 -0.05189 

MAPbBr 12.03059 - - 12.00101 -0.02958 

MAPbBr 12.03059 - 12.02226 - -0.00833 

MAPbI 12.81788 - - 12.85681 0.03893 

MAPbI 12.81788 12.83090 - - 0.01302 
 

 Figure 4.4.4: 

MAPbI MAI 

slab halide 

layers 1 to 5 

distance 

 

 

 

Table 4.4.5: MAX Term. | Layers 1 to 3 Distance 

System PBEsol 

(Å) 

PBEsol+U (Å) Difference 

(Å) 1 eV 4 eV 8 eV 

MAPbCl 5.79883 - - 5.77473 -0.0241 

MAPbBr 6.01284 - - 5.99881 -0.01403 

MAPbBr 6.01284 - 6.01535 - 0.00251 

MAPbI 6.40469 - - 6.42245 0.01776 

MAPbI 6.40469 6.41817 - - 0.01348 
 

Figure 4.4.5: 

MAPbI MAI 

slab halide 

layers 1 to 3 

distance 
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Table 4.4.6: MAX Term. | Layers 3 to 5 Distance 

System PBEsol 

(Å) 

PBEsol+U (Å) Difference 

(Å) 1 eV 4 eV 8 eV 

MAPbCl 5.77235 - - 5.74468 -0.02767 

MAPbBr 6.01939 - - 6.00439 -0.015 

MAPbBr 6.01939 - 6.00880 - -0.01059 

MAPbI 6.41321 - - 6.4344 0.02119 

MAPbI 6.41321 6.41276 - - -0.00045 
 

Figure 4.4.6: 

MAPbI MAI 

slab halide 

layers 3 to 5 

distance 

 

The average surface bond length for both the PbX and MAX terminated slabs (using 

PBEsol and PBEsol+U) was compared with the bulk.  These results are depicted in Tables 4.4.7 

and 4.4.8.   

Table 4.4.7: Bulk vs MAX Slab Average Bond Lengths 

System 

Bulk MAX Slab Surface 

PBEsol (Å) PBEsol (Å) 

PBEsol+U 1 

eV (Å) 

PBEsol+U 4 

eV (Å) 

PBEsol+U 8 

eV (Å) 

MAPbCl 2.854762 2.864803 - - 2.859327 

MAPbBr 2.978515 2.992847 - 2.991445 2.988773 

MAPbI 3.170198 3.17731 3.17763 - 3.180835 

Table 4.4.8: Bulk vs PbX Slab Average Bond Lengths 

System 

Bulk PbX Slab Surface 

PBEsol (Å) PBEsol (Å) 

PBEsol+U 1 

eV (Å) 

PBEsol+U 4 

eV (Å) 

PBEsol+U 8 

eV (Å) 

MAPbCl 2.854762 2.8257 - - 2.822048 

MAPbBr 2.978515 2.955314 - 2.953816 2.951688 

MAPbI 3.170198 3.144586 3.145382 - 3.146202 

 

The results suggest that the MAX slab was a more stable structure that produced band 

gaps closer to bulk values.  For the MAX termination, PBEsol functional produced larger 

changes in the Pb-X average surface bond length for the MACl and MABr slabs compared to the 



 

73 

8 eV  PBEsol+U values.  The MAI slab, on the other hand, increased the average surface bond 

length after the 8 eV U correction was added.  The 8 eV U correction increased the average 

surface bond length of the MAI, MABr, and MACl slabs by 0.34%, 0.34%, and 0.16% compared 

to the bulk.  The 8 eV U correction for the MAX slabs showed that as the halide size increased, 

the amount of change in the bond length increased.   

For the PbX terminated surface slabs, the 8 eV U correction resulted in a larger change in 

average surface Pb-X bond length for the PbCl and PbBr slabs.  The PbI slab average surface 

bond length decreased after adding the 8 eV U correction.  The 8 eV U correction reduced the 

Pb-X surface bond lengths by -0.76%, -0.90%, and -1.15% for the PbI, PbBr, and PbCl slabs 

compared to the bulk.  The larger deviation in surface bond length for the PbX terminations 

should result in larger deviations in the bandgap compared to the bulk.  As the halide size 

increased (and electronegativity decreased), the amount of change in the bond length also 

increased after adding the 8 eV U correction for the PbX slabs.  This was expected as the smaller 

atoms are lighter and therefore more susceptible to reorientation or distortion during relaxation.   

Holistically speaking, surface bond lengths for the MAX and PbX terminated surface 

slabs experienced a maximum change in the Pb-X bond length of 1.15% (where U was 8 eV) 

from the PBEsol bulk. A recent paper showed the bond lengths deviated by <2.5% for MAX and 

