
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 127, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

THE KORN INEQUALITY FOR JONES DOMAINS

RICARDO G. DURÁN, MARIA AMELIA MUSCHIETTI

Abstract. In this paper we prove the Korn inequality, and its generalization
to Lp, 1 < p < ∞, for bounded domains Ω ⊂ Rn, n ≥ 2, satisfying an (ε, δ)
condition.

1. Introduction

Since the pioneering work of Korn [12, 13] on linear elasticity equations, the
inequality named after him, in its different forms, has been the subject of a great
number of papers. An interesting review article, where connections with other
inequalities and several applications are described, was written by Horgan [7].

Given an open domain Ω ⊂ Rn, n ≥ 2, the Korn inequality states that

‖∇v‖L2(Ω)n×n ≤ C‖ε(v)‖L2(Ω)n×n (1.1)

where ε(v) denotes the symmetric part of ∇v, namely,

εij(v) =
1
2

( ∂vi

∂xj
+
∂vj

∂xi

)
Of course, (1.1) can not be true for arbitrary functions v ∈ H1(Ω)n since there are
functions such that the right hand side vanishes while the left one does not (the
so called infinitesimal rigid motions). So, in order to prove the inequality, Korn
considered two cases.

The so called first case is to consider v ∈ H1
0 (Ω)n. In this case the proof of the

inequality (1.1) is simple and was first given by Korn. Moreover, it can be shown
that it holds for any open set Ω (not necessarily bounded) and that the constant
can be taken as C =

√
2 (see for example [10]).

The situation is quite different in the second case, where now v ∈ H1(Ω)n satisfies∫
Ω

( ∂vi

∂xj
− ∂vj

∂xi

)
= 0 , for i, j = 1, . . . , n.

This case is fundamental for the analysis of the elasticity equations with traction
boundary conditions. In this case, the first correct proofs are likely those given by
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Friedrichs, in [4] for n = 2 and [5] for n = 2 or 3. Indeed, it is not clear whether
the original proof of Korn is correct. We have not checked that proof but we can
mention that Friedrichs claimed that he has been unable to verify Korn’s proof for
the second case (see the footnote 3 in page 443 of [5]). Also Nitsche mentioned that
the original proof of Korn is doubtful (see the introduction of [14]).

A different way of stating the Korn inequality is to say that, for any v ∈ H1(Ω)n,

‖v‖H1(Ω)n ≤ C{‖v‖L2(Ω)n + ‖ε(v)‖L2(Ω)n×n} (1.2)

Indeed, (1.1) in the second case, can be derived from (1.2) by using compactness
arguments (see for example [10]), provided that H1(Ω) is compactly imbedded in
L2(Ω), which is true under rather general assumptions on Ω. One the other hand,
if (1.1) holds in the second case, then (1.2) also holds (see for example [2]).

An important difference between the first and second case is that, in the last
one, (1.1) does not hold for arbitrary domains Ω. Indeed, it is known that the Korn
inequality in the second case is not true when the domain has external cusps. The
papers [6, 18] presented counter-examples showing this fact. Moreover, in the old
paper [4], Friedrichs gave a very nice counter-example for an inequality which can
be derived from (1.1). Suppose that Ω is a two dimensional domain and that

f(z) = φ(x, y) + iψ(x, y)

is an analytic function of the variable z = x+iy in Ω with
∫
Ω
φ = 0. Then, Friedrichs

proved in [4], that under suitable assumptions on Ω, there exists a constant C
depending only on Ω, such that

‖φ‖L2(Ω) ≤ C‖ψ‖L2(Ω) (1.3)

and he showed that this estimate is not true for some domains which have external
cusps (see [4, page 343]). On the other hand, it is not difficult to see that the second
case of Korn inequality implies (1.3) whenever the domain Ω is simply connected.
This was proved by Horgan and Payne in [8] (they assume that the boundary is
smooth but this is not needed for this implication).

