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SPECTRAL ANALYSIS OF SINGULAR HAMILTONIAN
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Abstract. In this article we study a non-self-adjoint eigenparameter depen-

dent singular differential 1D Hamiltonian system with the singular end points a

and b in the Hilbert space L2
P ((a, b); C2) and we consider that this 1D Hamil-

tonian system is in the limit-circle cases at a and b. For this purpose we

use the maximal dissipative operator associated with the considered problem

whose spectral analysis is sufficient for boundary value problem. Self-adjoint
dilation theory of Sz.-Nagy-Foiaş developed for the dissipative operators is

used. Moreover we construct incoming and outgoing spectral representations

of the self-adjoint dilation. This representations allows us to determine the
scattering matrix. Therefore a functional model of the dissipative operator

is constructed. Moreover, a functional model of the dissipative operator is
constructed and its characteristic function in terms of solutions of the cor-

responding Hamiltonian system is described. Therefore using the obtained

results for the characteristic function theory, theorems on completeness of the
system of eigenvectors and associated vectors of the dissipative operator and

Hamiltonian boundary value problem have been proved.

1. Introduction

One of the important problems in the spectral theory of operators include a
spectral parameter both in the equation and boundary conditions. Eigenparameter
dependent boundary value problems occurs in various problems of physics and en-
gineering. In particular such problems occurring in physical processed can be found
in [6, 7, 17]. Moreover one can find numerous studies devoted to eigenparameter de-
pendent boundary value problems in [1, 2, 3, 5, 7, 8, 11, 17, 19, 20, 22, 24, 26, 27, 29]

This article mainly considers a non-self-adjoint eigenparameter dependent one
dimensional (1D) singular differential Hamiltonian boundary value problem given
by (2.8)-(2.10). It is known that contour integration method of resolvent is one of
the main methods used in the spectral analysis of boundary value problem (2.8)-
(2.10). However this method needs a well estimation of the resolvent on expanding
contours separating the spectrum. It is better to note that the applicability of this
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method is restricted to weak perturbations of self-adjoint operators and operators
with sparse discrete spectrum. The resolvent Rλ corresponding to the boundary
value problem (2.8)-(2.10) can not be investigated directly, because there is no
asymptotics of solutions associated with the system (2.8) concerning the spectral
parameter λ. Therefore contour integration method is not useful for the boundary
value problem (2.8)-(2.10).

For studying the spectral properties of the boundary value problem (2.8)-(2.10),
the characteristic function theory of the model operator is suitable. Using the
fundamental results given in [18, 21], characteristic function is constructed with
studying the self-adjoint dilations. This self-adjoint dilations allow us to study the
scattering problem and the characteristic function is realized as a scattering matrix
(see [15]). For readers we should noted that, for the papers including the non-self-
adjoint dissipative 1D singular differential Hamiltonian (or Dirac-type) systems
with λ-independent boundary conditions, see, for example [4].

This article is organized as follows. In Section 2, the maximal dissipative operator
Aβ associated with the boundary value problem (2.8)-(2.10) is constructed and we
establish the self-adjoint dilation Sβ of the operator Aβ . In the section 3 we show
that the scattering theory of Lax-Phillips [15] is applicable for the operator Sβ and
we can reveal the scattering matrix Θβ through the solution of system (2.8). In
the incoming spectral presentation of the dilation, the operator Aβ is converted to
the model dissipative operator with the characteristic function Θβ , which is, in its
turn, unitary equivalent to Aβ . Finally, we derive the theorems on factorization
of the characteristic function and completeness of the system of eigenvectors and
associated vectors of the operator Mβ , and boundary value problem (2.8)-(2.10).

2. Construction of the maximal dissipative operator and its
self-adjoint dilation

We consider the 1D Hamiltonian system

L1(x) := J
dx(t)
dt

+Q(t)x(t) = λP (t)x(t),

t ∈ Ω := (a, b), −∞ ≤ a < b ≤ +∞,
(2.1)

where λ is a complex parameter, endpoints a and b are singular for L1,

J =
(

0 −1
1 0

)
,

(
x(1)(t)
x(2)(t)

)
,

P (t) =
(
p(t) b(t)
b(t) c(t)

)
, Q(t) =

(
q(t) k(t)
k(t) r(t)

)
,

P (t) > 0 for almost all t ∈ Ω and the entries of the (2× 2) matrices P (t) and Q(t)
are real-valued, Lebesgue measurable and locally integrable functions on Ω.

Let us consider the differential expression L(x) := P−1(t)L1(x) and the Hilbert
space L2

P (Ω, E) (E := C2) including all vector-valued functions x such that∫ b

a

(P (t)x(t), x(t))Edt < +∞

and with the inner product (x, y) :=
∫ b
a

(P (t)x(t), y(t))Edt.
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We denote by Dmax the linear set consisting of all vectors x ∈ L2
P (Ω;E) such that

x(1) and x(2) are locally absolutely continuous functions on Ω, and L(x) ∈ L2
P (Ω;E).

We define the maximal operator Mmax on Dmax by the equality Mmaxx = L(x).
For two arbitrary vectors x, y ∈ Dmax, we obtain the Green’s formula as

(Mmaxx, y)− (x,Mmaxy) =Wb[x, y]−Wa[x, y], (2.2)

where

Wt[x, y] := x(1)(t)y(2)(t)− x(2)(t)y(1)(t) (t ∈ Ω),

Wa[x, y] := lim
t→a+

[x, y]t, Wb[x, y] := lim
t→b−

Wt[x, y].

