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ABSTRACT 

Recognition technology has gained state-of-the-art performance with the dawn of 

Deep Convolutional Neural Network (DCNN), and with these achievements in computer 

vision, machine learning, and 3D-sensor, industries are near to start a new era of the 

automation. However, object detection for robotic grasping in varying environments, low 

illumination, occlusion, and partial images contributes to poor accuracy and slows the 

speed of detecting objects. In this thesis, an approach is presented to recognize an object 

in an industrial warehouse through a robotic vision to advance warehouse automation 

using a robot arm. A multimodal architecture is designed to be used as a base 

network/backbone network of Single Shot Detector (SSD) to address the warehouse’s 

challenge, such as partial images and low illumination. This architecture uses Red-Green-

Blue (RGB) and Depth images as an input and provides a single output. Most of the 

researchers used Visual Geometry Group (VGG), Residual Network (ResNet), and 

MobileNet for detection purposes, but in this thesis, a new DCNN architecture is 

designed to perform a specific task of grasping. Here, four different Red-Green-Blue-

Depth (RGB-D) deep neural network architectures are designed and compared in their 

training, testing, and other statistical metrics for evaluation. The Deep Convolutional 

Neural Network (DCNN) development motive is to recognize the input object image 

obtained from the depth sensor cameras in warehouses. Four objects are mainly focused 

on this research: ‘Bowl,’ ‘School glue,’ ‘Dove bar,’ ‘Soda can.’ Furthermore, details of 

the designed model, its performance, and the results are discussed in this thesis. 
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I. INTRODUCTION 

 

With the understanding of 2D-images, understanding of the 3D-images is also 

promoted from the extraction of features from 3D information in machine learning. 

Extracting essential features from 3D-images is a perplexing task in computer vision 

because of its complexity and amount of information. Computer vision applications 

ranging from mapping, 3D-sensing, robotics, augmented reality, and autonomous driving 

demand for 3D-feature extraction are in high demand. Many fields in information 

technology, giant companies, academia, and industries contribute to the 3D-computer 

vision. The leading cause of the rapid improvement of 3D-vision is its application and 

necessity in industries [1].  

Assessment, image elucidation, and feature extraction of significant features are 

natural and instantaneous for humans. The robotic vision or computer vision finding the 

segmentation, orientation, pose, and detection is a profound problem and ambition for the 

machine learning community [2]. Researchers are trying to imitate human beings’ vision 

ability using high resolution with depth information cameras and convolutional neural 

networks. In the past decade, CNNs have become a prevalent and powerful tool for the 

suspension of computer vision problems. However, due to 3D-robot-based vision 

complexities, computer vision is still in its early infancy [3].  

This thesis addresses the design approach in how to improve 3D object detection for a 

robot arm by utilizing 2D machine learning methods. Here, RGB-D Deep Convolutional 

Neural Network (DCNN) is designed. The design methods consider the 3D parameters of 

the images into 2D sets of information and process the object recognition to obtain high 
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accuracy performance of identification and distance information for the navigation and 

grasp of the robot arm.  

In this thesis, a new Deep Convolutional Neural Network (DCNN) architecture for 

RGB-D images is designed to recognize the warehouse's objects. The research 

development of the architecture helps a robot arm in recognizing an object on the shelf 

and tote; so that the robot arm can pick after successfully recognizing it. The model is 

trained from scratch with the thousands of images for the four classes ‘Bowl,’ ‘Glue,’ 

‘Soda can,’ ‘Dove bar’ to make this model robust to challenges and complexities of low 

illumination, different viewing angle, orientation, and partial image. Different viewing 

angles, orientations, lighting conditions, and brightness were collected and listed as part 

of the dataset for the training and testing evaluation of the model. 

This thesis's deep learning model was selected from four architectures that were 

evaluated and tested through different metrics. The goal is to design the best architecture 

which can take Red-Green-Blue (RGB) and Depth images. Both images are fed to the 

architecture with multiple inputs, RGB and Depth images, and gives a single output as a 

classification of objects. In this thesis, RGB-D images are used from the dataset, which 

was taken from the depth sensor in the Massachusetts Institute of Technology (MIT)-

Princeton [4] and the University of Washington [5]. 

The development and implementation of computer vision object recognition to the 

ASEA Brown Boveri (ABB) company manufactured an industrial robot arm with its 

controller aims for its gripper movement control. The robot arm is provided with a 

gripper mounted on it to grasp the objects detected by the robotic vision using the 3D 

sensor camera. The 3D sensors help obtain a picture in low light and provide depth 
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information of the object to find out the distance between the object and robot arm. 

 The Deep Convolutional Neural Network (DCNN) method introduced is a multi-

modal approach, where a total of four architectures are designed with two different 

networks for the RGB and Depth network streams in each architecture. These images are 

fed to the DCNN architecture after image pre-processing using OpenCV. In the DCNN 

architecture, features are extracted using convolutional layers and pooling layers to sub-

sample the images. The output of these two layers is merged and fed to another 

convolutional layer for classification purposes. Experimentation work is performed under 

different illumination and challenging conditions such as low light and partial images 

with the different learning rates, batch sizes, image resolutions, and calibration of the 

hyperparameters in the architecture. 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

Contributions 

The main contributions of this thesis can be summarized as follows: 

• The designed architecture tested on the renowned RGB-D dataset, and it 

outperforms the current state of the art on the RGB-D Object dataset in [6]. 

• Object recognition using deep learning is applied to RGB-D images of objects in 

different poses, varying illumination in a challenging real-world and noisy 

environment using the data augmentation techniques on RGB-D Washington and 

Princeton dataset while maintaining good accuracy. 

• A new RGB-D DCNN architecture is designed, tested, and compared with the 

other designed architectures for accurate classification of objects. 

Thesis Structure 

The thesis is structured into nine main chapters. In this chapter, a brief 

introduction was given with the problem statement and contribution listed.  In the coming 

Chapter 2, named “Background,” discusses the motivations behind this research work is 

reviewed. The subsequent Chapter 3 conveys the relevant literature review based on the 

work done in object detection in research, industries, and challenge competitions. 

Chapters 4 and 5 discuss the basic principle of the neural networks and the CNN 

modeling techniques' fundamental concepts.  

Chapter 6, named "Methodology," delivers the RGB-D dataset's details for this research, 

the various preprocessing steps, and the object recognition multi-modal architecture 

design approach. Chapter 7, entitled "Results and Discussion," presents experiment 
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results and discusses the performance obtained by designed multi-modal architecture. 

This research work is concluded in chapter 8 with the final observations and summary of 

the research work. Finally, in Chapter 9, some implications for further research are 

described.  
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II.  BACKGROUND 

 

 This chapter presents the motivation and factors to be considered for this thesis project. 

It also reviews the Amazon Picking Challenge, robot arm with its controller, and discusses 

the necessity of computer vision object detection solution for warehouse problems to 

accomplish their tasks efficiently and effectively. 

Motivation 

 Robots, or cobots (collaborative robots) or assistive robots, have been instrumental in 

performing tasks that are unfeasible for operators to attain. Robots raise efficiency and 

safety levels due to their potential of intelligent software integration, dexterity, 

adaptability, and customization of movements for different operating tasks. Situations like 

the COVID-19 pandemic, which led to a partial or complete shutdown of plants and 

factories, resulted in economic downturn that the focus has turned to robotic automation 

with computer vision solutions . For this, manufacturing companies may need to 

reconfigure their workplace, warehouses, and factories by replacing operators with 

intelligent machines as a necessity in terms of economics and supply chain continuation.  

The practice of social distancing may also hasten the process of automation.  

After the commencement of the Amazon Picking Challenge (APC) in 2015, the idea of 

object detection and recognition attracted attention for the pick and place process of an 

object from warehouse shelves and place it to a tote. The APC competition challenged the 

robotics research community to integrate the state-of-the-art in objection and perception, 

path planning, motion planning, and clasp planning for a complete automation so that 

robots can perform a task independently. They comprised a streamlined model of the task 
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to pick items from the shelves and put them into receptacles, which is generally faced by 

operators in warehouses [1].  

 This thesis focuses on the identification of objects for warehouse and industrial 

applications in where operators need to manage several objects. The items concentrated 

for this work are a ‘Bowl,’ ‘Soda can,’ ‘School glue,’ and a ‘Dove bar.’ Also, situations 

like low illumination, partial view of objects, at times is difficult and lethargic for 

operators, and can be effortless for robots with smarter integration of software and 

detection models. However, notwithstanding remarkable performances, the problem for 

robots to detect things accurately and efficiently still challenges scientifically when 

dealing with real scenarios. The Deep Convolutional Neural Network (DCNN) is designed 

to classify the objects to overcome the problem of warehouses where there are amorphous 

objects, different shapes, and structure with blur, noisy images, and complex shapes, 

which makes it difficult to identify the object. Machine learning tools like TensorFlow, 

Keras are used in the Python programming language for the design development of the 

DCNN model, and the training, validation, and testing of the model are performed in the 

LEAP cluster and a HiPE server. 

This thesis provides a vision system design to industrial robot arm capabilities to 

identify objects for classification. The robot arm and its controller from the ASEA Brown 

Boveri (ABB) company is shown in Figure 1. It is the fourth generation of robotic 

technology with six degrees of freedom (DoF). It is an adaptable solution for object 

handling and assembly applications in electronic, manufacturing, and the food industry. It 

can handle a load of 3kg. and enabled with fast acceleration with high accuracy for many 

applications. The movements are executed through the IRC5 (Industrial Robot 
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Controller) robot controller to control the arm’s rotation, extension, and grasping. It 

provides the ability to perform a task in an efficient manner providing a pinpoint 

accuracy path. The IRC5 is programmable with Rapid, a high-level programming 

language for the ABB robot, which can be integrated with Python. An implementation of 

a vision system for detection and recognition of 3D-objects in Red-Green-Blue-Depth 

(RGB-D) images are captured by the 3D sensor.  

The Deep Convolutional Neural Network (DCNN) designed in this thesis is a multi-

modal approach that can be used as a base or backbone network for object detection 

network. In this designed network, two inputs are given, RGB and Depth image, with the 

image processing added in it. Image preprocessing is an indispensable part of this process 

to detect an object in the low illumination, cluttered background, and partial images.  In 

this approach, a parallel architecture is designed to handle the RGB and Depth image input 

from the 3D sensor. These two streams of RGB and Depth network are concatenated to 

combine information from both of the streams. After combining these two streams, an 

output layer is used for the multi-class classification of objects.  
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Figure. 1 ABB Robot Arm to be used for hardware implementation. 
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III.  LITERATURE REVIEW 

 

The literature review covers papers based on object recognition, detection in the 

industries warehouse, and robotic arm movements. Most of the authors discussed deep 

learning methods in warehouse automation in a semi-structured environment such as low 

illumination, cluttered objects, and occluded objects. 

