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EXACT BOUNDARY CONTROLLABILITY FOR A SERIES OF
MEMBRANES ELASTICALLY CONNECTED

WALDEMAR D. BASTOS, RUIKSON S. O. NUNES, JOÃO MANOEL SORIANO PITOT

Abstract. In this article we study the exact controllability with Neumann
boundary controls for a system of linear wave equations coupled in parallel by

lower order terms on piecewise smooth domains of the plane. We obtain square

integrable controls for initial state with finite energy and time of controllability
near the optimal value.

1. Introduction

In this article we study a system of m ≥ 2 coupled wave equations

Utt −∆U +AU = 0 in Ω×]0, T [,

U(·, 0) = U0 in Ω,

Ut(·, 0) = U1 in Ω,
∂U

∂η
= f on ∂Ω×]0, T [,

(1.1)

where Ω is a bounded simply connected domain of the plane with piecewise smooth
boundary ∂Ω. The exterior unit normal vector, defined almost everywhere in ∂Ω
is denoted by η and by ∂U

∂η we denote the normal derivative of U = (u1, . . . , um)T

where T stands for transpose. As usual we write Utt = (u1
tt, . . . , u

m
tt )

T , ∆U =
(∆u1, . . . ,∆um)T where the subscript tt denotes the second derivative with respect
to t and ∆ the Laplacian with respect to space variables. A = [aij ]m×m is assumed
to be a real diagonalizable matrix with nonnegative eigenvalues.

The system (1.1) includes those used to model physical phenomena in which sev-
eral elastic bodies are attached together by elastic layers. For instance, following
[9, 17] we see that a system composed by m identical membranes connected in paral-
lel by elastic layers having the transverse displacement given by U = (u1, . . . , um)T

must satisfy the relations

uitt −∆ui + ki−1(ui − ui−1) + ki(ui − ui+1) = 0 i = 1, . . . ,m,

u0 ≡ um+1 ≡ 0, ki real constants i = 0, 1, . . . ,m.
(1.2)
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In this case the coupling matrix is the tridiagonal symmetric matrix

A =



k0 + k1 −k1

−k1 k1 + k2 −k2

−k2 k2 + k3 −k3

−k3
. . .

km−2 + km−1 −km−1

−km−1 km−1 + km


.

In this work we are interested in studying exact boundary controllability for
system (1.1). Before announcing the results of this work we establish some no-
tation. For a general bounded domain Ξ ⊂ RN where N is a positive integer,
we denote (L2(Ξ), ‖ · ‖L2(Ξ)) and (H1(Ξ), ‖ · ‖H1(Ξ)) the usual Lebesgue space
of square integrable functions on Ξ and the Sobolev space of functions of L2(Ξ)
whose first order distributional derivatives are also in L2(Ξ). These spaces are en-
dowed with their usual norms [7]. We also introduce the product space H1(Ξ) =
H1(Ξ)× · · · ×H1(Ξ) = [H1(Ξ)]m with norm given by

‖U‖H1(Ξ) =
[
‖u1‖2H1(Ξ) + · · ·+ ‖um‖2H1(Ξ)

]1/2
, U = (u1, . . . , um)T ∈ H1(Ξ)

and the space L2(Ξ) = L2(Ξ)× · · · × L2(Ξ) = [L2(Ξ)]m with norm

‖U‖L2(Ξ) =
[
‖u1‖2L2(Ξ) + · · ·+ ‖um‖2L2(Ξ)

]1/2
, U = (u1, . . . , um)T ∈ L2(Ξ).

The product space H1(Ξ)× L2(Ξ) is endowed with the natural norm

‖(U, V )‖2H1(Ξ)×L2(Ξ) = ‖U‖2H1(Ξ) + ‖V ‖2L2(Ξ).

The spaces H1
loc(Ξ), L2

loc(Ξ) and H1
0(Ξ) have their usual meaning. The theorem

bellow is the main result of this article.

Theorem 1.1. Let A = [aij ]m×m be a real diagonalizable matrix with nonnegative
eigenvalues and Ω be a bounded simply connected domain of the plane with piecewise
smooth boundary ∂Ω. It is assumed that ∂Ω has no cuspid point and that Ω lays
in one side of ∂Ω. Then, for any T∗ > diam(Ω) and any initial state U0 ∈ H1(Ω),
U1 ∈ L2(Ω) there exist a control f ∈ L2(∂Ω×]0, T∗[) so that the solution U ∈
H1(Ω×]0, T∗[) of (1.1) satisfies the final condition U(·, T∗) = Ut(·, T∗) = 0 on Ω.

This theorem extends to systems of m > 2 equations and time of control near
optimal value the results presented in [6] for a system with two equations. We
employ the extension method introduced by Russell [18] as improved by Lagnese
[12] for the wave equation with smooth initial state. We explore properties of the
solutions of the Cauchy problem for Utt − ∆U + AU = 0 such as local energy
decay, regularity on noncharacteristic surfaces and time analyticity. Following the
evolution of the method to be employed and also the didactic aspect we firstly prove
controllability for a large enough time interval following Russell’s original procedure
[18]. After, following the lines of [16] we obtain time analyticity for the solution
operator associated to the Cauchy problem for Utt−∆U +AU = 0 and proceed as
in [12] to prove Theorem 1.1.

The literature on control and stabilization for coupled systems has increased
enormously in the last two decades. Just to mention, energy decay and boundary
stabilization for the system (1.2) with m = 2, k0 = k2 = 0 has been treated by
several authors. Indeed, in [1, 2, 11] the authors estimate the energy decay rate
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inside a bounded smooth domain Ω ⊂ RN under nonlinear boundary feedbacks.
Similar questions for two waves with different speed has been studied in [14] for
smooth domains of RN , (N ≤ 3). Controllability for a system like (1.1) with m = 2
and Dirichlet type control has been studied in [3] by employing the Two Level
Energy Method. Concerning controllability results for coupled parabolic problems
we mention the survey [10]. A variety of problems for systems highly coupled of
partial differential equations, possibly of different type, has been considered in the
treatise [13].