PbX terminations. [86] The MAX terminated slabs all experienced an elongation in average 

surface bond lengths.  The PbX terminated slabs all experienced a reduction in average surface 

bond lengths except for MAPbI which expanded by approximately 0.0016 Å (a negligible 

change).  Both the changes in surface bond lengths and angles were attributed to surface 

reconstruction.  Figures 4.4.7a to 4.4.7c show a comparison of the values for the average surface 

bond length for the MAX and PbX slab surfaces between the PBESol and PBEsol+U functionals. 
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Figure 4.4.7a: Average MAPbCl bulk bond 

length and average slab surface bond lengths 

for MACl and PbCl slabs 

Figure 4.4.7b: Average MAPbBr bulk bond 

length and average surface bond lengths for 

MABr and PbBr slabs 

 
Figure 4.4.7c: Average MAPbI bulk bond length and average surface bond lengths for MAI 

and PbI slabs 

Tables 4.4.7 and 4.4.8 shows a comparison of the values for the average surface bond length for 

the MAX and PbX slab surfaces between the PBESol and PBEsol+U functionals.  The MACl 

and MABr slab data in Table 4.4.7 showed that as the U value increased the average surface 
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bond length decreased.  The MAI data showed that as the U value increased the bond length 

slightly increased.  The PbCl and PbBr slab data in Table 4.4.8 showed that as the U value 

increased the bond length decreased.  Additionally, the PbI slab data did show an increase in the 

average surface bond length as the U value increased. 

4.5 Slab Surface Electronic Results 

Plotting the PDOS for PbX slabs showed adding the 8 eV U correction had a marginal 

effect on the CBM edge energy for the PbCl slab but did move the PbBr and PbI slab CBM 

edges closer to the Fermi energy compared to the PBEsol functional.  The shifting of the CBM 

increased as the halide size increased, with MAPbI showing the largest CBM movement.  A 

similar scenario occurred in the bulk with MAPbI showing the largest CBM energy shift in the 

bulk as well.  The CBM energy shifted because the CBM is composed of halide p orbitals as part 

of the hybrid bonds at the band edges.  The PbCl slab shifted by 0.0298 eV away from the Fermi 

energy, while the PbBr and PbI slabs shifted toward the Fermi energy by 0.13 eV and 0.28 eV.  

This shift resulted in the valence band edge (and other valence bands) for all PbX terminated 

slabs shifting away from the Fermi energy and a reduction in DOS intensity as the valence band 

energy decreases.  The PDOS for MAX surfaces showed adding the 8 eV U correction had a 

small effect on the CBM energy for the MACl slab, moving it 0.8 eV away from the Fermi 

energy.  The MABr slab experienced a 0.006 eV shift while the MAI slab shifted by 0.20 eV 

toward the Fermi energy.  Unlike the PbX terminated slabs, the valence bands of the MAX 

terminated slabs did not shift away from the Fermi energy when adding the 8 eV U value.  The 

smaller U value for MAPbBr (4 eV) reduced the amount of shifting by the CBM edge for the 

PbBr slab but hardly any shifting occurred in the MABr slab.  The smaller U value for MAPbI (1 

eV) reduced the CBM edge shifting towards the Fermi energy significantly for the PbI slab and 
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slightly for the MAI slab.  As U increased, orbital overlap was reduced which caused a decrease 

in the band gaps of the PbX slabs compared to the MAX slabs.  The MA cation remained far 

away from the band edges in both the MAX and PbX slabs.  No midgap states were seen in the 

DOS plots of either the MAX nor the PbX slabs.  The MAX slabs had no dangling bonds so 

surface reconstruction did not occur which resulted less of a change in the band gap value.  DOS 

plots shown in Figures 4.5.1a to 4.5.6b have had the top valence band aligned to the Fermi 

energy that was taken as zero energy.  The TDOS plots sample a large range of energy values.  

The PDOS energy range corresponds to the same energy range that was plotted for the band 

structures of the MAX and PbX slabs in this chapter.    
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Figure 4.5.1a MAPbCl PbCl Slab Surface Supercell TDOS 

 
Figure 4.5.1b MAPbCl PbCl Slab Surface Supercell PDOS 
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Figure 4.5.2a MAPbBr PbBr Slab Surface Supercell TDOS 

 

 

 

 
Figure 4.5.2b MAPbBr PbBr Slab Surface Supercell PDOS 
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Figure 4.5.3a MAPbI PbI Term. Surface Supercell TDOS 

 

 

 

 
Figure 4.5.3b MAPbI PbI Term. Surface Supercell PDOS 
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Figure 4.5.4a MAPbCl MACl Term. Surface Supercell TDOS 

 
Figure 4.5.4b MAPbCl MACl Term. Surface Supercell PDOS 
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Figure 4.5.5a MAPbBr MABr Term. Surface Supercell TDOS 

 

 

 

 
Figure 4.5.5b MAPbBr MABr Term. Surface Supercell PDOS 
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Figure 4.5.6a MAPbI MAI Term. Surface Supercell TDOS 

 

 

 

 
Figure 4.5.6b MAPbI MAI Term. Surface Supercell PDOS 

Table 4.5.1 summarizes the results of the CBM shifts.   

Table 4.5.1: PBEsol+U CBM Energy Shift with respect to PBEsol Energy 

System 

CBM Energy Shift 

(U = 1 eV) 

CBM Energy Shift 

(U = 4 eV) 

CBM Energy Shift 

(U = 8 eV) 

PbX (eV) 
MAX 

(eV) 
PbX (eV) 

MAX 

(eV) 
PbX (eV) 

MAX 

(eV) 

MAPbCl - - - - +0.0298 +0.8 

MAPbBr - - - 0.0405 +0.0234 -0.13 -0.006 

MAPbI -0.0274 -0.0187 - - -0.28 -0.20 
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The following paragraphs will discuss results from the PbX and MAX slabs in 

comparison with the bulk using the PBESol functional only.  The band structures in Figures 4.5.7 

to 4.5.9, for the PbX and MAX terminated slabs, show the top valence band shifted towards the 

Fermi energy at the X3 and Γ k-points compared to the bulk.  Given the different atomic 

configurations for the slabs (compared to the bulk), band rearrangement was expected for all 

slabs and both terminations.  The band gap remains at the R k-point for both the PbX and MAX 

slabs.  The conduction bands shifted toward the Fermi energy for both the PbX and MAX 

terminated slabs.   