RGB-D based 3D-Approach research 

Marcelo Borghetti Soares et al. [7] explained the problem of robotic vision and 

processing of RGB-D images, mixing volumetric, and multi-model view representation. 

The authors evaluated their proposed Point Cloud Object Recognition model using the 

Washington dataset of RGB-D images and implemented two independent Convolutional 

Neural Networks (CNN) for learning 3D features. It took 0.0896 seconds for classifying 

the object using their approach. The accuracy achieved by the designed model was 

81.29% ± 9.25 with RGB+D and 86.82± 3.83 with RGB + RGB-D. 

Sulabh Kumra et al. [3] evaluated the RGB-D images from Cornell Dataset for 

robotic grasp detection and challenges related to robotic grasping. The authors mentioned 

and experimented with two models, Uni-Model and Multi-Model grasp detector, using 

the ResNet50 model and evaluated the performance of object recognition and grasping. 

The authors found 88.53% and 94.3% for grasp prediction with these models.  

Amazon Picking Challenge based research 

Rico Jonschkowski et al. [8] performed in Amazon Picking Challenge (APC) in 2015 

and won with their probabilistic multi-class segmentation from RGB-D data.  The APC 

challenge goal is to design an autonomous pick-and-place robot to increase the efficiency 
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and accuracy with precision in the warehouse environment. Here, researchers computed 

pixel-wise probabilities for different objects and environments, such as reflective, 

translucent, cluttered, or loosely coupled components. The development used the 

extended version of the Histogram back projection to a probabilistic version with 

additional non-color features and also effectively utilized iterative closet point (ICP) by 

the random forest classifier. Finally, the proposed developed model achieved 83.33% 

accuracy. 

Andy Zeng et al. [9] presented about what they achieved in the APC 2016. The 

authors designed a vision system to perform smoothly under cluttered objects, self-

occlusions, and a large variety of objects using a multi-view Self-supervised Deep 

Learning algorithm. The model used 6-degrees of freedom ABB IRB1600ID robot 

industrial manipulator with the RealSense F200 camera on it. The model was evaluated 

with performance metrics separately for cluttered, occlude object, and vision prediction 

accuracy ranges from 60% to 80%.  

A.P del Pobil et al. [10] participated in the APC to automate the pick-and-place 

operations in an unstructured environment. The authors used two 7-degrees of freedom 

robotic arms for object recognition. For feature matching, SIFT (Scale Invariant Feature 

Transform) to identify objects and approximate the nearest neighbor matching to improve 

query time is used. To increase performance and accuracy, SegNet and ResNet are also 

used, which are CNN based. The three algorithms were integrated and achieved an 

improved performance per item and reduced timing by eleven seconds. 

Carlos Hernandez Corbato et al. [11] focused their work mainly on product handling 

using a robotic arm, which involves pick and place in a warehouse's semi-structured 
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environment. The authors adopted the Faster R-CNN method and visual geometry group 

network (VGGNet) as the initialization for the convolution filters and gaussian 

distribution for object detection. With this deep learning algorithm, the Delft Robotic 

team secured the first position in the APC 2016 with a mean pick-and-place time of 33.76 

seconds and an efficiency of 97.7%. The authors evaluated their CNNs and found the 

mean average precision for Bin and Tote model as 82.9% and 90.0%. 

Max Schwarz et al. [12] also presented in APC 2016 to overcome the problem of 

handling a large variety of items in the warehouse. The authors achieved a success rate of 

83.33% (picked 10/12 objects) using a semantic segmentation and SVM object detection 

approach. Both approaches are based on CNN pre-trained on ImageNet dataset images. 

Colin Rennie et al. [13] proposed a method to detect objects using RGB-D (Red, 

Green, Blue, and depth) sensor for warehouse pick-and-place robot with different 

challenging conditions of low illumination inside shelves, texture-less, and reflective 

objects. This idea came from the first APC competition. The author proposed a new 

dataset to increase the accuracy of object detection and pose estimation in the warehouse, 

and there are always complications of smaller bins, low illumination, multiple objects, 

clutter, similar objects, and overcoming these obstacles. 

Research based on detection techniques 

Xin Lu et al. [14] replaced the base VGG16 network with ResNet101, keeping the 

SSD Network the same as the original to detect dangerous goods, such as knives, 

revolvers, and rifles. The replacement of architecture helped improve accuracy by 

17.40%, which was 55.0% with VGG16, but the amount of calculation increased with 

these changes. 
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Alexander Womg et al. [15] designed an SSD CNN named Tiny-SSD for real-time 

object detection to handle memory issue requirements and computational cost. It is 26X 

times smaller than Tiny-You Only Look Once (YOLO) with a size of 2.3MB and 

achieved a mean Average Precision (mAP) of 61.3%, which is ~4.2% higher than Tiny-

YOLO on the Visual Object Classes (VOC) 2007 dataset. 

Shen-Fu Hsiao et al. [16] designed a model to reduce the VGG DNN model's 

complexity without sacrificing accuracy in object classification and detection. The 

authors named the Low Complexity DNN and achieved an accuracy of 86.3% in 

classification and 70% in detection on the ImageNet dataset.  

Chengcheng Ning et al. [17] proposed an improved SSD algorithm to increase 

accuracy without affecting speed. The authors implemented an Inception Block to the 

SSD with some extra Batch Normalization (BN) layers. The main idea of Inception was 

to use dense components to approximate the optimal local sparse structure. The authors 

believed that the Inception block could catch more information without increasing 

network complexity. This implementation achieved an accuracy of 78.6% on the Pascal 

VOC2007 dataset. 

Wei Liu et al. [18] presented a detecting object in an image using deep neural 

networks. This was the first SSD model implemented in December 2016 for object 

detection. It achieved an accuracy of 76.9% mAP and outperformed the Faster R-CNN 

model on Pascal VOC 2007 dataset, which includes tv, bottle, chair, bus, car, and other 

object classes. 

Zhu Dongtao et al. [19] focused on solving traffic sign detection's common precision 

problem by improving the SSD detection algorithm. In this research, the authors removed 
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some high-layer features maps, adjusted the low-layer feature maps, and adjusted the 

aspect ratio. These changes achieved mean Average Precision of 75.28% under different 

environmental conditions and outperformed classical SSD by ~10% 

Research based on different dataset and classifier comparison 

Arul Selvam et al. [20] shed light on warehouses’ challenges, such as adding new 

objects continuously and frequent human interaction. To overcome the situation, the 

authors proposed a pipeline to minimize human intervention and increase the reliability 

of the 3D-models of objects. Authors trained a CNN for 6D-pose estimation from RGB 

images of a single class and multiclass images in a cluttered scene and maximum 

occlusion, limited to 50%, including symmetric and asymmetric objects. The method is 

evaluated on a synthetic validation dataset and cluttered in a real-world scene. 

Hyun-Jun Jo et al. [21] Synthesize dataset consisting of 10,000 images of objects, 

including different backgrounds, and implemented Faster R-CNN based on the VGG16 

Net model for object recognition for bin picking system. The authors explained that deep 

learning algorithms need to be fine-tuned to improve the efficiency and accuracy of 

grasping objects. In their proposed method, four main steps are considered: the 

generation of the dataset using the dataset synthesis method, train the object recognition 

algorithm by the generated dataset, calculate the center points of objects, and grasp 

objects. The authors’ approach achieved a 99% success rate (149/150).  

Research based on industrial application 

Kyekyung Kim et al. [22] proposed multiple object recognition solutions for the 

manufacturing process in industrial robot applications for diverse objects, including 

reflective surface and complex shape, illumination effect. The authors used 2D- and 3D-
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vision sensors for occluded objects, and the difference of Gaussian filters are used to 

overcome illumination effects. A three-layer perceptron model is implemented and 

obtained an accuracy of 96% to classify objects. 

Rasmus S. Andersen et al. [23] presented the scenario of industries where traditional 

robots are used to set up and perform a simple, repetitive pick and place task. The authors 

proposed object recognition for pick-and-place using SVM, Logistic Regression, k-

Nearest Neighbor (kNN), and ANN classifiers. The object chosen belongs to a 

challenging group of objects with a highly reflective surface, metallic, and colorless in a 

semi-structured industrial environment. The authors found the highest accuracy with a 

Logistic regression classifier of 93% and slightly better than SVM in experimentation. 

Kyekyung Kim et al. [24] explained different issues and challenging conditions in 

manufacturing plants for pick-and-place robots. Precision is required for assembly and 

large-scale assembly automation that utilizes computer vision navigating different 

lighting conditions and environments. The authors proposed a dynamic object recognition 

using precise location detection, which is not restricted to shape, distance, location, and 

illumination conditions using a neural network. It includes randomly located multiple 

types of objects, and visual serving object randomly piled bin picking targeted objects. 

Their work found a 0% recognition error for training object samples and 2.2% error for 

testing object samples. 

Xi Chen et al. [25] performed pick and place experiments on industrial tools and 

office supplies using Universal Robot 5 (UR5). The authors used 50 different classes, 

including tools and office supplies, to increase variation samples in the dataset and 

rotated all samples to different angles. Faster R-CNN based on VGG-M net was applied 
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to the vision system for object detection. The authors tested the system using two 

cameras, Kinect and ZED, and the ZED camera was chosen over Kinect due to its signal 

transmission ability. The work found the object detection accuracy of 68% using Faster 

R-CNN. 

