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DERIVATION OF MODELS OF COMPRESSIBLE MISCIBLE
DISPLACEMENT IN PARTIALLY FRACTURED RESERVOIRS

CATHERINE CHOQUET

Abstract. We derive rigorously homogenized models for the displacement of

one compressible miscible fluid by another in fractured porous media. We
denote by ε the characteristic size of the heterogeneity in the medium. A

parameter α ∈ [0, 1] characterizes the cracking degree of the rock. We carefully

define an adapted microscopic model which is scaled by appropriate powers
of ε. We then study its limit as ε → 0. Assuming a totally fractured or a

partially fractured medium, we obtain two effective macroscopic limit models.

The first one is a double porosity model. The second one is of single porosity
type but it still contains some effects due to the partial storage in the matrix

part. The convergence is shown using two-scale convergence techniques.

1. Introduction

Most of the natural reservoirs are characterized by the existence of a system of
highly conductive fissures together with a large number of matrix blocks. Because
the fractures can rapidly distribute pollution over vast areas, they are perceived
as controlling the water quality of the entire aquifer, although their storativity
is usually significantly smaller than that of the surrounding matrix. Therefore,
fractured aquifers are considered vulnerable to pollution process. One can assume
that such reservoirs possess two distinct porous structures. The problem of flow
through a fractured environment is thus primarily a problem of flow through a
dual-porosity system. Its two components are hydraulically interconnected and can
not be treated separately. The degree of interconnection between these two flow
systems defines the character of the entire flow domain and is a function of the
hydraulic properties of each of them.

Two main approaches are usually used for the modelling of such reservoirs. The
first one treats the system as a global porous medium with averaged porosity and
permeability. It leads to a single porosity model. The second one uses the concept
of double porosity introduced by Barenblatt et al [5]. Water in the matrix is
considered practically immobile. The less permeable part of the rock contributes
as global sink or source terms for the transported solutes in the fracture. These
two types of model have been rigorously derived using homogenization tools for
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some displacement problems. Assuming that the reservoir is a porous medium
with highly oscillating porosity and permeability with respect to a parameter ε and
passing to the limit ε → 0, one obtains a single porosity model (see for instance
[9]). Modelling the reservoir with a periodic structure controlled by a parameter
ε > 0 wich represents the size of each block of the matrix, scaling the equations of
the flow in the matrix by appropriate powers of ε to represent the discontinuities
of the flow, and letting ε → 0, one gets a double porosity model (see for instance
[4, 10]).

By the way, the former derivation is based on the assumption of a totally fissured
medium, ignoring the heterogeneity of a natural reservoir. The matrix of cells
may also be connected so that some flow occurs directly within the cell matrix.
This is the case of a partially fissured medium considered in [14] and [13]. The
authors introduce two flows in the microscopic model for the matrix. The first
one is the slow scale flow usually introduced for the double porosity model. The
second one is a global flow within the matrix. The homogenization process then
leads to a macroscopic model containing both single porosity and double porosity
characteristics.

The authors in [14] and [13] consider the flow of single phase fluid. The aim
of the present paper is to perform the same work for a miscible and compressible
displacement in a partially fractured medium. In Section 2, we thus derive a new
microscopic model with two flows in the matrix. A special attention is devoted
to the respect of the miscibility assumption. This model is consistent with the
totally fractured case and with the non fractured case. The proportion between the
rapidly varying and the slowly varying part of the flow is specified by a parameter
α ∈ [0, 1]. We derive in Section 3 uniform estimates on the microscopic solutions.
Choosing α = 0 or α > 0, we let the scaling parameter ε tend to zero in Sections
4 and 5 and we get the associated macroscopic models. We mainly use two-scale
convergence arguments.

Contrary to the case studied in [14, 13], we show that the double porosity part
of the model almost disappears as soon as a direct flow occurs in the matrix. It
emphasizes in particular the role of the dispersion tensor which models all the
velocities heterogeneity at the microscopic level. It is characteristic of a miscible
flow.

From a physical viewpoint this contribution aims to give a better understanding
of the transport processes in a more or less fissured medium. From a more mathe-
matical viewpoint, it gives a unified approach for the homogenization in a fractured
and in a non fractured medium.

2. The microscopic system

2.1. Decomposition of the flows. We consider the displacement of two miscible
compressible species in a fractured porous reservoir Ω. The domain Ω thus consists
of two subdomains, the fissures Ωf and the matrix Ωm.

We begin by describing the displacement in the fracture Ωf where we do not
decompose the flow. We follow the lines of [6, 19, 15]. We assume identical com-
pressibilities for the species. We thus consider that the density of the fluid is of the
form

ρ = ρo e
pf , ρo > 0,
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where pf is the pressure in Ωf . Let fi be the concentration of one of the two species
of the mixture and let vi be its velocity in the flow. The conservation of mass of
this component is expressed by the following equation in Ωf ,

∂t(φfρfi) + div(ρfivi) = ρqf̂i,

where φf is the porosity of the fracture and qf̂i is a source term such that f̂1+f̂2 = 1.
We then define the average velocity of the flow vf = (f1v1 + f2v2)/(f1 + f2) =
f1v1 + f2v2. Due to the Darcy law vf is given by

vf = −(kf/µ(f1))∇pf .

We neglect the gravitational terms for sake of clarity in the estimates below. The
permeability of the fracture is kf . The viscosity µ is a nonlinear function depending
on one of the two concentrations in the mixture. We cite for instance the Koval
model [17] where µ is defined for c ∈ (0, 1) by µ(c) = µ(0)(1 + (M1/4 − 1)c)−4, the
constant M = µ(0)/µ(1) being the mobility ratio. Setting ji = ρfi(vi − vf ), the
latter equation becomes

∂t(φfρfi) + div(ρfivf ) + div(ji) = ρqf̂i. (2.1)

The tensor ji models the effects of the heterogeneity of the velocities in the mix-
ture. Analogous to Fick’s law this dispersive flux is considered proportional to the
concentration gradient ji = ρD(vf )∇fi, where the dispersion tensor is

D(u) = φf

(
DmId+Dp(u)

)
= φf

(
DmId+ |u| (αlE(u) + αt(Id− E(u)))

)
, (2.2)

where E(u)ij = uiuj/|u|2, αl and αt are the longitudinal and transverse dispersion
constants and Dm is the molecular diffusion. For the usual rates of flow, these reals
are such that αl ≥ αt ≥ Dm > 0. Such a dispersive tensor is characteristic of a
miscible model. Using the definition of the density ρ in (2.1), dividing by ρ > 0,
and using the classical assumption of weak compressibility to neglect the terms
containing vf · ∇pf , we get

φf∂tfi + φffi∂tpf + div(fivf )− div(D(vf )∇fi) = qf̂i. (2.3)

Bearing in mind f1 + f2 = 1 and summing up the later relation for i = 1, 2, we
model the conservation of the total mass by

φf∂tpf + div(vf ) = q, vf = − kf

µ(f1)
∇pf . (2.4)

The flow in Ωf is then completely modelled by (2.4) coupled with

φf∂tf1 + vf · ∇f1 − div(D(vf )∇f1) = q(f̂1 − f1). (2.5)

We now perform a similar calculation in the matrix part of the domain. But,
following [14], we assume that the flow of each component is made of two parts. The
first component accounts for the global diffusion in the pore system. The second
one corresponds to high frequency spatial variations which lead to local storage in
the matrix. The ith concentration in the matrix mi is then given by

mi = αci + βCi, 0 ≤ α < 1, α+ β = 1.
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Note that the value of the parameter α may be for instance given by experimental
data on samples of porous media and by stochastic reconstruction (see [7] and the
references therein). The partial concentrations ci and Ci satisfy

∂t(φρci) + div(ρcivi) = ρqĉi, ∂t(φρCi) + div(ρCiVi) = ρqĈi, (2.6)

where φ is the porosity of the matrix, ρ = ρoe
p is the density of the mixture

and p is the pressure in the matrix. We also define two Darcy velocities v =
(c1v1 + c2v2)/(c1 + c2) and V = (C1V1 + C2V2)/(C1 + C2). We assume that they
both obey a Darcy law depending on the pressure p. The rapidly varying and the
slowly varying components are distinguished by two different permeabilities k and
K satisfying

v = −(k/µ(m1))∇p, V = −(K/µ(m1))∇p. (2.7)

Introducing these Darcy velocities in (2.6), we obtain

∂t(φρci) + div(ρciv) + div(ρci(vi − v)) = ρqĉi,

∂t(φρCi) + div(ρCiV ) + div(ρCi(Vi − V )) = ρqĈi.
(2.8)

We now use the classical dispersive characteristic of a miscible displacement. To
this aim, we define a global average velocity V = (α(c1+c2)v+β(C1+C2)V )/(α(c1+
c2) + β(C1 + C2)), that is

V = α(c1 + c2)v + β(C1 + C2)V . (2.9)

The relative velocities are assumed to satisfy a Fick’s law given by ci(vi−v)+ci(v−
V) = ci(vi −V) = D(V)∇ci and Ci(Vi − V ) + ci(V −V) = Ci(Vi −V) = D(V)∇Ci,
the tensor D being of the form (2.2). Using the definition of ρ and neglecting the
quadratic velocities terms, we then write (2.8) in the following form for i = 1, 2.

