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INITIAL BOUNDARY VALUE PROBLEM FOR A SYSTEM IN
ELASTODYNAMICS WITH VISCOSITY

KAYYUNNAPARA THOMAS JOSEPH

ABSTRACT. In this paper we prove existence of global solutions to boundary-
value problems for two systems with a small viscosity coefficient and derive
estimates uniform in the viscosity parameter. We do not assume any smallness
conditions on the data.

1. INTRODUCTION

In this paper first we consider the boundary-value problem, for a system of
nonlinear ordinary differential equations,
du e do
¢~ d¢ dg dg’
do do 12 du d*o

R A T
for € € [0, 00) with boundary conditions

(1.1)

u(0) = up,u(c0) = ug,
J(O) = UB,C'(OO) = OR. (12)

Next we consider the initial boundary value problem, for a system of parabolic
equations in x > 0 ¢ > 0,

Ut + UUy — O = €Ugy,

o + uoy — k*uy = €0y (1.3)
in Q= (z,t) : x > 0,t > 0, with the initial condition at t =0
u(z,0) = uo(x),0(z,0) = op(z) x>0, (1.4)
and boundary condition, at z = 0,
u(0,t) =up(t),o(0,t) =op(t) t>0. (1.5)

In both of these problems, ¢ > 0 is a small parameter. The system of equations
(1.1) and (1.3)) are approximations of initial boundary value problem for the system
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of equations which comes in elastodynamics:

Ut + Uy — 0 = 0,

1.6
o1+ uoy — k*uy =0, (16)

where w is the velocity, o is the stress and k > 0 is the speed of propagation of

the elastic waves. This equation has been studied by many authors [T}, [3, [4, [5] for

the case when there is no boundary. The system (|1.6]) is nonconservative, strictly

hyperbolic system with characteristic speeds

M(u,0) =u—Fk,Aa(u,0) =u+k (1.7)
with Riemann invariants
r(u,0) =0+ ku,s(u,0) =0 — ku (1.8)

respectively. The problem — is the vanishing self-similar approximations
to study the boundary-Riemann problem for and the problem — is
the vanishing diffusion approximations for with general initial-boundary data.
Our aim is to show the existence of smooth solutions of these problems and derive
estimates in the space of bounded variation, uniformly in € > 0. We do not give
any restrictions on the size of the initial data.

In the study of (u,0¢) as € tends to 0, there are two difficulties. The first is the
nonconservative product which appear in the equation . For the self-similar
case this difficulty can be overcome by the work of LeFloch and Tzavaras [7] on
nonconservative products. The second is the study of the behaviour of (u€, o¢) near
the boundary = = 0. Since the characteristic speeds may change sign, the boundary
may be characterestic at some points. This makes the study of the behaviour of
(uf,0¢) near x = 0, as € goes to 0 difficult. This aspects are under investigation
and will be taken up in a subsequent paper.

2. SELF-SIMILAR VANISHING DIFFUSION APPROXIMATION

In this section, we consider the system (|I.1) and ([1.2]) and prove the existence
of smooth solutions. Given the data (up,op), (ur,or), we define

rg =0+ kup,rr =or + kugr,sp =op — kup,Sgp = orp — kug (2].)

The characteristic speeds ([1.7) in terms of the Riemann invariants take the form

r—s r—S

op M elns) =

A1(r,s) = + k.

Consider the square
D = [min(rg,rg), max(rg,rr)] X [min(sg, sg), max(sg, sgr)l,
and consider the minimum and maximum of the eigenvalues on this square

A= mDin Aj(r, s), )\;V[

= mgx)\j(ns), ji=12.

We shall prove the following result.

Theorem 2.1. For each fized € > 0 there exits a smooth solution (u¢(§),0¢(&)) for
(1.1) and (L.2) satisfying the estimates

o duf °° do€
wElle@l e [ Gl [ 1Feee e
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If \T* > 0, then

C -2
[u(€) —up| +0°(§) —op| < e =TT, 0SE<N' -0 (2.3)

If \M >0, then

C -2
[u(§) — ur| + 0°(§) —or| < s T, &2 Ay 46, (2.4)

for some constant C > 0 independent of ¢ > 0 and for § > 0, small.