The literature survey discusses SSD techniques, improvement in base network, 

dataset, different image preprocessing tools, classifiers, and camera types. The discussed 

papers provide different ideas and implementation knowledge about the problems faced 

with object detection in different environments, industries, different algorithms, and 

datasets. In this thesis, an architecture is designed that addresses all the problems 

discussed to provide a specific classification of objects in simulated warehouse 

environmental conditions. 
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 IV.  NEURAL NETWORKS 

 

Machine learning is a subset of Artificial Intelligence (AI) responsible for 

providing systems the ability to automatically learn and evolve from experience from 

data and observations available without being explicitly programmed. Here is a slightly 

more general definition of machine learning:  

“Machine Learning is the field of study that gives computers the ability to learn without 

being explicitly programmed.” Arthur Samuel, 1959 

, and a more engineering-oriented definition of machine learning: 

“A computer program is said to learn from experience E with respect to some task T and 

some performance measure P, if its performance on T, as measured by P, improves with 

experience E.” Tom Mitchell, 1997 

Deep learning is a subset of Artificial Neural Network (ANN), and ANN is a 

subset of machine learning. A graphical depiction of the relationship between AI, 

machine learning, neural networks, and deep learning is shown in Figure 2.  
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Figure 2. A Venn diagram describing deep learning as a subfield of neural networks 

which is a subfield of machine learning all included in AI 

Many human achievements in this society are inspired by nature, like electricity, planes, 

bullet trains, Sonar, Velcro, and nature has inspired countless more inventions. Similarly, 

the idea of ANNs is also inspired by the networks of biological neurons found in our 

brains. ANNs are at the very core of deep learning; they are versatile, robust, and 

scalable. It makes them ideal for tackling large and highly complex machine learning 

tasks such as classifying billions of images, powering speech recognition services, and 

recommending the best videos to watch hundreds of millions of users every day [26]. 

Training computers to learn like humans’ brains is achieved partly through ANN. 

ANNs are a series of parametric algorithms whose design is inspired by the structure of 

biological neural networks that constitute the human brain. The model capability to 

handle more complex classification tasks increases, and it is referred to as a deep network 

as the number of hidden layers increases. Deep learning belongs to the family of ANN 

algorithms. However, deep learning networks are distinguished from the more 

commonplace single hidden-layer neural networks by their depth; that is, the number of 
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node layers through that data must pass in a multistep process of pattern recognition. 

There is no consensus amongst experts on the depth of a network to be considered.  

In the next sections, the building blocks of neural networks and the algorithms used to 

make the network able to learn would be discussed. Furthermore, techniques to speed up 

the learning process and enhance the deep learning model's performance will be 

reviewed.  

From Biological to Artificial Neurons 

Surprisingly, ANNs were first introduced in 1943 by the neurophysiologist 

Warren McCulloch and the mathematician Walter Pitts in [26]. McCulloch and Pitts 

presented a simplified computational model of how biological neurons might work 

together in animal brains to perform complex computations using propositional logic. 

This was the first artificial neural network architecture conceptual approach in the forms 

of definition and design. Since then, many other architectures have been developed and 

innovated for various applications and types of data formats. 

Biological Neurons 

Before discussing artificial neurons, the biological neuron is represented in Figure 

3. It is an unusual-looking cell mostly found in animal brains. It comprises a cell 

body containing the nucleus and most of the cell’s complex components, many branching 

extensions called dendrites, and one long extension called the axon. The axon’s length 

maybe just a few times longer than the cell body, or up to tens of thousands of times 

longer. Near its extremity, the axon splits off into many branches called telodendria, and 
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at the tip of these branches are minuscule structures called synaptic terminals (or 

simply synapses), which are connected to the dendrites or cell bodies of other neurons. 

Biological neurons produce short electrical impulses called action potentials (APs, or 

just signals) that travel along the axons and make the synapses release chemical signals 

called neurotransmitters. When a neuron receives a sufficient amount of these 

neurotransmitters within a few milliseconds, it fires its electrical impulses due to the 

neurotransmitters where some of them inhibit the neuron from firing [26]. 

 

 

Figure 3. Biological neuron [26] 

Thus, individual biological neurons seem to behave in a relatively simple way, but they 

are organized in a vast network of billions, with each neuron typically connected to 
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thousands of other neurons. Highly complex computations can be performed by a 

network of reasonably simple neurons, much like a complex anthill can emerge from 

simple ants' combined efforts. The architecture of biological neural networks (BNNs) 

[26] is still the subject of active research, but some parts of the brain have been mapped, 

and it seems that neurons are often organized in consecutive layers, especially in the 

cerebral cortex, the outer layer of the brain, as shown in Figure 4.  

 

Figure 4. Multiple layers in a biological neural network (human cortex) [26] 

Artificial Neural Network 

ANN is formed by artificial neurons, where those neurons are organized in layers. 

There are three types of layers: an input layer, one or multiple hidden layers, and a single 

output layer. Neural networks are classified from their number of hidden layers and how 

they are connected. If the neural network has/or not loops can be classified as Recurrent 

or Feed-forward neural networks. An example of a two-layer feed-forward artificial 

neural network is shown below in Figure 5. Imagine that the connections between 

neurons are the parameters that will be learned during training. In this example, Layer L1 

is the input layer, L2 and L3 are the hidden layers, and L4 is the output layer. 
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Figure. 5 An example of 2-layer feed forward artificial neural network 

 

Artificial Neuron 

The single artificial neuron shown in Figure 6 will perform a dot product between 

w and x, including the bias +1 node, and the result is passed to an activation function that 

will add some non-linearity. This non-linear function is called the activation function. 

Different types and more details of the activation functions is shown in Figure 7. In the 

past, the popular choice for activation functions was the sigmoid and tanh [26][27]. 

However, when n number of hidden layers use an activation like the sigmoid function, n 

small derivatives are multiplied together. Thus, the gradient decreases exponentially as it 

propagates down to the initial layers. The Rectified Linear Unit (ReLU) layers is an easy 

solution, as it does not cause a small derivative, it converges faster, and the slope does 

not saturate when it gets large to overcome this problem. Hence, a better response for 
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deep neural networks. Therefore, ReLU neurons are considered in the research.  

 

Figure 6 Artificial Neuron Representation 

 

Those artificial neurons will form the neural network. The non-linearity will allow 

different variations of the same class object to be learned separately, which is different 

behavior than the linear classifier that tries to learn all different variations of the same 

class on a single set of weights. When an ANN contains a deep stack of hidden layers, 

it is called a deep neural network (DNN). The field of deep learning studies DNNs, and 

more generally, models containing deep stacks of computations. Many practitioners 

discuss deep learning whenever neural networks are involved, including shallow ones. 

More neurons and more layers are always better, but it will need more data to train. Each 

layer learns a concept from its previous layer. Therefore, it is beneficial to have deeper 

neural networks than a wide one because the layer does not need to learn the whole 

concept at once. Instead, the deep neural network builds a chain of features that 

constructs the dissection of information weighted to a proper decision or outcome. As the 
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depth of DNN increases, the classification accuracy also increases opposed to the case for 

traditional machine learning algorithms.           

 

Figure 7 Activation functions plot and details [28] 
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As per the depth of the network, the behavior of neural networks can be better 

shown by a plot inspired by Andrew Ng’s 2015 talk in [27] in Figure 7. From the plot, it 

can be seen that as the amount of training data increases, accuracy also increases for 

DNNs, whereas it comes to a standstill for traditional machine learning algorithms. This 

is the reason to associate large datasets with deep learning. For image classification, if the 

dataset contains more number of images, then DL may achieve better results compared to 

other machine learning algorithms such as logistic regression, SVMs, decision trees, and 

other techniques [27]. 

Figure 8. Relationship between performance and training data for different neural 

networks 

In this chapter, the fundamentals of Deep Learning are discussed, which belongs to the 

family of Artificial Neural Networks (ANNs). In the next chapter, Convolutional Neural 

Network is discussed, it is a subset of Deep Neural Network. 
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V. CONVOLUTIONAL NEURAL NETWORK 

 

The chapter describes the Convolutional Neural Network (CNN) learning model 

in the context of object recognition. A detailed introduction to basic concepts of 

convolution and basic building blocks of the CNN is also discussed.  

Convolutional Neural Network: an overview 

Convolutional Neural Network (CNN) belongs to a powerful family of ANNs. It 

is specially designed to handle computer vision problems. The CNN emerged from the 

brain’s visual cortex study and used in image recognition since the 1980s. In the last few 

years, CNNs have accomplished herculean performance on some complex visual tasks 

due to the amount of available training data and increased computational power. CNNs 

are the backbone to power self-driving cars, image search services, automatic video 

classification systems, and an increase of image and video applications.  

In the last decade, the number of architectures has been developed and tested on 

different datasets like ImageNet, Pascal VOC. Traditional feed-forward machine learning 

algorithms use Fully Connected layers with each neuron of one layer is connected to 

every output of the previous layer. A CNN starts with a convolutional layer and is 

connected to a Fully-Connected layer at the end of the architecture, making it very 

efficient because convolution layers carry fewer parameters than Fully-Connected layers 

reducing the memory requirements and computational cost. Each layer of a CNN applies 

a different set of filters and combines the results by feeding the output into the network's 
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next layer. During the training of a model, CNN automatically learns the values for these 

filters by pixel. “In the context of image classification, CNN may learn to:  

• Detect edges from raw pixel data in the first layer.  

• Use these edges to detect shapes (i.e., “blobs”) in the second layer.  

• Use these shapes to detect higher-level features such as facial structures, parts of a 

car, or any features in an image in the highest layers of the network.” [27]  

Building Blocks of a CNN 

There are different types of layers in a CNN network. The most common layers of a CNN 

are as follows: 

• Convolutional Layer  

• Activation Layer  

• Pooling Layer  

• Fully-Connected Layer  

• Batch Normalization Layer  

• Dropout Layer  
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Convolutional Layers 

The essential building block of a CNN architecture is the convolutional layer. 

Neurons in the first convolutional layer are not connected to every pixel in the input 

image, but only to pixels in their receptive fields. Each neuron in the second 

convolutional layer is connected only to neurons located within a small rectangle in the 

first layer shown in Figure 9. This architecture allows the network to concentrate on 

small low-level features in the first hidden layer, then assemble them into more extensive 

higher-level features in the next hidden layer, and so on. This hierarchical structure is 

standard in real-world images, which is one reason why CNNs work so well for image 

recognition. 

 

Figure 9. CNN layers with rectangular local receptive fields 

In a CNN, each layer is represented in 2D, making it easier to match neurons with 

their corresponding inputs. It consists of a set of learnable filters or kernels. These kernels 

are usually of small sizes, such as 1x1 or 3x3. These filters slide across the input image; a 

filter/kernel is also an array of numbers called weights or parameters. A significant note 

is that the depth of this filter has to match the depth of the input. It is common to add 

zeros around the inputs, as shown in Figure 10, for a layer to have the same height and 
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width as the previous layer. The addition of zeros is known as zero padding. 

 

Figure 10. Connections between layers and zero padding 

It is also possible to connect a large input layer to a much smaller layer by spacing out the 

receptive fields, as shown in Figure 11. It will dramatically reduce the model's 

computational complexity by skipping the intermediate location to reduce the image's 

resolution. The shift from one receptive field to the next is called the stride.  