φ∂tdi + φdi∂tp+ div(Vdi)− div(D(V)∇di) = qd̂i, di = ci or Ci. (2.10)

Finally we use m1 +m2 = 1 to get a relation for the conservation of the total mass
φ∂tp + div(V) = q. The flow in the matrix part is thus governed by the following
set of equations:

φ∂tp+ div(V) = q, V = α(c1 + c2)v + (1− α(c1 + c2))V , (2.11)

v = − k

µ(m1)
∇p, V = − K

µ(m1)
∇p, (2.12)

φ∂tC1 + V · ∇C1 − div(D(V)∇C1) = q(Ĉ1 − C1), (2.13)

φ∂tci + V · ∇ci − div(D(V)∇ci) = q(ĉi − ci), i = 1, 2. (2.14)

Note that choosing α = 1 and thus β = 0 and k = K, this model is exactly the
same as the one derived in the fracture.

2.2. The scaled microscopic system. Since we neglect the gravitational terms,
we describe the far-field repository by a domain Ω ⊂ R2 with a periodic structure,
controlled by a parameter ε > 0 which represents the size of each block of the
matrix. Note that all the results of the paper remain true in a domain Ω of R3 (see
Remark 3.3 below for the minor modifications of the proof). The C1 boundary of
Ω is Γ and ν is the corresponding exterior normal. As in [13], the standard period
(ε = 1) is a cell Y consisting of a matrix block Ym of external C1 boundary ∂Ym
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and of a fracture domain Yf . We assume that |Y | = 1. The ε-reservoir consists of
copies εY covering Ω. The two subdomains of Ω are defined by

Ωε
f = Ω ∩

{
∪ξ∈Aε(Yf + ξ)

}
, Ωε

m = Ω ∩
{
∪ξ∈Aε(Ym + ξ)

}
,

where A is an appropriate infinite lattice. The fracture-matrix interface is denoted
by Γε

fm = ∂Ωε
f ∩ ∂Ωε

m ∩ Ω and νfm is the corresponding unit normal pointing out
Ωε

f . An example of unit cell in the case of a partially fractured medium is given in
Fig. 1. See [1] for a more complicated admissible 2D-structure.

Yf Yf

Yf Yf

Ym

Γmm

Γfm

Figure 1. Unit cell of a partially fractured medium

The major difference between a partially fractured structure and a totally frac-
tured one is that the matrix block Ym is not completely surrounded by the fracture
domain Yf . Let us denote by J = (0, T ) the time interval of interest. To homogenize
the reservoir, we shall let tend to zero the size ε of the cells.

Our starting point consists of the equations derived in the latter subsection.
As we assume a periodic structure in the reservoir, the porosities (φε

f (x), φε(x)) =
(φf (x

ε ), φ(x
ε )) and the permeabilities (kε

f (x), kε(x)) = (kf (x
ε ), k(x

ε )) of the fracture
and of the matrix are periodic of period (εYf , εYm). These quantities are assumed to
be smooth and bounded, but globally they are discontinuous across Γε

fm. A slowly
varying flow and a rapidly varying flow occur in the matrix Ωε

m. The equations for
the rapidly varying flow will be scaled by appropriate powers of ε to conserve the
flow between the matrix and the fractures as ε→ 0 (cf [4, 14]). Scaling (2.4)-(2.5)
and (2.11)-(2.14), we get

φε
f∂tf

ε
1 + vε

f · ∇f ε
1 − div(D(vε

f )∇f ε
1) = q(f̂1 − f ε

1) in Ωε
f × J, (2.15)

φε
f∂tp

ε
f + div(vε

f ) = q, vε
f = −

kε
f

µ(f ε
1)
∇pε

f in Ωε
f × J, (2.16)

φε∂tC
ε
1 + Vε · ∇Cε

1 − div(Dε(Vε)∇Cε
1) = q(Ĉ1 − Cε

1) in Ωε
m × J, (2.17)

φε∂tc
ε
1 + Vε · ∇cε1 − div(Dε(Vε)∇cε1) = q(ĉ1 − cε1) in Ωε

m × J, (2.18)

φε∂tc
ε
2 + Vε · ∇cε2 − div(Dε(Vε)∇cε2) = q(ĉ2 − cε2) in Ωε

m × J, (2.19)

φε∂tp
ε + div(Vε) = q, Vε = Vε

s + εVε
h, in Ωε

m × J, (2.20)

Vε
s = −α(cε1 + cε2)

kε

µ(mε
1)
∇pε, Vε

h = −(1− α(cε1 + cε2))
εkε

µ(mε
1)
∇pε, (2.21)
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where mε
1 = αcε1 + βCε

1, 0 ≤ α < 1, α+ β = 1. The flow in the fissures is described
by (2.15)-(2.16). The matrix behavior is described by (2.17)-(2.21). In particular,
(2.17) governs the slowly varying component while (2.18)-(2.19) governs the high
frequency varying ones. The source term q is a nonnegative function of L2(Ω× J)
and

αĉ1 + βĈ1 = f̂1, 0 ≤ f̂1 ≤ 1, ĉ1 + ĉ2 = 1.

We assume that the porosities and the symmetric permeability tensors satisfy

0 < φ− ≤ φf (x), φ(x) ≤ φ−1
− , k−|ξ|2 ≤ kf (x)ξ · ξ, k(x)ξ · ξ ≤ k−1

− |ξ|2,

k− > 0, a.e. in Ω, for all ξ ∈ R2. The viscosity µ ∈W 1,∞(0, 1) is such that

0 < µ− ≤ µ(x) ≤ µ+ ∀x ∈ (0, 1).

The tensor D is already defined in (2.2). The tensor Dε has a similar structure
but its diffusive part (α + βε2)DmId contains the same proportions of slowly and
rapidly varying flows than the matrix. The main property of these tensors is

D(vε
f )ξ · ξ ≥ φ−(Dm + αt|vε

f |)|ξ|2, ∀ξ ∈ R2,

Dε(Vε)ξ · ξ ≥ φ−(Dm(α+ βε2) + αt|Vε
s + ε2Vε

h|)|ξ|2, ∀ξ ∈ R2.
. (2.22)

The model is completed by the following boundary and initial conditions. We begin
by the continuity relations across the interface Γε

fm × J .

βD(vε
f )∇f ε

1 · νfm = Dε(Vε)∇Cε
1 · νfm, (2.23)

αD(vε
f )∇f ε

1 · νfm = Dε(Vε)∇cε1 · νfm, (2.24)

αD(vε
f )∇(1− f ε

1) · νfm = −αD(vε
f )∇f ε

1 · νfm = Dε(Vε)∇cε2 · νfm, (2.25)

f ε
1 = αcε1 + βCε

1, (2.26)

vε
f · νfm = Vε · νfm, pε

f = pε. (2.27)

We add a zero flux condition out of the full domain Ω.

D(vε
f )∇f ε

1 · ν = 0 on ∂Ωε
f ∩ Γ, (2.28)

Dε(Vε)∇Cε
1 · ν = Dε(Vε)∇cε1 · ν = Dε(Vε)∇cε2 · ν = 0 on ∂Ωε

m ∩ Γ, (2.29)

vε
f · ν = 0 on ∂Ωε

f ∩ Γ, Vε · ν = 0 on ∂Ωε
m ∩ Γ. (2.30)

The initial conditions in Ω are the following.