The assumptions made by Friedrichs in [5] to prove the Korn inequality in the
second case included domains with a finite number of corners or edges on ∂Ω. After
the papers of Friedrichs several proofs have been given under different assumptions
on the domain. For example, Payne and Weinberger [15] proved the inequality for
the sphere, giving explicit bounds for the constant. Also, they proved that (1.1) is
true for domains which can be mapped onto the sphere by a C2 transformation. In
[11], Kondratiev and Oleinik gave a proof for domains which are star shaped with
respect to a ball B and gave a bound for the constant in terms of the ratio between
the diameters of Ω and B. Nitsche [14] proved the inequality in the form (1.2) for
Lipschitz domains. His proof is based on the technique of Stein [16] to prove the
extension theorem in Sobolev spaces. A different proof for Lipschitz domains was
given by using the Calderón-Zygmund theory of singular integral operators (see
[10, 17]). This proof also resembles the extension theorem, but now, the original
proof of Calderón (see [1]). This last method also applies for the generalization of
(1.2) to the Lp case, 1 < p <∞. Finally, we mention that another way of proving
(1.2) is by means of the so called “Lion’s Lemma” which states that, for a Lipschitz
domain, a function f ∈ L2(Ω) if and only if f ∈ H−1(Ω) and ∇f ∈ H−1(Ω)n (see
for example [3] for this argument).
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An interesting question is whether the Korn inequality in the second case holds
for domains more general than Lipschitz. In his paper [9], Jones introduced the
notion of (ε, δ) domain and prove that the extension theorem in Sobolev spaces
holds if and only if the domain is of this class (which is much more general than
the Lipschitz class).

As we said above, some of the arguments to prove the Korn inequality are re-
lated to those used for the extension theorem. This fact, together with the above
mentioned counter-examples which resemble those for the extension theorem, give
rise to the following question:

Is the Korn inequality in the second case (or its equivalent form (1.2)) valid for
bounded (ε, δ) domains?

In this paper we prove that the answer to this question is positive. In order to
do that, we modify the arguments of Jones [9], to construct an extension preserving
the norm on the right hand side of (1.2). The key point in our construction is the
use of the inequality (1.1), in the second case, on cubes or finite union of cubes.
Once we have the extension, the argument concludes by applying (1.2) on a ball
containing our original domain.

Our arguments apply also for the generalization of the Korn inequality to Lp,
1 < p <∞.

2. Proof of the Korn inequality

Let Ω ⊂ Rn, n ≥ 2, be a bounded open domain satisfying the (ε, δ) condition of
Jones, namely, for any x, y ∈ Ω such that |x − y| < δ there is a rectifiable arc Γ
joining x to y and satisfying

l(Γ) ≤ 1
ε
|x− y|,

d(z) ≥ ε|x− z||y − z|
|x− y|

∀z ∈ Γ

where l(Γ) denotes the arclength of Γ and d(z) is the distance from z to Ωc.
For 1 < p < ∞, we will prove that there exists a constant C = C(Ω, p, ε, δ, n)

such that, for any v ∈W 1,p(Ω)n,

‖v‖W 1,p(Ω)n ≤ C{‖v‖Lp(Ω)n + ‖ε(v)‖Lp(Ω)n×n} (2.1)

As mentioned in the introduction, this inequality is equivalent to

‖∇v‖Lp(Ω)n×n ≤ C‖ε(v)‖Lp(Ω)n×n (2.2)

for any v ∈W 1,p(Ω)n satisfying∫
Ω

( ∂vi

∂xj
− ∂vj

∂xi

)
= 0 , for i, j = 1, . . . , n.

which, for p = 2, is known as “the second case” of Korn inequality.

Remark 2.1. It is easy to see, by a simple scaling argument, that the constant in
the inequality (2.2) depends only on the shape of the domain Ω.

Through the rest of the paper we will use the letter C to denote different con-
stants which may depend on ε, δ, n, p and the diameter of Ω (we will indicate this
dependence only some times for the sake of clarity).

Inequality (2.1) follows from the first case of Korn inequality (or its generalization
to Lp) in a larger domain if we can construct an extension Ev of v preserving the
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norm on the right hand side of (2.1) and such that Ev has compact support. We will
construct such an extension by modifying appropriately the extension operator of
Jones [9]. Since, for (ε, δ) domains, smooth functions are dense in W 1,p(Ω) (see [9]),
it is enough to prove inequality (2.1) for v ∈ W 1,∞(Ω)n and so, we will construct
the extension for such v.