 

Figure 11. Reducing dimensionality using a stride of 2 
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The following formula can be used to find the size of the first two dimensions of the 

output volume: 

(W −F +2P)/S+1                                                                                                          Eq. 1 

, where W is the input volume size, F represents the filter size of the convolutional layer, 

S and P are the stride and amount of zero padding, respectively. In Figure 3, a 5×7 input 

layer plus zero padding is connected to a 3×4 layer, using a 3×3 receptive fields and a 

stride of two. 

• padding must be either "Same" or "Valid": 

§ If set to "SAME," the convolutional layer uses zero padding if necessary. The 

output size is set to the number of input neurons divided by the stride, rounded 

up. For example, if the input size is 50 and the stride is 3, then the output size 

is 17 (i.e., 50/ 3 = 16.6, rounded up to 17). Then zeros are added as evenly as 

possible around the inputs, as needed. When strides=1, the layer’s outputs will 

have the same spatial dimensions (width and height) as its inputs, hence the 

name same. 

§ If set to "VALID," the convolutional layer does not use zero padding and may 

ignore some rows and columns at the bottom and right of the input image, 

depending on the stride. This means that every neuron’s receptive field lies 

strictly within correct positions inside the input, hence the name valid. 
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Input images are also composed of multiple sublayers: one per color channel. 

There are typically three channels to generate a colored image with red, green, and blue 

(RGB) shown in Figure 12. Grayscale images have just one channel, but some images 

may have much more—for example, satellite images that capture extra light frequencies, 

such as infrared and hyperspectral images. 

 

Figure 12. Convolutional layers with multiple feature maps, and images with three color 

channels 

Pooling Layers 

Pooling layers are used to subsample the input image to reduce the computational 

load, memory usage, and parameters. It allows to reduce the number of parameters and 

computation in the network and helps to control overfitting. Just like in convolutional 

layers, each neuron in a pooling layer is connected to the outputs of a limited number of 

neurons in the previous layer, located within a small rectangular receptive field. Here, 

size, stride, and padding type have to be defined.  However, a pooling neuron has no 

weights; all it does is aggregate the inputs using an aggregation function such as the max 
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or mean. Figure 13 shows a max pooling layer, which is the most common type of 

pooling layer. In Figure 14, a 2×2 pooling kernel, with a stride of two and no padding, is 

shown. Only the max input value in each receptive field makes it to the next layer, while 

the other inputs are dropped. The output image has half the height and width of the input 

image because of the stride of two. 

Figure 13. An example of a Pooling operation with different strides [27] 

 

Figure 14. Max pooling layer with a 2×2 pooling kernel, stride two, and no padding 

A pooling layer typically works on every input channel independently, so the output 

depth is the same as the input depth. Other than reducing computations, memory usage, 

and the number of parameters, a max pooling layer also introduces some level 
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of invariance to small translations. By inserting a max pooling layer every few layers on a 

CNN, it is possible to get some translation level invariance at a larger scale. Moreover, 

max pooling offers a small amount of rotational invariance and small-scale invariance. 

Such invariance, even if limited, can be useful where the prediction should not depend on 

these details, such as in classification tasks. However, max pooling has some downsides 

as well. Firstly, it is very destructive: even with a 2×2 kernel and a stride of two, the 

output will be two times smaller in both directions, merely dropping 75% of the input 

values.  

The average pooling layer works precisely like a max pooling layer, except it 

computes the mean rather than extracting the max value. “Average pooling layers used to 

be very popular, but people mostly use max pooling layers now, as they generally 

perform better [26].” However, max pooling preserves only the most vital features, 

reducing the meaningless ones, so the next layers get better-summarized features. 

Moreover, max pooling offers stronger translation invariance than average pooling, and it 

requires slightly less computation. Max pooling is typically done in the middle of the 

CNN architecture to reduce the spatial size, whereas average pooling is normally used as 

the network's final layer, such as GoogLeNet, SqueezeNet, and ResNet where it is wished 

to avoid using Fully-Connected layers entirely. 

One last type of pooling layer that is often seen in modern architecture is 

the global average pooling layer. It works by computing each feature map's mean map 

outputting a single number per feature map and instance. Although this is extremely 
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destructive and most of the feature map information is lost, it can be useful as the output 

layer.  

Activation Layers 

After each Convolutional layer, an Activation layer is placed in the CNN. The 

Activation layers are nonlinear functions such as Sigmoid, Rectified Linear Unit (ReLU), 

Exponential Linear Unit (ELU), and others. For the designed model, ReLU is used for the 

RGB-D object recognition model because it converges faster, and the slope does not 

saturate when x gets large. It does not have the vanishing gradient problem suffered by 

other activation functions like sigmoid or tanh. Plots of different activation functions with 

their corresponding mathematical function are shown in Figure 15.  

 

Figure 15. Plots of different activation functions 

“An activation layer accepts an input volume of size Winput×Hinput×Dinput and then 

applies the given activation function, as shown in Figure 16. The activation function is 

applied in an element-wise manner, and the output of an activation layer is always the 
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same as the input dimension, Winput = Woutput, Hinput = Houtput, Dinput = Doutput 

[27].”  

 

Figure 16. An example of an input volume going through a ReLU activation, max (0, x) 

Fully-Connected Layers 

The Fully-Connected layer is composed of neurons that are fully connected to all 

activations in the previous layer. Fully connected layers are always placed at the end of 

the network to perform classification based on extracted features from the preceding 

convolutional and pooling layers. This layer takes an input volume from either the 

convolution, ReLU, or pool layer and outputs an N-dimensional vector, where N is the 

number of classes that the program must realize.  
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Batch Normalization 

Batch Normalization layers are used to normalize a given input volume 

activations before passing it into the next layer in the network. If 𝑥 is considered as the 

mini-batch of activations, then the normalized 𝒙̂ can be computed using Eq. 2.                                             

                                                                               Eq. 2  

Here in Eq. 2, 𝜇𝛽 and 𝜎2𝛽 are respectively mean and variance over each mini-batch of 

training images, 𝛽. The error 𝜀 is set equal to a small positive value in the range of 1e-7 to 

avoid dividing by zero. Applying implies that the activations leaving a Batch 

Normalization layer will have approximately zero mean and unit variance (i.e., zero-

centered). During testing, the mini-batch 𝜇𝛽 and 𝜎2𝛽 are replaced with running averages 

of 𝜇𝛽 and 𝜎2𝛽 computed during the training process. This ensures that images through the 

network can be passed and obtain an accurate prediction without being biased by the 𝜇𝛽 

and 𝜎2𝛽 from the final mini-batch passed through the network during the training phase 

[27].  

Batch Normalization has been shown to be extremely useful for the following effects in 

the network.  

• It reduces the number of epochs a NN takes to train itself. 	

• It stabilizes training by allowing for a wide variety of learning rate and 

regularization techniques. 	
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• It provides a stable loss curve as it helps to minimize loss. 	

Dropout 

Dropout is one of the most popular regularization techniques for deep neural 

networks. Geoffrey Hinton proposed it in 2012 [29] and further detailed in 2014 by 

Nitish Srivastava et al. [30], and it has proven to be highly successful. Even the state-of-

the-art neural networks get a 1–2% accuracy boost by merely adding a dropout layer. 

When a model already has a 95% accuracy, getting a 2% accuracy boost means dropping 

the error rate by almost 40% by going from a 5% error to roughly a 3% error [27]. 

The dynamics of a dropout layer is at every training step, every neuron, including 

the input neurons, but always excluding the output neurons, has a probability p of being 

temporarily dropped out as shown in Figure 17. It will be entirely ignored during this 

training step, but it may be active during the next step. The hyperparameter p is called 

the dropout rate, and it is typically set between 10% and 50%, closer to a 20–30% in 

recurrent neural nets, and closer to 40–50% in CNNs. Figure 18 is shown with a 50% 

dropout [27]. After training, neurons do not get dropped anymore.  

 

Figure 17. With dropout regularization, at each training iteration a random subset of all 

neurons in one or more layers except the output layer are dropped out. 
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Since dropout is only active during training, comparing the training loss and 

validation loss can be misleading. In particular, a model may be overfitting the training 

set and yet have similar training and validation losses. If it is observed that the model is 

overfitting, increasing the dropout rate can help alleviate the overfitting effect. 

Conversely, decrease the dropout rate if the model underfits the training set. Dropout 

does tend to slow down convergence significantly, but it usually results in a much better 

model without overfitting and underfitting when appropriately tuned.  

Figure 18. Effect of no Dropout (left) and Dropout with a value of 0.5 (right) 

CNN Architecture 

Typical CNN architectures stack a few convolutional layers, each one generally 

followed by an activation layer, followed by a pooling layer, then another few 

convolutional layers, then another pooling layer, and so on; a basic CNN architecture is 

shown in Figure 19. The image gets smaller and smaller as it progresses through the 

network, but it also typically gets deeper and deeper as the number of convolution layers 

increases with an increase in filter numbers. At the top of the stack, a regular feedforward 

neural network is added, composed of a few fully connected layers, and the final layer 

outputs the prediction with a Softmax. The Softmax classifier is a generalization of the 

binary form of the Logistic Regression layer that outputs estimated class probabilities. 
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When given an instance x, the Softmax Regression model first computes a score for each 

class, then estimates each class's probability by applying the Softmax function (or 

normalized exponential) to the scores. 

 

Figure 19. Typical CNN architecture [26] 

 

In the coming chapter, Deep Convolutional Neural Network architectures are designed 

for object recognition for robotic grasping purposes. Further details for the designed 

RGB-D DCNN architecture and its training procedure are discussed. 
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VI. METHDOLOGY 

 

In this chapter, the designing and optimization details of the RGB-D DCNN model 

architectures are discussed. This chapter is mainly divided into three parts discussing the 

datasets and its preprocessing, architecture design, and training of the designed network. 

These sections will discuss a significant role in the outcome of object recognition. 

Dataset Specification 

 In this research work, the main goal is to identify objects in a semi-structured 

environment that includes poor illumination, low light, reflective surface, amorphous 

body, and partial object views. A large number of samples in the dataset are needed to 

train the designed model containing several objects in warehouse environments. Through 

the literature review, some datasets used for the APC competition and other purposes 

include blurry images, reflective images, low lights, high brightness, partial, and RGB-D 

images of multiple diverse objects. In this thesis, two public repositories are being used to 

train and test the designed model. The available datasets are mainly designed for pick-and-

place robots and 3D-grasping purposes such as the CURE-OR (Challenging Unreal and 

Real Environment for Object Recognition) dataset [34], the MIT-Princeton dataset [4], 

and the RGB-D Washington dataset [5].  

