
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 03, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

ASYMPTOTIC PROPERTIES, NONOSCILLATION, AND
STABILITY FOR SCALAR FIRST ORDER LINEAR
AUTONOMOUS NEUTRAL DELAY DIFFERENTIAL

EQUATIONS

CHRISTOS G. PHILOS & IOANNIS K. PURNARAS

Abstract. We study scalar first order linear autonomous neutral delay dif-

ferential equations with distributed type delays. This article presents some
new results on the asymptotic behavior, the nonoscillation and the stability.
These results are obtained via a real root (with an appropriate property) of the
characteristic equation. Applications to the special cases such as (non-neutral)
delay differential equations are also presented.

1. Introduction

Neutral delay differential equations are differential equations depending on past
and present values, which involve derivatives with delays as well as the unknown
function itself. Besides its theoretical interest, the study of such equations has great
importance in various applications in natural sciences and technology. For the basic
theory of neutral delay differential equations, the reader is referred to the books by
Diekmann et al. [2], Hale [10], and Hale and Verduyn Lunel [11].

Driver, Sasser and Slater [6] have obtained some significant results on the as-
ymptotic behavior, the nonoscillation and the stability for a first order linear delay
differential equation with constant coefficients and one constant delay. These re-
sults have been improved and extended by Philos [13] for first order linear delay
differential equations in which the coefficients are periodic functions with a common
period and the delays are constants and multiples of this period. The results in [6]
have also been improved and extended by Kordonis, Niyianni and Philos [12] for
first order linear neutral delay differential equations with constant coefficients and
constant delays. Philos and Purnaras [14] have studied the more general case of
first order linear neutral delay differential equations with periodic coefficients and
constant delays, where the coefficients have a common period and the delays are
multiples of this period. The results in [14] contain especially those in [13] (in an
improved version) as well as the ones given in [12]. Moreover, the results obtained
by Graef and Qian [8] are also motivated by those in [6] and are closely related.
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For some related results we refer to the papers by Arino and Pituk [1], Driver [4],
and Györi [9].

In [3], Driver studied first order linear autonomous delay differential equations
with infinitely many distributed delays and obtained some important results on
the asymptotic behavior, the nonoscillation and the stability. For previous related
results we refer to the references cited in [3]. The results given in this paper are
essentially motivated by the corresponding ones in [3] and the techniques applied
in the present paper are originated in some of the methods used in [3].

This paper deals with the asymptotic behavior, the nonoscillation and the sta-
bility for scalar first order linear autonomous neutral delay differential equations
with distributed type delays. A basic asymptotic criterion is established. Also, a
nonoscillation result is given. Moreover, a useful estimate of the solutions is ob-
tained and a stability criterion is derived. Our results are obtained by the use
of a real root (with an appropriate property) of the corresponding characteristic
equation. The results given here can be applied to the corresponding non-neutral
equations. An application of our results to the special case of (non-neutral) delay
differential equations leads to an improved version of some of the results given by
Driver in [3].

Recently, a very interesting article has been published by Frasson and Verduyn
Lunel [7] concerning the large time behaviour of linear functional differential equa-
tions. It is shown there that the spectral theory for linear autonomous as well as
periodic functional differential equations yields explicit formulas for the large time
behaviour of solutions. The results in [7] are based on resolvent computations and
Dunford calculus. Some known results (see [6, 12]) can be obtained as applications
of the general results given in [7]. The work in [7] may be viewed as a gener-
alization of previous works for first order scalar linear autonomous and periodic
functional differential equations (see [3, 6, 12, 13, 14]). It must be noted that, in
[3, 6, 12, 13, 14] as well as in the present paper, the method used in obtaining the
results is very simple and is essentially based on elementary calculus.

Consider the neutral delay differential equation[
x(t) +

∫ 0

−σ

x(t + s)dζ(s)
]′

=
∫ 0

−τ

x(t + s)dη(s), (1.1)

where σ and τ are positive constants, ζ and η are real-valued functions of bounded
variation on the intervals [−σ, 0] and [−τ, 0] respectively, and the integrals are
Riemann-Stieltjes integrals. It will be supposed that η is not constant on [−τ, 0].

Set
r = max{σ, τ}.

Clearly, r is a positive constant.
As usual, a continuous real-valued function x defined on the interval [−r,∞) is

said to be a solution of the neutral delay differential equation (1.1) if the function
x(t) +

∫ 0

−σ
x(t + s)dζ(s) is continuously differentiable for t ≥ 0 and x satisfies (1.1)

for all t ≥ 0.
In the sequel, by C([−r, 0], R) we will denote the set of all continuous real-valued

functions on the interval [−r, 0]. This set is a Banach space endowed with the sup-
norm ‖φ‖ = supt∈[−r,0] |φ(t)|.

It is well-known (see, for example, Diekmann et al. [2], Hale [10], or Hale and
Verduyn Lunel [11]) that, for any given initial function φ in C([−r, 0], R), there
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exists a unique solution x of the differential equation (1.1) which satisfies the initial
condition

x(t) = φ(t) for t ∈ [−r, 0]; (1.2)

this function x will be called the solution of the initial problem (1.1)-(1.2) or, more
briefly, the solution of (1.1)-(1.2).

The characteristic equation of (1.1) is

λ
[
1 +

∫ 0

−σ

eλsdζ(s)
]

=
∫ 0

−τ

eλsdη(s). (1.3)

Throughout this paper, by V (ζ) we will denote the total variation function of
ζ, which is defined on the interval [−σ, 0] as follows: V (ζ)(−σ) = 0, and V (ζ)(s) is
the total variation of ζ on [−σ, s] for each s in (−σ, 0]. Also, V (η) will stand for the
total variation function of η defined on the interval [−τ, 0] by an analogous way:
V (η)(−τ) = 0, and V (η)(s) is equal to the total variation of η on [−τ, s] for each
s ∈ (−τ, 0]. Note that the functions V (ζ) and V (η) are nonnegative and increasing
on the intervals [−σ, 0] and [−τ, 0] respectively. Moreover, it must be noted that
V (ζ) is identically zero on [−σ, 0] if ζ is constant on this interval, and that V (η)
is not identically zero on the interval [−τ, 0] (and so it is always not constant on
[−τ, 0]). It will be considered that the reader is familiar with the theory of functions
of bounded variation and the theory of Riemann-Stieltjes integration.