The shifting of the conduction bands was greatest for the PbX slabs.  Broadening 

between the conduction bands decreased as the halide size increased for the PbX slabs.  As 

shown earlier, there was a dangling bond on the PbX terminated slabs that resulted in surface 

reconstruction trying to compensate for this missing bond.  The surface reconstruction resulted in 

a large change in the band structure for the PbX terminated slabs.  The dangling bond was not 

present in the MAX terminated slabs, so the band structures were not altered as severely.   
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Figure 4.5.7a MAPbCl bulk band structure using PBEsol 

 

Figure 4.5.7b MAPbCl PbCl terminated slab band structure using PBEsol 
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Figure 4.5.7c MAPbCl MACl terminated slab band structure using PBEsol 

 

Figure 4.5.8a MAPbBr bulk band structure using PBEsol 
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Figure 4.5.8b MAPbBr PbBr terminated slab band structure using PBEsol 

 

Figure 4.5.8c MAPbBr MABr terminated slab band structure using PBEsol 
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Figure 4.5.9a MAPbI bulk band structure using PBEsol 

 

Figure 4.5.9b MAPbI PbI terminated slab band structure using PBEsol 
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Figure 4.5.9c MAPbI MAI terminated slab band structure using PBEsol 

Next, the data for the PBEsol+U (8 eV) functional are presented for the PbX and MAX 

slabs compared to the bulk.  Adding the 8 eV U correction to PBEsol for the PbX and MAX 

slabs shifted the top valence band towards the Fermi energy around the X3 and Γ k-points 

compared to the bulk.  No changes occurred at the band gap R k-point.  Additionally, most of the 

valence bands shifted to a smaller negative energy towards the Fermi energy.  Adding the 8 eV U 

correction decreased the energy at the Γ k-point in the top valance band and shifted most of the 

conduction bands towards the Fermi energy for both the PbX and MAX slabs.  The shifting of 

the conduction bands decreased as the halide size increased.  The 8 eV U correction showed a 

similar trend to the PBEsol functional regarding band rearrangement.  Band rearrangement 

occurred most significantly in the PbX terminated slabs compared to the MAX terminated slabs.  

Again, this was attributed to surface reconstruction due to the dangling bonds in the PbX 

terminated slabs. [90]  The band structures for the PbX and MAX slabs using PBEsol+U (8 eV) 

are shown in Figures 4.5.10a to 4.5.12c. 



 

89 

 

Figure 4.5.10a MAPbCl bulk band structure using PBEsol+U (8 eV) 

 

Figure 4.5.10b MAPbCl PbCl terminated slab band structure using PBEsol+U (8 eV) 
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Figure 4.5.10c MAPbCl MACl terminated slab band structure using PBEsol+U (8 eV) 

 

Figure 4.5.11a MAPbBr bulk band structure using PBEsol+U (8 eV) 
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Figure 4.5.11b MAPbBr PbBr terminated slab band structure using PBEsol+U (8 eV) 

 

Figure 4.5.11c MAPbBr MABr terminated slab band structure using PBEsol+U (8 eV) 



 

92 

 

Figure 4.5.12a MAPbI bulk band structure using PBEsol+U (8 eV) 

 

Figure 4.5.12b MAPbI PbI terminated slab band structure using PBEsol+U (8 eV) 
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Figure 4.5.12c MAPbI MAI terminated slab band structure using PBEsol+U (8 eV) 

Next, the PbX and MAX slab data for PBEsol and PBEsol+U (8 eV) will be compared.  

No mid-gap states were detected in any of the band structures for the PbX and MAX slabs using 

either functional.  Band rearrangement was seen for all PbX and MAX slabs after adding the 8 

eV U correction compared to the PBEsol functional.   

Adding the 8 eV U correction to PBEsol for the PbCl and MACl slabs shifted the top 

valence band down around the Γ k-point only.  The PbCl slab shifted more so than the MACl 

slab.  Additionally, the valence bands for the PbCl slab were shifted to a larger negative energy 

compared to the MACl slab after adding the U correction.   

The PbBr slab CBM was shifted slightly towards the Fermi energy, while the MABr slab 

CBM remained nearly unchanged.  Again, adding the 8 eV U correction resulted in an energy 

decrease at the Γ k-point, while the MABr slab displayed a smaller shift in energy at this point.   

For both the PbI and MAI slabs, the CBM moved towards the Fermi energy, although the 

PbI slab displayed a larger shift.  Adding the 8 eV U correction resulted in a decrease in energy 
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as the Γ k-point for both the PbI and MAI slabs.  Band structure comparisons are given in 

Figures 4.5.13a to 4.5.15c comparing the PBEsol+U (8 eV) and the PBEsol functionals.  