Let Dmin be the set of all vectors x ∈ Dmax satisfying

Wb[x, y]−Wa[x, y] = 0, ∀y ∈ Dmax. (2.3)

We denote by Mmin the restriction of the operator Mmax to Dmin. It is known
that the operator Mmin is a minimal symmetric operator with deficiency indices
(0, 0), (1, 1) or (2, 2), and Mmax =M∗min (see [4, 6, 9, 10, 12, 13, 14, 16, 25, 28]).
Note that for defect index (0, 0), the operator Mmin is self-adjoint, i.e., M∗min =
Mmin =Mmax.

In this article, we assume that Mmin has deficiency index (2,2), i.e., the limit-
circle case holds for the differential expression L at a and b (see [3, 4, 6, 9, 10, 12, 13,
14, 16, 25, 28]). There are several sufficient conditions that ensure the limit-circle
case (see [3, 9, 10, 12, 13, 14, 16, 23, 28]).

We denote by θ and φ the solutions of the system

L1(x) = 0, t ∈ Ω (2.4)

satisfying the initial conditions

θ(1)(c) = 1, θ(2)(c) = 0, φ(1)(c) = 0, φ(2)(c) = 1, c ∈ Ω. (2.5)

From conditions (2.5) we have

Wt[θ, φ] =Wc[θ, φ] = 1 (a ≤ t ≤ b), (2.6)

since the Wronskian of two solutions of (2.4) is independent of t. Moreover these
solutions are linearly independent if and only if their Wronskian in non-zero. There-
fore, θ and φ form a fundamental system of solutions for the system (2.4). Since
Mmin has deficiency indices (2, 2), θ, φ ∈ L2

P (Ω;E) and furthermore θ, φ ∈ Dmax.
Therefore, the domain Dmin of the operator Mmin includes definitely the vectors
x ∈ Dmax satisfying the boundary conditions (see [4])

Wa[x, θ] =Wa[x, φ] =Wb[x, θ] =Wb[x, φ] = 0. (2.7)

This article mainly considers the boundary value problem

J
dx(t)
dt

+Q(t)x(t) = λP (t)x(t), x ∈ Dmax, t ∈ Ω, (2.8)

δ1A
−
1 (x)− δ2A−2 (x) = λ(δ′1A

−
1 (x)− δ′2A−2 (x)), (2.9)

A+
1 (x)− βA+

2 (x) = 0, Imβ > 0, (2.10)

where λ ∈ C, δ1, δ2, δ′1, δ
′
2 ∈ R := (−∞,∞),

δ :=
∣∣∣∣δ′1 δ1
δ′2 δ2

∣∣∣∣ > 0,

and A−1 (x) :=Wa[x, θ], A−2 (x) :=Wa[x, φ], A+
1 (x) :=Wb[x, θ], A+

2 (x) :=Wb[x, φ].
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We adopt the following notation:

S−(x) := δ1A
−
1 (x)− δ2A−2 (x),

S′−(x) := δ′1A
−
1 (x)− δ′2A−2 (x),

S+(x) = A+
1 (x)− βA+

2 (x).

For arbitrary x, y ∈ Dmax, the following equalities are obtained by direct calcula-
tions,

Wa[x, y] =
1
δ

[S−(x)S′−(y)− S′−(x)S−(y)], (2.11)

Wt[x, y] =Wt[x, θ]Wt[y, φ]−Wt[x, φ]Wt[y, θ]t (a ≤ t ≤ b), (2.12)

S−(y) = S−(y), A+
1 (y) = A+

1 (y), A+
2 (y) = A+

2 (y).

We denote by ρλ and ωλ the solutions of (2.8) satisfying

A−1 (ρλ) = δ2 − δ′2λ, A−2 (ρλ) = δ1 − δ′1λ, A+
1 (ωλ) = β, A+

2 (ωλ) = 1.

Using (2.11) we obtain that
∆(λ) :=Wt[ωλ, ρλ] = −Wt[ρλ, ωλ] = −Wa[ρλ, ωλ]

=− 1
δ

[S−(ρλ)S′−(ωλ)− S′−(ρλ)S−(ωλ)] = −λS′−(ωλ) + S−(ωλ).
(2.13)

Moreover, equality (2.7) gives us
∆(λ) = −Wt[ρλ, ωλ] = −Wb[ρλ, ωλ]

= −A+
1 (ρλ)A+

2 (ωλ) +A+
2 (ρλ)A+

1 (ωλ)

= −A+
1 (ρλ) + βA+

2 (ρλ) = −S+(ρλ).

(2.14)

The spectrum of the boundary value problem (2.8)-(2.10) coincide with the zeros
of the function ∆. Since ∆ is analytic and not identically zero (ρλ and ωλ are linearly
independent), it follows that the function ∆ has at most a countable number of
isolated zeros with finite multiplicity and possible limit points at infinity.

Consider the Hilbert space H := L2
P (Ω;E)⊕C consisting of vector-valued func-

tions with values in C3 equipped with the inner product

(x̂, ŷ)H =
∫ b

a

(P (t)x1(t), y1(t))Edt+
1
δ
x2y2,

where

x̂(t) =
(
x1(t)
x2

)
, ŷ(t) =

(
y1(t)
y2

)
.