This article is organized as follows. In Section 2 we obtain a local energy decay
for solutions to the Cauchy problem for the system Utt−∆U +AU = 0 and obtain
controllability in large enough time interval. Section 3 is dedicated to prove time
analyticity of solutions to the system Utt −∆U +AU = 0. Finally, in Section 4 we
prove Theorem 1.1 and illustrate how the method works for the case in which the
control acts only in a part of the membrane’s boundary.

2. Energy decay and controllability in large time

In this section we prove the local energy decay of solutions to the Cauchy problem

Utt −∆U +AU = 0 in R2+1,

U(·, 0) = U0, Ut(·, 0) = U1 in R2,
(2.1)

and use it to obtain controllability for the system (1.1) in an interval of time suf-
ficiently large. Let 0 ≤ λ1 ≤ · · · ≤ λm be non negative eigenvalues of the real
diagonalizable matrix A = [aij ]m×m.

Theorem 2.1. Let Ξ ⊂ R2, be a bounded domain. There exists constants T0 >
diam(Ξ) and K = K(Ξ, A, T0) > 0 such that the solution U ∈ H1

loc(R2+1) of the
Cauchy problem (2.1) satisfies

‖U(·, t)‖2H1(Ξ) + ‖Ut(·, t)‖2L2(Ξ) ≤
K

t2
{
‖U0‖2H1(Ξ) + ‖U1‖2L2(Ξ)

}
(2.2)

for every t > T0 whenever the initial data (U0, U1) ∈ H1(R2)×L2(R2) has compact
support in Ξ.

Proof. First observe that the transposed matrix AT is also diagonalizable and has
the same eigenvalues of A. Let {vi = (αi1, . . . , α

i
m) : i = 1, . . . ,m} be a basis for

Rm whose elements are eigenvectors of AT with vi associated to λi. We have for
each i = 1, . . . ,m the set of relations

a1jα
i
1 + a2jα

i
2 + · · ·+ amjα

i
m = λiα

i
j , j = 1, . . . ,m. (2.3)

Let B be the real matrix [αij ]m×m and let W = (w1, . . . , wm)T be given by
W = BU where U = (u1, . . . , um)T is the solution of the Cauchy problem (2.1).
Hence

wi = αi1u
1 + αi2u

2 + · · ·+ αimu
m, i = 1, . . . ,m. (2.4)

For each i = 1, . . . ,m, an easy computation leads us to

witt = ∆(αi1u
1 + αi2u

2 + · · ·+ αimu
m)−

m∑
j=1

(a1jα
i
1 + a2jα

i
2 + · · ·+ amjα

i
m)uj .

Now, by using the relations (2.3) and (2.4) we obtain

witt = ∆wi − λi(αi1u1 + αi2u
2 + · · ·+ αimu

m) = ∆wi − λiwi, i = 1, . . . ,m.
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Putting U0 = (u1
0, u

2
0, . . . , u

m
0 )T , U1 = (u1

1, u
2
1, . . . , u

m
1 )T and noting that W must

satisfy the initial conditions W (·, 0) = BU0 and Wt(·, 0) = BU1 we see that each
entry wi of the new independent variable W satisfies the Cauchy problem

witt −∆wi + µ2
iw

i = 0 in R2+1,

wi(·, 0) = αi1u
1
0 + αi2u

2
0 + · · ·+ αimu

m
0 in R2,

wit(·, 0) = αi1u
1
1 + αi2u

2
1 + · · ·+ αimu

m
1 in R2,

(2.5)

where µ2
i = λi for i = 1, . . . ,m.

Since, wi(·, 0) and wit(·, 0) have compact support in Ξ, using [6, Lemma 2.1] we
obtain the estimate

‖wi(·, t)‖2H1(Ξ) + ‖wit(·, t)‖2L2(Ξ) ≤
Ki

t2
{
‖wi(·, 0)‖2H1(Ξ) + ‖wit(·, 0)‖2L2(Ξ)

}
for every t > T i0, for some T i0 > diam(Ξ) and some constant Ki = Ki(Ξ, T i0, λi) > 0.
The constant T i0 depends on λi and diam(Ξ). From the above inequality it follows

‖wi(·, t)‖2H1(Ξ) + ‖wit(·, t)‖2L2(Ξ)

≤ Ki

t2
(|αi1|2 + |αi2|2 + · · ·+ |αim|2)

{
‖U0‖2H1(Ξ) + ‖U1‖2L2(Ξ)

} (2.6)

for every t > T i0, i = 1, . . . ,m.
Now we set ‖B‖2 =

∑
|αij |2, M = max{Ki; i = 1, . . . ,m} and T0 = max{T i0; i =

1, . . . ,m}, and by summing up inequalities (2.6) we obtain

‖W (·, t)‖2H1(Ξ) + ‖Wt(·, t)‖2L2(Ξ) ≤
M

t2
‖B‖2

{
‖U0‖2H1(Ξ) + ‖U1‖2L2(Ξ)

}
(2.7)

for every t > T0.
By setting B−1 = [βij ]m×m and observing that ui(·, t) = βi1w

1(·, t) + · · · +
βimw

m(·, t), i = 1, . . . ,m, we obtain

‖U(·, t)‖2H1(Ξ) + ‖Ut(·, t)‖2L2(Ξ)

≤ ‖B−1‖2
{
‖W (·, t)‖2H1(Ξ) + ‖Wt(·, t)‖2L2(Ξ)

}
.

(2.8)

Now we put K = M‖B‖2‖B−1‖2 and combine (2.7) and (2.8) to obtain (2.2). �

We can now prove the first result on exact controllability for the system (1.1).

Theorem 2.2. Let A = [aij ]m×m be a real diagonalizable matrix with nonnegative
eigenvalues and Ω ⊂ R2, be a bounded simply connected domain with piecewise
smooth boundary ∂Ω. It is assumed that ∂Ω has no cuspid point and that Ω lays
in one side of ∂Ω. Then, there exists a large enough T > 0 such that for each
initial state U0 ∈ H1(Ω), U1 ∈ L2(Ω) there exist a control f ∈ L2(∂Ω×]0, T [) so
that the solution U ∈ H1(Ω×]0, T [) of the system (1.1) satisfies the final condition
U(·, T ) = Ut(·, T ) = 0 on Ω.