 

Figure 4.5.13a MAPbCl bulk band structure comparing PBEsol vs PBEsol+U (8 eV) 

 

Figure 4.5.13b MAPbCl PbCl terminated slab band structure comparing PBEsol vs 

PBEsol+U (8 eV) 
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Figure 4.5.13c MAPbCl MACl terminated slab band structure comparing PBEsol vs 

PBEsol+U (8 eV) 

 

Figure 4.5.14a MAPbBr bulk band structure comparing PBEsol vs PBEsol+U (8 eV) 
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Figure 4.5.14b MAPbBr PbBr terminated slab band structure comparing PBEsol vs 

PBEsol+U (8 eV) 

 

Figure 4.5.14c MAPbBr MABr terminated slab band structure comparing PBEsol vs 

PBEsol+U (8 eV) 
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Figure 4.5.15a MAPbI bulk band structure comparing PBEsol vs PBEsol+U (8 eV) 

 

Figure 4.5.15b MAPbI PbI terminated slab band structure comparing PBEsol vs PBEsol+U 

(8 eV) 
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Figure 4.5.15c MAPbI MAI terminated slab band structure comparing PBEsol vs 

PBEsol+U (8 eV) 

A comparison between the band structures for the different U values for MAPbBr and 

MAPbI will be presented.  Recall the band gap matched U values for MAPbBr and MAPbI in the 

bulk were 4 eV and 1 eV, respectively.  The band structures for these U values applied to MAX 

and PbX slab structures are depicted in Figures 4.5.16a to 4.5.17b.   
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Figure 4.5.16a MAPbBr PbBr terminated slab band structure comparing U values 

 

Figure 4.5.16b MAPbBr MABr terminated slab band structure comparing U values 
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Figure 4.5.17a MAPbI PbI terminated slab band structure comparing U values 

 

Figure 4.5.17b MAPbI MAI terminated slab band structure comparing U values 

The band structure for the PbBr slab showed a slight decrease of the CBM band across all 

k-points after applying a U value of 4 eV.  The top-most valence band shifted towards the Fermi 

energy at the Γ k-point.  The conduction band closest to the Fermi energy was unchanged across 

all k-points for the MABr slab using either the 8 eV or 4 eV U values.  The valence band closest 
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to the Fermi energy in the MABr slab experienced an energy reduction around the Γ k-point. 

The band structures for the PbI slab in Figure 4.5.17a showed the top valence band 

shifted to a smaller energy resulting in the band moving towards the Fermi zero energy after 

adding the 1 eV U value.  Additionally, the lowest conduction band shifted to higher energy 

resulting in a larger band gap for the 1 eV U value compared to the 8 eV U value.  The MAI slab 

depicted in Figure 4.5.17b showed an energy shift at the Γ k-point (like the PbI slab), however, 

the energy shift was smaller in the MAI slab.  The lowest conduction band in the MAI slab also 

shifted to higher energy after adding the 1 eV U value.  The band gap values for the band gap 

matched U values are given in Table 4.5.2. 

Table 4.5.2: Band gap values for PbX and MAX Slabs 

Slab  System 
PBEsol 

(eV) 

PBEsol+U (eV) 
DFT Literature 

U = 1  U = 4 U = 8 

MAX 

MAPbCl 1.68 - - 1.77 2.49 [86]* 

MAPbBr 1.39 - 1.38 1.36 1.6 [86]* 

MAPbI 1.27 1.26 - 1.07 1.15 [95]*, 1.265 [86]* 

PbX 

MAPbCl 1.31 - - 1.35 2.49 [86]* 

MAPbBr 1.03 - 0.98 0.90 1.25 [86]* 

MAPbI 0.88 0.86 - 0.61 0.8 [96]**, 0.85 [86]* 

* PBE Tetragonal ** PBE Cubic 

The next paragraph will discuss band gap data for the PbX and MAX slabs using both the 

PBEsol and PBEsol+U (8 eV) functionals.  The band gap values of the PbX and MAX slabs 

were smaller than the bulk values for both the PBEsol and 8 eV PBEsol+U functionals as shown 

in Figure 4.5.16.  The PbX terminated surface slabs showed band gaps smaller than MAX slabs 

using both functionals.  Similar results were found for the tetragonal structure. [86] The percent 

difference in the band gap increased for both PbX and MAX slabs as the halide size increased.  

A discussion of the band gap and band structure changes that occurred is given later when a 
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comparison is made between the PBEsol and 8 eV PBEsol+U results for both the PbX and MAX 

terminated slabs.   For PbX terminated slabs, PbCl showed the least deviation of the band gap.  

This suggests the PbCl terminated slab displayed the least amount of orbital overlap.  As a trend, 

the orbital overlap increased as the size of the halide increased. 

The PbX terminated slabs experienced a reduction in the band gap of 3%, 12%, and 31% 

for PbCl, PbBr, and PbI after adding the 8 eV U correction.  The MAX terminated slabs 

experienced a bandgap increase of 5% for MACl and a reduction of 2% and 16% for the MABr 

and MAI terminated slabs.  The reorientation of the MA+ ion in the Pb-X lattice for both the 

PbX and MAX slabs changed after adding the 8 eV U value.  The orientation of the MA+ ion has 

been shown to influence the band structure. [71] [86] It is postulated a buildup of charge is 

dependent on the MA+ ion orientation. [86] Adding the 8 eV U correction directly affected the 

amount of charge around the halide ions.  This impacted the bond length and angles between the 

Pb and halide atoms that resulted in electronic property changes such as reduced band gap.  The 

MAX-terminated slabs produced a larger band gap than the PbX slabs.  This was confirmed in 

previous work. [91] [92] Figure 4.5.16 shows a comparison of the band gap values in the bulk 

and MAX and PbX surface slabs using both PBEsol and 8 eV PBEsol+U functionals.  Table 

4.5.2 shows the calculated band gap values for the MAX and PbX slabs for PBEsol and 8 eV 

PBEsol+U and a comparison with results found in the literature. 