To obtain the main results of this paper, we will make use of a real root λ0 of
the characteristic equation (1.3) with the property∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−τ

(−s)eλ0sdV (η)(s) < 1. (1.4)

Let us consider the special case of the (non-neutral) delay differential equation

x′(t) =
∫ 0

−τ

x(t + s)dη(s). (1.5)

This equation can be obtained (as a special case) from the differential equation
(1.1), by choosing σ to be an arbitrary positive constant with σ ≤ τ and considering
ζ to be any constant real-valued function on [−σ, 0].

As it concerns the (non-neutral) delay differential equation (1.5), we have the
constant τ in place of r.

By a solution of (1.5), we mean a continuous real-valued function x defined on
the interval [−τ,∞), which is continuously differentiable on [0,∞) and satisfies
(1.5) for t ≥ 0. In the special case of (1.5), the Initial Condition (1.2) becomes

x(t) = φ(t) for t ∈ [−τ, 0]. (1.6)

The characteristic equation of (1.5) is

λ =
∫ 0

−τ

eλsdη(s). (1.7)

With respect to the (non-neutral) delay differential equation (1.5), we need a
real root λ0 of the characteristic equation (1.7) with the property∫ 0

−τ

(−s)eλ0sdV (η)(s) < 1. (1.8)
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The notions of the stability, instability, uniform stability, asymptotic stability
and uniform asymptotic stability of the trivial solution of a neutral (or non-neutral)
delay differential equation will be considered in the usual sense (see, for example,
Diekmann et al. [2], Hale [10], or Hale and Verduyn Lunel [11]; for the non-neutral
case, see also Driver [5]). Note that, since the differential equation (1.1) (and, in
particular, the differential equation (1.5)) is autonomous, the trivial solution of
(1.1) (and, in particular, of (1.5)) is uniformly stable or uniformly asymptotically
stable if and only if it is stable (at 0) or asymptotically stable (at 0) respectively.

Our main results are two theorems and two corollaries of the first of these theo-
rems. The main results of the paper are stated in Section 2. The proof of the first
theorem is given in Section 3, while the proof of the second theorem is presented in
Section 4. Section 5 is devoted to the application of the main results to the special
case of the (non-neutral) delay differential equation (1.5). Sufficient conditions for
the characteristic equation (1.3) (and, in particular, for (1.7)) to have a real root λ0

with the property (1.4) (and, in particular, with the property (1.8)) are obtained
in Section 6.

2. Statement of the main results

Theorem 2.1 below is a basic asymptotic criterion for the solutions of the neutral
delay differential equation (1.1).

Theorem 2.1. Let λ0 be a real root of the characteristic equation (1.3) with the
property (1.4) and set

γ(λ0) =
∫ 0

−σ

[1− λ0(−s)] eλ0sdζ(s) +
∫ 0

−τ

(−s)eλ0sdη(s).

Then, for every φ ∈ C([−r, 0], R), the solution x of (1.1)-(1.2) satisfies

lim
t→∞

[
e−λ0tx(t)

]
=

L(λ0;φ)
1 + γ(λ0)

,

where

L(λ0;φ) = φ(0) +
∫ 0

−σ

[
φ(s)− λ0e

λ0s

∫ 0

s

e−λ0uφ(u)du
]
dζ(s)

+
∫ 0

−τ

eλ0s
[ ∫ 0

s

e−λ0uφ(u)du
]
dη(s).

Note: Property (1.4) guarantees that 1 + γ(λ0) > 0.
We immediately see that λ0 = 0 is a root of the characteristic equation (1.3)

with the property (1.4) if and only if∫ 0

−τ

dη(s) = 0 and
∫ 0

−σ

dV (ζ)(s) +
∫ 0

−τ

(−s)dV (η)(s) < 1 ,

i.e. if and only if the following condition holds:

η(−τ) = η(0) and V (ζ)(0) +
∫ 0

−τ

(−s)dV (η)(s) < 1 . (2.1)

Note that V (ζ)(0) is the total variation of ζ on the interval [−σ, 0]. Thus, an
application of Theorem 2.1 with λ0 = 0 leads to the following corollary.
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Corollary 2.2. Let Condition (2.1) be satisfied. Then, for φ ∈ C([−r, 0], R), the
solution x of (1.1)-(1.2) satisfies

lim
t→∞

x(t) =
φ(0) +

∫ 0

−σ
φ(s)dζ(s) +

∫ 0

−τ

[ ∫ 0

s
φ(u)du

]
dη(s)

1 + [ζ(0)− ζ(−σ)] +
∫ 0

−τ
(−s)dη(s)

.

Note: The second assumption of (2.1) ensures that

1 + [ζ(0)− ζ(−σ)] +
∫ 0

−τ

(−s)dη(s) > 0.

Another immediate consequence of Theorem 2.1 is the following result. As cus-
tomary, a solution of (1.1) is said to be nonoscillatory if it is either eventually
positive or eventually negative.

Corollary 2.3. Let λ0 be a real root of the characteristic equation (1.3) with the
property (1.4). Then, for any φ ∈ C([−r, 0], R), the solution x of (1.1)-(1.2) will
be nonoscillatory, except possibly if φ is such that L(λ0;φ) = 0, where L(λ0;φ) is
defined as in Theorem 2.1.