Proof. To prove the theorem it is easier to work with Riemann invariants (L.8)).

The problem (1.1]) and (1.2]) takes the form

dr dr d?r ds ds d?s
—£— 4+ A — =e—, —Ef—+A — =e— 2.
fdf + 1(7" S) df 6d§27 gdg + 2(T’s) d§ €d£2 ( 5)
on [0, 00) with boundary conditions
r(0) =rp, r(c0)=rg, s(0)=sp, s(c0)=sg (2.6)

where rp, rgr, sg and sg are given by (12.1)).
From the definition (L.8) of r, s, u = %32, 0 = =2, Then to prove (2.2)-(2.4), it

is sufficient to prove the following estimates

766(5) € [min(rBa TR),HI&X(TB,’I"R)L 5 S [07 ) (2 7)
5°(€) € [min(sp, sgr),max(sp,sr)], &€ [0,00); ’
C —-am)?
Q) — sl < Se T e <Ay -4,
, (2.8)
. C -2 m
56— spl < Sem T £<Ap -6
C —E-2M)?
re(©) —ral < Sem T, 2N+,
—(e=23)? (2:9)
s(€) —srl < e 2, €=M 46
> dre€ /Oo ds®
d¢ < |rr —rB|, d¢ < |sr —sB]|. 2.10
|Gl <t =ral. [ 15k < s = sl (210)

To prove these estimates we reduce (2.5) and (2.6) to an integral equation and use
some ideas of Tzavaras [9] and Joseph and LeFloch [6]. Note that (2.1) can be

written in the form

ﬁ_()\l(r,s)—f)@

gz ¢ g’ (2.11)
d?s Aa(r,s) — €. ds '
e~ e

For j =1,2, let

g5(6) = / (v — A(r,5)(w))dy (2.12)
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Integrating the equation (2.11]) once leads to

dre e —91(8)
= (TR - TB) “ o1 (y )
d¢ fooo e y )dy (2 13)
dSE ( 6_92(5)6 '
=(sp—sgp)————.
df R B fooo e—gi(?/) dy

On integrating (2.13]) using the boundary condition (2.6)) we get,

(y)
sy

0o 41(1;)
o € d

(1/)
f 92
c0>o L(y) :
Jo e dy

It follows that to solve and . with estimates -, it is enough to
-

solve . To solve ), we use the Schauder ﬁxed pomt theorem applied to
the function

r°(§) =1+ (rr —7B)

)

(2.14)

s(€) =sp+ (sr— sB)

E(r,s)(€) = (Fi(r, )(£), Fa(r, 5)(€))

where

(y)
fo e

foooe gl(y)dy

(y)
fo —2Ww)

foooe gz(y)dy

and g;, j = 1,2 are given by (2.12). From (2.15) it is clear that F(r,s) is a convex
combination of rg and rg and Fy(r, s) is a convex combination of sg and sg. So
the estimate

Fi(r,s)(§) =rp+ (rr —rB)

)

(2.15)
Fy(r,5)(§) = s + (sr — 5B)

Fi(r,8)(&) € [min(rp,rr), max(rg,rr)],
Fy(r, 8)(§) € [min(sp, sg), max(sp, sg)]
easily follows. Next we note that the expression on the right of (2.15) is independent

of the choice of a; because adding a constant to g; does not change the value of
the right hand side of (2.15)). Take p; as the point { where minimum of

(2.16)

¢
min/ (y = Aj(r,s)(y))dy

i
is achieved. This minimum is achieved because A;(r, s) is bounded by the estimate

(2.16) and so the term fi Aj(r, s)(y)dy has at most linear growth as & — oo where

as the first term is £2/2 — af/Q has quadratic growth. Now take a; = p; in the
definition of g;, we have

g;(§) > 0,§ € [0,00). (2.17)
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Suppose /\é-w > 0, then because of the choice of p;,

13
0;(6) = / (4 — A (r. $)())dy

)

13
> / (5 — s (r, 5)())dy

M
J
13
> [ w=2ay
AM
-
- 723 ,ifE> A
So we have, for )\j-‘/[ >0,
(-7
9;(§) > +’ if & > /\é\/[-
Similarly, for A7* > 0, we have
(E—A)? m
0,(6) > T ife < A7
Further,
00 . (e)e 00 g ptel/2e)e
/ . HO) £261/2/ . ileit s>€
0 0
Now

pite'/?¢
g(p; + %) = / (v — () dy

Pj

/2
- / (w+ o5 — Moy +9))dy
0

52
< € + ()\;VI - )\;”)61/25.