 Band gap reduction could result in an increase in recombination events.  Two types of 

recombination mechanisms are radiative (band-to-band) and defect assisted.  Radiative 

recombination is the most dominant type in direct band gap semiconductors.  Radiative 

recombination occurs when an electron in the conduction band stabilizes at a lower energy level 

in the valence band causing the removal of a hole and releasing a photon.  The photon will have 
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an energy similar to the band gap and will only be weakly absorbed, allowing it to exit the 

semiconductor. [93] Defect assisted recombination occurs when there are midgap states within 

the band gap.  These midgap states trap electrons (or holes) in the bandgap.  A hole (or electron) 

can move up to the same trap state causing recombination to occur before the electron (or hole) 

can be re-emitted into the conduction band.  [94] 
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5. CONCLUSIONS 

This work studied the properties of MHP perovskites using VASP.  An introduction to 

DFT, VASP, polarons, SOC, exchange functionals, and the Hubbard U correction and all 

associated physics with these topics has been presented.  Bulk calculations were performed using 

PBEsol, PBESol+SOC, PBEsol+U, and HSESol.  The optimal k-point mesh was determined to 

be 6x6x6 with an energy cutoff of 500 eV.  PBEsol was shown to provide a good structural basis 

for the bulk parameters on its own as all lattice constants fell within 1% of experimental values.  

Additionally, all calculated bulk moduli values fell within 1% of other DFT simulations found in 

the literature. 

Adding a U correction to the bulk structures altered the Pb-X bond lengths that caused 

lattice contraction in the inorganic lattice for all halide perovskites.  Octahedral tilting also 

occurred in the MAPbCl bulk Pb-Cl lattice which marginally improved the bandgap towards 

experimental values and superseded the band gap reduction that accompanies lattice 

contractions.  Octahedral titling is an undesirable distortion in the inorganic lattice that would 

contribute to the instability of the lattice resulting in semiconductor device degradation or even 

failure.  Meanwhile, the band gap for MAPbBr and MAPbI diverged from experimental values 

(significantly for MAPbI).  The band gap values for MAPbBr and MAPbI diverged due to lattice 

contraction as there was no octahedral tilting observed in either of these compounds.  Bulk band 

gap calculations identified alternate U values (MAPbCl was 8 eV, MAPbBr was 4 eV, and 

MAPbI was 1 eV) which provided values closer to experimental values.  These differing U 

values altered the lengths of the bonds between the pb and halide ions in the bulk.  Larger U 

values resulted in a larger reduction of the pb-halide bond.  Average bond length values in the 

bulk were calculated and fell within 1% of experimentally verified values.  The HSESol hybrid 
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functional provided electronic properties closest to experimental values but at a significant cost 

increase in computational time.  DOS plots showed band broadening increased at band gap edges 

as the halide size increased.  For supercell simulations, all calculations were carried out using the 

PBEsol functional and with a U correction added to the halide p orbital.   

To study surface properties, supercells were built with differing surface terminations 

using the optimized bulk values and structures.  To our knowledge, no studies have been 

conducted using the Hubbard U correction for MHPs to study surface properties.  A minimum of 

5 volume units of vacuum was necessary to eliminate artificial potentials from the cyclic 

boundary conditions in VASP.  Dipole corrections were applied to the neutral supercells 

negating the potential difference in the surrounding vacuum created by the pseudo-cubic nature 

of these halide perovskites.  Dangling bonds on the PbX terminated slabs resulted in surface 

reconstruction for both PBEsol and PBEsol+U functionals.  Adding the U correction resulted in a 

reorientation of the MA ion so that the NH3 group was pointing toward the vacuum region.  The 

MA ion indirectly influences the band gap through several interactions such as dipole-dipole 

interactions between MA ions or through hydrogen bonding between the positive MA ion and 

the negatively charged Pb-X lattice.  Smaller U correction values resulted in slightly larger Pb-X 

bond lengths allowing for the MA ion to reorient to a larger extent.  Adding a U correction also 

resulted in band broadening at the band gap edges in both the MAX and PbX slabs.  The band 

gap was calculated for PbX and MAX slabs using PBEsol and PBEsol+U functionals.  The PbX 

slabs consistently exhibited smaller band gap values compared to the MAX slab band gaps.  A 

decrease in the band gap at the surface might lead to trapping of electrons and holes together 

there, which would likely result in unwanted radiative recombination rather than carrier 

separation.  The smaller band gaps of the PbX surface suggest recombination events are more 
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likely to occur in the PbX surface compared to the MAX surface.  It was observed that larger U 

values decreased the band gap for both the PbX and MAX slab structures.  Band gap reduction 

was not accompanied by midgap states in the slab structures.  The lack of midgap states being 

induced in the surface slabs is beneficial when using these perovskite materials in 

heterostructures and interfaces of devices as defect assisted recombination would not occur.  