Consider a real root λ0 of (1.3) with the property (1.4) and, for any φ ∈
C([−r, 0], R), let L(λ0;φ) be defined as in Theorem 2.1. Clearly, the operator
L(λ0; ·) is linear. Moreover, there exists a function φ0 ∈ C([−r, 0], R) such that
L(λ0;φ0) 6= 0. Indeed, if we set

φ0(t) = eλ0t for t ∈ [−r, 0],

then φ0 ∈ C([−r, 0], R) and we have

L(λ0;φ0) ≡ φ0(0) +
∫ 0

−σ

[
φ0(s)− λ0e

λ0s

∫ 0

s

e−λ0uφ0(u)du
]
dζ(s)

+
∫ 0

−τ

eλ0s
[ ∫ 0

s

e−λ0uφ0(u)du
]
dη(s)

= 1 +
∫ 0

−σ

[
eλ0s − λ0e

λ0s(−s)
]
dζ(s) +

∫ 0

−τ

eλ0s(−s)dη(s)

= 1 +
∫ 0

−σ

[1− λ0(−s)] eλ0sdζ(s) +
∫ 0

−τ

(−s)eλ0sdη(s)

= 1 + γ(λ0) > 0,

where γ(λ0) is defined as in Theorem 2.1. So, by the same method with the one
that was used by Driver in [3] (see, also, Philos [13]), one can prove the following
result, which can be considered as a complement of Corollary 2.3.

Let λ0 be a real root of the characteristic equation (1.3) with the property (1.4).
Moreover, for any φ ∈ C([−r, 0], R), let L(λ0;φ) be defined as in Theorem 2.1.
Then the set of all functions φ ∈ C([−r, 0], R) which satisfy L(λ0;φ) = 0 is a
nowhere dense subset of the Banach space C([−r, 0], R) (with the sup-norm).

The following theorem establishes an estimate for the solutions of the neutral
delay differential equation (1.1) and, also, a stability criterion for the trivial solution
of (1.1).
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Theorem 2.4. Let λ0 be a real root of the characteristic equation (1.3) with the
property (1.4). Consider γ(λ0) as in Theorem 2.1 and set

µ(λ0) =
∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−τ

(−s)eλ0sdV (η)(s).

Then, for any φ ∈ C([−r, 0], R), the solution x of (1.1)-(1.2) satisfies

|x(t)| ≤ N(λ0) ‖φ‖ eλ0t for all t ≥ 0,

where

N(λ0) =
1 + µ(λ0)
1 + γ(λ0)

+
[
1 +

1 + µ(λ0)
1 + γ(λ0)

]
µ(λ0) max{1, eλ0r}.

Here the constant N(λ0) is greater than 1. Moreover, the trivial solution of (1.1) is
uniformly stable if λ0 = 0, uniformly asymptotically stable if λ0 < 0, and unstable
if λ0 > 0.

Note that the criterion for the uniform stability stated in Theorem 2.4 can equiv-
alently be formulated as follows:

The trivial solution of (1.1) is uniformly stable if Condition (2.1) holds.

3. Proof of Theorem 2.1

First of all, let us define µ(λ0) as in Theorem 2.4, i.e.

µ(λ0) =
∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−τ

(−s)eλ0sdV (η)(s).

Property (1.4) implies
0 < µ(λ0) < 1. (3.1)

We have

|γ(λ0)| ≤
∣∣∣ ∫ 0

−σ

[1− λ0(−s)] eλ0sdζ(s)
∣∣∣ +

∣∣∣ ∫ 0

−τ

(−s)eλ0sdη(s)
∣∣∣

≤
∫ 0

−σ

|1− λ0(−s)| eλ0sdV (ζ)(s) +
∫ 0

−τ

(−s)eλ0sdV (η)(s)

≤
∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−τ

(−s)eλ0sdV (η)(s),

that is |γ(λ0)| ≤ µ(λ0). So, in view of (3.1), it holds |γ(λ0)| < 1. This, in particular,
implies that 1 + γ(λ0) > 0.

Consider now an arbitrary initial function φ in C([−r, 0], R) and let x be the
solution of (1.1)-(1.2). Define

y(t) = e−λ0tx(t) for t ≥ −r.

Then, using the fact that λ0 is a (real) root of the characteristic equation (1.3), we
obtain for every t ≥ 0[

x(t) +
∫ 0

−σ

x(t + s)dζ(s)
]′
−

∫ 0

−τ

x(t + s)dη(s)

= eλ0t
{[

y(t) +
∫ 0

−σ

eλ0sy(t + s)dζ(s)
]′

+ λ0

[
y(t) +

∫ 0

−σ

eλ0sy(t + s)dζ(s)
]

−
∫ 0

−τ

eλ0sy(t + s)dη(s)
}
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= eλ0t
{[

y(t) +
∫ 0

−σ

eλ0sy(t + s)dζ(s)
]′

+
[
− λ0

∫ 0

−σ

eλ0sdζ(s) +
∫ 0

−τ

eλ0sdη(s)
]
y(t)

+ λ0

∫ 0

−σ

eλ0sy(t + s)dζ(s)−
∫ 0

−τ

eλ0sy(t + s)dη(s)
}

= eλ0t
{[

y(t) +
∫ 0

−σ

eλ0sy(t + s)dζ(s)
]′
− λ0

∫ 0

−σ

eλ0s
[
y(t)− y(t + s)

]
dζ(s)

+
∫ 0

−τ

eλ0s
[
y(t)− y(t + s)

]
dη(s)

}
.

Thus, since x satisfies (1.1) for all t ≥ 0, it follows that y satisfies[
y(t) +

∫ 0

−σ

eλ0sy(t + s)dζ(s)
]′

= λ0

∫ 0

−σ

eλ0s
[
y(t)− y(t + s)

]
dζ(s)−

∫ 0

−τ

eλ0s
[
y(t)− y(t + s)

]
dη(s), t ≥ 0.