Proof. For a fixed δ > 0 we set Ωδ = {x + y : x ∈ Ω, |y| < δ}. Associated
with the Cauchy problem (2.1) we define, for t > 0, the bounded linear operator
St : H1

0(Ωδ)× L2(Ωδ)→ H1(Ωδ)× L2(Ωδ) by setting

St(V0, V1)(x) = (V (x, t), Vt(x, t)), x ∈ Ωδ (2.9)

where V is the solution to the Cauchy problem (2.1) with initial data (V0, V1) ∈
H1

0(Ωδ)× L2(Ωδ) extended by zero outside Ωδ.
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Now, let T0 be given by Theorem 2.1 with Ξ = Ωδ. It follows from the Theorem
2.1 the estimate

‖ST (V0, V1)‖2H1(Ωδ)×L2(Ωδ)
≤ K

T 2

{
‖V0‖2H1(Ωδ)

+ ‖V1‖2L2(Ωδ)

}
, (2.10)

for every T > T0, (V0, V1) ∈ H1
0(Ωδ) × L2(Ωδ) and a constant K independent of

(V0, V1).
For arbitrary T > 0 consider the Cauchy problem

Ztt −∆Z +AZ = 0 in R2+1,

Z(·, T ) = Z0, Zt(·, T ) = Z1 in R2,
(2.11)

with initial state (Z0, Z1) ∈ H1
0(Ωδ) × L2(Ωδ) extended by zero outside Ωδ, at

initial time T . Associated to the Cauchy problem (2.11) we define the bounded
linear operator ŜT : H1

0(Ωδ)× L2(Ωδ)→ H1(Ωδ)× L2(Ωδ) by setting

ŜT (Z0, Z1)(x) = (Z(x, 0), Zt(x, 0)), x ∈ Ωδ. (2.12)

Note that the function Z(·, T−τ) satisfies Zττ−∆Z+AZ = 0 with data (Z0, Z1)
at time τ = 0. Now, assuming that T > T0 and applying the Theorem 2.1 to the
solution of (2.11) we obtain

‖Z(·, 0)‖2H1(Ωδ)
+ ‖Zτ (·, 0)‖2L2(Ωδ)

≤ K

T 2

{
‖Z0‖2H1(Ωδ)

+ ‖Z1‖2L2(Ωδ)

}
.

Hence,

‖ŜT (Z0, Z1)‖2H1(Ωδ)×L2(Ωδ)
≤ K

T 2

{
‖Z0‖2H1(Ωδ)

+ ‖Z1‖2L2(Ωδ)

}
, (2.13)

for every T > T0 and (Z0, Z1) ∈ H1
0(Ωδ)× L2(Ωδ).

Let E be an extension operator taking an arbitrary initial state (V0, V1) ∈
H1(Ω)×L2(Ω) into its extension (Ṽ0, Ṽ1) ∈ H1(R2)×L2(R2) with compact support
in Ωδ. Let Ṽ ∈ H1

loc(R2+1) be the solution of (2.1) with initial state (Ṽ0, Ṽ1).
Let ϕ ∈ C∞0 (R2) be a cut off function such that ϕ = 1 on Ωδ/2 and ϕ = 0 on

R2\Ωδ. Let Z̃ ∈ H1
loc(R2+1) be the solution of the problem (2.11) with (Z0, Z1) =

ϕ(Ṽ (·, T ), Ṽt(·, T )). Notice that the state (Z̃(·, 0), Z̃t(·, 0)) is expressed in terms of
the operators ST , ŜT and the extension E as

(Z̃(·, 0), Z̃t(·, 0)) = (ŜTϕSTE)(V0, V1)

for every T > T0 and arbitrary initial data (V0, V1) ∈ H1(Ω) × L2(Ω). Here ϕ
stands for the operator multiplication by ϕ.

Now let us define the function U◦ = Ṽ − Z̃. Observe that U◦ satisfies

U◦tt −∆U◦ +AU◦ = 0 in R2+1. (2.14)

Since Z̃(·, T ) = ϕṼ (·, T ) and Z̃t(·, T ) = ϕṼt(·, T ) and ϕ = 1 on Ωδ/2 it follows
that U◦(·, T ) = U◦t (·, T ) = 0 on Ω. Consider U0 ∈ H1(Ω), U1 ∈ L2(Ω) given in
the statement of the Theorem 2.2. To have U◦(·, 0) = U0 and U◦t (·, 0) = U1 in Ω
we might solve for the variable (V0, V1) ∈ H1(Ω) × L2(Ω) the equation (V0, V1) −
(Z̃(·, 0), Z̃t(·, 0)) = (U0, U1) in Ω. More precisely we must solve the equation

(V0, V1)− (RŜTϕSTE)(V0, V1) = (U0, U1) (2.15)

where R denotes the operator restriction to Ω. Denoting KT = RŜTϕSTE, we
prove that Id −KT is invertible. We use the energy decay to prove that KT is a
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contraction in H1(Ω)×L2(Ω) if the parameter T is taken sufficiently large. Indeed,
by using (2.13) we have

‖RŜTϕSTE(V0, V1)‖2H1(Ω)×L2(Ω) = ‖(Z̃(·, 0), Z̃t(·, 0))‖2H1(Ω)×L2(Ω)

≤ ‖(Z̃(·, 0), Z̃t(·, 0))‖2H1(Ωδ)×L2(Ωδ)

= ‖ŜTϕ(Ṽ (·, T ), Ṽt(·, T ))‖2H1(Ωδ)×L2(Ωδ)

≤ K

T 2

{
‖ϕṼ (·, T )‖2H1(Ωδ)

+ ‖ϕṼt(·, T )‖2L2(Ωδ)

}
≤ K̃

T 2

{
‖Ṽ (·, T )‖2H1(Ωδ)

+ ‖Ṽt(·, T )‖2L2(Ωδ)

}
=
K̃

T 2
‖STE(V0, V1)‖2H1(Ωδ)×L2(Ωδ)

where K̃ depends on K and ϕ. Now, using (2.10) we obtain

K̃

T 2

{
‖Ṽ (·, T )‖2H1(Ωδ)

+ ‖Ṽt(·, T )‖2L2(Ωδ)

}
≤ K̃

T 2

K

T 2

{
‖Ṽ0‖2H1(Ωδ)

+ ‖Ṽ1‖2L2(Ωδ)

}
=
K̃K

T 4
‖E(V0, V1)‖2H1(Ωδ)×L2(Ωδ)

≤ Const.
T 4

‖(V0, V1)‖2H1(Ω)×L2(Ω)

where Const. represents a convenient constant. Hence

‖KT (V0, V1)‖2H1(Ω)×L2(Ω) ≤
Const.
T 4

‖(V0, V1)‖2H1(Ω)×L2(Ω),

for all (V0, V1) ∈ H1(Ω)× L2(Ω) and T > T0.
At this point we choose and fix a value for T > T0 such that Const.