From (2.20)) and (2.21)). we get for j = 1,2
/ T e A / T2 gy

0 0

o0
:e/ e =HE O A gy

0
o0 7y2 M m
0

From ([2.15) and (2.22) we get for j = 1,2

dF;(r,s C
) ) < €.
d€ €
Further, from (2.15)), (2.18), (2.19) and (2.22)), we get: For AT* > 0,

(€=A1Y)

C’/}E —(s=Ap)? Cv/2e Vors
e 2 d
0 €

[F1(r8)(€) — 7Bl < — T ds =

_am
AT

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

e ds,0 < € <A
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For the case A3 > 0,

e~ ds,0 < £ < A

,Am

C [¢ -G OVZe S5
|F2(T73)(€)_SB| < ?/ e~ 2 ds=
0

€

\/Z

From (2.15), (2.18), (2.19) and (2.22)), we have for the case A > 0,

C [ ey C\F -
i@ el < 7 [T = S [ e ne ol

For the case A} > 0

C 00 _(s—aM)y2 C\/ﬁ s
Fatr (@ = onl < [ 75 s = S [y e el

Now using the asymptotic expansion
e 1 1 2
eVdy = (5= = O(5))e™, y— o0
/y 2y y?
in the above two inequalities, we get

C -2

|F1(T;S)(§)—TB| < 36T7 gg/\;n_&
C - (2.24)
2(T, S —sp| < —e Te , < — 5
| F2(r, 5)(€) \<5 ESAP =6
C -2
|Fi(r,8)(&) —rRr| < geT’ £>AM 4 g,
C -2 (2.25)
PANEE — S| < —e 2, > + 6.
E ¢ 5 E> A48

If A;VI < 0, it can be easily seen that g;(&) > % and an analysis similar to the one
given earlier gives

,52

2, £>0 (2.26)

[F1(r,8)(x) = rR| <

Q&.\Q

|Fa(r,5)(x) = sa| < e >0 (2.27)

The estimates (2.16)), (2.23)(2.27) show that F' is compact and maps the convex
set

[min(rg,rr), max(rg,rr)] X [min(sg, sg), max(sg, sg)]

into itself. So by Schauder fixed point theorem F has a fixed point and hence
(2.10)) has a solution. Further it satisfies the estimates (2.2))-(2.4). The proof of the
theorem is complete. O

3. VANISHING DIFFUSION APPROXIMATION

In this section we consider (1.3) in the domain Qp = [z > 0,0 <t < TJ, for
T > 0, with initial condition (1.4) and boundary condition (1.5) and prove the
following result.
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Theorem 3.1. Assume that u§(z),o§(x) € WH1(0,00) and u$, 04 € WH(0,T)
for every T > 0. Further assume that (u§(0),05(0)) = (u3(0),0%(0). Then there
exists a classical solution (u€, o) of the problem (1.3))—(1.5)) in Qp with the following
estimates:

1
[l @) < 3 max [lgllo + klluglle, o5 L 0,m) + klug e om)]

(3.1)
o/l ery < max [lotll o + Kllugllze, o5l zoecom) + Kl
oo 1 oo
| Q0@ < ¢ [ qoss @)+ bovai@) do
1 T
[ Qo (o) + Kdp o) d
0 (3.2)

/w@f@ﬁoms/m@mmm+m&ﬁwmm
0 0

T
+ [ Qo))+ Ko o)) at.
0

We prove this theorem in several steps. Since we are dealing with the case
€ > 0 fixed in this theorem we suppress the dependence of € and write u,o,r,s
foru¢, o€, r¢, s¢.  We rewrite the problem - in terms of the Riemann
invariants (r, s) as
§—1