(3.2)

On the other hand, the Initial Condition (1.2) becomes

y(t) = e−λ0tφ(t) for t ∈ [−r, 0]. (3.3)

Furthermore, we can see that (3.2) is equivalently written as

y(t) +
∫ 0

−σ

eλ0sy(t + s)dζ(s)

= λ0

∫ 0

−σ

eλ0s
[ ∫ t

t+s

y(u)du
]
dζ(s)−

∫ 0

−τ

eλ0s
[ ∫ t

t+s

y(u)du
]
dη(s) + K for t ≥ 0

for some real constant K. But, by taking into account (3.3) and the definition of
L(λ0;φ), we have

K = y(0) +
∫ 0

−σ

eλ0sy(s)dζ(s)− λ0

∫ 0

−σ

eλ0s
[ ∫ 0

s

y(u)du
]
dζ(s)

+
∫ 0

−τ

eλ0s
[ ∫ 0

s

y(u)du
]
dη(s)

= φ(0) +
∫ 0

−σ

φ(s)dζ(s)− λ0

∫ 0

−σ

eλ0s
[ ∫ 0

s

e−λ0uφ(u)du
]
dζ(s)

+
∫ 0

−τ

eλ0s
[ ∫ 0

s

e−λ0uφ(u)du
]
dη(s)

= φ(0) +
∫ 0

−σ

[
φ(s)− λ0e

λ0s

∫ 0

s

e−λ0uφ(u)du

]
dζ(s)

+
∫ 0

−τ

eλ0s
[ ∫ 0

s

e−λ0uφ(u)du
]
dη(s)

≡ L(λ0;φ).
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So, (3.2) is equivalent to

y(t) +
∫ 0

−σ

eλ0sy(t + s)dζ(s)

= λ0

∫ 0

−σ

eλ0s
[ ∫ t

t+s

y(u)du
]
dζ(s)−

∫ 0

−τ

eλ0s
[ ∫ t

t+s

y(u)du
]
dη(s) + L(λ0;φ)

(3.4)

for t ≥ 0.
Next, we set

z(t) = y(t)− L(λ0;φ)
1 + γ(λ0)

for t ≥ −r.

Then, using the definition of γ(λ0), it is easy to check that (3.4) takes the following
equivalent form

z(t) +
∫ 0

−σ

eλ0sz(t + s)dζ(s)

= λ0

∫ 0

−σ

eλ0s
[ ∫ t

t+s

z(u)du
]
dζ(s)−

∫ 0

−τ

eλ0s
[ ∫ t

t+s

z(u)du
]
dη(s) for t ≥ 0.

(3.5)
Moreover, (3.3) is written as

z(t) = e−λ0tφ(t)− L(λ0;φ)
1 + γ(λ0)

for t ∈ [−r, 0]. (3.6)

By the definitions of y and z, what we have to prove is that

lim
t→∞

z(t) = 0. (3.7)

In the rest of the proof we will establish (3.7). Put

M(λ0;φ) = max
t∈[−r,0]

∣∣∣e−λ0tφ(t)− L(λ0;φ)
1 + γ(λ0)

∣∣∣.
Then, in view of (3.6), we have

|z(t)| ≤ M(λ0;φ) for − r ≤ t ≤ 0. (3.8)

We will show that M(λ0;φ) is a bound of z on the whole interval [−r,∞), namely
that

|z(t)| ≤ M(λ0;φ) for all t ≥ −r. (3.9)
To this end, let us consider an arbitrary number ε > 0. We claim that

|z(t)| < M(λ0;φ) + ε for every t ≥ −r. (3.10)

Otherwise, because of (3.8), there exists a point t0 > 0 such that

|z(t)| < M(λ0;φ) + ε for − r ≤ t < t0, and |z(t0)| = M(λ0;φ) + ε.

Then, by taking into account the definition of µ(λ0) and using (3.1), from (3.5) we
obtain

M(λ0;φ) + ε = |z(t0)|

=
∣∣∣− ∫ 0

−σ

eλ0sz(t0 + s)dζ(s) + λ0

∫ 0

−σ

eλ0s
[ ∫ t0

t0+s

z(u)du
]
dζ(s)

−
∫ 0

−τ

eλ0s
[ ∫ t0

t0+s

z(u)du
]
dη(s)

∣∣∣
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≤
∣∣∣ ∫ 0

−σ

eλ0sz(t0 + s)dζ(s)
∣∣∣ + |λ0|

∣∣∣ ∫ 0

−σ

eλ0s
[ ∫ t0

t0+s

z(u)du
]
dζ(s)

∣∣∣
+

∣∣∣ ∫ 0

−τ

eλ0s
[ ∫ t0

t0+s

z(u)du
]
dη(s)

∣∣∣
≤

∫ 0

−σ

eλ0s|z(t0 + s)|dV (ζ)(s) + |λ0|
∫ 0

−σ

eλ0s
∣∣∣ ∫ t0

t0+s

z(u)du
∣∣∣dV (ζ)(s)

+
∫ 0

−τ

eλ0s
∣∣∣ ∫ t0

t0+s

z(u)du
∣∣∣dV (η)(s)

≤
∫ 0

−σ

eλ0s|z(t0 + s)|dV (ζ)(s) + |λ0|
∫ 0

−σ

eλ0s
[ ∫ t0

t0+s

|z(u)|du
]
dV (ζ)(s)

+
∫ 0

−τ

eλ0s
[ ∫ t0

t0+s

|z(u)|du
]
dV (η)(s)

≤
[ ∫ 0

−σ

eλ0sdV (ζ)(s) + |λ0|
∫ 0

−σ

eλ0s(−s)dV (ζ)(s)

+
∫ 0

−τ

eλ0s(−s)dV (η)(s)
][

M(λ0;φ) + ε
]

=
{∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−τ

(−s)eλ0sdV (η)(s)
}

[M(λ0;φ) + ε]

≡ µ(λ0) [M(λ0;φ) + ε] < M(λ0;φ) + ε.