Given S ⊂ Rn, a measurable set with |S| > 0, we call x its barycenter and for
v ∈W 1,∞(Ω)n we associate with S and v the affine vector field

PS(v)(x) = a+B(x− x), (2.3)

where a ∈ Rn and B = (bij) ∈ Rn×n are defined by

a =
1
|S|

∫
S

v and bij =
1

2|S|

∫
S

( ∂vi

∂xj
− ∂vj

∂xi

)
. (2.4)

Observe that, since bij = −bji, PS(v) is an “infinitesimal rigid motion”, i.e., it
satisfies

ε(PS(v)) = 0 . (2.5)

Moreover, a and B have been chosen in such a way that∫
S

(∂(vi − PS(v)i)
∂xj

− ∂(vj − PS(v)j)
∂xi

)
= 0 , (2.6)∫

S

(v − PS(v))) = 0 . (2.7)

Assume now that the inequality (2.2) holds in S. Then, in view of (2.5) and (2.6)
we have

‖∇(v − PS(v)))‖Lp(S)n×n ≤ C‖ε(v)‖Lp(S)n×n (2.8)

where the constant C depends on p and on the shape (but not on the scale!) of S
(see Remark 2.1).

Now, from (2.7) and the Friedrichs-Poincaré inequality for functions with van-
ishing mean value and denoting with d(S) the diameter of S, we have

‖v − PS(v)‖Lp(S)n ≤ Cd(S)‖∇(v − PS(v))‖Lp(S)n×n (2.9)

and therefore,
‖v − PS(v)‖Lp(S)n ≤ Cd(S)‖ε(v)‖Lp(S)n×n (2.10)

where, again, the constant C depends only on p and on the shape of S. On the
other hand, it is easy to see that

‖∇PS(v)‖L∞(S)n×n ≤ ‖∇v‖L∞(S)n×n (2.11)

and so,
‖∇(v − PS(v))‖L∞(S)n×n ≤ 2‖∇v‖L∞(S)n×n (2.12)

and therefore, using (2.9) with p = ∞, we obtain

‖v − PS(v)‖L∞(S)n ≤ Cd(S)‖∇v‖L∞(S)n×n (2.13)

where, also here, the constant C depends only on the shape of S.
Our extension of v will be constructed following the ideas developed in [9] but

using now the polynomials PS(v).
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Recall that any open set Ω ⊂ Rn admits a Whitney decomposition into closed
dyadic cubes Sk (see [19, 16]) , i.e., Ω = ∪kSk, such that, if `(S) denotes the
edgelength of a cube S,

1 ≤ dist(Sk, ∂Ω)
`(Sk)

≤ 4
√
n ∀k , (2.14)

S0
j ∩ S0

k = ∅ if j 6= k , (2.15)

1
4
≤ `(Sj)
`(Sk)

≤ 4 if Sj ∩ Sk 6= ∅ . (2.16)

Let W1 = {Sk} be a Whitney decomposition of Ω and W2 = {Qj} one of (Ωc)0.
We define

W3 =
{
Qj ∈W2 : `(Qj) ≤

εδ

16n
}

It was shown by Jones (see Lemmas 2.4 and 2.8 of [9]) that, for each Qj ∈ W3, it
is possible to choose a “reflected” cube Q∗j = Sk ∈W1 such that

1 ≤ `(Sk)
`(Qj)

≤ 4 and d(Qj , Sk) ≤ C`(Qj)

and moreover, if Qj , Qk ∈ W3 and Qj ∩ Qk 6= ∅, there is a chain Fj,k = {Q∗j =
S1, S2, · · · , Sm = Q∗k} (i.e, Sj ∩Sj+1 6= ∅) of cubes in W1, connecting Q∗j to Q∗k and
with m ≤ C(ε, δ).

It is known that, associated with a Whitney decomposition, there exists a par-
tition of unity {φj} such that φj ∈ C∞(Rn), supp φj ⊂ 17

16Qj , 0 ≤ φj ≤ 1,∑
Qj∈W3

φj ≡ 1 on
⋃

Qj∈W3

Qj

and
|∇φj | ≤ C`(Qj)−1 ∀j

(see [16, 19]). Now, given v ∈ W 1,∞(Ω)n, let Pj = PQ∗j
(v) defined as in (2.3) and

(2.4) with S = Q∗j . Then, we define Ev, the extension to Rn of v, in the following
way,

Ev =
∑

Qj∈W3

Pjφj in (Ωc)0,

Ev = v in Ω.

Since |∂Ω| = 0 (see Lemma 2.3 in [9]), it follows that Ev is defined p.p. in Rn.
The arguments of the following lemmas are similar to those in [9]. In particular

we will make repeated use of Lemma 2.1 of [9] which says,

Lemma 2.2. Let Q be a cube and F,G ⊂ Q be two measurable subsets such that
|F |, |G| ≥ γ|Q| for some γ > 0. If P is a polynomial of degree 1 then,

‖P‖Lp(F ) ≤ C(γ)‖P‖Lp(G).