(f ε
1(x, 0), Cε

1(x, 0), cε1(x, 0), cε2(x, 0)) = (χε
ff

o
1 (x), Co

1 (x), co1(x), c
o
2(x)), (2.31)

pε
f (x, 0) = χε

f (x)po(x), pε(x, 0) = χε
m(x)po(x). (2.32)

We assume that po belongs toH1(Ω), and that (fo
1 , C

o
1 , c

o
1, c

o
2) ∈ L∞(Ω)×(L2(Ωε

m))3

satisfies

0 ≤ fo
1 (x) ≤ 1 a.e. in Ω, (2.33)

αco1(x) + βCo
1 (x) = χε

mf
o
1 (x), 0 ≤ Cα ≤ co1(x) + co2(x) ≤ 1 a.e. in Ωε

m. (2.34)

The constant 0 ≤ Cα < 1 is introduced to prevent a degeneration in the limit study
of the pressure equation in Ωε

m (see Section 5).
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2.3. Variational formulation and existence for the microscopic model.
We now state an existence result for the problem (2.15)-(2.21), (2.23)-(2.32). The
usual equations modelling a miscible and compressible displacement in porous me-
dia are of the form (2.4)-(2.5). The existence of weak solutions for this problem
is proved in [11]. In the present paper, the decomposition of the flow in the ma-
trix part of the domain induces two additional difficulties. The first one is a new
coupling between concentrations and pressure due to the term α(cε1 + cε2) in (2.21).
But from a mathematical viewpoint this difficulty is similar to the one due to the
concentration dependent viscosity in the Darcy law. The second novelty occurs
at the interface Γε

fm. One has to link one concentration f ε
1 in the fracture with

three concentrations (Cε
1, c

ε
1, c

ε
2) in the matrix. Thus, following [13], we introduce

appropriate concentrations spaces for the problem. Let Hε be the Hilbert space
Hε = L2(Ωε

f )× L2(Ωε
m)× L2(Ωε

m) with the inner product(
[uf , um, Um], [ψf , ψm,Ψm]

)
Hε

=
∫

Ωε
f

uf (x)ψf (x) dx+
∫

Ωε
m

um(x)ψm(x) dx+
∫

Ωε
m

Um(x) Ψm(x) dx.

Let γε
j : H1(Ωε

j) → L2(∂Ωε
j) be the usual trace map and χε

j be the characteristic
function associated with Ωε

j , j = f,m. Let V ε be the following Banach space

V ε = Hε ∩
{
(uf , um, Um) ∈ H1(Ωε

f )×H1(Ωε
m)×H1(Ωε

m);

γε
fuf = αγε

mum + βγε
mUm on Γε

fm

}
endowed with the norm

‖(uf , um, Um)‖V ε = ‖χε
fuf‖L2(Ω) + ‖χε

mum‖L2(Ω) + ‖χε
mUm‖L2(Ω)

+ ‖χε
f∇uf‖(L2(Ω))2 + ‖χε

m∇um‖(L2(Ω))2 + ‖χε
m∇Um‖(L2(Ω))2 .

The introduction of similar spaces for the pressure is useless because we only use
one pressure variable in the matrix part of the domain. Note that the pair of spaces
(Hε, V ε) possesses the same “good” properties as (L2(Ω),H1(Ω)). In particular,
we have the compact embedding V ε ⊂ Hε. Thus, adapting the proof of [11] to the
present piecewise structure, one can state the following existence result.

Theorem 2.1. Let 0 < ε < 1. There exists a solution (pε
f , p

ε, f ε
1 , c

ε
1, C

ε
1, c

ε
2) of

Problem (2.15)-(2.21), (2.23)-(2.32) in the following sense.
(i) The pressure part (pε

f , p
ε) belongs to L2(J ;H1(Ωε

f )) × L2(J ;H1(Ωε
m)) and is

a weak solution of (2.16), (2.20)–(2.21), (2.27), (2.32). Indeed, for any function
ψ ∈ C1(J ;H1(Ω)),

−
∫

Ω×J

(χε
fφ

ε
fp

ε
f + χε

mφ
εpε)∂tψ

+
∫

Ω×J

(
χε

f

kε
f

µ(f ε
1)
∇pε

f + χε
m(α(cε1 + cε2)(1− ε2) + ε2)

kε

µ(mε
1)
∇pε

)
· ∇ψ

= −
∫

Ω

(χε
fφ

ε
f + χε

mφ
ε)poψ(x, 0) +

∫
Ω×J

qψ.

(2.35)

(ii) The concentration part (f ε
1 , c

ε
1, C

ε
1, c

ε
2) is such that (f ε

1 , c
ε
1, C

ε
1) ∈ L2(J ;V ε) ∩

H1(J ; (V ε)′) and cε2 ∈ L2(J ;H1(Ωε
m)) ∩ H1(J ; (H1(Ωε

m))′). It satisfies for any
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(df , d1, D1) ∈ L2(J ;V ε) and any d2 ∈ L2(J ;H1(Ωε
m)) the following relations.

∫
Ωε

f×J

φε
f∂tf

ε
1 df +

∫
Ωε

m×J

φε∂tc
ε
1 d1 +

∫
Ωε

m×J

φε∂tC
ε
1D1 +

∫
Ωε

f×J

(vε
f · ∇f ε

1) df

+
∫

Ωε
m×J

Vε · (d1∇cε1 +D1∇Cε
1) +

∫
Ωε

f×J

D(vε
f )∇f ε

1 · ∇df

+
∫

Ωε
m×J

Dε(Vε)∇cε1 · ∇d1 +
∫

Ωε
m×J

Dε(Vε)∇Cε
1 · ∇D1

=
∫

Ωε
f×J

q (f̂1 − f ε
1) df +

∫
Ωε

m×J

q (ĉ1 − cε1) d1 +
∫

Ωε
m×J

q (Ĉ1 − Cε
1)D1,

(2.36)
and ∫

Ωε
m×J

φε∂tc
ε
2 d2 +

∫
Ωε

m×J

(Vε · ∇cε2) d2

+
∫

Ωε
m×J

Dε(Vε)∇cε2 · ∇d2 −
∫

∂Ωε
m×J

(Dε(Vε)∇cε2 · νm) γε
md2

=
∫

Ωε
m×J

q (1− cε2) d2.

(2.37)

Furthermore, the following maximum principles hold:

0 ≤ f ε
1(x, t) ≤ f̂1 a.e. in Ωε

f × J,

0 ≤ mε
1(x, t) ≤ f̂1 a.e. in Ωε

m × J, (2.38)

0 ≤ Cα ≤ cε1(x, t) + cε2(x, t) ≤ 1 a.e. in Ωε
m × J. (2.39)

Proof. The proof of this existence result follows the lines of [11] and is based on a
fixed point approach. The necessary a priori estimates are the same as the uniform
ones derived in Section 3 below. We thus do not detail the proof in the present
paper. We only give the details for the crucial maximum principles (2.38)-(2.39).
In view of the method developed in [11], we can assume in what follows that the
Darcy velocities are regularized so that vε

f and Vε belong to L∞(Ω × J). We first
consider the problem of the left-hand sides of estimates (2.38). We note that the
function αcε1 + βCε

1 = mε
1 satisfies the following system in Ωε

m × J .

φε∂tm
ε
1 + Vε · ∇mε

1 − div(Dε(Vε)∇mε
1) = q(f̂1 −mε

1), (2.40)

mε
1 = f ε

1 , Dε(Vε)∇mε
1 · νfm = (α2 + β2)D(vε

f )∇f ε
1 · νfm on Γε

fm × J, (2.41)

Dε(Vε)∇mε
1 · ν = 0 on (∂Ωε

m ∩ Γ)× J, (2.42)

mε
1(x, 0) = αco1(x) + βCo

1 (x) = χε
m(x)fo

1 (x) in Ωε
m. (2.43)

For any function f , we denote by (f)− the function (f)− = sup(0,−f). We now
multiply (2.15) by (α2 + β2)(f ε

1)− (respectively (2.40) by (mε
1)
−) and we integrate

over Ωε
f (respectively Ωε

m). Noting that (f ε
1)− = (mε

1)
− on Γε

fm, we sum up the
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resulting relations to kill the non zero boundary terms. We get

d

2dt

∫
Ω

(
χε

f (α2 + β2)φε
f |(f ε

1)−|2 + χε
mφ

ε|(mε
1)
−|2

)
−

∫
Ωε

m

(Vε · ∇mε
1) (mε

1)
−

− (α2 + β2)
∫

Ωε
f

(vε
f · ∇f ε

1) (f ε
1)− − (α2 + β2)

∫
Ωε

f

D(vε
f )∇f ε

1 · ∇(f ε
1)−

−
∫

Ωε
m

Dε(Vε)∇mε
1 · ∇(mε

1)
− +

∫
Ω

qf̂1
(
χε

f (α2 + β2)(f ε
1)− + χε

m(mε
1)
−)

+
∫

Ω

q
(
χε

f (α2 + β2)|(f ε
1)−|2 + χε

m|(mε
1)
−|2

)
= 0.

(2.44)

Using −∇f ·∇(f)− = ∇(f)− ·∇(f)− and the basic properties (2.22) of the tensors
(D,Dε), we note that

−
∫

Ωε
f

D(vε
f )∇f ε

1 · ∇(f ε
1)− dx ≥

∫
Ωε

f

φ−(Dm + αt|vε
f |) |∇(f ε

1)−|2 dx,

−
∫

Ωε
m

Dε(Vε)∇mε
1 · ∇(mε

1)
− dx

≥
∫

Ωε
m

φ−(Dm(α+ βε2) + αt|Vε
s + ε2Vε

h|) |∇(mε
1)
−|2 dx.