This is a contradiction and so our claim is true, i.e. (3.10) holds. We have thus
proved that (3.10) is fulfilled for all numbers ε > 0. Hence, (3.9) is satisfied. Now,
by virtue of (3.9), from (3.5) we derive for t ≥ 0,

|z(t)| ≤
∣∣∣ ∫ 0

−σ

eλ0sz(t + s)dζ(s)
∣∣∣ + |λ0|

∣∣∣ ∫ 0

−σ

eλ0s
[ ∫ t

t+s

z(u)du
]
dζ(s)

∣∣∣
+

∣∣∣ ∫ 0

−τ

eλ0s
[ ∫ t

t+s

z(u)du
]
dη(s)

∣∣∣
≤

∫ 0

−σ

eλ0s |z(t + s)| dV (ζ)(s) + |λ0|
∫ 0

−σ

eλ0s

∣∣∣∣∫ t

t+s

z(u)du

∣∣∣∣ dV (ζ)(s)

+
∫ 0

−τ

eλ0s
∣∣∣ ∫ t

t+s

z(u)du
∣∣∣dV (η)(s)

≤
∫ 0

−σ

eλ0s |z(t + s)| dV (ζ)(s) + |λ0|
∫ 0

−σ

eλ0s
[ ∫ t

t+s

|z(u)| du
]
dV (ζ)(s)

+
∫ 0

−τ

eλ0s
[ ∫ t

t+s

|z(u)| du
]
dV (η)(s)

≤
[ ∫ 0

−σ

eλ0sdV (ζ)(s) + |λ0|
∫ 0

−σ

eλ0s(−s)dV (ζ)(s)

+
∫ 0

−τ

eλ0s(−s)dV (η)(s)
]
M(λ0;φ)

=
{∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−τ

eλ0s(−s)dV (η)(s)
}

M(λ0;φ) .
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Consequently, by the definition of µ(λ0), we have

|z(t)| ≤ µ(λ0)M(λ0;φ) for every t ≥ 0. (3.11)

Using (3.5) and taking into account the definition of µ(λ0) as well as (3.9) and
(3.11), one can show, by an easy induction, that z satisfies

|z(t)| ≤ [µ(λ0)]
ν
M(λ0;φ) for all t ≥ νr − r (ν = 0, 1, 2, . . . ). (3.12)

Because of (3.1), we have limν→∞ [µ(λ0)]
ν = 0. Thus, from (3.12) it follows that

limt→∞ z(t) = 0, i.e. (3.7) holds. The proof of Theorem 2.1 is complete.

4. Proof or Theorem 2.4

We first notice that, as in the proof of Theorem 2.1, we have 0 < µ(λ0) < 1,
|γ(λ0)| ≤ µ(λ0) and 1+γ(λ0) > 0. It follows immediately that N(λ0) > 1. Consider
an arbitrary function φ in C([−r, 0], R) and let x be the solution of (1.1)-(1.2). Let
y and z be defined as in the proof of Theorem 2.1, i.e.

y(t) = e−λ0tx(t) for t ≥ −r, and z(t) = y(t)− L(λ0;φ)
1 + γ(λ0)

for t ≥ −r,

where L(λ0;φ) is defined as in Theorem 2.1. Moreover, let M(λ0;φ) be defined as
in the proof of Theorem 2.1, i.e.

M(λ0;φ) = max
t∈[−r,0]

∣∣∣e−λ0tφ(t)− L(λ0;φ)
1 + γ(λ0)

∣∣∣.
Then, as in the proof of Theorem 2.1, we can show that z satisfies (3.11), namely

|z(t)| ≤ µ(λ0)M(λ0;φ) for every t ≥ 0.

By the definition of z, from the last inequality it follows that

|y(t)| ≤ |L(λ0;φ)|
1 + γ(λ0)

+ µ(λ0)M(λ0;φ) for t ≥ 0. (4.1)

On the other hand, from the definition of M(λ0;φ) we get

M(λ0;φ) ≤ ‖φ‖max{1, eλ0r}+
|L(λ0;φ)|
1 + γ(λ0)

.

So, (4.1) gives

|y(t)| ≤ 1 + µ(λ0)
1 + γ(λ0)

|L(λ0;φ)|+ ‖φ‖µ(λ0) max{1, eλ0r}, t ≥ 0. (4.2)

Furthermore, by the definition of L(λ0;φ), we obtain

|L(λ0;φ)| ≤ |φ(0)|+
∣∣∣ ∫ 0

−σ

[
φ(s)− λ0e

λ0s

∫ 0

s

e−λ0uφ(u)du
]
dζ(s)

∣∣∣
+

∣∣∣ ∫ 0

−τ

eλ0s
[ ∫ 0

s

e−λ0uφ(u)du
]
dη(s)

∣∣∣
= |φ(0)|+

∣∣∣ ∫ 0

−σ

[
e−λ0sφ(s)− λ0

∫ 0

s

e−λ0uφ(u)du
]
eλ0sdζ(s)

∣∣∣
+

∣∣∣ ∫ 0

−τ

[ ∫ 0

s

e−λ0uφ(u)du
]
eλ0sdη(s)

∣∣∣
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≤ |φ(0)|+
∫ 0

−σ

∣∣∣e−λ0sφ(s)− λ0

∫ 0

s

e−λ0uφ(u)du
∣∣∣eλ0sdV (ζ)(s)

+
∫ 0

−τ

∣∣∣ ∫ 0

s

e−λ0uφ(u)du
∣∣∣eλ0sdV (η)(s)

≤ |φ(0)|+
∫ 0

−σ

[
e−λ0s|φ(s)|+ |λ0|

∫ 0

s

e−λ0u |φ(u)| du
]
eλ0sdV (ζ)(s)

+
∫ 0

−τ

[ ∫ 0

s

e−λ0u |φ(u)| du
]
eλ0sdV (η)(s) .