2
s—1

2k

T't—|—(

—k)ry = ergy, 53
3.3
St + (

+k)Sy = €Sy
with initial conditions

r(z,0) =ro(z) = oo(z) + kug(x), s(z,0) = so(z) = oo(z) — kug(x) (3.4)
and the boundary conditions

r(0,t) =rp(t) = op(t) + kup(t),s(0,t) = sp(t) = op(t) — kup(t). (3.5)

First we assume that ry and sg are C* functions on[0, oo) which are in W11(0, 00)
and boundary data rp and sp are C* which are in W1(0,7'). The general result
then follows from a simple density arguments. To prove the theorem we define a
sequence of functions (r,(z,t), sn(x,t)),n =0,1,2,... , iteratively,

(’/‘0(33, t)’ So(ﬂ?, t)) = (7‘0(33), 80(1‘)),
and for n = 1,2,..., (rn(z,t), sp(x,t)) is defined by the solution of linear problems

(Tn)t + (% - k)(rn)a: = €(rn)zwa

Sp—1 — Tn-1

5% +k)(sn)z = €(Sn)ax-

(sn)e + (
with initial conditions
rn(2,0) = ro(x), sp(x,0) = so(x) (3.7)
and the boundary conditions

r,(0,t) = 15(t),s,(0,t) = sp(t). (3.8)
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Fix T > 0, then by linear theory of parabolic equations, see Friedman [2], there
exists a unique C'* solution (11, s1) to (3.6)—(3.8)). Further, the solution decay to
0 as = tends to co and by maximum principle

||7”1($’t)||Lo<>(QT) = max [||7”0||L°°[0,oo)7 HTBHL°°[07T]]v (3.9)

l[s1(2, t)|| Lo () = max [[|soll L= (0,00, I8 Bl Lo [0,17] -

Iteratively we get unique solution (r,,s,) of the problem (3.6)—(3.8) in C*°(Qr)
and
7 (2, ) || Loe (@) = max [||7ol| oo 0,00, 175 Lo f0,71]

(3.10)
l[8n (2, 1) || oo (@27) = max [[|soll L<(0,00)s 58]l Loej0,77] -
Note that
n 7t —I'n 7t
n(mat) = 2 (2.0) —ra(@,t)
2k
(2,1) (2,1) (3.11)
Sn\T, 1) — T'n T,
By (3.9) and (3.10), we have there exists a constant A > 1 such that
sup [Ain(z,t)| <A, fori=1,2, n=0,1,2,... (3.12)
Qr

For future use we write (3.6))—(3.8]) in the integral formulation. For this we introduce
the standard boundary heat kernels

1 —(z—y)? —(z+y)?

pe(x,yjt): 47rt6[6 Ite  — @ A4te ]’

-2 o o
ge(z,t,8) = ﬁas[/ e Yo dy).
VAT

Then (3.6)—(3.8]) is equivalent to

Tn(,t) =/OOO 70(y)pe(,y,t) dy+/0 7B(8)qe(7,t, 5) ds

t oo
- / / Pel@, st = $)Aan_1 (1, 8)8ya(y, 5) dy ds
00 (3.13)

sn(a,t) = / so(y)pe(ry, 1) dy + / 55(8)qe(e, , 5) ds

t [e'e]
- / / Pe( Yt — $)Aan1 (4 )3y 5 (. 5) dy ds.
0 0

With these preliminaries we start the proof of the theorem. First we show that
the map (rn,—1, Sn—1) — (T, Sn) is a contraction in L>°(Q7, ), where T} is given by
1

Ty=—s
"7 9c2

(3.14)
where
T

o g @+ b da+ [ )]+ (o) )

With this notation we shall prove the following lemma.