Lemma 2.3. Let F = {S1, · · · , Sm} be a chain of cubes in W1. Then,

‖PS1(v)− PSm(v)‖Lp(S1)n ≤ Cc(m)`(S1)‖ε(v)‖Lp(∪jSj)n×n , (2.17)

and

‖PS1(v)− PSm
(v)‖L∞(S1)n ≤ Cc(m)`(S1)‖∇v‖L∞(∪jSj)n×n . (2.18)
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Proof. We will use (2.10) with S being a cube or a union of two neighboring cubes.
In view of (2.16) there are a finite number, depending only on the dimension n,
of possible shapes for the union of two neighboring cubes, and so, we can take a
uniform constant in (2.10).

Using Lemma 2.2 we have

‖PS1(v)− PSm
(v)‖Lp(S1)n

≤
m−1∑
r=1

‖PSr
(v)− PSr+1(v)‖Lp(S1)n

≤ c(m)
m−1∑
r=1

‖PSr
(v)− PSr+1(v)‖Lp(Sr)n

≤ c(m)
m−1∑
r=1

{‖PSr (v)− PSr∪Sr+1(v)‖Lp(Sr)n

+ ‖PSr∪Sr+1(v)− PSr+1(v)‖Lp(Sr+1)n}

≤ c(m)
m−1∑
r=1

{‖v − PSr
(v)‖Lp(Sr)n + ‖v − PSr+1(v)‖Lp(Sr+1)n

+ ‖v − PSr∪Sr+1(v)‖Lp(Sr∪Sr+1)n}
≤ Cc(m)`(S1)‖ε(v)‖Lp(∪jSj)n×n

where we have used (2.10). The proof of (2.18) is analogous using now (2.13). �

Now, for each Qj , Qk ∈ W3 such that Qj ∩ Qk 6= ∅, we choose a chain Fj,k

connecting Q∗j to Q∗k and with m ≤ C(ε, δ) and define

F (Qj) =
⋃

Qk∈W3, Qj∩Qk 6=∅

Fj,k

then, ∥∥ ∑
Qk, Qj∩Qk 6=∅

χ∪Fj,k

∥∥
L∞(Rn)

≤ C ∀Qj ∈W3 (2.19)

The following lemmas will allow us to control the norms of Ev, ε(Ev) and ∇(Ev)
in (Ωc)0.

Lemma 2.4. For Q0 ∈W3 we have

‖Ev‖Lp(Q0)n ≤ C{‖v‖Lp(Q∗0)n + `(Q0)‖ε(v)‖Lp(∪F (Q0))n×n} , (2.20)

‖ε(Ev)‖Lp(Q0)n×n ≤ C‖ε(v)‖Lp(∪F (Q0))n×n , (2.21)

‖Ev‖L∞(Q0)n ≤ C{‖v‖L∞(Q∗0)n + `(Q0)‖∇v‖L∞(∪F (Q0))n×n} , (2.22)

‖∇(Ev)‖L∞(Q0)n×n ≤ C‖∇v‖L∞(∪F (Q0))n×n} . (2.23)

Proof. On Q0 we have
Ev =

∑
Qj∈W3

Pjφj

Now, since
∑

Qj∈W3
φj ≡ 1 on ∪Qj∈W3Qj , then

‖
∑

Qj∈W3

Pjφj‖Lp(Q0)n ≤ ‖P0‖Lp(Q0)n + ‖
∑

Qj∈W3

(Pj − P0)φj‖Lp(Q0)n = I + II
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Using Lemma 2.2 and (2.10), we have

I = ‖P0‖Lp(Q0)n ≤ C‖P0‖Lp(Q∗0)n

≤ C‖P0 − v‖Lp(Q∗0)n + ‖v‖Lp(Q∗0)n

≤ C{‖v‖Lp(Q∗0)n + `(Q0)‖ε(v)‖Lp(Q∗0)n×n}

Now, since on Q0 there are a finite number (depending only on n) of non-vanishing
φj and 0 ≤ φj ≤ 1, to bound II it is enough to bound ‖(Pj − P0)‖Lp(Q0)n . But,
using (2.17) and again Lemma 2.2, we have

‖(Pj − P0)‖Lp(Q0)n ≤ C‖(Pj − P0)‖Lp(Q∗0)n ≤ C`(Q0)‖ε(v)‖Lp(∪F0,j)n×n

and therefore, summing up and using (2.19) we obtain (2.20). Analogously, we can
prove (2.22) using now (2.13) and (2.18).