The datasets used for this research work are the Princeton and Washington RGB-D 

sample images. These datasets are developed by the MIT-Princeton University Team and 

Washington University, consisting of 136,575 and 41,877 RGB-D sample images. The 

images contain common household objects classified into 39 classes for the Princeton 

dataset and 51 classes for the Washington dataset. In this thesis, four classes are used: 
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‘Bowl,’ ‘Soda can,’ ‘School glue,’ ‘Dove bar,’ and some are shown in Figure 21. The 

images are captured using a RealSense F200 and Kinect style sensor, generating 640x480 

resolution of RGB-D frames [4][5]. These datasets contain most of the challenging 

conditions which are mentioned in the research work. The machine learning model is to be 

trained on both public datasets containing the targeted four objects. 

Pre-processing 

To meet the environmental and surrounding challenges for object recognition and 

localization, pre-processing is required to make the model robust and applicable to all the 

illumination changes, different lighting conditions, and better accuracy at prediction 

determinations. Pre-processing increases the complexity and computation cost to the 

process vision solution. However, testing accuracy rates will vary and become less 

accurate for the challenging conditions without the pre-processing image phase. In this 

research, OpenCV is used for the preprocessing of the sample images, and the DCNN is 

used for feature extraction. These methods are compatible with Python and support 

machine learning libraries, including deep learning frameworks, as previously discussed 

in [1].  

In the thesis, two preprocessing types are used; Image Resizing and change in 

brightness and contrast. Images of 640x480 resolution are reduced to 150x150 and 

200x200 resolution for the experimentation in all the architectures with different 

hyperparameters and reduce the complexity and memory requirement to train the model 

and reduce the computation cost. The brightness and contrast are also varied randomly to 

perform training and testing rigorously shown in Figure 20. For contrast changes in the 

image samples, a random value is selected from 0 to 1, brightness value from 0 to 100. 
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To get the original image, the alpha parameter for contrast should be equal to 1, and the 

beta parameter for brightness equal to 0. For each of the models' training phase, 10,991 

RGB images and 10,991 Depth images are used. For testing, 4,711 images are used for 

the RGB stream, and 4,711 images for the Depth stream.   

 

 

Figure 20. Some Images from dataset after preprocessing in OpenCV are shown. 
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Figure 21. Image dataset with different objects. 
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Machine Learning Model and Base Classification Network 

 In the machine learning model design, DCNN is designed in the Python programming 

using Keras, TensorFlow open library. After the image has been pre-processed using an 

appropriate tool, it is served to the different layers of the DCNN model. In the CNN 

model, there are numbers of hidden layers which is made up of neurons. DCNN model is 

the best suited for image data classification and detection purposes. A simplified version 

of the neural network for the implemented methods is shown in Figure 22. 

Figure.22 RGB-D DCNN Architecture [1]. 

To classify an object within an image, the DCNN is the deep learning technique that 

helps in deconstructing object features in images to classify and detect the object shapes as 

a singular output prediction. For the DCNN design, own architecture is made to get better 

results for object detection and warehousing automation for specific objects. It is desired 

to experiment with different DCNN models to obtain the best accuracy in detecting 

objects. After capturing the RGB-D images from the camera/dataset and pre-processing, 
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each image is fed to the two parallel DCNN architecture for convolution and feature 

extraction shown in Figure 22 [1]. Before going to the output layer, it is required to merge 

the output of both DCNN. Afterward, it is connected to Fully-Connected layers, which is 

being used for final classification.  

In the model, multiple convolutional layers are used, followed by other layers, such as the 

activation layer, binary normalization, and max pooling layer in a pattern for both the 

RGB and Depth streams. The concatenation layer is used and followed by Fully-

Connected layers that classified output predicted values using a Softmax layer to combine 

the RGB and Depth network streams 
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First Designed RGB-D DCNN model 

In this section, details of architecture I are discussed, how it is designed using different 

layers and their parameters, and a complete table of the parameters are shown in Table 1. 

• The first convolutional layer uses eight fairly large filters (7×7). It also sets input 

shape= [150, 150, 3] for RGB, and input shape of [150, 150, 1] for Depth image 

because the images are 150 × 150 pixels after pre-processing, with a three- and 

single-color channel (i.e., RGB = 3, Grayscale = 1). After this layer, it is followed 

by the same convolutional layer to learn more features from the previous layer; it 

can be seen in Table 1 Parameter section that parameters increased. 

• A max pooling layer uses a pool size of 2 and strides of 1. It divides each spatial 

dimension by a factor of 2. The Pool layer's primary function is to progressively 

reduce the spatial size, width, and height, of the input volume. Doing this reduces 

the number of parameters and computation in the network pooling and helps 

control overfitting. 

• Dropout layer with a dropout value of 0.5 to reduce overfitting by explicitly 

altering the network architecture at training time 

• The structure is repeated with two convolutional layers followed by a max 

pooling layer with some changes in the convolutional layer's filter size from (7x7) 

to (3x3) and changes in the dropout layer from 0.5 to 0.2. Again, one 

convolutional layer is followed by a max pooling layer. The number of filters 

grows as CNN climbs up toward the output layer (it is initially 8, then 16, then 

32): it makes sense to grow since the number of low-level features is often 
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relatively low (e.g., small circles, horizontal lines), but there are many different 

ways to combine them into higher-level features. It is a common practice to 

double the number of filters after each pooling layer: since a pooling layer divides 

each spatial dimension by a factor of 2, double the number of feature maps in the 

next layer can be afforded  without fear of exploding the number of parameters, 

memory usage, or computational load. 

• The Fully-Connected network is composed of flattening layers and one dense 

layer. The inputs must be flattened since a dense network expects a 1D-array of 

features for each instance. A Dropout layer is added, with a dropout rate of 20%, 

to reduce overfitting and regularization of weight adjustment during each model's 

training process. 

• Similarly, for the Depth architecture. Next is combining both the architectures 

using a concatenation layer followed by two more dense layers. Finally, the 

probability of each class and training loss is calculated by the Softmax layer. 

• The number of parameters is increased due to the increase in the number of filters 

in the convolution layer. The learnable parameters can be calculated by 

multiplying the shape of width, height, number of filters from the previous layer 

plus one, and the whole equation multiplied with the current layer's filters. The 

number of parameters in a first CONV layer in Table 1 would be: ((shape of the 

width of the filter * shape of the height of the filter * the number of filters in the 

previous layer+1) * the number of filters in the current layer). For first layer filter 

(shape = (7x7), stride=1) layer is: ((shape of width of filter * shape of height filter 
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* the number of filters in the previous layer+1) * the number of filters) = 

(((7*7*3) +1) *8) = 1184.  

• Thus, the Fully-Connected layer's number of parameters can be calculated: 

((current layer neurons c * previous layer neurons p) +1 * c). For the Softmax 

layer, (1024*4+ 1*4) = 4100. The total trainable parameters in this architecture 

are 546,369,404. 

 
Table.1 Architecture I for RGB-D DCNN model 
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Second Designed RGB-D DCNN model 

In architecture II, there are some changes compared to architecture I to improve the 

results and accuracy. 

• The first convolutional layer uses 32 small filters (3×3). Here, compared to 

previous architecture, some parameters are changed, such as filter size and 

dropout. The number of filters used in this architecture for the RGB stream is 32, 

64, 128, and for the Depth stream, 16, 32, and 64.  The features extracted with the 

filter size of (3x3) are highly local, capturing smaller, complex features in the 

image.  

• The batch normalization layer is also used in the depth architecture, which is not 

used in the previous architecture. It makes the learning rate and regularization less 

volatile and more straightforward to tune. It reduces final loss and a more stable 

loss curve when using batch normalization in the networks. 

• The dropout values are kept 0.3 in both the stream, but just before Concatenation 

and after Concatenation, it increased to 0.5 as it was dealing with a vast amount of 

parameters. 

• Number of parameters in a first Conv layer in Table 2 would be; filter shape = 

(3x3), stride=1) layer is: ((the shape of the width of filter * the shape of the height 

filter * the number of filters in the previous layer+1) * the number of filters) = 

(((3*3*3) +1) *32) = 896. 

• In this architecture, it can be seen in Table 2 that the number of parameters is 

more in the last Softmax layer, which can be calculated as mentioned in 
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architecture I. Here, total trainable parameters are 64,337,844, which are less 

compared to architecture I making it train faster. 

 

Table.2 Architecture II for RGB-D DCNN model  
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Third Designed RGB-D DCNN model 

In this section of designing architecture, more changes in architecture III are discussed: 

• Architecture III has a different pattern for convolution layers compared to the 

previous two architectures. In this design, the first group of layers contains three 

convolution layers with the filter size of (3x3) to the amount of information or 

features extracted will be huge, and it learns complex feature, which can be 

further useful in later layers.  Convolution layers are followed by batch 

normalization and dropout. The dropout values are kept similar to the architecture 

II 

• In the second group of layers, two convolution layers are used, followed by batch 

normalization and max pool.  

• Next layer contains one convolution layer, then similarly batch normalization and 

max pool. For combining two networks concatenation layer is used to combine 

the information from both the streams, similarly mentioned in architecture I. 

• Number of parameters in a first CONV layer in Table 3 would be: ((shape of the 

width of the filter * the shape of the height of the filter * the number of filters in 

the previous layer+1) * the number of filters in the current layer). For first layer 

filter shape = (3x3), stride=1) layer is: ((shape of width of filter*shape of height 

filter*number of filters in the previous layer+1) *number of filters) = (((3*3*3) 

+1) *16) = 448.  
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• The total number of trainable parameters obtained in this architecture are 

475,721,892. As can be seen, there are many parameters to train, which increases 

computation complexity and memory requirement. 

Table.3 Architecture III for RGB-D DCNN model 
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Fourth Designed RGB-D DCNN model 

Architecture IV design is different from the other architectures mentioned above by using 

six convolution layers in each RGB and Depth network to make the network deeper and 

make it stronger to learn all the low-level features with the increase in the number of 

filters. It has more convolution layers, but the total number of parameters is less than 

architecture I and architecture III because the max pool layer used in this with the stride 

size is (2, 2), which reduces the output size by 2. Filters used in this architecture with the 

first Convolution layer are eight, with the second and third convolution layer 16, with 

fourth and fifth it is 32 and 64, with the last sixth Convolution layer it is 128. Similarly, 

used for the Depth stream. 