Let D(Aβ) be the linear set of all vectors x̂ =
(
x1

x2

)
∈ H with x1 ∈ Dmax,

S+(x1) = 0 and x2 = S′−(x1). We construct the operator Aβ on D(Aβ) by the
equality

Aβ x̂ = L̃(x̂) :=
(
L(x1)
S−(x1)

)
.

Since a linear operator T (with dense domain D(T)) acting on some Hilbert
space H is called dissipative (accumulative) if Im(Tf, f) ≥ 0) for all f ∈ D(T) and
maximal dissipative (maximal accumulative) if it does not have a proper dissipative
extension, we can state the following result.

Theorem 2.1. The operator Aβ is maximal dissipative in the space H.
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Proof. Note that D(Aβ) is dense set in H. For x̂ ∈ D(Aβ). Using (2.11) we obtain

(Aβ x̂, x̂)− (x̂,Aβ x̂)

=Wb[x1, x1]−Wa[x1, x1] +
1
δ

[S−(x1)S′−(x1)− S′−(x1)S−(x1)]

=Wb[x1, x1] = A+
1 (x1)A+

2 (x1)−A+
2 (x1)A+

1 (x1)

= βA+
2 (x1)A+

2 (x1)− βA+
2 (x1)A+

2 (x1)

= (β − β)|A+
2 (x1)|2.

Therefore Im(Aβ x̂, x̂) = Imβ|A+
2 (x1)|2 ≥ 0. Hence we obtain that Aβ is a dissipa-

tive in H. One can show that (Aβ−λI)D(Aβ) = H for Imλ < 0. Consequently Aβ
is a maximal dissipative operator in the space H and this completes the proof. �

Let T denote the linear operator with the domain D(T) acting in the Hilbert
space H. A complex number λ0 is called an eigenvalue of an operator T if there
exists a non-zero element z0 ∈ D(T) such that Tz0 = λ0z0. Then z0 is called an
eigenvector of T for λ0. The eigenvector corresponding to λ0 spans a subspace of
D(T). This subspace is called the eigenspace of λ0 and the geometric multiplicity
of λ0 is the dimension of its eigenspace. The vectors z1, z2, . . . , zk are called the
associated vectors of the eigenvector z0 if they belong toD(T) and Tzj = λ0zj+zj−1,
j = 1, 2, . . . , k. The non-zero vector z ∈ D(T) is called a root vector of the operator
T corresponding to the eigenvalue λ0, if all powers of T are defined on this element
and (T − λ0I)mz = 0 for some integer m. The set of all root vectors of T that
corresponds to the same eigenvalue λ0 with the vector z = 0 forms a linear set
Nλ0 and is called the root lineal. The dimension of the lineal Nλ0 is called the
algebraic multiplicity of the eigenvalue λ0. The root lineal Nλ0 coincides with the
linear span of all eigenvectors and associated vectors of T that corresponds to the
eigenvalue λ0. As a consequence, we conclude that the completeness of the system
of all eigenvectors and associated vectors of T is equivalent to the completeness of
the system of all root vectors of this operator.

Definition 2.2. If the following conditions are satisfied

L(x0) = λ0x0, S−(x0)− λ0S
′
−(x0) = 0, S+(x0) = 0, (2.15)

L(xs)− λ0xs − xs−1 = 0, S−(xs)− λ0S
′
−(xs)− S′−(xs−1) = 0,

S+(xs) = 0, s = 1, 2, . . . ,m,
(2.16)

then the system of vectors x0, x1, . . . , xm is called a chain of eigenvectors and as-
sociated vectors corresponding to the eigenvalue λ0 of the boundary value problem
(2.8)-(2.10).

Lemma 2.3. The eigenvalues of the boundary value problem (2.8)-(2.10) includ-
ing their multiplicity and the eigenvalues of the maximal dissipative operator Aβ
coincide with each other. Each chain of eigenvectors and associated vectors of the
boundary value problem (2.8)-(2.10), meeting the requirements of the eigenvalue λ0,
corresponds to the chain of eigenvectors and associated vectors x̂0, x̂1, . . . , x̂m of the
operator Aβ corresponding to the same eigenvalue λ0. In this case, we have

x̂k =
(

xk
S′−(xk)

)
, k = 0, 1, . . . ,m . (2.17)
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Proof. Let x̂0 ∈ D(Aβ) and consider the equality Aβ x̂0 = λ0x̂0. Then one obtains
that L(x0) = λ0x0, S−(x0)−λ0S

′
−(x0) = 0, S+(x0) = 0, that is, x0 is an eigenvector

of the boundary value problem (2.8)-(2.10). Conversely, consider that (2.15) is
satisfied. Then we obtain (

x0

S′−(x0)

)
= x̂0 ∈ D(Aβ)

and Aβ x̂0 = λ0x̂0. This implies that x̂0 is an eigenvector of the operator Aβ .
Moreover let x̂0, x̂1, . . . , x̂m be a chain of the eigenvectors and associated vectors

of the operator Aβ corresponding to the eigenvalue λ0. Therefore taking in mind
that x̂k ∈ D(Aβ) (k = 0, 1, . . . ,m) and the equality Aβ x̂0 = λ0x̂0, Aβ x̂s = λ0x̂s +
x̂s−1, s = 1, 2, . . . ,m, we arrive at the equality (2.15) holds, where x0, x1, . . . , xm
are taken to be the first components of the vectors x̂0, x̂1, . . . , x̂m. Conversely,
on the basis of the elements x0, x1, . . . , xm corresponding to (2.8)-(2.10), we can

construct the vectors x̂k =
(

xk
S′−(xk)