Now, calling P r
j the components of Pj and recalling that ε(Pj) = 0 we have

εrs(Pjφj) =
1
2
P r

j

∂φj

∂xs
+

1
2
P s

j

∂φj

∂xr
(2.24)

On Q0,
Ev = P0 +

∑
Qj∈W3

(Pj − P0)φj

and therefore, since ε(P0) = 0 we have,

ε(Ev) =
∑

Qj∈W3

ε((Pj − P0)φj)

but, there are at most C cubes Qj such that φj does not vanishes in Q0 and these
Qj intersect Q0 and therefore, `(Qj) ≥ 1

4`(Q0). Thus,

|∇φj | ≤ C`(Q0)−1

whenever φj 6= 0 for some x ∈ Q0. Then, for these values of j, it follows from (2.24)
and (2.17) that

‖ε((Pj − P0)φj)‖Lp(Q0)n×n ≤ C`(Q0)−1‖Pj − P0‖Lp(Q0)n

≤ C`(Q0)−1‖Pj − P0‖Lp(Q∗0)n ≤ C‖ε(v)‖Lp(∪F0,j)n×n

Summing up in j, we obtain (2.21).
The proof of (2.23) is similar to that of (2.21) but using now (2.11). Indeed, we

have
∇(Ev) = ∇P0 +

∑
Qj∈W3

∇((Pj − P0)φj)

and we have to estimate also the terms ∇P0 and ∇(Pj − P0). But,

‖∇P0‖L∞(Q0)n×n ≤ C‖∇P0‖L∞(Q∗0)n×n ≤ C‖∇v‖L∞(Q0)n×n ,

and

‖∇(Pj − P0)‖L∞(Q0)n×n ≤ C‖∇(Pj − P0)‖L∞(Q∗0)n×n

≤ C‖∇(Pj − P0)‖L∞(Q∗0∪Q∗j )n×n ≤ C‖∇v‖L∞(Q∗0∪Q∗j )n×n

≤ C‖∇v‖L∞(∪Fj,0)n×n}

and so (2.23) holds. �
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Lemma 2.5. For Q0 ∈W2 \W3 we have

‖Ev‖Lp(Q0)n ≤ C
∑

Qj∈W3, Qj∩Q0 6=∅

{‖v‖Lp(Q∗j )n + ‖ε(v)‖Lp(Q∗j )n×n} , (2.25)

‖ε(Ev)‖Lp(Q0)n×n ≤ C
∑

Qj∈W3, Qj∩Q0 6=∅

{‖v‖Lp(Q∗j )n + ‖ε(v)‖Lp(Q∗j )n×n} , (2.26)

‖Ev‖L∞(Q0)n ≤ C
∑

Qj∈W3, Qj∩Q0 6=∅

{‖v‖L∞(Q∗j )n + ‖∇v‖L∞(Q∗j )n×n} , (2.27)

‖∇(Ev)‖L∞(Q0)n×n ≤ C
∑

Qj∈W3, Qj∩Q0 6=∅

{‖v‖L∞(Q∗j )n + ‖∇v‖L∞(Q∗j )n×n} (2.28)

Proof. If φj does not vanish on Q0 then Qj ∩Q0 6= ∅ and so,

`(Qj) ≥
1
4
`(Q0) ≥

εδ

64n
therefore, on Q0, we have

|Ev| = |
∑

Qj∈W3, Qj∩Q0 6=∅

φjPj | ≤ C
∑

Qj∈W3, Qj∩Q0 6=∅

|Pj |,

but
‖Pj‖Lp(Q0)n ≤ C‖Pj‖Lp(Q∗0)n ≤ C{‖v − Pj‖Lp(Q∗0)n + ‖v‖Lp(Q∗0)n}.

Now, since Ω is bounded, `(Q∗j ) is bounded by a constant depending only on Ω and
therefore, using (2.10), we obtain

‖Pj‖Lp(Q0)n ≤ C{‖ε(v)‖Lp(Q∗0)n×n + ‖v‖Lp(Q∗0)n} (2.29)

and therefore, (2.25) is proved.
On the other hand, on Q0 we have

εrs(Ev) =
1
2

∑
Qj∈W3, Qj∩Q0 6=∅

{P r
j

∂φj

∂xs
+ P s

j

∂φj

∂xr
}

but, `(Qj) ≥ εδ
64n , and so |∇φj | ≤ C and (2.26) follows using again (2.29). Finally,