Consequently

|L(λ0;φ)| ≤ ‖φ‖
[
1 +

∫ 0

−σ

(
e−λ0s + |λ0|

∫ 0

s

e−λ0udu
)
eλ0sdV (ζ)(s)

+
∫ 0

−τ

( ∫ 0

s

e−λ0udu
)
eλ0sdV (η)(s)

]
.

(4.3)

We have previously used the elementary inequality e−λ0t ≤ max{1, eλ0r} for each
t ∈ [−r, 0]. Therefore,

e−λ0s ≤ max{1, eλ0r} for s ∈ [−σ, 0],∫ 0

s

e−λ0udu ≤ (−s) max{1, eλ0r} for s ∈ [−σ, 0],∫ 0

s

e−λ0udu ≤ (−s) max{1, eλ0r} for s ∈ [−τ, 0].

Thus, (4.3) leads to

|L(λ0;φ)| ≤ ‖φ‖
{

1 +
( ∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s)

+
∫ 0

−τ

(−s)eλ0sdV (η)(s)
)

max{1, eλ0r}
}

,

which, in view of the definition of µ(λ0), can be written as

|L(λ0;φ)| ≤ ‖φ‖
[
1 + µ(λ0) max{1, eλ0r}

]
.

Hence, for t ≥ 0, (4.2) gives

|y(t)| ≤
{1 + µ(λ0)

1 + γ(λ0)
[
1 + µ(λ0) max{1, eλ0r}

]
+ µ(λ0) max{1, eλ0r}

}
‖φ‖

=
{1 + µ(λ0)

1 + γ(λ0)
+

[
1 +

1 + µ(λ0)
1 + γ(λ0)

]
µ(λ0) max{1, eλ0r}

}
‖φ‖

and so, because of the definition of N(λ0), we have

|y(t)| ≤ N(λ0) ‖φ‖ for every t ≥ 0.

Finally, in view of the definition of y, we obtain

|x(t)| ≤ N(λ0) ‖φ‖ eλ0t for all t ≥ 0. (4.4)

This completes the proof of the first part of the theorem. It remains to show the
stability criterion contained in the theorem.
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Let us suppose that λ0 ≤ 0. Let φ ∈ C([−r, 0], R) be an arbitrary initial function
and let x be the solution of (1.1)-(1.2). Then (4.4) holds and hence

|x(t)| ≤ N(λ0) ‖φ‖ for every t ≥ 0.

Since N(λ0) > 1, it follows that |x(t)| ≤ N(λ0) ‖φ‖ for all t ≥ −r. Using this
inequality, we can immediately verify that the trivial solution of (1.1) is stable (at
0). Moreover, if λ0 < 0, then (4.4) guarantees that

lim
t→∞

x(t) = 0.

Thus, for λ0 < 0 the trivial solution of (1.1) is asymptotically stable (at 0). Because
of the autonomous character of (1.1), the trivial solution of (1.1) is uniformly stable
if λ0 = 0 and it is uniformly asymptotically stable if λ0 < 0.

Finally, we assume that λ0 > 0 and we will show that the trivial solution of
(1.1) is unstable. Suppose, for the sake of contradiction, that the trivial solution
of (1.1) is stable (at 0). Then we can choose a number δ > 0 such that, for each
φ ∈ C([−r, 0], R) with ‖φ‖ < δ, the solution x of (1.1)-(1.2) satisfies

|x(t)| < 1 for all t ≥ −r. (4.5)

Set

φ0(t) = eλ0t for t ∈ [−r, 0].

We see that φ0 ∈ C([−r, 0], R) and, as in Section 2, we can verify that

L(λ0;φ0) = 1 + γ(λ0) > 0, (4.6)

where γ(λ0) and, for any φ ∈ C([−r, 0], R), L(λ0;φ) are defined as in Theorem 2.1.
Next, we consider a number δ0 with 0 < δ0 < δ and we put

φ =
δ0

‖φ0‖
φ0.

Clearly, φ belongs to C([−r, 0], R) and ‖φ‖ = δ0 < δ. Hence, for this initial function,
the solution x of (1.1)-(1.2) satisfies (4.5). On the other hand, by applying Theorem
2.1 and taking into account (4.6) as well as the linearity of the operator L(λ0; ·),
we obtain

lim
t→∞

[
e−λ0tx(t)

]
=

L(λ0;φ)
1 + γ(λ0)

=
(δ0/ ‖φ0‖) L(λ0;φ0)

1 + γ(λ0)
=

δ0

‖φ0‖
> 0.

But, since λ0 > 0, from (4.5) it follows that

lim
t→∞

[
e−λ0tx(t)

]
= 0.

We have thus arrived at a contradiction. The proof of Theorem 2.4 is now complete.

5. Application of the main results to the special case of
non-neutral equations

In this section, we will concentrate on the (non-neutral) delay differential equa-
tion (1.5) and we shall apply our main results to this equation. For the delay
differential equation (1.5), the following results hold.
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Theorem 5.1. Let λ0 be a real root of the characteristic equation (1.7) with the
property (1.8). Then, for any φ ∈ C([−τ, 0], R), the solution x of (1.5)-(1.6) satis-
fies

lim
t→∞

[
e−λ0tx(t)

]
=

`(λ0;φ)

1 +
∫ 0

−τ
(−s)eλ0sdη(s)

,

where

`(λ0;φ) = φ(0) +
∫ 0

−τ

eλ0s
[ ∫ 0

s

e−λ0uφ(u)du
]
dη(s).

Note that Property (1.8) guarantees that 1 +
∫ 0

−τ
(−s)eλ0sdη(s) > 0.

Corollary 5.2. Assume that

η(−τ) = η(0) and
∫ 0

−τ

(−s)dV (η)(s) < 1. (5.1)

Then, for any φ ∈ C([−τ, 0], R), the solution x of (1.5)-(1.6) satisfies

lim
t→∞

x(t) =
φ(0) +

∫ 0

−τ

[ ∫ 0

s
φ(u)du

]
dη(s)

1 +
∫ 0

−τ
(−s)dη(s)

.