)
for which x̂k ∈ D(Aβ) (k = 0, 1, . . . ,m) and

Aβ x̂0 = λ0x̂0, Aβ x̂s = λ0x̂s + x̂s−1, s = 1, 2, · · · . This completes the proof. �

Let us consider the direct sum space H := L2(−∞, 0) ⊕ H ⊕ L2(0,∞), where
L2(−∞, 0) is called the ‘incoming’ channel and L2(0,∞) is called the ‘outgoing’
channel. This direct sum space is called it the main Hilbert space of the dilation.
Consider the operator Sβ in the main Hilbert space generated by the expression

S〈u−, x̂, u+〉 =
〈
i
du−
dξ

, L̃(x̂), i
du+

dζ

〉
, 〈u−, x̂, u+〉 ∈ D(Sβ), (2.18)

where D(Sβ) is the set consisting of vectors 〈u−, x̂, u+〉 satisfying the conditions:

u− ∈ W1
2 (−∞, 0), u+ ∈ W1

2 (0,∞), x̂ ∈ H, x̂(t) =
(
x1(t)
x2

)
, x1 ∈ Dmax, x2 =

S′−(x1), Wb[x1, θ] − βWb[x1, φ] = γu−(0), Wb[x1, θ] − βWb[x1, φ] = γu+(0) (γ2 :=
2 Imβ, γ > 0), where W1

2 is the Sobolev space.

Theorem 2.4. The operator Sβ is self-adjoint in H and it is a self-adjoint dilation
of the dissipative operator Aβ
Proof. Taking F,G ∈ D(Sβ), where F = 〈u−, x̂, u+〉 and G = 〈v−, ŷ, v+〉, then we
obtain that

(SβF,G)H − (F,SβG)H

=Wb[x1, ȳ1]−Wa[x1, ȳ1] +
1
γ

(S−(x1)S′−(y1)− S′−(x1)S−(y1))

+ iu−(0)v−(0)− iu+(0)v+(0)

=Wb[x1, y1] + iu−(0)v−(0)− iu+(0)v+(0)

=Wb[x1, y1]− 1
iγ2

(Wb[x1, θ]− βWb[x1, φ])(Wb[y1, θ]

− βWb[y1, φ]) +
1
iγ2

(Wb[x1, θ]− βWb[x1, φ])(Wb[y1, θ]− βWb[y1, φ])

=Wb[x1, y1]− 1
iγ2
{Wb[x1, θ]Wb[y1, θ]− βWb[x1, θ]Wb[y1, φ]

− βWb[x1, φ]Wb[y1, θ] + |β|2Wb[x1, φ]Wb[y1, φ]}+
1
iγ2
{Wb[x1, θ]Wb[y1, θ]
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− βWb[x1, θ]Wb[y1, φ]− βWb[x1, φ]Wb[y1, θ] + |β|2Wb[x1, φ]Wb[y1, φ]}

=Wb[x1, y1]− 1
iγ2
{(−β + β)Wb[x1, θ]Wb[y1, φ] + (−β + β)Wb[x1, φ]Wb[y1, θ]}

=Wb[x1, y1]−Wb[x1, θ]Wb[y1, φ] +Wb[x1, φ]Wb[y1, θ]. (2.19)

From this equality and (2.12) one obtains that (SβF,G)H − (F,SβG)H = 0, that is,
Sβ is a symmetric operator in H. Hence D(Sβ) ⊆ D(S∗β).

Now we shall prove that S∗β ⊆ Sβ . Consider the bilinear form (SβF,G)H on
elements G = 〈v−, ŷ, v+〉 ∈ D(S∗β), where F = 〈u−, 0, u+〉 such that u∓ ∈W 1

2 (R∓),
u∓(0) = 0 (R− := (−∞, 0],R+ := [0,∞)). Integration by parts gives that S∗βG =
〈idv−dξ , ŷ

∗, idv+dζ 〉, where v∓ ∈ W 1
2 (R∓), ŷ∗ ∈ H. Moreover taking F = 〈0, x̂, 0〉 ∈

D(Sβ), we obtain

S∗βG = S∗β〈v−, ŷ, v+〉 = 〈idv−
dξ

, L̃(ŷ), i
dv+
dζ
〉, y1 ∈ Dmax, y2 = S′−(y1). (2.20)

This equality implies that (SF,G)H = (F,SG)H, for all F ∈ D(Sβ), where the
operator S is given by (2.18). Hence the sum of the integrated terms in the bilinear
form (SF,G)H must be zero:

Wb[x1, y1]−Wa[x1, y1] +
1
δ

[S−(x1)S′−(y1)− S′−(x1)S−(y1)]

+ iu−(0)v−(0)− iu+(0)v+(0) = 0.
(2.21)

On the other hand, from (2.11) we obtain

Wb[x1, y1] + iu−(0)v−(0)− iu+(0)v+(0) = 0. (2.22)

Moreover the boundary conditions for Sβ imply that

Wb[x1, θ] = γu−(0) +
iβ

γ
(u−(0)− u+(0)), Wb[x1, φ] =

i

γ
(u−(0)− u+(0)).