Co =
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Lemma 3.2. (a) Let T > 0 be fized. Then forn=1,2,... and 0 <t < T,
e} 0o T
| 1ot tlde < [ Cirildn e [ il an
0 0 0

[e%) o T
/ |8Isn(x,t)|dx§/ |36|d1:+/ 1 (1)] dt.
0 0 0

(b) Form=2,3,...,

(3.15)

1
||('Un*'vn—lawn*wn—l)”Lm(QTO) < §||(Un—lfvn—23wn—lfwn—Q)HL‘”(QTO) (3]—6)

Proof. First we prove the estimate for r,,, the estimate for s,, is similar. For
a fixed t > 0, let yo(t) = 0 and y;(t), i = 1,2,... are the points where 9,7, (z,t)
changes sign and let k = 0 if 9,r,(x,t) > 0 and k = 1 if 9,7, (2, t) < 0. Following
Oleinik [8], we write,

00 o0 ) Yit+1(t)
/ 1O (@, )] da = Z(—l)”k/ Durn (2, 1) da (3.17)
0 i=0 yi(t)
Let us take the case k = 0, the other case is similar. Differentiating (3.17)), we get
d [ 0 o ryisa(t)
G [ e ide =0 [ e (@)
dt 0 _7 (t)
i=0 Yi
where we have used %(yo(t)) = 0 and Oyrn(yi(t),t) = 0if 4 = 1,2,.... Now

differentiating the first equation of (3.6)) with respect to , multiplying the resulting
equation by (—1)% and then integrating from y;(t) to y;41(t), we get for i = 1,2,. ..

o [ ooural @t
-1 1/ (0270 (2, t) do
vi(t) (3.19)

= 6[(_1)iaﬂc(aﬂcrn)(yi+1(t)’t) + (_1)i+1aw(azrn)(yi(t)vt)'
For i =0,

y1(t)
/ o O4[0zrn) (2, t) dr = €[04 (0pvn) (Y1 (t), 1) — 0 (0271 )(0,8)] + (A1,n—10272)(0, 1),

(3.20)
where we have used (0,1,)(y;(t),t) = 0, for ¢ = 1,2,.... From (3.6) and the
boundary condition (3.8)), we have

€0257n (0, 1) — A1,n—1(0,8)0,(0,t) = r5(t) (3.21)

Also in the present case 9,7, (z,t) changes from positive to negative at x = y;(t)
when 4 is odd and negative to positive when 7 is even and hence 9,.,v,, (y;(t),t) <0
when 4 is odd and Jy,vy,(yi(£),t) > 0 when i is even. Using these facts in (3.18)—
(13.21) we get,
d o0
dt Jo
Integrating this from 0 to ¢ and using initial conditions (3.7]), we get,

[e%e] fe%e] t
/ |0prn (z, 1) dx < / Iro ()| dz + / |75 ()| dt
0 0 0

|07 (2, 8)] dx < |rip(2)]
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Thus for any 7" > 0 fixed,we have

0o 0o T
/ |8Irn(a:,t)\dx§/ |r6(:v)|da:+/ () ds, FO<t<T  (3.22)
0 0 0

The estimate for s, is similar. To prove the second part we use the integral repre-

sentation (3.13)) to get

T'n(l'at) Tn— 1 Z, t / / pe T y, )I:)\l"*l(y’s)ay’rn(yys)
_ )\1,n72(y7 )ay’f'7l,1(:IJ7 S)] dy dS

This can be written as
ro(z,t) — rpo1(2,t) = an(x,t) + by (x, t) (3.23)

where

Y T -8
—/ / pe(z,y,t — 5)(M — k)Oy(ry —rp_1)dyds  (3.24)
o Jo 2k

and

toree Sp_1— Sp_ Tl — Tr—
[ pta o Crm o) ey
o Jo

2k 2k
(3.25)
Integrating by parts and changing variables we get
an(z,t)
1 t 1 z/(4(t—s)e)/? e (sn71 _ Tnfl)
= (ne)1/2 /0 (t —s)i/2 /m S T

1 ¢ 1 1/2 2 (Sn—l 71"”_1)
" ()12 A (t—s) //(4@ Seyt/a ze” ( or +k)(rn —1no1)dz

/ / Pe(z,y,t — 5)0y (n— 12kT" 1)(rnfrn_1)dyd5-

(3.26)

So we get for 0 <t <ty <T,

1/2 [
lan (z,t)| < 071||rn — Tl (. ) |22
/2 to
(me) . (3.27)
1 o0
e Gl + @+ [ (o] + (o do)]
Similarly, for 0 <t <tqg < T,
|b (.’Ij t)| < t(l)/z (Hrn—l - Tn—QHLOO(QtO) + ||3n—1 - 8n—2||L°°(QtO))
nA W= 1/2