Lastly, the impact of the U correction on the band gap and bond length changes varied for each 

halide in both the bulk and both the PbX and MAX slabs.  These results lead us to conclude each 

perovskite will need to have a specific U value optimized for it.  Further work optimizing the U 

value is needed relying on the hybrid ionic force matching as previously done for the bulk or 

model these slabs using hybrid functionals as the Texas State High Performance Computing 

Cluster can perform this work nowadays. 
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6. FUTURE WORK 

Five topics were identified for follow-up studies.  1. As previously mentioned, 

insufficient time prevented a re-optimization of the Hubbard U value using ionic force 

comparisons with hybrid functionals.  As such the U values used in this work need to be  

reoptimized.  2. The HSESol hybrid functional produced a band gap closest to the experimental 

value and would provide the best choice for simulating the surface of these materials.  3. The 

inclusion of SOC to the hybrid functional would also be possible without shrinking the bandgap 

to an unacceptable value which occurs when using a local or semi-local functional.  4. Larger 

supercells need to be considered to investigate how slab size affects surface properties.  5. The 

dipole and potential-and-forces corrections were applied after the supercells were allowed to 

relax.  This means the atoms were relaxed with a non-constant potential in the vacuum, which 

may provide erroneous results.  Applying the dipole and potential-and-forces corrections during 

relaxation calculations would eliminate the non-constant potential and provide better results.   
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APPENDIX SECTION 

Table A.1: Atomic Units 

Atomic Units Value 

electron charge 1.60218 × 10−19 C 

electron mass 9.11 × 10−31 kg 

Bohr (length) 0.529 Å 

Hartree (energy) 27.21 eV 

Reduced Planck's Constant 1.05457 × 10−34 J·s 

Coulomb 8.98755 × 109 kg·m3·s-2·C-2 

 

 

  

Figure A.1: MAPbCl Bulk kpoint 

Optimization 

Figure A.2: MAPbBr Bulk kpoint 

Optimization 

 
Figure A.3: MAPbI Bulk kpoint Optimization 

 



 

109 

  

Figure A.4: MAPbCl Bulk ENCUT 

Optimization 

Figure A.5: MAPbBr Bulk ENCUT 

Optimization 

 
Figure A.6: MAPbI Bulk ENCUT Optimization 

 

 

Figure A.7: MAPbCl Bulk Modulus 
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Figure A.8: MAPbBr Bulk Modulus 

 

Figure A.9: MAPbI Bulk Modulus 
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Table A.2: Supercell with varying vacuum sizes for MAPbCl 

Vacuum 

Units 
Supercell Size (Å) Vacuum Size (Å) Total Size (Å) 

0 17.04 0 17.040 

3 17.04 17.040 34.08 

4 17.04 22.72 39.76 

5 17.04 28.4 45.44 

6 17.04 34.08 51.12 

7 17.04 39.76 56.8 

 

Table A.3: Supercell with varying vacuum sizes for MAPbBr 

Vacuum 

Units 
Supercell Size (Å) Vacuum Size (Å) Total Size (Å) 

0 17.79 0 17.79 

3 17.79 17.76 35.579 

4 17.79 23.68 41.509 

5 17.79 29.6 47.439 

6 17.79 35.52 53.369 

7 17.79 41.44 59.299 

 

Table A.4: Supercell with varying vacuum sizes for MAPbI 

Vacuum 

Units 
Supercell Size (Å) Vacuum Size (Å) Total Size (Å) 

0 18.94038 0 18.94038 

3 18.94 18.94 37.86 

4 18.94 25.25 44.17 

5 18.94 31.56 50.48 

6 18.94 37.87 56.79 

7 18.94 44.18 63.10 
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Table A.5: Pb-X Bond Lengths 

Pb-X Bond Length (Å) Pb-X Bond Length (Å) Pb-X Bond Length (Å) 

   

MAPbCl 

Layers PBEsol 
PBEsol+

U 
Delta 

1 2.84064 2.84082 0.00018 

3 2.86513 2.86103 -0.0041 

5 2.86005 2.86005 0 
 

MAPbCl 

Layers PBEsol PBEsol+U Delta 

1 3.02827 3.04864 0.02037 

3 2.87921 2.82242 -0.05679 

5 2.85654 2.85654 0 
 

MAPbCl 

Layer

s 
PBEsol PBEsol+U Delta 

1 2.70256 2.68422 -0.01834 

3 2.82344 2.87752 0.05408 

5 2.84641 2.84641 0 
 

MAPbBr 

Layer

s 
PBEsol 

PBEsol+

U 
Delta 

1 2.97445 2.97130 -0.00315 

3 2.99176 2.98369 -0.00807 

5 2.98222 2.98222 0 
 

MAPbBr 

Layers PBEsol 
PBEsol+

U 
Delta 

1  3.11433 3.10041 -0.01392 

3 3.04111 3.02083 -0.02028 

5 3.01951 3.01951 0 
 

MAPbBr 

Layer

s 
PBEsol PBEsol+U Delta 

1 2.85736 2.86927 0.01191 

3 2.90898 2.92265 0.01367 

5 2.93075 2.93075 0 
 

MAPbI 

Layer

s 
PBEsol 

PBEsol+

U 
Delta 

1 3.17606 3.17459 -0.00147 

3 3.18297 3.17826 -0.00471 

5 3.17210 3.17210 0 
 

MAPbI 

Layers PBEsol 
PBEsol+

U 
Delta 

1 3.28848 3.26291 -0.02557 

3 3.26093 3.23554 -0.02539 

5 3.24066 3.24066 0 
 

MAPbI 

Layer

s 
PBEsol PBEsol+U Delta 

1 3.04196 3.07210 0.03014 

3 3.05879 3.08458 0.02579 

5 3.08351 3.08351 0 
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Table A.6: Pb-X-Pb Bond Angles 