Therefore (2.12) and (2.22) give us

[γu−(0) +
iβ

γ
(u−(0)− u+(0))]Wb[y1, φ]− i

γ
(u−(0)− u+(0))Wb[y1, θ]

= iu+(0)v+(0)− iu−(0)v−(0).
(2.23)

If we compare the coefficients of u−(0) in (2.23), we derive that

iγ2 − β
γ

Wb[y1, φ] +
1
γ
Wb[y1, θ] = v−(0)

or
Wb[y1, θ]− βWb[y1, φ] = γv−(0). (2.24)

Analogously, comparing the coefficients of u+(0) in (2.23), we find that

Wb[y1, θ]− βWb[y1, φ] = γv+(0). (2.25)

In conclusion, conditions (2.24) and (2.25) prove that D(S∗β) ⊆ D(Sβ), which implies
in turn that Sβ = S∗β .

It is known that the self-adjoint operator Sβ generates the unitary group Y(s) =
exp(iSβs) (s ∈ R) on H. Let P : H → H and P1 : H → H denote the mappings
acting according to the formulae P : 〈u−, x̂, u+〉 → x̂ and P1 : x̂→ 〈0, x̂, 0〉. We can
construct a family {Y(s)} which is a strongly continuous semi-group of completely
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non-unitary contractions on H as Y(s) := PY(s)P1, s ≥ 0. Now consider the
operator Tβ x̂ = lims→+0(is)−1(Ysx̂ − x̂). Tβ is called the generator of the semi-
group Y(s). The domain of Tβ consists of all the vectors for which the limit exists.
The operator Tβ is maximal dissipative. The operator Sβ is called the self-adjoint
dilation of Tβ . If we verify the equality Tβ = Aβ , then we will have shown that Sβ
is a self-adjoint dilation of Aβ . For this purpose we shall get the equality [4, 21]

P(Sβ − λI)−1P1x̂ = (Aβ − λI)−1x̂, x̂ ∈ H, Imλ < 0. (2.26)

Let (Sβ − λI)−1P1x̂ = G = 〈v−, ŷ, v+〉. Then (Sβ − λI)G = P1x̂, and hence,
L̃(ŷ)− λŷ = x̂, v−(ξ) = v−(0)e−iλξ and v+(ζ) = v+(0)e−iλζ . Since G ∈ D(Sβ), we
have v− ∈ L2(R−), which implies that v−(0) = 0, and thus ŷ satisfies the boundary
condition Wb[y1, θ] − βWb[y1, φ] = 0. Therefore, ŷ ∈ D(Aβ). Moreover we have
v+(0) = γ−1{Wb[y1, θ] − βWb[y1, φ]}, since point λ with Imλ < 0 can not be an
eigenvalue of a dissipative operator. Thus we get that

(Sβ − λI)−1P1x̂ = 〈0, (Aβ − λI)−1x̂, γ−1(Wb[y1, θ]− βWb[y1, φ])〉
for x̂ ∈ H and Imλ < 0. Applying the mapping P, we get that (2.26) is satisfied
and

(Aβ − λI)−1 = P(Sβ − λI)−1P1 = −iP
∫ ∞

0

Y(s)e−iλsdsP1

= −i
∫ ∞

0

Yse−iλsds = (Aβ − λI)−1, Imλ < 0.

Consequently Aβ = Tβ and this completes the proof. �

3. Scattering theory of dilation, functional model of dissipative
operator and completeness theorems of the dissipative operator

and the boundary value problem (2.8)-(2.10)

Lax-Phillips scattering theory [15] may be applied with the help of the unitary
group {Y(s)}. To be more precise, following properties are satisfied:

(i) Y(s)D− ⊂ D−, s ≤ 0 and Y(s)D+ ⊂ D+, s ≥ 0;
(ii) ∩s≤0Y(s)D− = ∩s≥0Y(s)D+ = {0};

(iii) ∩s≥0Y(s)D− = ∩s≤0Y(s)D+ = H;
(iv) D− ⊥ D+, where D− = 〈L2(R−), 0, 0〉 and D+ = 〈0, 0,L2(R+)〉 are called

incoming and outgoing subspaces.
Property (iv) is obvious. Let us prove property (i) for D+ (the proof for D− is
similar). Consider the equality

RλF := (Sβ − λI)−1〈0, 0, u+〉 = 〈0, 0,−ie−iλξ
∫ ξ

0

eiλsu+(s)ds〉,

where Imλ < 0, F ∈ D+. Therefore RλF ∈ D+. Taking G ⊥ D+ one obtain

0 = (RλF,G)H = −i
∫ ∞

0

e−iλs(Y(s)F,G)Hds, Imλ < 0.