As it is discussed in the previous architectures, the number of parameters in a first 

CONV layer in Table 4 would be: ((width of the filter * height of the filter * the number 

of filters in the previous layer+1) * the number of filters in current layer). For first layer, 

the filter shape = (3x3), stride=1) layer is: ((width of the filter * height of the filter * the 

number of filters in the previous layer+1) * the number of filters) = (((3*3*3) +1) *8) = 

224. Similarly, parameters can also be calculated for depth stream and other convolution 

layers in the RGB and the Depth stream. Here, the total number of parameters is 

155,421,076. Total parameters are less than architecture I and architecture II, making it 

faster in training than these two architectures. 
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Table.4 Architecture IV for RGB-D DCNN model  
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Training the Designed DCNN model 

A backpropagation algorithm is used to train the designed DCNN. This algorithm 

is an efficient method to calculate the gradient of the loss function. It gives the details of 

changes of the weights and bias of the parameters in the network. Gradient descent is the 

most common way of optimizing CNN loss functions. The procedure of repeatedly 

evaluating the gradient of a loss function and performing a parameter update is known as 

the gradient descent algorithm. In this research, the DCNN model is trained from scratch 

(with random initialization) instead of taking a pre-trained network; it uses the gradient 

descent technique. 

There are three different types of gradient descent techniques.  

• Batch gradient descent: It computes the gradient of the cost function for the entire 

training dataset. It calculates the gradients in one step for the complete dataset to perform 

an update. This method can be prolonged and expensive in terms of memory.  

• Stochastic gradient descent (SGD): It computes the gradient of the cost function for 

one training sample at each step. Therefore, SGD performs a parameter update for each 

training sample with a high variance. It causes the loss function to fluctuate heavily, 

which allows it to reach new and potentially better local minima. The SGD is usually 

much faster since it updates weights frequently at each step.  

• Mini-batch gradient descent: It computes the gradient of the cost function in a small 

batch. Therefore, an update is performed for every mini-batch of n training samples. This 

approach reduces the variance of the parameter updates, which can lead to more stable 



 

56 

convergence. Mini-batch gradient descent is typically the algorithm of choice when 

training CNN.  

Several more optimization methods available for deep learning training, such as 

Adagrad, RMSprop, Adadelta, and Adam techniques. For the model to learn faster and 

reduce the training time, the mini-batch gradient descent with momentum was used. 

Momentum methods are normally used to accelerate the learning to fast convergence and 

allow models to obtain lower loss, higher accuracy, and a reduced number of epochs. 

Mini-batch gradient descent continues to be one of the most utilized in model design as 

the primary optimization method.  

Regularization 

It is defined as “any method that increases testing accuracy perhaps at the 

expense of training accuracy” [27].  Regularization is a mechanism to prevent the model 

from overfitting and provides the ability to generalize the model better. There are various 

types of regularization techniques, such as L1 regularization, L2 regularization, 

commonly called “weight decay.” During experimentation and optimization of the model, 

no regularization is added to the model; however, the dropout layer is used as a 

regularization to improve the model's classification accuracy. Additionally, some data 

augmentation techniques are also used to provide the model more flexibility to 

unobserved data, reduce overfitting, and enhance the ability to generalize.  
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Hyperparameter Tuning 

In this section, hyperparameters are discussed and are responsible for the tuned 

performance of a model. The hyperparameters in the DCNN architectures that were used 

in this research are discussed in detail below. 

Learning Rate  

The learning rate is one of the essential hyperparameter of the deep neural 

network. It is the parameter that decides the rate or speed at which the model learns. 

Finding a perfect learning rate is difficult, but the most significant task, it is not possible 

to fix a single learning rate for every model and dataset. If the learning rate is too low, the 

training will be prolonged, but at some point, it will converge to the optimum. If the 

learning rate is slightly too high, it may diverge or end up at around the optimum and 

converge in its learning process. There are different strategies to get the best learning 

rate; one of the best-known techniques is the learning scheduler. In this research, 

experimentation is done at different rates to get the most optimized learning rate value. 

The learning rate scheduler is beneficial when training deep neural networks, where the 

learning rate can be changed or scheduled at training time. In this work, the standard 

learning rate schedulers available in the Keras library are used. This scheduler decreases 

the learning rate gradually after every batch update, and it is controlled by applying the 

following formula for adjusting the learning rate after every batch update: 

𝑙𝑟 = 𝑖𝑛𝑖𝑡𝑖𝑎l_𝑙𝑟 × (1/ (1 + 𝑑𝑒𝑐𝑎𝑦 × 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))                                               Eq.1 
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Herein Eq.1, lr is the learning rate, and the initial learning rate is the parameters tuned in 

the process during training. Iterations can be calculated as the total number of training 

images to the batch size. The decay can be started with the initial learning rate to the 

number of epochs. In Figure 23, the learning curves are shown with the different learning 

rates as the number of epochs increases. These curves can be referred to and compared 

with the results to get a better learning rate. 

 

 

Figure 23. Learning curves for various learning rates(η) 

 

Number of epochs 

The number of epochs is the number of times the whole training dataset passes 

through the neural network. The accuracy graph plots are mostly loss (or accuracy) vs. 

the number of epochs to analyze the model performance. The number of epochs is 

changed after analyzing accuracy curves to overcome the underfitting and overfitting 

problem shown in Figure 24. Throughout the experiments, the number of epochs was set 

to 50, 60, 70, 80, 100, and 200. 
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Figure 24. Relationship between model capacity and loss 

Batch size  

The batch size is used in gradient descent to reduce the variance of the parameter 

updates, leading to a stable convergence. Generally, mini-batch sizes range between 16 

and 256 but can vary for different applications. The model is tested with batch sizes of 

32, 64, and 128. Performance and accuracy can be changed with the batch size to get the 

best results. 

Momentum 

The momentum hyperparameter controls gradient descent's acceleration in the 

relevant direction and in dampening the oscillation shown in Figure 25.  It is set to a 

value greater than zero and less than one, where shared values such  
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Figure 25. SGD without (on left) and with momentum (on right) 

as 0.9 [27]. In the designed model, momentum is set to 0.9 to reduce the oscillations. 

This chapter details the dataset, dataset preprocessing with OpenCV, and the designing of 

all four architectures with the components needed for training a DCNN. The loss 

function, and optimization methods, and an explanation of each layer of the model 

architecture were also covered. In the next chapter, the designed architecture results are 

discussed in the details with the accuracy and losses curves. 
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VII. RESULTS AND DISCUSSION 

 

In this section, the training and test results with different architectures and datasets are 

discussed. Different experiments were performed by changing the hyperparameters of 

different architectures, shown via plots and tables for the available datasets to understand 

the model's accuracy effects. Also, the computational resources used in this thesis for 

training the CNN are discussed here.  

Computational Resources 

In this thesis, all the DCNN architectures were designed using the Python 

programming language version 3.7.3 using Anaconda. It is a free and open-source 

distribution of the Python and R programming languages for scientific computing (data 

science, machine learning applications, large-scale data processing, predictive analytics, 

and other applications) [36]. For Python programming, open-source libraries are available 

for deep learning, such as TensorFlow, Keras (backend of TensorFlow), which are 

popular libraries that support the building of DCNNs. The training and evaluation of 

DCNN models can be prolonged due to the computations required for each iteration in 

training. For training the DCNN model, the LEAP (Learning, Exploration, Analysis, and 

Processing) next-generation High-Performance Computing (HPC) Cluster of Texas State 

University was used. The cluster’s head-node and 120 compute-nodes are configured 

with Dell PowerEdge C6320 server nodes, each with 28 CPU cores via two (14-core) 2.4 

GHz E5-2680v4 Intel Xeon (Broadwell) processors. With 128GB of memory and 400GB 

of SSD storage per node, the compute-nodes provide an aggregate of 15TB of memory 

and 48TB of local scratch storage. Additionally, the LEAP cluster features two large 
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memory (1.5TB of RAM) nodes with 64 CPU cores via four (16-core) 2.5 GHz E7-

8867v3 Intel Xeon (Haswell) processors. Figure 26 shows the features and components 

of the LEAP cluster. 

Apart from LEAP Cluster, the HiPE Server was also used by the High-Performance 

Computing research group at the Ingram School of Engineering. The HiPE3 server is a 

Dell PowerEdge R740 rack server configured with dual 2.3 GHz Intel Xeon-Gold with 18 

Cores/36 thread capacity [37]. The server has 16GB RDIMM x12 Data-width (192GB) of 

memory and dual 1.2TB Solid State Drive SATA storage. Using the HiPE3 server for 

training the CNN has sped up the process because of the memory allocation and low 

congestion. The HiPE3 server is also equipped with two NVIDIA Tesla V100 

accelerators. 

 

Figure 26. Features and components of LEAP cluster 
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Training and Testing Results 

 

In this research, the main focus is to design and optimize the RGB-D Architecture 

for the 3D-Detection base network to get better accuracy for partial images and low-

illumination images. Experimentation was performed on four different architecture to get 

the most optimized and efficient architecture with reliable accuracy. 

Initially, the hypothesis was to design a single architecture and better classify 

object detection accuracy. However, as research progressed, four architecture designs 

with variation in layers and other parameters were designed and tested on the dataset. The 

experiments were performed with the pre-processing for different lighting conditions 

using OpenCV for changing the brightness and contrast to get better testing accuracy for 

recognition. The model is tested and optimized further for better results for grasping 

purposes. 

Different combinations of hyperparameters were tested to get a final reliable 

model with good accuracy for testing the dataset with four different objects ‘Bowl,’ ‘Soda 

can,’ ‘School glue,’ ‘Dove bar.’ Different parameters, such as learning rate, epochs, batch 

size, image resolution, varied in multiple experiments. The obtained results were 

compared and analyzed to get a better model. As mentioned previously, the LEAP cluster 

and HiPE server were used for all the experiments.  
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Performance of Architecture I 

 

Experimentation on architecture I started without pre-processing with 200 epochs 

for 100x100 image resolution. After observing the learning curves, it was realized that 

200 epochs are more suitable to train and improve the performance of the model. In the 

beginning, the dropout value, number of filters, and size of filters were also tested to 

observe the change of the learning pattern with each change made. In this first 

experiment, a 0.0001 learning rate was chosen as an initial point with a batch size of 64. 

The reason behind selecting this low learning rate value is to observe the learning curve, 

time to learn, and to reach an optimal loss. Further, number of epochs were reduced to 

140, 100, 80, with different batch sizes of 32, 64, and 128, and learning rates of 0.01, 

0.001, and 0.0001 were also tested.  