Note that the second assumption of (5.1) ensures that 1 +
∫ 0

−τ
(−s)dη(s) > 0.

Corollary 5.3. Let λ0 be a real root of the characteristic equation (1.7) with the
property (1.8). Then, for any φ ∈ C([−τ, 0], R), the solution x of (1.5)-(1.6) will be
nonoscillatory, except possibly if φ satisfies `(λ0;φ) = 0, where `(λ0;φ) is defined
as in Theorem 5.1.

As a complement to Corollary 5.3, we have: Let λ0 be a real root of the charac-
teristic equation (1.7) with the property (1.8). Moreover, for any φ ∈ C([−τ, 0], R),
let `(λ0;φ) be defined as in Theorem 5.1. Then the set of all functions φ ∈
C([−τ, 0], R) which satisfy `(λ0;φ) = 0 is a nowhere dense subset of the Banach
space C([−τ, 0], R) (with the sup-norm).

Theorem 5.4. Let λ0 be a real root of the characteristic equation (1.7) with the
property (1.8). Then, for any φ ∈ C([−τ, 0], R), the solution x of (1.5)-(1.6) satis-
fies

|x(t)| ≤ n(λ0)‖φ‖eλ0t for all t ≥ 0,

where

n(λ0) =
1 +

∫ 0

−τ
(−s)eλ0sdV (η)(s)

1 +
∫ 0

−τ
(−s)eλ0sdη(s)

+
[
1 +

1 +
∫ 0

−τ
(−s)eλ0sdV (η)(s)

1 +
∫ 0

−τ
(−s)eλ0sdη(s)

][ ∫ 0

−τ

(−s)eλ0sdV (η)(s)
]
max{1, eλ0τ}

with the constant n(λ0) being greater than 1. Moreover, the trivial solution of (1.5)
is uniformly stable if λ0 = 0, uniformly asymptotically stable if λ0 < 0, and unstable
if λ0 > 0.

We observe that, concerning the uniform stability, the corresponding result in
Theorem 5.4 can be equivalently stated as: The trivial solution of (1.5) is uniformly
stable if Condition (5.1) holds.
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6. Sufficient conditions for the characteristic equation to have a
real root with the property required

In this section, we give some conditions, under which the characteristic equation
(1.3) (and, in particular, the characteristic equation (1.7)) has a real root λ0 with
the property (1.4) (and, in particular, with the property (1.8)).

Lemma 6.1. Assume that∫ 0

−σ

e−s/rdζ(s) + r

∫ 0

−τ

e−s/rdη(s) > −1, (6.1)

−
∫ 0

−σ

es/rdζ(s) + r

∫ 0

−τ

es/rdη(s) < 1, (6.2)∫ 0

−σ

[1 + (−s)/r] e−s/rdV (ζ)(s) +
∫ 0

−τ

(−s)e−s/rdV (η)(s) ≤ 1. (6.3)

Then, in the interval (−1/r, 1/r), the characteristic equation (1.3) has a unique
root λ0, and this root satisfies the property (1.4).

Proof. Define

F (λ) = λ
[
1 +

∫ 0

−σ

eλsdζ(s)
]
−

∫ 0

−τ

eλsdη(s) for λ ∈ [−1/r, 1/r].

We have

F (−1/r) = −1
r

[
1 +

∫ 0

−σ

e−s/rdζ(s)
]
−

∫ 0

−τ

e−s/rdη(s)

= −1
r

[
1 +

∫ 0

−σ

e−s/rdζ(s) + r

∫ 0

−τ

e−s/rdη(s)
]

and so, by (6.1), we get F (−1/r) < 0. Moreover,

F (1/r) =
1
r

[
1 +

∫ 0

−σ

es/rdζ(s)
]
−

∫ 0

−τ

es/rdη(s)

= −1
r

[
− 1−

∫ 0

−σ

es/rdζ(s) + r

∫ 0

−τ

es/rdη(s)
]

and hence from (6.2) it follows that F (1/r) > 0. Furthermore, by taking into
account (6.3), for λ ∈ (−1/r, 1/r), we obtain

F ′(λ) = 1 +
∫ 0

−σ

[1− λ(−s)] eλsdζ(s) +
∫ 0

−τ

(−s)eλsdη(s)

≥ 1−
∣∣∣∣∫ 0

−σ

[1− λ(−s)] eλsdζ(s)
∣∣∣∣− ∣∣∣ ∫ 0

−τ

(−s)eλsdη(s)
∣∣∣

≥ 1−
∫ 0

−σ

|1− λ(−s)| eλsdV (ζ)(s)−
∫ 0

−τ

(−s)eλsdV (η)(s)

≥ 1−
∫ 0

−σ

[1 + |λ| (−s)] eλsdV (ζ)(s)−
∫ 0

−τ

(−s)eλsdV (η)(s)

> 1−
∫ 0

−σ

[1 + (−s)/r] e−s/rdV (ζ)(s)−
∫ 0

−τ

(−s)e−s/rdV (η)(s)

≥ 0 .
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Therefore, F is strictly increasing on the interval (−1/r, 1/r). So, in the interval
(−1/r, 1/r), the equation F (λ) = 0 (which coincides with (1.3)) has a unique root
λ0. This root satisfies (1.4). Indeed, by using again (6.3), we have∫ 0

−σ

[1 + |λ0| (−s)] eλ0sdV (ζ)(s) +
∫ 0

−τ

(−s)eλ0sdV (η)(s)

<

∫ 0

−σ

[1 + (−s)/r] e−s/rdV (ζ)(s) +
∫ 0

−τ

(−s)e−s/rdV (η)(s) ≤ 1.