T 4 < 1. For such
T the operator KT is a contraction onH1(Ω)×L2(Ω). Let (V0,V1) ∈ H1(Ω)×L2(Ω)
be the unique solution of (2.15). From the construction we see that E(V0,V1) −
(ŜTϕSTE)(V0,V1) is an extension of (U0, U1) to the entire space R2. Let us define
(U◦0 , U

◦
1 ) =: E(V0,V1)−(ŜTϕSTE)(V0,V1). Since all the Cauchy problems involved

in the construction of (U◦0 , U
◦
1 ) have the property of finite velocity of propagation

and all the initial states considered have compact support we conclude that (U◦0 , U
◦
1 )

also have compact support. Once we have the appropriate extension to the initial
data we return to the beginning of the proof and start solving the problem (2.1)
with initial data (U◦0 , U

◦
1 ), then we localize its state at the time T to obtain the

correct initial state to the backward problem (2.11). We then built the solution U◦

to the system (2.14) satisfying

U◦(·, 0) = U0, U◦t (·, 0) = U1, U◦(·, T ) = 0, U◦t (·, T ) = 0 on Ω. (2.16)

Observe that U◦tt −∆U◦ ∈ L2
loc(R2 × R). From [19, Theorem 2] it follows that

trace of the normal derivative of U◦ along the surface ∂Ω×]0, T [ is well defined and
is locally square integrable. Hence ∂U◦

∂η ∈ L
2(∂Ω×]0, T [). To finish the proof we

define U =: U◦|Ω×]0,T [; the restriction of U to the domain Ω×]0, T [ and f =: ∂U
◦

∂η

and observe that they all meet the conditions of the theorem. �
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3. Time analyticity of solutions to the system Utt −∆U +AU = 0

Let Ξ ⊂ R2 be a bounded domain, µ > 0 and v0, v1 ∈ C∞0 (R2) be functions such
that supp v0, supp v1 ⊂ Ξ. If v is the solution of the Cauchy problem

vtt −∆v + µ2v = 0 in R2+1,

v(·, 0) = v0, vt(·, 0) = v1 in R2+1,
(3.1)

then v is given, for every t > 0, by the formula

v(x, t) =
1

2π
∂

∂t

∫
|y−x|<t

cos(µ
√
t2 − |y − x|2)√

t2 − |y − x|2
v0(y)dy

+
1

2π

∫
|y−x|<t

cos(µ
√
t2 − |y − x|2)√

t2 − |y − x|2
v1(y)dy.

(3.2)

If the initial data are such that v0 ∈ H1(R2), v1 ∈ L2(R2) and supp v0, supp v1 ⊂
Ξ, the solution v ∈ H1

loc(R2+1) to the Cauchy problem (3.1) is obtained as the
limit of a sequence of smooth solutions and hence it is also represented (almost
everywhere) by (3.2).

Now we fix T0 > diam(Ξ) and observe that for t ≥ T0 we have Ξ ⊂ {y : |y−x| <
t} for every x ∈ Ξ. Since the initial data in (3.1) is assumed to have compact
support in Ξ it follows that, for t ≥ T0, the domain of integration in (3.2) can be
changed by Ξ. Or else

v(x, t) =
1

2π
∂

∂t

∫
Ξ

cos(µ
√
t2 − |y − x|2)√

t2 − |y − x|2
v0(y)dy

+
1

2π

∫
Ξ

cos(µ
√
t2 − |y − x|2)√

t2 − |y − x|2
v1(y)dy,

(3.3)

for x ∈ Ξ and t ≥ T0. In [6], by using (3.3) it was proved the energy decay estimate
(2.2), (for space dimension > 2, see [15]).

For each t > 0 we define the bounded linear operator St : H1
0 (Ξ) × L2(Ξ) →

H1(Ξ)× L2(Ξ) by setting

St(v0, v1)(x) = (v(x, t), vt(x, t)), x ∈ Ξ (3.4)

where v is the solution to the Cauchy problem (3.1) with initial data (v0, v1) ∈
H1

0 (Ξ)× L2(Ξ) extended by zero outside Ξ.
Our goal now is to extend the family {St : t > T0} to the complex parameter

t = ζ ∈ Σ where Σ is an appropriate domain in the complex plane. To do so
we start by exploiting the explicit formula for v(x, t) and vt(x, t)), x ∈ Ξ and
t ≥ T0 > diam(Ξ). To handle properly the formula (3.3) we introduce the functions

γk(x, y, t) =
cos(µ

√
t2 − |y − x|2)

(t2 − |y − x|2)k/2
, θk(x, y, t) =

sin(µ
√
t2 − |y − x|2)

(t2 − |y − x|2)k/2
(3.5)

x, y ∈ Ξ, t ≥ T0 and k = 1, 2, . . . . Observe that (3.3) reduces to

v(x, t) =
1

2π
∂

∂t

∫
Ξ

γ1(x, y, t)v0(y)dy +
1

2π

∫
Ξ

γ1(x, y, t)v1(y)dy.