Pb-X Bond Length (Å) Pb-X Bond Length (Å) 

  
MAPbCl 

Layers PBEsol PBEsol+U Delta 

1 2.84078 2.84102 0.00024 

3 2.86522 2.86113 -0.00409 

5 2.86021 2.86021 0 
 

MAPbCl 

Layers PBEsol PBEsol+U Delta 

1 – 2 2.71625 2.69554 -0.02071 

3 – 4 2.82512 2.81301 -0.01211 

5 – 6 2.89433 2.89433 0 
 

MAPbBr 

Layers PBEsol PBEsol+U Delta 

1 2.97454 2.97142 -0.00312 

3 2.99189 2.98389 -0.008 

5 2.98234 2.98234 0 
 

MAPbBr 

Layers PBEsol PBEsol+U Delta 

1 – 2 2.85589 2.84604 -0.00985 

3 – 4 2.94463 2.93618 -0.00845 

5 – 6 3.01046 3.01046 0 
 

MAPbI 

Layers PBEsol PBEsol+U Delta 

1 3.17596 3.17418 -0.00178 

3 3.18282 3.17815 -0.00467 

5 3.17207 3.17207 0 
 

MAPbI 

Layers PBEsol PBEsol+U Delta 

1 – 2 3.04047 3.04723 0.00676 

3 – 4 3.12189 3.12687 0.00498 

5 – 6 3.17899 3.17899 0 
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Table A.7: Pb-X-Pb Bond Angles 

X-Pb-X Bond Angle(Å) X-Pb-X Bond (Å) Pb-X-Pb Bond (Å) 

   
MAPbCl 

Layer PBEsol PBEsol+U Delta 

1 177.4383 177.0813 -0.357 

3 164.7986 166.0813 1.2827 

5 166.3975 166.3975 0 

7 166.3975 166.3975 0 
 

MAPbCl 

Layer PBEsol PBEsol+U Delta 

1 164.7013 164.3956 -0.3057 

3 169.7836 170.4111 0.6275 

5 169.7158 169.7158 0 

7 169.7171 169.7171 0 
 

MAPbCl 

Layers PBEsol PBEsol+U Delta 

1 - 3 168.4348 168.45 0.0152 

3 - 5 171.4137 172.209 0.7953 

5 - 7 169.1899 169.1899 0 
 

MAPbBr 

Layer PBEsol PBEsol+U Delta 

1 170.8408 172.4995 1.6587 

3 164.6434 167.1318 2.4884 

5 167.6594 167.6594 0 

7 167.6584 167.6584 0 
 

MAPbBr 

Layer PBEsol PBEsol+U Delta 

1 166.4387 166.7695 0.3308 

3 170.5779 172.2799 1.702 

5 170.5394 170.5394 0 

7 170.5408 170.5408 0 
 

MAPbBr 

Layers PBEsol PBEsol+U Delta 

1 - 3 169.8322 171.2767 1.4445 

3 - 5 171.3415 171.2745 -0.067 

5 - 7 169.2348 169.2348 0 
 

MAPbI 

Layer PBEsol PBEsol+U Delta 

1 166.8123 167.3297 0.5174 

3 164.8181 166.1454 1.3273 

5 168.1017 168.1017 0 

7 170.9413 170.9413 0 
 

MAPbI 

Layer PBEsol PBEsol+U Delta 

1 170.7828 169.8094 -0.9734 

3 173.6397 173.5131 -0.1266 

5 172.3266 172.3266 0 

7 172.3281 172.3281 0 
 

MAPbI 

Layers PBEsol PBEsol+U Delta 

1 - 3 166.0011 168.5031 2.502 

3 - 5 168.0173 169.4214 1.4041 

5 - 7 169.7254 169.7254 0 
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Table A.8: MAX Termination | Pb-X Bond Lengths 

MA-X Bond Length (Å) MA-X Bond Length (Å) MA-X Bond Length (Å) 

   