In the different hyperparameters settings for architecture I, it was observed in Figure 27 

that the model was learning very fast, even after keeping the learning rate at 0.0001 

without pre-processing the 100x100 image for the brightness and contrast. In this case, it 

will be hard to train for new images, and it would not be able to learn new features. For 

improvement in the training learning curves, resolution of images was changed to the 

150x150 and epochs were reduced to 140, but no improvement observed, and the 

architecture was learning too fast shown in Figure 28. Figure 29 show the pre-processing 

effect for the changes in brightness and contrast to add variations in the images during the 

training of the model, with a learning rate reduced to 0.001, and 80 epochs to observe the 

model accuracy behavior to the variations. The batch size changed to 128 in Figure 30 to 

see if the problem persists with the larger batch size to keep improving the accuracy 
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performance. Figure 31 shows the model’s accuracy curve with a batch size of 32, image 

resolution of 200x200 and learning rate of 0.0001. Apart from all these experiments, the 

model also tested with the change in the number of filters and dropout values. For this 

architecture, the time taken to train the model was around ten days on the LEAP cluster. 

It was concluded with these results that this architecture model is not suitable for object 

recognition purposes. 

 

 

Figure 27. Initial result obtained from architecture I with lr 0.0001, for a batch size of 64, 
and without pre-processing with a 100x100 image resolution 
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Figure 28. Initial result obtained from architecture I with lr 0.0001, for a batch size of 64, 
and without pre-processing with 140 epochs with a 150x150 image resolution 

 

 

Figure 29. Accuracy curve with a lr of 0.001, for a batch size of 64 with 80 epochs, and 
with pre-processing with a 150x150 image resolution 
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Figure 30. Accuracy curve with a lr of 0.001, for a batch size of 128 with 80 epochs, and 
with pre-processing with a 150x150 image resolution 

 

 

Figure 31. Accuracy curve with lr 0.0001 for a batch size of 32 with 70 epochs, and with 
preprocessing with a 200x200 image resolution 
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Performance of Architecture II 

 

Experimentation procedure performed on architecture II was similar to the 

architecture I. Architecture II performed well compared to other architectures in the 

speed and accuracy. It took less time to train the model compared to other models 

because of its design and layers used in it. On the LEAP server time taken by architecture 

II was approximate eight days to complete training for on an approximate 80 epochs.  

In Figure 32, experimental results with the lr of 0.0001 with a batch size of 64 

with the 80 epochs of 150x150 image size are shown. The learning curves obtained from 

this architecture are much better and improved. Here, the testing accuracy curve was 

obeyed the training accuracy curve. Accuracy is improving with the increase in epoch 

without overfitting can be seen in the loss curve in Figure 32 b). The accuracy obtained 

with this architecture is 91.23%. 

 

a)                                                            b) 

Figure 32. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 64 with 
80 epochs, and with pre-processing with a 150x150 image resolution 
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In Figure 33, experiments were performed with lr of 0.0001 for a batch size of 

128 with the image resolution of 150x150. In the accuracy curve, it is observed that it 

was not easy to predict test image, and sometimes testing accuracy is more than the 

training image, which tells that testing images were more comfortable to predict on few 

occasions. The test accuracy obtained by this is 96.69%. 

 

a)                                                             b) 

Figure 33. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 128 
with 80 epochs, and with pre-processing with a 150x150 image resolution 
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In Figure 34, experiments shown were run with lr of 0.0001 for the batch size of 

32 with image resolution of 150x150. In this experiment, accuracy increased, but the 

testing accuracy curve obtained with the batch size of 32 strictly followed the training 

curve. Test accuracy of 97.52% is obtained with this experiment but learned very quickly, 

which is not suitable for new images to train. 

 

a)                                                                  b) 

Figure 34. a) Accuracy, and b) Loss curve with lr 0.0001, for a batch size of 32 with 80 
epochs, and with pre-processing included in 150x150 image resolution 
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Further, more experiments performed on this architecture with lr 0.001 for a batch 

size of 64 with an image resolution of 200x200 shown in Figure 35, and confusion matrix 

in Figure 36. The testing accuracy of 96.86% was achieved. It shows with each epoch, 

losses were reduced, and weights were updating which leads to improvement in testing 

accuracy 

 

a)                                                                  b) 

Figure 35. a) Accuracy b) Loss curve with a lr of 0.001, for a batch size of 64 with 70 
epochs, and with pre-processing with a 200x200 image resolution 

 

Figure 36. Confusion matrix for architecture II for a lr of 0.001, batch size of 64 with 70 
epochs, and with an image size of 200x200 
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In Figure 37, the architecture was set with lr 0.001 for a batch size of 64 with an 

image resolution of 150x150 to get proficiency, here it shows how the weights updated 

with each epoch and reducing the error on each epoch. It shows that the testing accuracy 

curve is following the training curve without overfitting. Confusion matrix in Figure 38 

shows very few images for ‘Bowl’ misclassified as ‘Soda can.’ Overall, the testing 

accuracy was 98.90%. 

 

a)                                                            b) 

Figure 37. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 64 with 
80 epochs, and with pre-processing with a 150x150 image resolution 

 

Figure 38. Confusion matrix for architecture II for a lr of 0.001, batch size of 64 with 80 
epochs, and with the image size of 150x150 
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More rigorous testing followed with 200x200 image size for architecture with a 

batch size of 32 and 0.0001 lr can be seen below in Figure 39, with the smaller batch size 

of 32, spikes were seen in this experiment as it did not learn all the features, and when 

difficult test images are presented, it gives less testing accuracy can be seen between 

epoch 30 to 50, two spikes. Figure 40 confusion matrix show ‘Bowl’ images are 

misclassified as ‘Soda,’ more infrequently from the previous hyperparameters. 

 

a)                                                              b) 

Figure 39. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 32 with 
70 epochs, and with pre-processing with a 200x200 image resolution 

 

Figure 40. Confusion matrix for architecture II for a lr of 0.0001, batch size of 32 with 70 
epochs, and with the image size of 200x200 
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Here, Figure 41 shows the lr 0.0001 for a batch size of 64 with 50 epochs for 

200x200 images. As shown in the graph, there are some initial hiccups in the learning 

curves, but after the 30th epoch, it was saturated, and it was not learning new features. 

Test accuracy obtained by this experiment is 97.28%. Figure 42 shows the confusion 

matrix with mostly ‘Soda can’ images misclassified as ‘Bowl.’ 

 

a)                                                            b) 

Figure 41. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 64 with 
50 epochs, and with pre-processing with a 200x200 image resolution 

 

 

Figure 42. Confusion matrix for architecture II for a lr of 0.0001, batch size of 64 with 50 
epochs, and with the image size of 200x200 
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Test accuracy obtained for lr 0.001 for a batch size of 64 with 50 epochs for 

200x200 image resolution by this experiment is 98.83%.  Figure 43 shows that the model 

with less batch size upgrades weight frequently, which leads to variation in the testing 

curve. This experiment performed better in the classification of objects, and a minimal 

number of images were misclassified, as seen in confusion matrix in Figure 44. 

 

a)                                                              b) 

Figure 43. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 64 with 
50 epochs, and with pre-processing with a 200x200 image resolution 

 

Figure 44. Confusion matrix for architecture II for a lr of 0.001, batch size of 64 with 50 
epochs, and with the image size of 200x200 
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This experiment on architecture II performed with a batch size of 128, lr of 

0.0001 for 50 epochs with 200x200 image size. Figure 45 obtained from this shows a 

little bumpy because of difficulty predicting testing images for testing accuracy, but 

performing good in the confusion matrix in Figure 46. Test accuracy of 97.07% and 

training accuracy of 96.05% is obtained. 

 

a)                                                             b) 

Figure 45. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 128 
with 50 epochs, and with pre-processing with a 200x200 image resolution 

 

Figure 46. Confusion matrix for architecture II for a lr of 0.0001, batch size of 128 with 
50 epochs, and with the image size of 200x200 
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More experiments were performed for this architecture to get better insight with 

the batch size of 128, lr of 0.001 for 50 epochs with 200x200 image size. Figure 47 

obtained from this shows more stability than the previous one for testing loss and 

performing better in the confusion matrix in Figure 48. Test accuracy of 98.32% and 

training accuracy of 98.83% is obtained. 

 

a)                                                             b) 

Figure 47. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 128 with 
50 epochs, and with pre-processing with a 200x200 image resolution. 

 

Figure 48. Confusion matrix for architecture II for a lr of 0.001, batch size of 128 with 50 
epochs, and with the image size of 200x200 
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Performance of Architecture III 

 

As discussed in the methodology section, architecture III uses different 

arrangements for the convolution layers, batch normalization layers compared to the 

other three architectures on testing the dataset for different experiments, including batch 

size, learning rate, and image resolution optimization. This architecture took fourteen 

days, sometimes even more, as it has more trainable parameters (in the previous chapter, 

Table 3). Here, Figure 49 a) the accuracy and b) loss curves results are obtained on 

running the experiments with 0.001 learning rate for a batch size of 64 for an image size 

of 150x150. It can be analyzed in Figure 49 that the architecture III learned all the 

features very quickly. It is not a good thing to have in architecture performance as it does 

not allow new features to learn from the new images in the future. As it learned quickly, 

testing losses are high, and there are many variations in the plot.  

a)                                                                   b) 

Figure 49. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 64 with 
80 epochs, and with the image size of 150x150 
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Test accuracy obtained by this architecture with these hyperparameters is 93.99%, 

but when confusion matrix is seen in Figure 50, it can be observed that the model 

misclassified ‘Dove bar’ as a ‘Bowl.’ 

 

Figure 50. Confusion matrix for architecture III for a lr of 0.001, batch size of 64 with 80 
epochs, and with the image size of 150x150  

 

Similarly, more experiments were performed in the Figure 51 and confusion 

matrix shown in Figure 52 with the lr 0.001 a batch size of 128 with 80 epochs with pre-

processing included in 150x150 image. Test accuracy obtained by the tuning image size 

was 95.75 %, a 1.76% higher than a batch size of 64. In Figure 51a), the accuracy curve 

is observed that training curve followed the same path as in Figure 26, but losses are less 

in this experiment with the increased the batch size to 128. In Figure 52, confusion matrix 

indicates that 161 ‘Dove bar’ were misclassified as ‘School glue.’ 
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a)                                                              b) 

Figure 51. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 128 with 
80 epochs, and with the image size of 150x150 

 

 

Figure 52. Confusion matrix for architecture III for a lr of 0.001, batch size of 128 with 
80 epochs, and with the image size of 150x150  

Some more experiments were performed with variation in image resolution to 

200x200. In Figure 53 and Figure 54, the testing accuracy obtained was 77.52%. As the 

image resolution increases, the number of parameters also increases in the model and 

needs more time to train. It is clearly seen if the model does not learn properly, then it 
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will not predict correctly with a high rate of misclassifications. This architecture took too 

much time to finish the job with the low learning rate, and most of the time could not 

finish in the given defined walltime configution set on the LEAP cluster. 