(me) 2k (3.28)

x [/Ooo |r(')(x)|dx+/0 ()] ]
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From ((3.23)—(3.28)), we get for 0 <t <ty < T,

[rn (2, 1) — rp_1(,1)]
t1/2 T

< GOt i ([ @+ sh(@ o+ [ rs(o)] + 15000 )

w1 T
X |7 — Sn—1llp= — o(x)|d B(t dt)
I = sucrllmo + 757z ([ o@ldr+ [ i)

X ([[rn—1 = rn—2llz (@) + l[Sn-1 = Sn—2llL=(a,,))
(3.29)
and

[sn(x,t) — sp—1(z,t)| <

oA+ </0°°<|ra<x>| 1 Ish(@)]) de

T
+/0 (@] + [sE®]) )] X l[sn — sn-1llL=(0.)
(1/2 1

([l | (0l r)

X ([Irn—1 = Tn—2|lLoe(0u) + [[Sn—1 = Sn—2llL=(a,,))-

(3.30)
From and ( -, we get
7 — rn—tllLe(@,y) + 180 — Sn—1llL= ()
< C(t) [rn = rn—illz(euy) + 150 = Sn—1ll= ()] (3.31)

+ C(to) ?(||rp-1 — Tn—2|Lo (@) + lISn—1 = Sn—2l|L=(0,,)]

where Cj is given by (3.14] - Now take to = Ty = 02 in and the estimate
- ) follows. The proof of Lemma is complete. O

Proof of Theorem[3.1 First we shall prove that there exists a continuous func-
tion (r, s) such that the sequence (r,s,) converges uniformly to to (r,s) on Qr.
Estimate shows that (r,,s,) converges uniformly to a continuous function
(rry, $1,) on Q. Now we consider the region

Qryomy = [(w,t) 2> 0,Ty <t < 2Tp).

Consider problem (3.6) in Qp, o7, with initial data at Ty as (r,(x, To), sn(x, To)).
Now use the estimates ((3.10) and (3.15) and using the same argument to get the

estimate (3.16) to get
[(rn = Tn—1,5n = $n—1)l| Lo (Qry 22, )

1
5 ("“nfl —Thn—2,8n—1 — STL72)||L°°(QTO,2TO)
+

3
§||(7“n($,To) —Tn-1(2,T0), 8n (2, To) — Sn—1(z, To) | L [0,00)-
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Iterating this inequality leads to
||('rn —Tn—1,%n — Snfl)HLO"(QTUQTU)

1,
< (5)( (ra = 1,82 = s1)|| L (g 1)

1., _
+3(n = 1)(5)" D, To) = 71 (2 To) (2, To = 5012, To) 10,00

Using the estimate (3.10]) in the above equation, we get
[(Un = Vn—1,Wn = Wn_1)[| Lo (27, ozy) < Cr-6n(1/2)"72) (3.32)

where Cr = max|||(ro,s0)|lz>,||(rB,5B)| =0, Estimate shows that
(7n, Sn) is Cauchy sequence in g, o7, in the uniform norm and hence converges to
a continuous function (r, s). Repeating this for a finite number of time intervals we
get (ry, s, ) converge uniformly to a continuous function (r, s) in Qr. Now passing
to the limit in we get (r, s) satisfies the integral equation

r(z,t) :/OOo ro(y)pg(x,y,t)dy—l—/o rp(8)qe(x,t,s)ds
[ et = 9090900, 5) dy s,
s(z,t) :/000 s0(y)pe(,y, t) dy—l—/o sp(8)qe(z,t,8)ds

t [e'e]
- / / pel, 4t — $)ha(r, ) (9, )85y, 5) dy ds.
0 0

From this integral representation it follows that (r,s) is once continuously differ-
entiable in ¢ and twice continuously differentiable in z and solves the problem

(3.3)—(3.4). Further the estimate (3.1) and (3.2) follows from (3.10)) and (3.15]).
O

The proof of the theorem is complete.
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