This equation implies that (Y(s)F,G)H = 0 for all s ≥ 0 and therefore Y(s)D+ ⊂ D+

for s ≥ 0. This proves the property (i).
To verify property (ii), we consider the mappings P+ : H → L2(R+) and P+

1 :
L2(R+) → D+ acting according to the formulas P+ : 〈u−, x̂, u+〉 → u+ and P+

1 :
u → 〈0, 0, u〉, respectively. We notice that the semi-group of isometries Y+(s) :=
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P+Y(s)P+
1 (s ≥ 0) is a one-sided shift in L2(R+). In fact, the generator of the

semi-group of the one-sided shift V(s) in L2(R+) is the differential operator i(d/dζ)
satisfying the boundary condition u(0) = 0. On the other side, the generator B
of the semi-group of isometries Y+(s) (s ≥ 0) is the operator Bu = P+SβP+

1 u =
P+Sβ〈0, 0, u〉 = P+〈0, 0, i(d/dζ)u〉 = i(d/dζ)u, where u ∈ W 1

2 (R+) and u(0) = 0.
Since a semi-group is uniquely determined by its generator, we get Y+(s) = V(s),
and so,

∩s≥0Y+(s)D+ = 〈0, 0,∩s≥0V(s)L2(R+)〉 = {0}, s ≥ 0,
i.e., property (ii) is proved.

According to the Lax-Phillips scattering theory, the scattering matrix is defined
with the help of the theory of spectral representations. During this process, we will
have also proved property (iii) of the incoming and outgoing subspaces.

We shall remind that the linear operator B (with domain D(B)) acting in the
Hilbert space H is called completely non-self-adjoint (or pure) if there is no invariant
subspace M ⊆ D(B) (M 6= {0}) of the operator B on which the restriction B to
M is self-adjoint.

Lemma 3.1. The operator Aβ is completely non-self-adjoint ( pure).

Proof. Let A′β be a self-adjoint part of Aβ with domain D(A′β) = H′ ∩ D(Aβ) in
the non-trivial subspace H′ ⊂ H. If x̂ ∈ D(A′β). Let x̂ ∈ D(A′∗β ) and A+

1 (x1) −
βA+

2 (x1) = 0, A+
1 (x1)−βA+

2 (x1) = 0, x2 = S′−(x1). Therefore we haveWb[x1, θ] =
Wb[x1, φ] = 0, x2 = S′−(x1). This implies that x̂(t, λ) ≡ 0 for the eigenvectors
x̂(t, λ) of the operator A′β that lie in H′ and are eigenvectors of Aβ . Therefore by
the theorem on expansion in eigenvectors of the self-adjoint operator A′β we find
that H′ = {0}. Consequently the operator Aβ is pure and the lemma is proved. �

Let us set
H− = ∪s≥0Y(s)D−, H+ = ∪s≥0Y(s)D+.

Lemma 3.2. The equality H− + H+ = H holds.

Proof. Consider the subspace H′ = H 	 (H− + H+). Using property (i) of the
subspace D+, we obtain that the subspace H′ is invariant relative to the group
{Y(s)}. Moreover H′ can be considered as H′ = 〈0,H′, 0〉, where H′ is a subspace
in H. Therefore, if the subspace H′ (and hence also H′) were non-trivial, then the
unitary group {Y′(s)} restricted to this subspace would be a unitary part of the
group {Y(s)}. Therefore the restriction A′β of Aβ to H′ would be a self-adjoint
operator in H′. Consequently the purity of the operator Aβ implies that H′ = {0}.
Thus, the proof is complete. �

Consider the solutions χλ(t) and ψλ(t) of the system (2.8) satisfying the condi-
tions

A−1 (χλ) =
δ′2
δ
, A−2 (χλ) =

δ′1
δ
, A−1 (ψλ) = δ2 − δ′2λ, A−2 (ψλ) = δ1 − δ′1λ.

For convenience, we adopt the following notation:

κ(λ) :=
Wb[χλ, φ]
Wb[ψλ, φ]

, σ(λ) := −Wb[ψλ, θ]
Wb[ψλ, φ]

, ψ̂λ(t) :=
(
ψλ(t)
δ

)
, (3.1)

Θβ(λ) :=
σ(λ) + β

σ(λ) + β
. (3.2)
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The fact that σ is a meromorphic function on the complex plane C with a countable
number of poles on the real axis follows from (3.1). Further it is possible to show
that the function σ satisfies Imλ Imσ(λ) < 0 for all Imλ 6= 0, and σ(λ) = σ(λ) for
all λ ∈ C, except the real poles of σ.

Consider the vector

Ψ−λ (t, ξ, ζ) = 〈e−iλξ, γκ(λ) {(σ(λ) + β)Wb[χλ, φ]}−1
λ ψ̂(t),Θβ(λ)e−iλζ〉. (3.3)

which, for real values of λ, do not belong to the space H and satisfies the equation
SΨ = λΨ with the corresponding boundary conditions for the operator Sβ .

Define the map Φ− : F → F̃−(λ) by (Φ−F )(λ) := F̃−(λ) := 1√
2π

(F,Ψ−λ )H on the
vectors F = 〈u−, x̂, u+〉. Here, the functions u−, u+, and x1 are smooth, compactly
supported functions.

Lemma 3.3. H− is isometrically mapped by the transformation Φ− onto L2(R).
Parseval equality and the inversion formula hold for all vectors F,G ∈ H− as follows

(F,G)H = (F̃−, G̃−)L2 =
∫ ∞
−∞

F̃−(λ)G̃−(λ)dλ, F =
1√
2π

∫ ∞
−∞

F̃−(λ)Ψ−λ dλ,

where F̃−(λ) = (Φ−F )(λ) and G̃−(λ) = (Φ−G)(λ).