 

a)                                                          b) 

Figure 53. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 64 with 
70 epochs, and with pre-processing with a 200x200 image resolution 

 

 

Figure 54. Confusion matrix for architecture III for a lr of 0.001, batch size of 64 with 70 
epochs, and with the image size of 200x200  
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Performance of Architecture IV 

 

Architecture IV uses six convolution layers with a filter size of 3x3 for the feature 

extraction. More details have been discussed in the architecture design in the 

methodology section. Experiments were performed to get the performance of this design. 

The obtained results are shown below with the different learning rates, batch sizes, and 

image sizes. In Figure 55 a), the accuracy plot is shown for architecture IV, here six 

convolution layers were used to train the model with more no linear features, but this 

architecture learned all the features way early with the additional information from Depth 

image information it performs well in testing accuracy. Accuracy attained by this 

architecture is shown in Figure 55 is at 91.74% with the lr of 0.001, and a batch size of 

64 with 70 epochs.  

 

 
                                       a) b) 

Figure 55. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 64 with 
70 epochs, and with pre-processing with a 200x200 image resolution 
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Confusion matrix obtained from this is shown in Figure 56. In the confusion matrix, 

‘Dove bar’ is misclassified as ‘Soda can,’ and ‘Soda can’ also misclassified as ‘Bowl’. 

The F1-Score obtained for the ‘Bowl:’ 0.91, for ‘Soda Can:’ 0.85, ‘School glue:’ 0.91, 

‘Dove:’ 0.91. 

 

 
 
Figure 56. Confusion matrix for architecture IV for a lr of 0.001, batch size of 64 with 70 

epochs, and with the image size of 200x200  
 
 

Furthermore, architecture IV investigated all other combinations performed on 

other architecture to get more depth insight into this model and comparison and 

confusion matrix. In Figure 57, the experiments were performed with a lr of 0.001 for a 

batch size of 128 with 70 epochs for an image size of 200x200, it includes all the pre-

processing for the brightness and contrast, but in training accuracy curve it learned all the 

features in the first ten epochs which is not good as it does not allow more features to 

learn. Here, classification accuracy increased in Figure 58, but the learning curve reached 

saturation way earlier.  
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a)                                                                   b) 

Figure 57. a) Accuracy, and b) Loss curve with lr 0.001, for a batch size of 128 with 70 
epochs, and with pre-processing included in 200x200 image resolution 

 

 

 
 
Figure 58. Confusion matrix for architecture IV for a lr of 0.001, batch size of 128 with 

70 epochs, and with the image size of 200x200  
 

Experiments were performed; results are shown in Figures 59 and 60, but no 

improvements were observed to overcome this problem. Architecture IV had fewer 

parameters than architecture I and architecture III; therefore, it took less time to train. 

Overall, this architecture tested thoroughly with multiple changes to tune it properly but 
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did not generalize the dataset to acceptable levels of accuracy. 

 
 

a)                                                               b) 

Figure 59. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 128 
with 80 epochs, and with pre-processing included in 150x150 image resolution 

 
 
Figure 60. Confusion matrix for architecture IV for a lr of 0.0001, batch size of 128 with 

80 epochs, and with the image size of 150 x 150  
 

For Dark images with architecture II 

 

Moving Further, after completion of rigorous testing of all the architectures and 

gaining an idea about the performance, architecture II trained and tested again on the only 

dark images to see the performance with only low illumination. n Figure 61 a) was 
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observed that the testing accuracy increased with the increase in epochs. For a lr of 0.001 

with a batch size of 128, it achieved an accuracy of 83.72%. However, on increasing 

the lr to 0.0001, batch size of 128 for an image of 200x200, the accuracy improved to 

96.18%, and learning curves also improved, as shown in Figure 62. 

 

a)                                                               b) 

Figure 61. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 128 with 
50 epochs, and with pre-processing with a 200 x 200 image resolution 

 

a)                                                              b) 

Figure 62. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 128 
with 50 epochs, and with pre-processing with a 200 x 200 image resolution 

 

A batch size changed to 64 to gain more architecture II performance expertise to perform 
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more architecture II experiments. The accuracy of batch 64 with 0.001 and 0.0001 is 

86.37% and 93.19%. It can be seen in Figure 63 with the testing accuracy curve, there 

was variation in testing performance with overfitting in the accuracy curves and did not 

make any improvement, although it performed better in Figure 64 with 93.19% accuracy 

but not better than the previous experiment with a batch size 128. 

 

a)                                                                     b) 

Figure 63. a) Accuracy, and b) Loss curve with a lr of 0.001, for a batch size of 64 with 
50 epochs, and with pre-processing with a 200 x 200 image resolution 

 

a)                                                              b) 

Figure 64. a) Accuracy, and b) Loss curve with a lr of 0.0001, for a batch size of 64 with 
50 epochs, and with pre-processing with a 200 x 200 image resolution 
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Figure 65. Comparison of time taken by different architectures to train on LEAP server in 

days 
 
 

Figure 65 results from the LEAP server for different architectures training and 

testing with the Princeton and Washington dataset. In this plot, the y-axis models are 

shown, and on the x-axis number of days are mentioned. Here, it is noticeably seen that 

the least number of days were taken by architecture II. It is shown in green color as it also 

performed better in classification accuracy. Architecture I, shown in dark gray color, 

from the above results, it is seen that it did not perform to the expectation for this task as 

compared to any other results. It took a smaller number of days than architecture IV and 

architecture III, but the learning curves and overall performance was not good compared 

to other architectures. Architecture III took more than fourteen days and could not 

complete the training and evaluation within the wall time restriction on the cluster 

environment. Architecture IV, also shown in green color, it had a more significant 

number of convolutional layers, but because of other parameters, it took fewer days than 
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architecture III and performed somewhat better than architecture I and III. 

The designed architecture was also tested after saving the trained model with the 

images taken by RGB-D Intel RealSense camera in the different background for the 

‘Bowl,’ ‘Soda can,’ ‘School glue,’ ‘Dove bar.’ The images taken by the camera give 57% 

accuracy, which is less because the images are different from the training images. 

Confusion matrix are shown in Figure 66 for image prediction.  

 

Figure 66. Confusion matrix for the prediction with the images taken by the camera. 

In this chapter, Experiments performed with architectures I, II, III, and IV are 

discussed. Different hyperparameters of architectures were changed in all the 

experiments, such as batch size, epochs, learning rate, and performance was analyzed and 

discussed. Architecture I was learning too fast; after changing different hyperparameters, 

it did not perform well on learning curves. Architecture II performed well in speed and 

accuracy; the best result obtained was 98.90% with a batch size of 64 and with 0.001 as 

the learning rate. Architecture III did not perform well on learning curves and accuracy, 

and it took many days to train with a huge number of parameters. Architecture IV 

performed better than architecture I and III but not better than architecture II on learning 

curves and metrics. 
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VIII. CONCLUSION 

 

In this thesis, the objective was to design a deep neural network for object 

recognition capabilities in the warehouse automation for a pick and place robot arm with a 

vision system. A thorough literature review was performed for the thesis work and to 

design of architecture. The design approach was to obtain an optimized architecture model 

solution to overcome the problem of low illumination, different lighting conditions, and 

partial images of the objects. Four Deep Convolutional Neural Network (DCNN) were 

designed and investigated in-depth with the different parameters. The Princeton and 

Washington datasets were used to develop, train, and test the DCNN models. The 

Princeton and Washington datasets had 39 and 51 different classes of objects images, but 

only four objects images were considered for this work: ‘Bowl,’ ‘Soda can,’ ‘School glue,’ 

and ‘Dove bar.’  

The DCNN models have two streams consisting of one for the RGB image input, 

and the second one for the Depth image input. For training of the designed DCNN 

architectures, the datasets were pre-processed by using OpenCV for the different 

illumination conditions like brightness, contrast, and resize of image resolution before 

passing through the first convolution layers of each architecture. After preprocessing the 

dataset, the RGB and Depth images are passed to their respective network stream of the 

DCNN model. In each stream, different types of layers were used; convolution layer, 

maxpool layer, batch normalization, dropout, activation layer and dense layer to learn the 

features of the RGB and Depth input images. After passing through two different streams 

of RGB and Depth networks, these two networks were combined using the concatenation 
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layer to combine information from both the streams. Finally, the Softmax layer was used 

as the output to provide a predicted percentage values of the multiclass classification. Four 

architectures were designed and tested for the mentioned datasets. In all of the four 

architectures design, experiments were performed to tune the hyperparameters, such as the 

batch size, learning rate, image resolution, epochs, dropout rates, and the number of filters. 

Finally, all four architectures were tested on the LEAP cluster and in a single HiPE 

server. Testing of all the models, architecture II performed well compared to other 

architectures in classification accuracy, loss rate learning curves, and confusion matrix 

metrics for training and testing dataset. Apart from performing well for all the obtained 

evaluation metrics, it was computationally efficient during training in comparison to the 

other architectures on the LEAP cluster. The best testing accuracy achieved by 

architecture II was 98.90%. 

 

 

 

 

 

 

 

 

 

 

 



 

92 

IX. FUTURE WORK 

 
 

 For future work, robots and AI will change how people work, affecting industries, 

with more robots than engineers. More exact vision is required with better precision to 

make a robot reliable and innocuous. The automation base model will be added to the 

SSD detection network and actualized to the mechanical robot after thorough testing in a 

current situation, which can get higher accuracy for incomplete pictures. More objects 

can be added to the quality of preparing with a bigger dataset. For the current grasping 

detection, separate grasping planning is required, which can be improved and combined 

with the same model. Other techniques can also be implemented for training robots using 

reinforcement learning to make it more robust.  

 Furthermore, the designed model uses five convolution layers and different layers for 

RGB-D images in each network stream, which can also be improved to increase the 

accuracy. Along with this, the addition of more objects to the detection network with 

more challenges such as different/irregular shapes of objects and adverse lighting 

conditions would make it even stronger. For irregular and soft objects, a suction gripper 

can be used, and a pressure sensor can also be used with a camera to detect pressure 

required to grasp.  
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