The convective terms in (2.44) are then estimated as follows using the Cauchy-
Schwarz and Young inequalities.∣∣∣∫

Ωε
f

(vε
f · ∇f ε

1) (f ε
1)−

∣∣∣ ≤ ∫
Ωε

f

αt

2
|vε

f | |∇(f ε
1)−|2 + C‖vε

f‖∞
∫

Ωε
f

|(f ε
1)−|2,∣∣∣∫

Ωε
m

(Vε · ∇mε
1) (mε

1)
−

∣∣∣ ≤ ∫
Ωε

m

αDm

2
|∇(mε

1)
−|2 +

C

α
‖Vε‖2

∞

∫
Ωε

m

|(mε
1)
−|2.

All the terms of (2.44) containing the source q are nonnegative. The previous
estimates then lead to
φ−
2

d

dt

∫
Ω

(
(α2 + β2)χε

m|(f ε
1)−|2 + χε

m|(mε
1)
−|2

)
dx+ (α2 + β2)φ−

∫
Ωε

f

(Dm

+
αt

2
|vε

f |) |∇(f ε
1)−|2dx+ φ−

∫
Ωε

m

(Dm(
α

2
+ βε2) + αt|Vε

s + ε2Vε
h|) |∇(mε

1)
−|2dx

≤ C

∫
Ω

(
(α2 + β2)χε

f |(f ε
1)−|2 + χε

m|(mε
1)
−|2

)
dx.

Using the Gronwall lemma with Hypotheses (2.33)-(2.34) on the initial data, we
conclude that (f ε

1)−(x, t) = 0 a.e. in Ωε
f × J and (mε

1)
−(x, t) = 0 a.e. in Ωε

m × J ,
that is the first part of (2.38). The second part is proved similarly, multiplying
(2.15) by (α2 + β2)(f̂1 − f ε

1)− (respectively (2.40) by (f̂1 −mε
1)
−).

We now justify (2.39). To this aim, we consider the problem satisfied by (cε1+cε2)
in Ωε

m × J :

φε∂t(cε1 + cε2) + Vε · ∇(cε1 + cε2)− div(Dε∇(cε1 + cε2)) = q(1− cε1 − cε2), (2.45)

Dε(Vε)∇(cε1 + cε2) · ν = 0 on ∂Ωε
m × J, (2.46)

(cε1 + cε2)(x, 0) = co1(x) + co2(x) in Ω. (2.47)
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Multiplying (2.45) by (cε1 + cε2 − Cα)−, integrating over Ωε
m and using the same

tools as in the previous part of this proof, we state that cε1(x, t)+ cε2(x, t) ≥ Cα ≥ 0
almost everywhere in Ωε

m×J . We now detail the proof of the second part of (2.39).
We multiply (2.45) by (1 − cε1 − cε2)

− and we integrate over Ωε
m. Using the basic

properties (2.22) of the tensor Dε we get

φ−
2

d

dt

∫
Ωε

m

|(1− cε1 − cε2)
−|2 + φ−

∫
Ωε

m

Dm(α+ βε2)|∇(1− cε1 − cε2)
−|2

+
∫

Ωε
m

(Vε · ∇(cε1 + cε2)) (1− cε1 − cε2)
− −

∫
Ωε

m

q(1− cε1 − cε2) (1− cε1 − cε2)
− ≤ 0.

The fourth term of the left-hand side is nonnegative. The convective term is esti-
mated with the Cauchy-Schwarz and Young inequalities as follows.∣∣∣∫

Ωε
m

(Vε · ∇(cε1 + cε2)) (1− cε1 − cε2)
−

∣∣∣
=

∣∣∣∫
Ωε

m

(Vε · ∇(1− cε1 − cε2)
−) (1− cε1 − cε2)

−
∣∣∣

≤
∫

Ωε
m

φ−αDm

2
|∇(1− cε1 − cε2)

−|2 + C‖Vε‖2
∞

∫
Ωε

m

|(1− cε1 − cε2)
−|2.

Using these estimates in the first relation, we get

φ−
2

d

dt

∫
Ωε

m

|(1− cε1 − cε2)
−|2 dx+ φ−

∫
Ωε

m

Dm(
α

2
+ βε2)|∇(1− cε1 − cε2)

−|2 dx

≤ C

∫
Ωε

m

|(1− cε1 − cε2)
− dx|2 dx.

The latter relation and the Gronwall lemma combined with Assumption (2.34) let
us conclude that (1 − cε1 − cε2)

−(x, t) = 0 and thus cε1(x, t) + cε2(x, t) ≤ 1 a.e. in
Ωε

m × J . This completes the proof of the theorem. �

3. Uniform estimates

We begin by stating the following properties of the pressure solutions of the
problem (2.16), (2.20)-(2.21), (2.27), (2.30), (2.32).

Lemma 3.1. The pressure satisfies the following uniform estimates

‖pε
f‖L∞(J;L2(Ωε

f )) + ‖pε
f‖L2(J;H1(Ωε

f )) ≤ C,

‖vε
f‖(L2(J;L2(Ωε

f )))2 ≤ C,

‖pε‖L∞(J;L2(Ωε
m)) ≤ C,

‖α1/2(cε1 + cε2)
1/2∇pε‖(L2(J;L2(Ωε

m)))2 + ‖ε∇pε‖(L2(J;L2(Ωε
m)))2 ≤ C,

‖Vε
s‖(L2(J;L2(Ωε

m)))2 ≤ C,

‖Vε
h‖(L2(J;L2(Ωε

m)))2 ≤ C.

Furthermore the time derivative (χε
fφ

ε
f∂tp

ε
f + χε

mφ
ε∂tp

ε) is uniformly bounded in
L2(J ; (H1(Ω))′).
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Proof. The estimates are derived from integration by parts. We multiply (2.16) by
pε

f and integrate over Ωε
f ×J . We multiply (2.20) by pε and integrate over Ωε

m×J .
Summing up the resulting relations, we obtain

1
2

∫
Ωε

f

φε
f |pε

f |2 dx+
1
2

∫
Ωε

m

φε |pε|2 dx+
∫

Ωε
f×J

kε
f

µ(f ε
1)
∇pε

f · ∇pε
f dx dt

+
∫

Ωε
m×J

(
α(cε1 + cε2)(1− ε2) + ε2

) kε

µ(mε
1)
∇pε · ∇pε dx dt

=
1
2

∫
Ω

(χε
fφ

ε
f (x) + χε

mφ
ε(x)) |po(x)|2 dx+

∫
Ω×J

q (χε
fp

ε
f + χε

mp
ε) dx dt.

Applying the Cauchy-Schwarz and Young inequalities with the properties of φε
f , φε,

kε
f , kε and µ in the latter relation, we get

φ−
2

∫
Ωε

f

|pε
f |2 dx+

φ−
2

∫
Ωε

m

|pε|2 dx+
k−
µ+

∫
Ωε

f×J

|∇pε
f |2 dx dt

+
k−
µ+

∫
Ωε

m×J

(
α(cε1 + cε2) |∇pε|2 + ε2 (1− α(cε1 + cε2)) |∇pε|2

)
dx dt

≤ C
(
‖po‖L2(Ω), ‖q‖L2(Ω×J)

)
+

∫
Ωε

f×J

|pε
f |2 dx dt+

∫
Ωε

m×J

|pε|2 dx dt.

Using the Gronwall lemma, we prove the desired estimates. The result on the time
derivatives then follows straightforward from (2.16), (2.20)-(2.21). �

We can now establish the following results concerning the concentrations func-
tions (f ε

1 , C
ε
1, c

ε
1, c

ε
2).

Lemma 3.2. (i) The functions (f ε
1 , C

ε
1, c

ε
1, c

ε
2) are uniformly bounded in the

space L∞(J ;L2(Ωε
f ))× (L∞(J ;L2(Ωε

f )))3 and are such that

0 ≤ f ε
1(x, t) ≤ f̂1 ≤ 1 almost everywhere in Ωε

f × J,

0 ≤ αcε1(x, t) + βCε
1(x, t) ≤ f̂1 ≤ 1 almost everywhere in Ωε

m × J

0 ≤ cε1(x, t) + cε2(x, t) ≤ 1 almost everywhere in Ωε
m × J ;

(ii) the sequence ((D1/2
m + α

1/2
t |vε

f |1/2)∇f ε
1) is uniformly bounded in (L2(Ωε

f ×
J))2;

(iii) for i = 1, 2, the diffusive terms α1/2(1+ (cε1 + cε2)
1/2|∇pε|1/2)∇cεi and ε(1+

|ε∇pε|1/2)∇cεi are uniformly bounded in (L2(Ωε
m×J))2. The same estimates

hold for Cε
1.