Proof. For F,G ∈ D−, F = 〈u−, 0, 0〉, and G = 〈v−, 0, 0〉, we have

F̃−(λ) =
1√
2π

(F,Ψ−λ )H =
1√
2π

∫ 0

−∞
u−(ξ)eiλξdξ ∈ H2

−,

where H2
± describe the Hardy classes in L2(R) consisting of the functions that are

analytically extendable to the upper and lower half-planes, respectively, and with
the help of the Parseval equality for Fourier integrals

(F,G)H =
∫ ∞
−∞

u−(ξ)v−(ξ)dξ =
∫ ∞
−∞

F̃−(λ)G̃−(λ)dλ = (Φ−F,Φ−G)L2 .

To extend the Parseval equality to the whole of H−, consider the dense set of H′−
in H− consisting of the vectors obtained as follows from the smooth, compactly sup-
ported functions in D− : F ∈ H′− if F = Y(s)F0, F0 = 〈u−, 0, 0〉, u− ∈ C∞0 (−∞, 0),
where s = sF is a non-negative number depending on F . In this case, if F,G ∈ H′−,
then we have Y(−s)F,Y(−s)G ∈ D− for s > sF and s > sG, and, moreover, the
first components of these vectors lie in C∞0 (−∞, 0). Consequently being unitary of
the operators Y(s) (s ∈ R) we obtain from the equality Φ−Y(s)F = (Y(s)F,U−λ )H
= eiλs(F,U−λ )H = eiλsΦ−F that

(F,G)H = (Y(−s)F,Y(−s)G)H = (Φ−Y(−s)F,Φ−Y(−s)G)L2

= (e−iλsΦ−F, e−iλsΦ−G)L2 = (F̃ , G̃)L2 .
(3.4)

Passing to the closure in (3.4), we get the Parseval equality for the whole space
H−. The inversion formula follows from the Parseval equality if all integrals in it
are understood as limits in the mean of integrals over finite intervals. Hence the
fact that Φ− maps H− onto the whole of L2(R) follows from the following

Φ−H− = ∪s≥0Φ−Y(s)D− = ∪s≥0e−iλsH2
− = L2(R).

Therefore the lemma is proved. �
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Consider the vector

Ψ+
λ (t, ξ, ζ) = 〈Θβ(λ)e−iλξ, γκ(λ)

{
(σ(λ) + β)Wb[χλ, φ]

}
ψ̂λ(t), e−iλζ〉, (3.5)

which, for real λ do not belong to the space H−, satisfies the equation SΨ =
λΨ and the corresponding boundary conditions for the operator Sβ . Define the
transformation Φ+ : F → F̃+(λ) on vectors F = 〈u−, x̂, u+〉, in which the functions
u−, u+, and x are smooth, compactly supported functions, by setting (Φ+F )(λ) :=
F̃+(λ) := 1√

2π
(F,Ψ+

λ )H. Next results can be verified in a similar manner used in
the proof of Lemma 3.3.

Lemma 3.4. H+ is isometrically maps by the transformation Φ+ onto L2(R), and
for all vectors F,G ∈ H, the Parseval equality and the inversion formula hold:

(F,G)H = (F̃+, G̃+)L2 =
∫ ∞
−∞

F̃+(λ)G̃+(λ)dλ, F =
1√
2π

∫ ∞
−∞

F̃+(λ)Ψ+
λ dλ,

where F̃+(λ) = (Φ+F )(λ) and G̃+(λ) = (Φ+G)(λ).

Using (3.2), we get that |Θβ(λ)| = 1 for λ ∈ R. Consequently we obtain from
the definitions of the vectors Ψ−λ and Ψ+

λ that

Ψ−λ = Ψ+
λΘβ(λ) (λ ∈ R). (3.6)

Lemmas 3.3 and 3.4 imply that H− = H+ and Lemma 3.2 implies that H =
H− = H+. Thus, property (iii) has been validated for the incoming and outgoing
subspaces.

The transformation Φ− is the incoming spectral representation for the group
{Y(s)}. In fact, the transformation Φ− isometrically maps H onto L2(R) with
the subspace D− mapped onto H2

− and the operators Y(s) are transformed into the
operators of multiplication by eiλs. Similarly, the transformation Φ+ is the outgoing
spectral representation for {Y(s)}. Equality given by (3.6) implies that the passage
from the Φ+-representation of the vector F ∈ H to its Φ−-representation is realized
by multiplication of the function Θβ(λ) : F̃−(λ) = Θβ(λ)F̃+(λ). According to [15],
we see that the scattering function (matrix ) of the group {Y(s)} with respect to
the subspaces D− and D+, is the coefficient by which the Φ−-representation of
a vector F ∈ H must be multiplied to get the corresponding Φ+-representation:
F̃+(λ) = Θβ(λ)F̃−(λ). Therefore we can state the following theorem.

Theorem 3.5. The function Θβ is the scattering function (matrix) of the unitary
group {Y(s)} (of the self-adjoint operator Sβ).