MAPbCl 

Layers PBEsol 
PBEsol+

U 
Delta 

1 – 2  2.89259 2.87521 -0.01738 

3 – 4  2.94448 2.93150 -0.01298 

5 – 6  2.81107 2.81107 0 
 

MAPbCl 

Layers PBEsol PBEsol+U Delta 

1 2.85315 2.85196 -0.00119 

3 2.86338 2.86028 -0.0031 

5 2.86005 2.86005 0 
 

MAPbCl 

Layer

s 
PBEsol PBEsol+U Delta 

1 2.87917 2.90834 0.02917 

3 2.84931 2.89428 0.04497 

5 2.84641 2.84641 0 
 

MAPbBr 

Layer

s 
PBEsol 

PBEsol+

U 
Delta 

1 – 2 3.04294 3.03602 -0.00692 

3 – 4 3.05438 3.04621 -0.00817 

5 – 6 2.94581 2.94581 0 
 

MAPbBr 

Layers PBEsol 
PBEsol+

U 
Delta 

1 2.97629 2.97403 -0.00226 

3 2.98750 2.98401 -0.00349 

5 2.98222 2.98222 0 
 

MAPbBr 

Layer

s 
PBEsol PBEsol+U Delta 

1 2.99442 3.01115 0.01673 

3 2.92489 2.94160 0.01671 

5 2.93075 2.93075 0 
 

MAPbI 

Layer

s 
PBEsol 

PBEsol+

U 
Delta 

1 – 2 3.21468 3.22958 0.0149 

3 – 4 3.26246 3.26736 0.0049 

5 – 6 3.17384 3.17384 0 
 

MAPbI 

Layers PBEsol 
PBEsol+

U 
Delta 

1 3.15895 3.15782 -0.00113 

3 3.17478 3.17215 -0.00263 

5 3.17209 3.17209 0 
 

MAPbI 

Layer

s 
PBEsol PBEsol+U Delta 

1 - 3 3.14671 3.16322 0.01651 

3 - 5 3.09347 3.11351 0.02004 

5 - 7 3.08351 3.08351 0 
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Table A.9: MAX termination | Pb-X Bond Lengths 

Pb-X Bond Length (Å) Pb-X Bond Length (Å)  

   
MAPbCl 

Layers PBEsol PBEsol+U Delta 

2 – 3 2.89976 2.88860 -0.01116 

4 – 5 2.87188 2.85875 -0.01313 

6 – 7 2.89427 2.89427 0 
 

MAPbCl 

Layers PBEsol PBEsol+U Delta 

2 2.85324 2.85205 -0.00119 

4 2.86358 2.86051 -0.00307 

6 2.86021 2.86021 0 
 

MAPbCl 

Layers PBEsol PBEsol+U Delta 

2 2.81091 2.77980 -0.03111 

4 2.84045 2.79381 -0.04664 

6 2.85654 2.85654 0 
 

MAPbBr 

Layers PBEsol PBEsol+U Delta 

2 – 3 2.99655 2.98806 -0.00849 

4 – 5 2.97357 2.96497 -0.0086 

6 – 7 3.01042 3.01042 0 
 

MAPbBr 

Layers PBEsol PBEsol+U Delta 

2 2.97642 2.97415 -0.00227 

4 2.98770 2.98419 -0.00351 

6 2.98234 2.98234 0 
 

MAPbBr 

Layers PBEsol PBEsol+U Delta 

2 2.97046 2.94923 -0.02123 

4 3.01436 2.99664 -0.01772 

6 3.01951 3.01951 0 
 

MAPbI 

Layers PBEsol PBEsol+U Delta 

2 – 3 3.20982 3.21458 0.00476 

4 – 5 3.16222 3.16947 0.00725 

6 – 7 3.19013 3.19013 0 
 

MAPbI 

Layers PBEsol PBEsol+U Delta 

2 3.15878 3.15756 -0.00122 

4 3.17495 3.17233 -0.00262 

6 3.17207 3.17207 0 
 

MAPbI 

Layers PBEsol PBEsol+U Delta 

2 3.17492 3.16225 -0.01267 

4 3.22182 3.20257 -0.01925 

6 3.24066 3.24066 0 
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Table A.10: X-Pb-X Bond Angles (°) 

X-Pb-X Bond Angle(Å) X-Pb-X Bond (Å) X-Pb-X Bond (Å) 

   
MAPbCl 

Layer PBEsol PBEsol+U Delta 

2 168.976 169.4824 0.5066 

4 165.315 166.3085 0.9935 

6 166.397 166.397 0 
 

MAPbCl 

Layer PBEsol PBEsol+U Delta 

2 173.1767 173.8663 0.6896 

4 173.2858 173.8899 0.6041 

6 169.7158 169.7158 0 
 

MAPbCl 

Layers PBEsol PBEsol+U Delta 

1 - 3 170.474 170.661 0.187 

3 - 5 171.101 171.606 0.5056 

5 - 7 169.190 169.190 0 
 

MAPbBr 

Layer PBEsol PBEsol+U Delta 

2 169.987 171.0387 1.0519 

4 165.897 167.0285 1.1315 

6 167.658 167.658 0 
 

MAPbBr 

Layer PBEsol PBEsol+U Delta 

2 167.6014 168.4239 0.8225 

4 173.6036 173.9628 0.3592 

6 170.5394 170.5394 0 
 

MAPbBr 

Layers PBEsol PBEsol+U Delta 

1 - 3 170.6474 170.7337 0.0863 

3 - 5 171.8848 172.6451 0.7603 

5 - 7 169.2347 169.2347 0 
 

MAPbI 

Layer PBEsol PBEsol+U Delta 

2 174.332 175.2684 0.9369 

4 167.174 168.0489 0.875 

6 168.102 168.102 0 
 

MAPbI 

Layer PBEsol PBEsol+U Delta 

2 173.0486 171.9837 -1.0649 

4 175.3081 174.9715 -0.3366 

6 172.3253 172.3253 0 
 

MAPbI 

Layers PBEsol PBEsol+U Delta 

1 - 3 173.2052 173.6922 0.487 

3 - 5 170.9552 172.3372 1.382 

5 - 7 165.2359 165.2359 0 
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Table A.11: Perovskite Structural Comparison 

Perovskite PBEsol PBEsol+U 

MAPbCl 

 

  

MAPbBr 

 

  

MAPbI 
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