Firstly we claim that the functions (3.5) satisfy

|γk(x, y, t)|, |θk(x, y, t)| ≤ %k

T k0
, k = 1, 2, . . . (3.6)
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for some % > 0 and every x, y ∈ Ξ and t ≥ T0. Indeed, if we introduce the function
χ(s) = 1√

1−s2 , −1 < s < 1 and observe that for x, y ∈ Ξ and t > diam(Ξ) we have
0 ≤ |y−xt | < 1, we then rewrite formulas (3.5) as

γk(x, y, t) =
1
tk

cos(µ
√
t2 − |y − x|2)χ(|y − x

t
|)k, k = 1, 2, . . . , (3.7)

θk(x, y, t) =
1
tk

sin(µ
√
t2 − |y − x|2)χ(|y − x

t
|)k, k = 1, 2, . . . (3.8)

Now we choose and fix κ such that diam(Ξ)
T0

< κ < 1 and let % be the maximum

of the function χ in [−κ, κ]. For x, y ∈ Ξ and t ≥ T0 we have |y−xt | ≤
diam(Ξ)
T0

< κ

which implies χ(|y−xt |) ≤ %. Hence |γk(x, y, t)|, |θk(x, y, t)| ≤ %k

tk
≤ %k

Tk0
for every

x, y ∈ Ξ and t ≥ T0. This shows our claim.
Now observe that the derivatives of the functions (3.7) and (3.8) are expressed

in terms of themselves. Indeed, some computation led us

∂

∂t
γk = −µtθk+1 − ktγk+2, (3.9)

∂

∂t
θk = µtγk+1 − ktθk+2, (3.10)

∂

∂xi
γk = −µ(yi − xi)θk+1 − k(yi − xi)γk+2, i = 1, 2, (3.11)

∂

∂xi
θk = µ(yi − xi)γk+1 − k(yi − xi)θk+2, i = 1, 2. (3.12)

By using (3.9)-(3.12) to obtain higher order derivatives of γ1 and using the estimates
(3.6) we conclude that v ∈ C∞(Ξ × [T0,∞)) and differentiations in (3.3) may be
carried out beneath the integral. For instance, observing that

∂2

∂t2
γk = −µθk+1 − µ2t2γk+2 + µt2(k + 1)θk+3

− kγk+2 + µkt2θk+3 + k(k + 2)t2γk+4,

(3.13)

∂2

∂t2
θk = µγk+1 − µ2t2θk+2 − µt2(k + 1)γk+3

− kθk+2 − µkt2γk+3 + k(k + 2)t2θk+4

(3.14)

we obtain

v(x, t) =
1

2π

[
− µt

∫
Ξ

θ2(x, y, t)v0(y)dy

− t
∫

Ξ

γ3(x, y, t)v0(y)dy +
∫

Ξ

γ1(x, y, t)v1(y)dy
] (3.15)
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and

vt(x, t) =
1

2π

[
− µ

∫
Ξ

θ2(x, y, t)v0(y)dy − µ2t2
∫

Ξ

γ3(x, y, t)v0(y)dy

+ 3µt2
∫

Ξ

θ4(x, y, t)v0(y)dy −
∫

Ξ

γ3(x, y, t)v0(y)dy

+ 3t2
∫

Ξ

γ5(x, y, t)v0(y)dy − µt
∫

Ξ

θ2(x, y, t)v1(y)dy

− t
∫

Ξ

γ3(x, y, t)v1(y)dy
]

(3.16)

as long as t ≥ T0 and x ∈ Ξ.
From the discussion above we see that the bounded linear operator St defined

in (3.4) is compact, for each t ≥ T0.
Let Σ0 be the region of the complex plane given by

Σ0 =
{
ζ : ζ = T0 + z, | arg(z)| ≤ π

4
}
.

Let B(H1
0 (Ξ)×L2(Ξ), H1(Ξ)×L2(Ξ)) be the space of all bounded linear operators

from H1
0 (Ξ)× L2(Ξ) into H1(Ξ)× L2(Ξ). We claim that the map

[T0,∞) 3 t→ St ∈ B(H1
0 (Ξ)× L2(Ξ), H1(Ξ)× L2(Ξ))

extends to Σ0 by setting

Sζ(v0, v1)(x) = (v(x, ζ), vt(x, ζ)), x ∈ Ξ (3.17)

where v(x, ζ) and vt(x, ζ) are obtained from (3.15) and (3.16) by changing t by ζ.
Moreover, Sζ is compact, for every ζ ∈ Σ0.

Observe that formulas (3.15) and (3.16) show that v(x, t) and vt(x, t) are ex-
pressed as linear combinations of terms of the form

tp
∫

Ξ

γν(x, y, t)f(y)dy and tq
∫

Ξ

θk(x, y, t)f(y)dy (3.18)

where p, q ∈ {0, 1, 2}, ν ∈ {1, 3, 5}, k ∈ {2, 4}, f ∈ {v0, v1} and x ∈ Ξ, t ≥ T0.To
prove our claim it suffices to extend the integrals in (3.18) to the parameter t = ζ ∈
Σ0 and certify that the resulting integrals have the regularity to make sure that Sζ
take values in H1(Ξ)× L2(Ξ).

To begin, let κ > 0 be such that diam(Ξ)
T0

< κ < 1. For each ζ = T0 + z ∈ Σ0 and
all x, y ∈ Ξ we have

Re(ζ2 − |x− y|2) = T 2
0 + 2T0 Re(z)− Im(z)2 + Re(z)2 − |x− y|2 ≥ T 2

0 − |x− y|2

since | arg(z)| ≤ π/4. It follows

Re(ζ2 − |x− y|2) ≥ T 2
0

(
1− |x− y

T0
|2
)
> T 2

0 (1− κ2) > 0 (3.19)

and | arg(ζ2 − |x− y|2)| ≤ π/2. By choosing that value of (ζ2 − |x− y|2)1/2 which
have positive real part, one obtains, for fixed x, y ∈ Ξ, an analytic function of ζ
whose values lie in the sector

Σκ =
{
ζ : ζ =

√
1− κ2T0 + z, | arg(z)| ≤ π

4
}
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for all x, y ∈ Ξ. Now, by using (3.19) we obtain

|γk(x, y, ζ)| ≤
| cos(µ

√
ζ2 − |y − x|2)|

T k0 (1− κ2)k/2
, |θk(x, y, ζ)| ≤

| sin(µ
√
ζ2 − |y − x|2)|

T k0 (1− κ2)k/2
,

for every x, y ∈ Ξ, ζ ∈ Σ0 and k = 1, 2, . . . . Since (ζ2−|x−y|2)1/2 takes values in Σκ
for every x, y ∈ Ξ, it follows that cos(µ