Proof. The maximum principles of (i) are a direct consequence of the construction
of the solution (f ε

1 , C
ε
1, c

ε
1, c

ε
2) in Theorem 2.1. We write the variational formulation
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(2.36) with the test function (df , d1, D1) = (f ε
1 , c

ε
1, C

ε
1). We get

1
2

∫
Ωε

f

φε
f |f ε

1 |2 dx+
1
2

∫
Ωε

m

φε(|cε1|2 + |Cε
1|2) dx+

∫
Ωε

f×J

D(vε
f )∇f ε

1 · ∇f ε
1 dx dt

+
∫

Ωε
m×J

(Dε(Vε)∇cε1 · ∇cε1 +Dε(Vε)∇Cε
1 · ∇Cε

1) dx dt

+
∫

Ωε
f×J

(vε
f · ∇f ε

1) f ε
1 dx dt+

∫
Ωε

m×J

Vε · (cε1∇cε1 + Cε
1 ∇Cε

1) dx dt

+
∫

Ω×J

q (χε
f |f ε

1 |2 + χε
m (|cε1|2 + |Cε

1|2)) dx dt

=
∫

Ω×J

qf̂1f
ε
1 dx dt+

∫
Ωε

m×J

q(ĉ1cε1 + Ĉ1C
ε
1) dx dt

+
1
2

∫
Ω

(
φε

f |fo
1 |2 + φε(|co1|2 + |Co

1 |2)
)
dx.

(3.1)
The convective terms in (3.1) are estimated as follows using the Cauchy-Schwarz
and Young inequalities. In the fractured part, we write∣∣∣∫

Ωε
f×J

(vε
f · ∇f ε

1) f ε
1 dx

∣∣∣ ≤ ∫
Ωε

f×J

αt

2
|vε

f | |∇f ε
1 |2 dx+ C‖f ε

1‖2
∞

∫
Ωε

f

|vε
f | dx,

where 0 ≤ f ε
1(x, t) ≤ 1 a.e. in Ωε

f ×J and vε
f is uniformly bounded in (L1(Ωε

f ×J))2

thanks to Lemma 3.1. In the matrix part, the work is more difficult because we do
not have an estimate for cε1 and Cε

1 in L∞(Ωε
m × J). We thus get firstly∣∣∣∫

Ωε
m×J

Vε · (cε1∇cε1 + Cε
1 ∇Cε

1)
∣∣∣ ≤ ∫

Ωε
m×J

αt

2
|Vε

s + ε2Vε
h| (|∇cε1|2 + |∇Cε

1|2)

+ C

∫
Ωε

f

(|Vε
s|+ |Vε

h|) (|cε1|2 + |Cε
1|2) dx.

In such a matrix domain, the Gagliardo-Nirenberg inequality reads

‖u‖L4(Ωε
m) ≤ C‖u‖1/2

L2(Ωε
m)‖(α+ βε)u‖1/2

H1(Ωε
m), ∀u ∈ H1(Ωε

m).

The second term of the right-hand side of the latter relation is then treated as
follows using the Gagliardo-Nirenberg inequality and Lemma 3.1.∫

Ωε
f

|Vε| (|cε1|2 + |Cε
1|2)

≤ k+

µ−

∫
Ωε

f

(
α(cε1 + cε2)(1− ε) + ε

)
|∇pε|

(
|cε1|2 + |cε2|2

)
≤ C

(∫
Ωε

f

(
α2(cε1 + cε2)

2 + ε2(1− α(cε1 + cε2)
)2|∇pε|2

)1/2

×
(
‖cε1‖2

L4(Ωε
m) + ‖Cε

1‖2
L4(Ωε

m)

)
≤ C

(
‖cε1‖2

L4(Ωε
m) + ‖Cε

1‖2
L4(Ωε

m)

)
≤ C

(
‖cε1‖L2(Ωε

m)‖(α+ βε)cε1‖H1(Ωε
m) + ‖Cε

1‖L2(Ωε
m)‖(α+ βε)Cε

1‖H1(Ωε
m)

)
≤ C

δ

(
‖cε1‖2

L2(Ωε
m) + ‖Cε

1‖2
L2(Ωε

m)

)
+ φ−δ

∫
Ωε

f

(α+ ε2)Dm

(
|∇cε1|2 + |∇Cε

1|2
)
,
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for any δ > 0. The last term in the left-hand side of (3.1) is nonnegative. Using
the latter estimates, the Cauchy-Schwarz and Young inequalities for the right-hand
side source terms and the basic properties (2.22) of the tensors D and Dε, it follows
from (3.1) that

φ−
2

∫
Ω

(χε
f |f ε

1 |2 + χε
m(|cε1|2 + |Cε

1|2)) dx+ φ−

∫
Ωε

f×J

(Dm +
αt

2
|vε

f |) |∇f ε
1 |2 dx dt

+ φ−

∫
Ωε

m×J

((α+ ε2)(1− δ)Dm +
αt

2
|Vε

s + ε2Vε
h|)

(
|∇cε1|2 + |Cε

1|2
)
dx dt

≤ C + C

∫
Ωε

f×J

|f ε
1 |2 dx dt+

C

δ

∫
Ωε

m×J

(|cε1|2 + |Cε
1|2) dx dt.

We choose 0 < δ < 1. Using the Gronwall lemma yields to the result for f ε
1 , cε1 and

Cε
1. Once we know the estimate for cε1, we obtain similar ones for cε2 by multiplying

(2.18) by cε1, (2.19) by cε2, integrating over Ωε
m and summing up the results to kill

the terms on Γfm. Our claim is proved. �

Remark 3.3. This proof fails if we consider a domain Ω ⊂ R3 instead of R2 because
of the use of the Gagliardo-Nirenberg inequality. Nevertheless we can get the same
result using minor modifications. The simplest way is to add a L∞-estimate for cε1
and Cε

1. To this aim, we note that the function dε
1 = α

βC
ε
1 − cε1 is solution of the

following problem in Ωε
m × J .

φε∂td
ε
1 + Vε · ∇dε

1 − div(Dε(Vε)∇dε
1) = q(

α

β
Ĉ1 − ĉ1 − dε

1),

Dε(Vε)∇dε
1 · ν = 0 on ∂Ωε

m × J,

dε
1(x, 0) =

α

β
Co

1 (x)− co1(x) in Ωε
m.

Similar arguments to the ones used in Theorem 2.1 together with an additional
assumption on α

βC
o
1 − co1 lead to a maximum principle for α

βC
ε
1 − cε1. Combining it

with Lemma 3.2 (ii), we get a L∞-bound for cε1 and Cε
1.

4. The macroscopic model: the case of a totally fractured media
(α = 0)

We assume in this section that α = 0 and then β = 1. We thus do not consider the
concentrations variables (cε1, c

ε
2). And we define global pressure and concentration

functions θε and ξε by

θε =

{
pε

f in Ωε
f × J,

pε in Ωε
m × J,

ξε =

{
f ε
1 in Ωε

f × J,

Cε
1 in Ωε

m × J,
(4.1)

and the global porosity Φε, tensor of permeability Kε and new diffusion tensor Dε

by Φε = χε
fφ

ε
f + χε

mφ
ε, Kε = χε

fk
ε
f + χε

mε
2kε and Dε = χε

fD + χε
mDε.

4.1. The limit double porosity model. The aim of this section is to derive
rigorously the double porosity model described below. We obtain a macroscopic
fracture system driven by equations in Ω× J , similar to the microscopic ones:

φf
Yf
∂tPf − divVf = q −

∫
Ym

φ(y) ∂tp dy, Vf = − Kf

µ(F1)
∇Pf , (4.2)
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φf
Yf
∂tF1 + Vf · ∇F1 − div(Df (∇Pf , µ(F1))∇F1) + q |Yf |F1

= qf̂1 − q

∫
Ym

C1 dy −
∫

Ym

φ(y) ∂tC1 dy +
∫

Ym

k(y)
µ(C1)

∇yp · ∇yC1 dy.
(4.3)

The matrix plays the role of a source and produces the additional right-hand side
source-like terms. The homogenization process gives for this macroscopic level an
effective porosity φf

Yf , an effective rock permeability Kf and an homogenized
tensor of diffusion Df defined by

φf
Yf =

∫
Yf

φf (y)dy, (4.4)

Kfij =
∫

Yf

kf (y)(∇yv
i(y) + ei) · (∇yv

j(y) + ej)dy 1 ≤ i, j ≤ 2, (4.5)

Dfij
(∇Pf , µ(F1)) =

∫
Yf

Df (∇yw
i + ei) · (∇yw

j + ej)dy, (4.6)

Df = D
(

Kf (y)
µ(F1)

∇Pf

)
and Kf (y)ij = kf (y)

(
∇yv

i(y) + ei
)
·
(
∇yv

j(y) + ej
)
. The

functions (vi)1≤i≤2 and (wi)1≤i≤2 are respectively solutions of the cell problems
(4.7) and (4.8) below.