We shall remind that the analytic function Θ on the upper half-plane C+ is called
inner function on C+ if |Θ(λ)| ≤ 1 for λ ∈ C+ and |Θ(λ)| = 1 for almost all λ ∈ R.
Let Θ be an arbitrary non-constant inner function (see [18]) on the upper half-
plane. The subspace N = H2

+ 	ΘH2
+ is not the trivial space and is a subspace of

the Hilbert space H2
+. We consider the semi-group of operators X (s) (s ≥ 0) acting

in N according to the formula X (s)u = P[eiλsu], u = u(λ) ∈ N , where P is the
orthogonal projection from H2

+ onto N . The generator of the semi-group {X (s)}
is defined by T u = lims→+0[(is)−1(X (s)u− u)], where T is a maximal dissipative
operator acting in N and with the domain D(T ) consisting of all functions u ∈ N
for which the limit exists. The operator T is called a model dissipative operator. It
is better to note that this model dissipative operator, which is associated with the
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names of Lax and Phillips [15], is a special case of a more general model dissipative
operator constructed by Sz.-Nagy and Foiaş [18]. The basic assertion is that Θ is
the characteristic function of the operator T.

Consider the space H = D− ⊕N ⊕D+, where N = 〈0,H, 0〉. Under the unitary
transformation Φ− we have

H→ L2(R), F → F̃−(λ) = (Φ−F )(λ), D− → H2
−, D+ → ΘβH2

+,

N → H2
+ 	ΘβH2

+, Y(s)F → (Φ−Y(s)Φ−1
− F̃−)(λ) = eiλsF̃−(λ).

(3.7)

Therefore, according to the model operator theory, (3.7) implies that our operator
Aβ is unitarily equivalent to the model dissipative operator with the characteristic
function Θβ . Since the characteristic functions of unitarily equivalent dissipative
operators coincide [4, 18, 21], we have proved the following theorem.

Theorem 3.6. The characteristic function of the dissipative operator Aβ coincides
with the function Θβ defined by (3.2).

It is known that one can take the complete information about the spectral proper-
ties of the maximal dissipative operator Aβ . For example, the absence of a singular
factor s(λ) of the characteristic function Θβ in the factorization Θβ(λ) = s(λ)B(λ)
(B(λ) is a Blaschke product) guarantees the completeness of the system of eigen-
vectors and associated vectors of the operator Aβ (see [1, 5, 18, 21]).

Theorem 3.7. For all values of β with Imβ > 0, with the possible exception of
a single value β = β0, the characteristic function Θβ of the dissipative operator
Aβ is a Blaschke product. The spectrum of Aβ is purely discrete and belongs to
the open upper half-plane. The operator Aβ (β 6= β0) has a countable number of
isolated eigenvalues with finite algebraic multiplicity and limit points at infinity. The
system of all eigenvectors and associated vectors (or root vectors) of the operator
Aβ (β 6= β0) is complete in the space H.

Proof. Using that Imλ Imσ(λ) < 0 for all Imλ 6= 0, and σ(λ) = σ(λ) for all λ ∈ C,
except the real poles of σ(λ) and (3.2), one can obtain that |Θβ(λ)| ≤ 1 for all
λ ∈ C+ and |Θβ(λ)| = 1 for almost all λ ∈ R. This implies that Θβ(λ) is an
inner function in the upper half-plane, and it is meromorphic in the whole complex
λ-plane. Therefore, it can be factored as follows

Θβ(λ) = eiλbBβ(λ), b = b(β) ≥ 0, (3.8)

where Bβ(λ) is a Blaschke product. Therefore

|Θβ(λ)| = |eiλb||Bβ(λ)| ≤ e−b(β) Imλ, Imλ ≥ 0. (3.9)

Moreover (3.2) yields

σ(λ) =
β − βΘβ(λ)
Θβ(λ)− 1

. (3.10)

If b(β) > 0 for a given value β (Imβ > 0), then by (3.9) we have limt→+∞Θβ(it) =
0, which together with (3.10) implies that limt→+∞ σ(it) = −β. Since σ(λ) is
independent of β, b(β) can be non-zero at not more than a single point β = β0

(and, further β0 = − limt→+∞ σ(it)). The theorem is proved. �

Since, by Lemma 2.3, the eigenvalues of the boundary value problem (2.8)-(2.10)
and the eigenvalues of the operator Aβ coincide, including their multiplicity and,
furthermore, for the eigenvectors and associated vectors of the boundary problems
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(2.8)-(2.10), the formula (2.17) is fulfilled. Then Theorem 3.7 can be stated as
follows.

Theorem 3.8. The spectrum of the boundary value problem (2.8)-(2.10) is purely
discrete and belongs to the open upper half-plane. For all values of β with Imβ > 0,
with the possible exception of a single value β = β0, the boundary value problem
(2.8)-(2.10) (β 6= β0) has a countable number of isolated eigenvalues with finite
algebraic multiplicity and limit points at infinity. The system of eigenvectors and
associated vectors of this problem (β 6= β0) is complete in the space L2

P (Ω;E).

Since a linear operator T acting in the Hilbert space H is maximal accumulative
if and only if −T is maximal dissipative, all results concerning maximal dissipative
operators can be immediately transferred to maximal accumulative operators. Then
the Theorem 3.7 yields the following result.

Corollary 3.9. For Imβ < 0 the spectrum of the boundary value problem (2.8)-
(2.10) is purely discrete and belongs to the open lower half-plane. For all values
of β with Imβ < 0, with the possible exception of a single value β = β1, the
boundary value problem (2.8)-(2.10) (β 6= β1) has a countable number of isolated
eigenvalues with finite algebraic multiplicity and limit points at infinity. The system
of eigenvectors and associated vectors of this problem (β 6= β1) is complete in the
space L2

P (Ω;E).
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