√
ζ2 − |y − x|2) and sin(µ

√
ζ2 − |y − x|2)

are locally bounded as functions of ζ, for every x, y ∈ Ξ, i.e., for each open ball
Vζ0 = {ζ ∈ C : |ζ − ζ0| < r} contained in the interior of Σ0 there exist a constant
CVζ0 > 0 such that

| cos(µ
√
ζ2 − |y − x|2)|, | sin(µ

√
ζ2 − |y − x|2)| ≤ CVζ0

for every ζ ∈ Vζ0 and x, y ∈ Ξ. Hence,

|γk(x, y, ζ)|, |θk(x, y, ζ)| ≤
CVζ0

T k0 (1− κ2)k/2
, k = 1, 2, . . . (3.20)

for every x, y ∈ Ξ, and ζ ∈ Vζ0 .
Hence, formulas (3.9)-(3.12) together with (3.20) shows that integrals (3.18) are

well defined for t = ζ ∈ Σ0 as well as all differentiations in (3.18) may be carried out
beneath the integral. Hence, the map defined in (3.17) is well defined in Σ0 and it
takes values in B(H1

0 (Ξ)×L2(Ξ), H1(Ξ)×L2(Ξ)). Moreover, the maps x→ v(x, ζ),
x→ vt(x, ζ) are in C∞(Ξ) for every ζ ∈ Σ0. It follows from this discussion that Sζ
is compact, for every ζ ∈ Σ0.

Even though we obtain the analyticity of the maps ζ → v(x, ζ), ζ → vt(x, ζ)
for each x ∈ Ξ the regularity with respect to ζ is even better as the next theorem
shows.

Theorem 3.1. Let Ξ ⊂ R2 be a bounded domain, T0 > diam(Ξ) a real number and
Σ0 = {ζ : ζ = T0 + z, | arg(z)| ≤ π

4 }. The map

Σ0 3 ζ → Sζ ∈ B(H1
0 (Ξ)× L2(Ξ), H1(Ξ)× L2(Ξ))

defined by
Sζ(v0, v1)(x) = (v(x, ζ), vt(x, ζ)), x ∈ Ξ

where v(x, ζ) and vt(x, ζ) are given by (3.15) and (3.16) respectively (t = ζ) is
analytic inside the sector Σ0.

Proof. Let P0 : H1(Ξ) × L2(Ξ) → H1(Ξ), P1 : H1(Ξ) × L2(Ξ) → L2(Ξ) be the
projections of H1(Ξ) × L2(Ξ) onto H1(Ξ) and L2(Ξ) respectively. It suffices to
prove analyticity of the maps

Σ0 3 ζ → P0Sζ ∈ B(H1
0 (Ξ)× L2(Ξ), H1(Ξ)),

Σ0 3 ζ → P1Sζ ∈ B(H1
0 (Ξ)× L2(Ξ), L2(Ξ)),

respectively. Let 〈·, ·〉H1(Ξ) and 〈·, ·〉L2(Ξ) denote the inner product in H1(Ξ) and
L2(Ξ) respectively. As weak analyticity implies strong analyticity (see [8, theorem
3.12, p. 152]) it is enough to show that the complex functions

Σ0 3 ζ → F0(ζ) =: 〈P0Sζ(v0, v1), w〉H1(Ξ) ∈ C, w ∈ H1(Ξ),

Σ0 3 ζ → F1(ζ) =: 〈P1Sζ(v0, v1), w〉L2(Ξ) ∈ C, w ∈ L2(Ξ),

for (v0, v1) ∈ H1
0 (Ξ)×L2(Ξ) are analytic in the interior of Σ0. It suffices to prove it

only for F0, to F1 the procedure is analogous. Remember that P0Sζ(v0, v1) = v(·, ζ)
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where v is given in (3.15). Hence, for each (v0, v1) ∈ H1
0 (Ξ)×L2(Ξ) and w ∈ H1(Ξ)

we have

〈P0Sζ(v0, v1), w〉H1(Ξ) =
∫

Ξ

v(x, ζ)w(x)dx+
2∑
i=1

∫
Ξ

∂v

∂xi
(x, ζ)

∂w

∂xi
(x)dx.

Now, considering that v(x, ζ) is a linear combination of terms of the form (3.18)
(with t = ζ) and taking into account the formulas (3.11) and (3.12) for the deriva-
tives ∂

∂xi
γk and ∂

∂xi
θk respectively, we see that v(x, ζ) and ∂v

∂xi
(x, ζ) are linear

combinations of terms of the form

ζp
∫

Ξ

γν(x, y, ζ)(yi − xi)sf(y)dy and ζq
∫

Ξ

θk(x, y, ζ)(yi − xi)sf(y)dy

where s ∈ {0, 1}, f ∈ {v0, v1} and p, q, k and ν are nonnegative integers. It follows
that 〈P0Sζ(v0, v1), w〉 is a linear combination of terms of the form∫

Ξ

ζp
∫

Ξ

γν(x, y, ζ)(yi − xi)sf(y)
( ∂

∂xi

)l
w(x) dy dx, (3.21)∫

Ξ

ζq
∫

Ξ

θk(x, y, ζ)(yi − xi)sf(y)
( ∂

∂xi

)l
w(x) dy dx, (3.22)

where s, l ∈ {0, 1}, f ∈ {v0, v1} and p, q, k and ν are nonnegative integers.
Now, by setting ψ(x, y) = (yi − xi)sf(y)( ∂

∂xi
)lw(x) in (3.21) and (3.22) we

conclude that to prove that F0 is analytic inside Σ0 it suffices to prove analyticity
of

Σ0 3 ζ → ζp
∫

Ξ×Ξ

ψ(x, y)γν(x, y, ζ) dx dy (3.23)

Σ0 3 ζ → ζp
∫

Ξ×Ξ

ψ(x, y)θk(x, y, ζ) dx dy (3.24)

inside the sector Σ0.
Let ζ0 be an arbitrary point in the interior of Σ0 and Vζ0 some open ball centered

in ζ0 and contained in the interior of Σ0. Now, observing that

∂γν
∂ζ

(x, y, ζ) = −µζθν+1(x, y, ζ)− νζγν+2(x, y, ζ), ν = 1, 2, . . .