This completes the proof. �

Now, we will confine our attention to the special case of the (non-neutral) delay
differential equation (1.5), for which the characteristic equation is (1.7). In this
case, Conditions (6.1), (6.2), (6.3) take the form

τ

∫ 0

−τ

e−s/τdη(s) > −1, (6.4)

τ

∫ 0

−τ

es/τdη(s) < 1, (6.5)∫ 0

−τ

(−s)e−s/τdV (η)(s) ≤ 1 . (6.6)

Lemma 6.1 can be applied to the case of the characteristic equation (1.7) with
the assumptions (6.4)–(6.6) instead of (6.1)–(6.3). However, we have the following
result which is slightly better.

Lemma 6.2. Let (6.4) and (6.6) be satisfied. Then, in the interval (−1/τ,∞), the
characteristic equation (1.7) has a unique root λ0; this root has the property (1.8)
and, provided that (6.5) holds, the root λ0 is less than 1/τ .

Proof. Set

F0(λ) = λ−
∫ 0

−τ

eλsdη(s) for λ ≥ −1/τ.

From (6.4), it follows immediately that F0(−1/τ) < 0. Next, for every λ ≥ −1/τ ,
we obtain

F0(λ) ≥ λ−
∣∣∣ ∫ 0

−τ

eλsdη(s)
∣∣∣ ≥ λ−

∫ 0

−τ

eλsdV (η)(s) ≥ λ−
∫ 0

−τ

e−s/τdV (η)(s)

and consequently F0(∞) = ∞. Moreover, for λ > −1/τ , we have

F ′0(λ) = 1 +
∫ 0

−τ

(−s)eλsdη(s) ≥ 1−
∣∣∣ ∫ 0

−τ

(−s)eλsdη(s)
∣∣∣

≥ 1−
∫ 0

−τ

(−s)eλsdV (η)(s) > 1−
∫ 0

−τ

(−s)e−s/τdV (η)(s)

and so, by (6.6), it follows that F0 is strictly increasing on (−1/τ,∞). Hence, in
the interval (−1/τ,∞), there exists a unique root λ0 of the equation F0(λ) = 0 (or,
equivalently, of (1.7)). By using again (6.6), we get∫ 0

−τ

(−s)eλ0sdV (η)(s) <

∫ 0

−τ

(−s)e−s/τdV (η)(s) ≤ 1 .
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Consequently the root λ0 satisfies (1.8). Now assume that (6.5) is also satisfied.
This assumption implies that F0(1/τ) > 0. Thus, we can immediately conclude
that the root λ0 is always less than 1/τ . The proof is now complete. �

We remark that Conditions (6.4)–(6.6) are satisfied if the following stronger
condition holds:

τ

∫ 0

−τ

e−s/τdV (η)(s) < 1. (6.7)

In fact, we have

τ

∫ 0

−τ

e−s/τdη(s) ≥ −τ
∣∣∣ ∫ 0

−τ

e−s/τdη(s)
∣∣∣ ≥ −τ

∫ 0

−τ

e−s/τdV (η)(s),

τ

∫ 0

−τ

es/τdη(s) ≤ τ
∣∣∣ ∫ 0

−τ

es/τdη(s)
∣∣∣ ≤ τ

∫ 0

−τ

es/τdV (η)(s)

≤ τ

∫ 0

−τ

dV (η)(s) ≤ τ

∫ 0

−τ

e−s/τdV (η)(s)

and ∫ 0

−τ

(−s)e−s/τdV (η)(s) ≤ τ

∫ 0

−τ

e−s/τdV (η)(s)

and so our assertion is true. Furthermore, since

τ

∫ 0

−τ

e−s/τdV (η)(s) ≤ τe

∫ 0

−τ

dV (η)(s) = τeV (η)(0),

we conclude that Condition (6.7) holds if

τeV (η)(0) < 1. (6.8)

Note that V (η)(0) is the total variation of η on the interval [−τ, 0]. Condition (6.7)
and, in particular, Condition (6.8) were used by Driver [3].

Note that it is an interesting question to find other conditions on σ and τ and
on the integrators ζ and η, which are sufficient for the characteristic equation (1.3)
to have a real root λ0 with the property (1.4). This problem remains interesting
still in the special case of the characteristic equation (1.7).

Before closing this section and the paper, we will use Lemma 6.1 (and, in par-
ticular, Lemma 6.2) to find some explicit conditions in terms of σ, τ and ζ, η (and,
in particular, in terms of τ and η), under which the trivial solution of (1.1) (and,
in particular, of (1.5)) is uniformly asymptotically stable or unstable. Note that
analogous conditions for the uniform stability of the trivial solution of (1.1) (and,
in particular, of (1.5)) have already been given in previous sections.

Let us assume that (6.1)–(6.3) hold. Then Lemma 6.1 guarantees that, in the
interval (−1/r, 1/r), the characteristic equation (1.3) has a unique root λ0; this
root satisfies the property (1.4). Let F be defined as in the proof of Lemma 6.1.
For this function, as in the proof of Lemma 6.1, we have

F (−1/r) < 0 and F (1/r) > 0.

Clearly, λ0 is negative if F (0) > 0, and λ0 is positive if F (0) < 0. On the other
hand,

F (0) = −
∫ 0

−τ

dη(s) = −[η(0)− η(−τ)].
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So, λ0 < 0 if η(0) < η(−τ), and λ0 > 0 if η(0) > η(−τ). Hence, from the stability
criterion contained in Theorem 2.4 we can obtain the following result.

Corollary 6.3. Assume that (6.1)–(6.3) are satisfied. Then the trivial solution
of (1.1) is uniformly asymptotically stable if η(0) < η(−τ) and it is unstable if
η(0) > η(−τ).

By an analogous way, we can use Lemma 6.2 and the stability criterion contained
in Theorem 5.4 to derive the following result.

Corollary 6.4. Assume that (6.4) and (6.6) are satisfied. Then the trivial solution
of (1.5) is uniformly asymptotically stable if η(0) < η(−τ) and it is unstable if
η(0) > η(−τ).
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