−div
y

(kf (y)(∇yv
i(y) + ei)) = 0 in Yf ,

kf (y)(∇yv
i(y) + ei) · νy = 0 on Γfm, y 7→ vi(x, y) Y -periodic,

(4.7)

−div
y

(Df (x, y)(∇yw
i(x, y) + ei)) = 0 in Yf ,

Df (x, y)(∇yw
i(x, y) + ei) · νy = 0 on Γfm, y 7→ wi(x, y) Y -periodic,

(4.8)

where ej is the unit vector in the j-th direction. On the other hand, to each x ∈ Ω
corresponds a matrix block, driven by equations in {x} × Ym × J which give the
new source terms:

φ(y) ∂tp+ div
y
Vh = q, Vh = − k(y)

µ(C1)
∇yp, (4.9)

φ(y) ∂tC1 + Vh · ∇yC1 − div
y

(D(y,Vh)∇yC1) + q C1 = qf̂1. (4.10)

The equations (4.2)-(4.3), (4.9)-(4.10) are provided with the following initial and
boundary conditions

Kf∇Pf · ν = 0, Df∇F1 · ν = 0 on Γ× J, p = Pf , C1 = F1 on Γfm, (4.11)

Pf (x, 0) = p(x, y, 0) = po(x), F1(x, 0) = C1(x, y, 0) = fo
1 (x) in Ω× Ym. (4.12)

We claim and prove the following convergence result.

Theorem 4.1. As the scaling parameter ε tends to zero, the microscopic model
(2.15)–(2.17), (2.20)–(2.21), (2.23), (2.26)–(2.32) with α = 0 converges to the double
porosity macroscopic model (4.2)–(4.12).

We have captured the interactions between the local and the global scales. This
model is consistent with the double porosity formulations of the engineering liter-
ature, cf [5]. But in [5], the exchanges between fractures and blocks are assumed
quasi-stationary. Without this hypothesis, we obtain additional memory terms.
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The proof of the homogenization process will be carried out by using the two-
scale convergence introduced by G.Nguetseng in [18] and developed by Allaire in
[2]. We recall the basic definition and properties of this concept.

Proposition 4.2. A sequence of functions (vε) bounded in L2(Ω × J) two-scale
converges to a limit vo(x, y, t) belonging to L2(Ω× Y × J), vε 2

⇀vo, if

lim
ε→0

∫
Ω×J

vε(x, t) Ψ(x, x/ε, t) dx dt =
∫

Ω×J

∫
Y

vo(x, y, t) Ψ(x, y, t) dx dy dt,

for any test function Ψ(x, y, t), Y-periodic in the second variable, satisfying

lim
ε→0

∫
Ω×J

|Ψ(x, x/ε, t)|2 dx dt =
∫

Ω×J

∫
Y

|Ψ(x, y, t)|2 dx dy dt.

(i) From each bounded sequence (vε) in L2(Ω × J) one can extract a subsequence
which two-scale converges.
(ii) Let (vε) be a bounded sequence in L2(J ;H1(Ω)) which converges weakly to v

in L2(J ;H1(Ω)). Then vε 2
⇀v and there exists a function v1 ∈ L2(Ω× J ;H1

per(Y ))

such that, up to a subsequence, ∇vε 2
⇀∇v(x, t) +∇yv

1(x, y, t).
(iii) Let (vε) be a bounded sequence in L2(Ω× J) with (ε∇vε) bounded in (L2(Ω×
J))2. Then, there exists a function vo ∈ L2(Ω × J ;H1

per(Y )) such that, up to a

subsequence, vε 2
⇀vo and ε∇vε 2

⇀∇yv
o(x, y, t).

To exploit the a priori estimates obtained in the fractured part Ωε
f , we need to

extend the functions pε
f and f ε

1 to the whole domain Ω. To this aim, following [1],
we claim that there exists three constants ki = ki(Qf ) > 0, i = 1, 2, 3, and a linear
and continuous extension operator Πε : H1(Ωε

f ) → H1
loc(Ω) such that Πεv = v a.e.

in Ωε
f and∫

Ω(εk1)

|Πεv|2 dx ≤ k2

∫
Ωε

f

|v|2 dx,
∫

Ω(εk1)

|∇(Πεv)|2 dx ≤ k3

∫
Ωε

f

|∇v|2 dx

for all v ∈ H1(Ωε
f ), with Ω(εk1) = {x ∈ Ω | dist(x,Γ) > εk1}. To avoid dealing with

boundary layers, we make the following additional assumption on the structure of
the domain Ω:

Ωε
m = Ω(εk1) ∩

{
∪k∈Z2ε (Ym + k)

}
and Ωε

f = Ω \ Ωε
m.

For any subset Ω′ ⊂⊂ Ω, we get with Lemmas 3.1 and 3.2
∫
Ω′×J

|∇(Πεpε
f )|2dx dt ≤

C and
∫
Ω′×J

|∇(Πεf ε
1)|2dx dt ≤ C, if ε < dist(Ω′,Γ)/k1. Thus we can state con-

vergence results in any subset Ω′ ⊂⊂ Ω and conclude with a density argument.
But, for sake of simplicity, we prefer assume that the blocks are removed in an
εk1-neighborhood of Γ. We then get∫

Ω×J

|∇(Πεpε
f )|2 dx dt ≤ C,

∫
Ω×J

|∇(Πεf ε
1)|2 dx dt ≤ C.

We ensure the existence of functions Pf ∈ L2(J ;H1(Ω)), P 1
f ∈ L2(Ω×J ;H1

per(Y )),
p ∈ L2(Ω × J ;H1

per(Y )), F1 ∈ L2(J ;H1(Ω)), F 1
1 ∈ L2(Ω × J ;H1

per(Y )) and C1 ∈
L2(Ω × J ;H1

per(Y )) such that, up to subsequences not relabeled for convenience,
we have the following convergence.

Πεpε
f ⇀ Pf weakly in L2(J ;H1(Ω)),
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∇(Πεpε
f ) 2
⇀∇Pf (x, t) +∇yP

1
f (x, y, t),

θε 2
⇀ p(x, y, t), ε∇θε 2

⇀ ∇yp(x, y, t),

Πεf ε
1 ⇀ F1 weakly in L2(J ;H1(Ω)),∇(Πεf ε

1) 2
⇀ ∇F1(x, t) +∇yF

1
1 (x, y, t),

ξε 2
⇀ C1(x, y, t), ε∇ξε 2

⇀ ∇yC1(x, y, t).

We also assert that Φε 2
⇀ Φ(y) = χf (y)φf (y) + χm(y)φ(y),

Kε 2
⇀ K(y) = χf (y)kf (y) + χm(y)k(y),

and that we can consider that Φε and Kε are admissible test functions for the two-
scale convergence. We give in the following lemma some additional compactness
result.

Lemma 4.3. The sequence (Πεf ε
1) is sequentially compact in L2(Ω× J).

Proof. We begin by proving that the sequence (Φε∂tξ
ε) is uniformly bounded in

L2(J ; (H2(Ω))′). Let g ∈ L2(J ;H2(Ω)). Equations (2.15) and (2.17) give

〈Φε∂tξ
ε, g〉L2(J;(H2(Ω))′)×L2(J;H2(Ω))

=
∫

Ω×J

(
Kε

µ(ξε)
∇θε · ∇ξε) g −

∫
Ω×J

Dε∇ξε · ∇g +
∫

Ω×J

q (f̂1 − ξε) g.

In view of the previous lemmas, we have∣∣∣∫
Ω×J

(
Kε

µ(ξε)
∇θε · ∇ξε) g dx dt

∣∣∣
≤ C

µ−
‖|Kε∇θε|1/2∇ξε‖(L2(Ω×J))2‖|Kε∇θε|1/2‖L4(Ω×J)‖g‖L4(Ω×J)

≤ C‖g‖L2(J;H2(Ω)),∣∣∣∫
Ω×J

Dε∇ξε · ∇g dx dt
∣∣∣ ≤ C‖∇g‖(L2(J;L4(Ω)))2 ≤ C‖g‖L2(J;H2(Ω)),∣∣∣∫

Ω×J

q (f̂1 − ξε) g dx dt
∣∣∣ ≤ C‖g‖L2(Ω×J).

Then |〈Φε∂tξ
ε, g〉| ≤ C‖g‖L2(J;H2(Ω)) and (φε

f∂t(Πεf ε
1)) is uniformly bounded in

L2(J ; (H2(Ω))′). A compactness argument of Aubin’s type ensures that (φε
f (Πεf ε

1))
is compact in L2(J ; (H1(Ω))′). We thus can pass to the limit in the product
〈φε

f (Πεf ε
1),Πεf ε

1〉L2(J;(H1(Ω))′)×L2(J;H1(Ω)). Since φε
f (x) ≥ φ− > 0 almost every-

where in Ω, it follows that (Πεf ε
1) is compact in L2(Ω× J). �

Now, we have the first tools to study the behavior of the microscopic system as
ε tends to zero. We begin by the pressure equations.