∂θk
∂ζ

(x, y, ζ) = µζγk+1(x, y, ζ)− kζθk+2(x, y, ζ), k = 1, 2, . . . ,

for every x, y ∈ Ξ and ζ ∈ Σ0, and using the estimate (3.20) we conclude that
|∂γν∂ζ (x, y, ζ)| and |∂θk∂ζ (x, y, ζ)| are bounded in Ξ×Ξ× Vζ0 . Since ψ is integrable in
the bounded set Ξ× Ξ we have∫

Ξ×Ξ

|ψ(x, y)γν(x, y, ζ)| dx dy ≤ Const.
∫

Ξ×Ξ

|ψ(x, y)| dx dy,∫
Ξ×Ξ

|ψ(x, y)θk(x, y, ζ)| dx dy ≤ Const.
∫

Ξ×Ξ

|ψ(x, y)| dx dy,

for every x, y ∈ Ξ, ζ ∈ Vζ0 . Hence, we may differentiate (3.23) and (3.24) with
respect to ζ ∈ Vζ0 under the integrals. From this, it follows that F0 is analytic
inside Σ0. �
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Now, for each i = 1, . . . ,m and t > 0 we define the bounded linear operator
Sit : H1

0 (Ξ)× L2(Ξ)→ H1(Ξ)× L2(Ξ) by setting

Sit(w
i
0, w

i
1)(x) = (wi(x, t), wit(x, t)), x ∈ Ξ (3.25)

where wi is the solution to the Cauchy problem

witt −∆wi + µ2
iw

i = 0 in R2+1,

wi(·, 0) = wi0 in R2,

wit(·, 0) = wi1 in R2,

(3.26)

where µ2
i = λi and initial data (wi0, w

i
1) ∈ H1

0 (Ξ)×L2(Ξ) extended by zero outside
Ξ.

Now fix T0 > diam(Ξ). Then applying Theorem 3.1 to the family of operators
{Sit : t > T0} shows that it admits an extension to the sector Σ0, analytic in its
interior. As in Theorem 3.1, for each ζ ∈ Σ0, Siζ is given by

Siζ(w
i
0, w

i
1)(x) = (wi(x, ζ), wit(x, ζ)), x ∈ Ξ (3.27)

where wi(x, ζ) and wit(x, ζ) are given by (3.15) and (3.16) respectively after appro-
priate adjustments.

Now we define
S∗ζ : H1

0(Ξ)× L2(Ξ)→ H1(Ξ)× L2(Ξ) (3.28)

by setting

S∗ζ((w
1
0, . . . , w

m
0 ), (w1

1, . . . , w
m
1 ))

= ((P0S
1
ζ (w1

0, w
1
1), . . . , P0S

m
ζ (wm0 , w

m
1 )), (P1S

1
ζ (w1

0, w
1
1), . . . ,

P1S
m
ζ (wm0 , w

m
1 )))

= ((w1(·, ζ), . . . , wm(·, ζ)), (w1
t (·, ζ), . . . , wmt (·, ζ)))

(3.29)

where P0 and P1 are the projections introduced in the proof of Theorem 3.1. It
follows from that theorem that the map

Σ0 3 ζ → S∗ζ ∈ B(H1
0(Ξ)× L2(Ξ),H1(Ξ)× L2(Ξ)) (3.30)

is analytic inside Σ0.
Now consider the Cauchy problem

Utt −∆U +AU = 0 in R2+1,

U(·, 0) = U0, Ut(·, 0) = U1 in R2,
(3.31)

with initial state (U0, U1) ∈ H1
0(Ξ)×L2(Ξ). For t > 0 we define the bounded linear

operator St : H1
0(Ξ)× L2(Ξ)→ H1(Ξ)× L2(Ξ) by setting

St(U0, U1)(x) = (U(x, t), Ut(x, t)), x ∈ Ξ (3.32)

where U is the solution to the Cauchy problem (3.31).

Theorem 3.2. The family of operators {St; t > T0} defined by (3.32) extends to
the complex parameter ξ ∈ Σ0 as a family of compact operators that is analytic in
the interior of the sector Σ0.
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Proof. As in section 2, we denote U0 = (u1
0, u

2
0, . . . , u

m
0 )T , U1 = (u1

1, u
2
1, . . . , u

m
1 )T ,

W = (w1, . . . , wm)T where W = BU . Note that wi satisfy (3.26) with initial
conditions wi0 = αi1u

1
0 + αi2u

2
0 + · · ·+ αimu

m
0 and wi1 = αi1u

1
1 + αi2u

2
1 + · · ·+ αimu

m
1 ,

i = 1, . . . ,m. From (3.29) we have

S∗t ((w
1
0, . . . , w

m
0 ), (w1

1, . . . , w
m
1 ))

= ((w1(·, t), . . . , wm(·, t)), (w1
t (·, t), . . . , wmt (·, t)))

= (W (·, t),Wt(·, t)) = (BU(·, t), BUt(·, t)).
(3.33)

Let us introduce the projections P0 : H1(Ξ)×L2(Ξ)→ H1(Ξ) and P1 : H1(Ξ)×
L2(Ξ)→ L2(Ξ) of H1(Ξ)×L2(Ξ) onto H1(Ξ) and L2(Ξ) respectively. From (3.33)
it follows

BU(·, t) = P0S∗t ( (w1
0, . . . , w

m
0 ), (w1

1, . . . , w
m
1 )),

BUt(·, t) = P1S∗t ( (w1
0, . . . , w

m
0 ), (w1

1, . . . , w
m
1 )).

Now, observing that (w1
0, . . . , w

m
0 )T = BU0 and (w1

1, . . . , w
m
1 )T = BU1 we obtain

U(·, t) = [B−1P0S∗tB]U0 and Ut(·, t) = [B−1P1S∗tB]U1.

Therefore
St(U0, U1) = ([B−1P0S∗tB]U0, [B−1P1S∗tB]U1) (3.34)

for all (U0, U1) ∈ H1
0(Ξ) × L2(Ξ) and t ≥ T0. From the relationship (3.34) among

the operators St and S∗t and the analyticity of the map (3.30) the result follows. �

4. Control near optimal time

Now we go over the proof of Theorem 1.1. Let Ω ⊂ R2 be a bounded simply
connected domain with piecewise smooth boundary ∂Ω. Given any T∗ > diam(Ω)
we choose δ > 0 and T0 > 0 such that

diam(Ω) < diam(Ωδ) < T0 < T∗.