(2.27) and (2.28) are obtained by similar arguments, using now (2.11). �

Corollary 2.6. If v ∈W 1,∞(Ω) then

‖Ev‖Lp((Ωc)0)n + ‖ε(Ev)‖Lp((Ωc)0)n×n ≤ C{‖v‖Lp(Ω)n + ‖ε(v)‖Lp(Ω)n×n} (2.30)

and
‖Ev‖W 1,∞((Ωc)0)n ≤ C‖v‖W 1,∞(Ω)n (2.31)

Proof. It follows immediately from Lemmas 2.4 and 2.5 by summing up over all
Q0 ∈W2. �

We can now state the main theorem which follows from the results above and
arguments given in [9].

Theorem 2.7. If Ω is a bounded (ε, δ) domain and 1 < p < ∞, there exists a
constant C depending on ε, δ, n, p and the diameter of Ω such that, for any v ∈
W 1,p(Ω)n,

‖v‖W 1,p(Ω)n ≤ C{‖v‖Lp(Ω)n + ‖ε(v)‖Lp(Ω)n×n} (2.32)
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Proof. By density, it is enough to prove the inequality for smooth v. So, we assume
that v ∈W 1,∞(Ω)n. As we already said, the extension Ev is defined almost every-
where in Rn because |∂Ω| = 0. Moreover, the support of Ev is contained in a ball
B.

In view of (2.31) and the fact that |∂Ω| = 0, if Ev is a continuous function then,
it is Lipschitz. But, the continuity of Ev can be proved exactly as in Lemma 3.5
of [9]. Therefore, Ev ∈W 1,p(B)n and so, from (2.30), it follows that

‖Ev‖Lp(B)n + ‖ε(Ev)‖Lp(B)n×n ≤ C{‖v‖Lp(Ω)n + ‖ε(v)‖Lp(Ω)n×n} (2.33)

but, using the Korn inequality for smooth domains, we have

‖Ev‖W 1,p(B)n ≤ C{‖Ev‖Lp(B)n + ‖ε(Ev)‖Lp(B)n×n}

which together with (2.33) concludes the proof. �

We conclude the paper stating two consequences of our main theorem which fol-
lows by known arguments. The first result is the second case of the Korn inequality
and the second one is the Friedrichs inequality for complex analytic functions (and
their generalizations to Lp).

Corollary 2.8. If Ω ⊂ Rn is a bounded (ε, δ) domain and 1 < p <∞, there exists
a constant C depending on ε, δ, n, p such that, for any v ∈W 1,p(Ω)n which satisfies∫

Ω

( ∂vi

∂xj
− ∂vj

∂xi

)
= 0,

‖∇v‖Lp(Ω)n×n ≤ C‖ε(v)‖Lp(Ω)n×n .

Corollary 2.9. If Ω ⊂ R2 is a bounded simply connected (ε, δ) domain and 1 <
p < ∞, there exists a constant C depending on ε, δ, n, p such that for any analytic
function of the variable z = x+ iy in Ω, f(z) = φ(x, y) + iψ(x, y), with

∫
Ω
φ = 0,

‖φ‖Lp(Ω) ≤ C‖ψ‖Lp(Ω).

Conclusions. We have proved that, if Ω is an (ε, δ) domain, the Korn inequality
holds on Ω. It is interesting to observe that the converse is not true. Indeed,
consider the two dimensional domain

Ω = (−1, 1)2 \ {(x, 0) : x ∈ [0, 1)}.

Since Ω can be written as the union of two Lipschitz domains, the Korn inequality
is valid on Ω. On the other hand, it is not difficult to see that Ω is not an (ε, δ)
domain. Therefore, to give a characterization of the domains satisfying the Korn
inequality is an interesting problem which remains open.

References

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Company, 1965.

[2] S. C. Brenner , L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-
Verlag, Berlin, 1994.

[3] P. G. Ciarlet, Introduction to linear shell theory, Series in Applied Mathematics, P. G. Ciarlet

and P. L. Lions, eds., Gauthier-Villars, 1998.
[4] K. O. Friedrichs, On certain inequalities and characteristic value problems for analytic func-

tions and for functions of two variables, Trans. Amer. Math. Soc., 41, pp. 321-364, 1937.

[5] K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn’s
inequality, Ann. Math, 48, pp. 441-471, 1947.
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Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de
La Plata, Casilla de Correo 172, 1900 La Plata, Provincia de Buenos Aires, Argentina

E-mail address: mariam@mate.unlp.edu.ar