4.2. The Pressure Problem. We want now to pass to the limit in System (2.16),
(2.20)–(2.21), (2.22), (2.30), (2.32) recalled below.

Φε∂tθ
ε − div((1/µ(ξε))Kε∇θε) = q in Ω× J,

Kε∇θε · ν = 0 on Γ× J, θε(x, 0) = po(x) in Ω.

As in [2], we multiply the first equation by a test function in the form Ψ(x, t) +
εΨ1(x, x/ε, t) + ψ(x, x/ε, t), with Ψ ∈ D(Ω × J), Ψ1 ∈ D(Ω × J ;C∞per(Y )) and
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ψ ∈ D(Ω× J ;C∞per(Y )) such that ψ(x, y, t) = 0 for y ∈ Yf . Integrating over Ω× J ,
we obtain

−
∫

Ω×J

Φε(x) θε∂t

(
Ψ(x, t) + εΨ1(x, x/ε, t) + ψ(x, x/ε, t)

)
dx dt

+
∫

Ω

Φε(x) po(x)
(
Ψ(x, 0) + εΨ1(x, x/ε, 0) + ψ(x, x/ε, 0)

)
dx

+
∫

Ω×J

Kε(x)
µ(ξε)

∇θε ·
(
∇Ψ + ε∇xΨε

1 +∇yΨε
1 +∇xψ

ε +
1
ε
∇yψ

ε
)
dx dt

=
∫

Ω×J

q
(
Ψ(x, t) + εΨ1(x, x/ε, t) + ψ(x, x/ε, t)

)
dx dt.

Letting ε→ 0, we get

−
∫

Ω×J

∫
Yf

φf (y)Pf ∂tΨ(x, t)−
∫

Ω×J

∫
Ym

φ(y) p ∂t(Ψ(x, t) + ψ(x, y, t))

+
∫

Ω

∫
Y

(χf (y)φf (y) + χm(y)φ(y)) po (Ψ(x, 0) + χm(y)ψ(x, y, 0))

+
∫

Ω×J

∫
Yf

kf (y)
µ(F1)

(∇Pf +∇yP
1
f ) · (∇Ψ +∇yΨ1)

+ lim
ε→0

∫
Ωε

m×J

εkε

µ(Cε
1)
∇pε · ∇yψ(x,

x

ε
, t)

=
∫

Ω×J×Y

q (Ψ + χm(y)ψ).

By density, this equality holds true for any functions (Ψ,Ψ1, ψ) ∈ H1
o (Ω × J) ×

L2(Ω × J ;H1
per(Y )) × L2(Ω × J ;H1

per(Ym)). Another integration by parts shows
(taking successively the test functions ψ, Ψ1 and Ψ equal to zero) that it is a
variational formulation of the following two-scale homogenized system in Ω× J :

φf
Yf
∂tPf − div

( 1
µ(F1)

∫
Yf

kf (y)(∇Pf +∇yP
1
f )dy

)
= q −

∫
Ym

φ(y) ∂tp dy,

−div
y

( kf (y)
µ(F1)

(∇Pf +∇yP
1
f )

)
= 0 in Yf ,

φ(y) ∂tp+ div
y
Vh = q in Ym, where − ε

kε

µ(Cε
1)
∇pε 2

⇀ Vh

kf (y)(∇Pf +∇yP
1
f ) · νy = 0 on Γfm,

kf (y)(∇Pf +∇yP
1
f ) · ν = 0 on Γ,

Pf (x, 0) = p(x, y, 0) = po(x) in Ω× Ym.

Now we eliminate the function P 1
f in the former system. We use the solution

(vi)1≤i≤2 of the cell problem (4.7) and the homogenized permeability tensor Kf

defined by (4.5). Through the relation P 1
f (x, y, t) =

∑2
i=1 ∂xiPf (x, t) vi(y), we

recover the following homogenized system.

φf
Yf
∂tPf − div

( Kf

µ(C1)
∇Pf

)
= q −

∫
Ym

φ∂tp dy in Ω× J, (4.13)

φ∂tp+ div
y
Vh = q in Ω× Ym × J, (4.14)
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Kf∇Pf · ν = 0 on ∂Ω× J, Pf (x, 0) = p(x, y, 0) = po(x) in Ω× Ym. (4.15)

We now determine the nonexplicit limit Vh using a dilation operator.

4.3. Introduction of an Appropriate Dilation Operator. Due to the nonlin-
earities and to the strong coupling of the problem, the two-scale convergence does
not provide an explicit form for the source-like terms which model the influence of
the matrix at the macroscopic level. To overcome this difficulty, we follow an idea
of [4], that can also be compared with the unfolding method of Cioranescu et al [12].
Firstly, we recall that in this section we assume no direct flow between the matrix
cells. We thus can assume that the component s of Ωε

m are strictly separated. For
each ε > 0, we then define a dilation operator ·̃ mapping measurable functions on
Ωε

m × J to measurable functions on Ω× Ym × J by

ũ(x, y, t) = u(cε(x) + ε y, t) for y ∈ Ym, (x, t) ∈ Ω× J,

where cε(x) denotes the lattice translation point of the ε-cell domain containing
x. This dilation allows to reach directly the scale of the standard cell. Since
Ωε

m = Ω(εk1)∩ (∪k∈Z2ε(Ym + k)), we recall that cε(x) = εk for x ∈ ε(Ym +k). Thus
the function ũ is constant in x on each block ε(Ym + k), k ∈ Z2, of Ω. We extend
this operator from Ym to ∪k(Ym + k) periodically. The dilation has the following
properties (cf [4]). Any function u ∈ L2(J ;H1(Ωε

m)) satisfies

‖ũ‖L2(Ωε
m×J×Ym) = ‖u‖L2(Ω×J), ∇yũ = ε ∇̃xu a.e. in Ω× J × Ym.

Moreover, if (v, w) ∈ (L2(0, T ;H1(Ωε
m)))2, then

(ṽ, w̃)L2(Ω×J×Ym) = (v, w)L2(Ωε
m×J) ,

(ṽ, w)L2(Ω×J×Y ) = (v, w̃)L2(Ω×J×Y ) ,

‖∇y ṽ‖(L2(Ω×J×Ym))2 = ε
∥∥∇̃xv

∥∥
(L2(Ωε

m×J))2
.

The following result makes the link between two-scale convergence and weak con-
vergence of dilated sequences. We refer to [8] for its detailed proof.

Proposition 4.4. If (vε) is a bounded sequence of L2(Ωε
m × J) such that ṽε con-

verges weakly to vo in L2(Ω×J ;L2
per(Ym)) and χε

mv
ε two-scale converges to v, then

we have vo = v a.e. in Ω× J × Ym.

We now determine the limit behavior of the dilated solutions C̃ε
1 and p̃ε. The

outline of this study is the following. We find the equations satisfied by the dilated
solutions in Ω × Ym × J . Some estimates lead to the convergence of (p̃ε, C̃ε

1) to
(p, C1) as ε → 0. On the other hand, for each fixed k ∈ Z2, we note that the
restriction in ε(Ym + k) of (p̃ε, C̃ε

1) is independent of x. Thus we define correspond-
ing functions (p̃ε

k(y, t), C̃ε
1k(y, t)). We get enough compactness results to find the

equations satisfied by their limit (pk, C1k) for each k ∈ Z2. Then, by a density
argument, the limit equations for (p, C1) are deduced.

We begin with finding the equations satisfied by the dilated solutions C̃ε
1 and p̃ε.

We define a test function ψ̂ by

ψ̂(x, z, t) =

{
ψ

(
(z − cε(x))/ε, t

)
for z ∈ εYm + cε(x)

0 for z 6∈ εYm + cε(x),



EJDE-2007/97 DERIVATION OF MODELS 19

for any function ψ ∈ L2(J ;H1
o (Ym)). We multiply (2.20) by ψ̂ and integrate over

Ωε
m. Since Ωε

m = ∪x∈Ω (εYm + cε(x)) and (εYm + cε(x1)) ∩ (εYm + cε(x2)) = ∅ for
x1 6= x2, we get for almost every x ∈ Ωε

m∫
εYm+cε(x)

(
φε(z) ∂tp

ε)(z, t) ψ̂(x, z, t) + ε2
kε(z)
µ(Cε

1)
∇pε(z, t) · ∇zψ̂(x, z, t)

)
dz

=
∫

εYm+cε(x)

q ψ̂(x, z, t) dz.