To take advantage of all the discussion up to this point, we put Ξ = Ωδ.
From now on we proceed as in the proof of the Theorem 1.1 by considering the

compact operators ST and ŜT from H1
0(Ωδ)× L2(Ωδ) into H1(Ωδ)× L2(Ωδ) given

by (2.9) and (2.12) respectively and KT = RŜTϕSTE on H1(Ω)× L2(Ω).
The crux of the proof of the Theorem 2.2 was to prove the invertibility of Id−KT

for some T . Our goal is to prove that Id −KT is invertible for a value of T such
that T0 < T < T∗. Once this is done, by proceeding exactly like in the proof of
Theorem 2.2 we obtain the exact controllability for the system (1.1) at the time T
less than T∗. Hence, by using a standard procedure (linearity and uniqueness in
particular) we obtain the controllability at the desired moment T∗.

To achieve our goal we use a theorem of alternatives due to Atikinson [4]. How-
ever, before we have to extend the family {KT : T > T0} to the sector Σ0, analyti-
cally in its interior. Note that operators ST and ŜT obey the following relations

P0ŜT (V0, V1) = P0ST (V0,−V1), P1ŜT (V0, V1) = P1ST (−V0, V1)

for (V0, V1) ∈ H1
0(Ωδ)× L2(Ωδ).

Since, by Theorem 3.2 {ST : T > T0} admits such an extension, the same applies
to {ŜT : T > T0} and hence to {KT : T > T0}. Now we apply to the family of
compact operators {Kζ : ζ ∈ Σ0} Atkinson’s result as in [8, Theorem 1.9, page 370].
This theorem states that either 1 is eigenvalue of Kζ for every ζ ∈ Σ0 or Id−Kζ
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is invertible for all but at most a finite number of values of ζ in each compact
subset of Σ0. From the proof of Theorem 2.2 we know that Kζ is a contraction if
ζ ∈ R ∩ Σ0 is sufficiently large. This excludes the first alternative. It follows that
for a convenient ε > 0, the compact set [T0 + ε, T∗ − ε] ⊂ Σ0 includes some T for
which Id−KT is invertible. As observed before, this suffices to conclude the proof
of Theorem 1.1. �

We end up this section showing how to apply the procedure above to treat the
case in which part of membranes boundary is hold fixed. Let

Ω = {(r cos θ, r sin θ); 0 < r1 < r < r2, 0 < θ < π/n}, (4.1)

Γ0 = {(r cos θ, r sin θ); r1 < r < r2, θ = 0 or θ = π/n}, (4.2)

where n is a positive integer.
Given any T∗ > 2r2 and initial state U0 ∈ H1(Ω), U1 ∈ L2(Ω), U0 = 0 on Γ0,

there exist a control f ∈ L2(∂Ω/Γ0×]0, T∗[) so that the solution U ∈ H1(Ω×]0, T∗[)
of the system

Utt −∆U +AU = 0 in Ω×]0, T [,

U(·, 0) = U0 in Ω,

Ut(·, 0) = U1 in Ω,

U = 0 on Γ0×]0, T [,
∂U

∂η
= f on ∂Ω/Γ0×]0, T [,

(4.3)

satisfies the final condition U(·, T∗) = Ut(·, T∗) = 0 on Ω.
The proof of this result follows the same lines of the proof of Theorem 1.1 with

additional care on the extension operator E used in the beginning.
Consider the angular sector Ω∞ = {(r cos θ, r sin θ); r > 0, 0 < θ < π/n}. Fix

T0 and δ > 0 such that δ < r1 and r2 + δ/2 < T0 < T∗. By using standard
techniques of the theory of Sobolev spaces we can extend an arbitrary initial data
(V0, V1) ∈ H1(Ω)×L2(Ω) with V0 = 0 on Γ0 to the angular sector Ω∞ in such a way
that the extension (V0, V1) results inH1(Ω∞)×L2(Ω∞), vanish for |x| < r1−δ/2 and
for |x| > r2 + δ/2, and more: V0 = 0 on the edges θ = 0 and θ = π/n of Ω∞.

Next we extend each entry of (V0, V1) to the plane as odd functions with respect
to each entire line determined by the angles θ = i(π/n), i = 1, . . . , n. We denote
(Ṽ0, Ṽ1) the resulting extensions and define E(V0, V1) := (Ṽ0, Ṽ1). Observe that
E(V0, V1) has compact support in the set defined by Ωδ =: {x ∈ R2 : r1 − δ <
|x| < r2 + δ}. Clearly E : H1(Ω)×L2(Ω) → H1(Ωδ)×L2(Ωδ) is a bounded linear
operator with the properties we need to proceed the proof. Indeed, solving a Cauchy
problem (2.1) with initial state (Ṽ0, Ṽ1) is equivalent to solve a Cauchy problem for
a system of decoupled Klein-Gordon equations with initial state of same regularity
and odd with respect to the lines θ = i(π/n), i = 1, . . . , n. From the explicit
formula for the solution to the Klein-Gordon equation we see that the solution of
2.1 vanishes on the lines θ = i(π/n), i = 1, . . . , n and has trace (together with its
time derivative) as odd function with respect to those lines on each plane t = T > 0.
By using a localizing function ϕ ∈ C∞0 (R2) of radial type satisfying ϕ = 1 on Ωδ/2
and vanishing outside Ωδ we see that the solution to the backward problem (2.11)
also vanish on the lines θ = i(π/n), i = 1, . . . , n. From this we conclude that
if we use Ωδ =: {x ∈ R2 : r1 − δ < |x| < r2 + δ} and the extension operator
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E : H1(Ω)×L2(Ω) → H1(Ωδ)×L2(Ωδ) constructed above, and proceed as in the
proof of the Theorem 1.1 we obtain the desired result.

Similar result holds if Ω is a rectangle with sides parallel to coordinate axis and
Γ0 is one its sides or even two consecutive sides.

Controllability for a single wave equation in the domain Ω given in (4.1) was
considered in [5].
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