With the change of variable z 7→ εy + cε(x) = ε(y + k), k ∈ Z2, we recover the
variational formulation of the equation

φ(y) ∂tp̃
ε + div

y
q̃ε = q̃, q̃ε = −(1/µ(C̃ε

1))k(y)∇yp̃
ε. (4.16)

We proceed in the same way for the concentration (2.17). We get

φ(y) ∂tC̃
ε
1 + q̃ε · ∇yC̃

ε
1 − div

y
(D(y, q̃ε)∇yC̃

ε
1) + q̃ C̃ε

1 = q̃f̂1. (4.17)

This system is provided with the following boundary and initial conditions.

p̃ε = P̃ ε
f and C̃ε

1 = f̃ ε
1 in H1/2(∂Ym) for (x, t) ∈ Ω× J, (4.18)

p̃ε(x, y, 0) = p̃o(x, y), C̃ε
1(x, y, 0) = C̃o

1 (x, y) in Ω× Ym. (4.19)

Using the basic properties of the dilation operator and the estimates of Section
3, we claim that, for subsequences not relabeled for convenience, the following
convergence take place.

p̃ε ⇀ p, C̃ε
1 ⇀ C1 weakly in L2(Ω× J × Ym),

∇yp̃
ε ⇀ ∇yp, ∇yC̃

ε
1 ⇀ ∇yC1 weakly in (L2(Ω× J × Ym))2.

We then choose a fixed k ∈ Z2. For each fixed ε > 0, we define the functions p̃ε
k

and C̃ε
1k in Ym × J by

p̃ε
k(y, t) =

{
p̃ε(x, y, t)/x∈ε(Ym+k) if k is such that ε(Ym + k) ∩ Ω 6= ∅,
0 otherwise,

C̃ε
1k(y, t) =

{
C̃ε

1(x, y, t)/x∈ε(Ym+k) if k is such that ε(Ym + k) ∩ Ω 6= ∅,
0 otherwise.

Roughly speaking, k = (k1, k2) ∈ Z2 is such that ε(Ym + k) ∩ Ω 6= ∅ if ki < |Ω|i/ε,
i = 1, 2 (where |Ω|i denotes the value of the measure of Ω in the i-th direction). For
each ε > 0 such that ε(Ym + k) ∩Ω 6= ∅, (p̃ε

k, C̃
ε
1k) is a solution of Pb. (4.16)-(4.19)

in Ym × J . Furthermore, since any f ∈ L2(Ω× J) satisfies

‖f̃k‖L2(Ym×J) =
1

ε|Ym|
‖f̃‖L2(ε(Ym+k)×Ym×J) ≤

1
ε|Ym|

‖f̃‖L2(Ω×J×Ym),

we have enough regularity properties to get with (4.16)-(4.19) some estimates for
p̃ε

k and C̃ε
1k. They are analogous to those obtained for pε

f and f ε
1 in the fracture.

We claim that

‖p̃ε
k‖L∞(J;L2

per(Ym))∩L2(J;H1
per(Ym)) ≤ C, 0 ≤ C̃ε

1k(y, t) ≤ 1 a.e. in Ym × J,∥∥(
Dm + αt|∇yp̃

ε
k|

)1/2∇yC̃
ε
1k

∥∥
(L2(J×Ym))2

+ ‖∂tC̃
ε
1k‖L2(J;(H2

per(Ym))′) ≤ C,
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where C is a generic constant, independent of ε and k. Using in particular compact-
ness arguments of Aubin’s type for the concentration C̃ε

1k, we deduce of these latter
estimates that, up to subsequences not relabeled for convenience, the following
convergence take place.

p̃ε
k ⇀ pk weakly in L2(J ;H1

per(Ym)),

C̃ε
1k ⇀ C1k weakly in L2(J ;H1

per(Ym)) and a.e. in Ym × J,

for some limit functions pk ∈ L2(J ;H1
per(Ym)) and Ck ∈ L2(J ;H1

per(Ym)). We can
then easily pass to the limit ε → 0 in the pressure equation (4.16) satisfied by p̃ε

k.
We get

φ(y) ∂tpk − div
y

((1/µ(C1k))k(y)∇ypk) = q in Ym × J. (4.20)

This equation is satisfied for each k ∈ Z2. It reminds to make the link with the limit
(p, C1) of (p̃ε, C̃ε

1) by density arguments. On the first hand, for each k ∈ Z2, there
exists ε(k) > 0 such that ε(Ym +k)∩Ω 6= ∅ and then p̃ε

k(y, t) = p̃ε(x, y, t)/x∈ε(Ym+k)

for any ε < ε(k). Since limε→0 |ε(Ym +k)| = 0, the subset ε(Ym +k)∩Ω tends when
ε → 0 to a point {xk} ⊂ Ω. Then pk(y, t) = p(xk, y, t). In the same way, we get
C1k(y, t) = C1(xk, y, t). On the other hand, limε→0 |Ω\((∪k∈Z2ε(Ym +k))∩Ω)| = 0.
Thus the set (∪k∈Z2{xk}) is dense in Ω. Since the functions (p(xk, y, t), C1(xk, y, t))
satisfy (4.20) for any k ∈ Z2, we conclude by density that p is a solution of (4.9).

To end this subsection, we add the following result of strong convergence.

Lemma 4.5. The sequence µ(Cε
1)
−1/2ε∇pε satisfies

lim
ε→0

‖µ(Cε
1)
−1/2ε∇pε‖(L2(Ωε

m×J))2 = ‖µ(C1)−1/2∇yp‖(L2(Ω×J×Ym))2 .

Using the terminology of [2], µ(Cε
1)
−1/2ε∇pε is said strongly two-scale converging

to µ(C1)−1/2∇yp. For any bounded sequence vε of (L2(Ω× J))2 such that vε 2
⇀ v

and any test admissible function ψ, we can assert that

lim
ε→0

∫
Ω×J

(µ(Cε
1)
−1/2ε∇pε · vε)ψ(x, x/ε, t) dx dt

=
∫

Ω×J

∫
Ym

(µ(C1)−1/2∇yp · v)ψ(x, y, t) dx dy dt.

Proof. We multiply (4.16) by p̃ε and we integrate over Ω× (0, t)× Ym = Ωt × Ym,
for t ∈ J . Letting ε→ 0 and using (4.9), we write

lim
ε→0

( d

2dt

∫
Ω×Ym

φ(y) |p̃ε|2 − 1
2

∫
Ω×Ym

φ(y) |p̃o|2 +
∫

Ωt×Ym

k(y)

µ(C̃ε
1)
∇yp̃

ε · ∇yp̃
ε
)

= lim
ε→0

∫
Ωt×Ym

q̃ p̃ε =
∫

Ωt×Ym

q p

=
d

2dt

∫
Ω×Ym

φ(y) |p|2 − 1
2

∫
Ω×Ym

φ(y) |p̃o|2 +
∫

Ωt×Ym

k(y)
µ(C1)

∇yp · ∇yp.

Bearing in mind that k is a symmetric definite positive tensor, we conclude in
particular from the letter relation that

lim
ε→0

∥∥∥ 1

µ(C̃ε
1)1/2

∇yp̃
ε
∥∥∥

(L2(Ω×J×Ym))2
=

∥∥∥ 1
µ(C1)1/2

∇yp
∥∥∥

(L2(Ω×J×Ym))2
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= lim
ε→0

∥∥∥ 1

µ(C̃ε
1)1/2

ε̃∇pε
∥∥∥

(L2(Ω×J×Ym))2
= lim

ε→0

∥∥∥ 1̃
µ(Cε

1)1/2
ε∇pε

∥∥∥
(L2(Ω×J×Ym))2

= lim
ε→0

∥∥∥ 1
µ(Cε

1)1/2
ε∇pε

∥∥∥
(L2(Ωε

m×J))2
.

Lemma 4.5 is proved. �

4.4. Corrector for the flux function and concentration problem. Now we
study the behavior of the concentration problem (2.15)-(2.17) as ε tends to zero.
We recall it is

Φε ∂tξ
ε − (1/µ(ξε))Kε∇θε · ∇ξε − div(Dε∇ξε) + q ξε = qf̂1,

Dε∇ξε · ν = 0, ξε(x, 0) = fo
1 (x).

The starting point of the asymptotic study is similar to the one used for the pressure
problem in Subsection 4.1. We multiply the latter equation by a test function
Ψ(x, t) + εΨ1(x, x/ε, t) + ψ(x, x/ε, t) and we integrate over Ω × J . Letting ε → 0,
we obtain the limit variational formulation corresponding to (2.15)-(2.17). The
difficulty is due to the nonlinearities involving the Darcy velocity in the convective
terms and in the dispersive ones.

We begin by deriving the matrix equation (4.10). Indeed we have obtained
sufficient compactness results in Subsection 4.2 to pass to the limit via the dilated
equation (4.17). On the one hand, using the a.e. convergence of C̃ε

1k to C1k, we get
by density

φ(y) ∂tC1 − µ(C1)−1/2k(y)
(
lim
ε→0

µ(C̃ε
1)
−1/2∇yp̃

ε
)
· ∇yC1

− div
y

(
µ(C1)−1/2D

(
lim
ε→0

µ(C̃ε
1)
−1/2∇yp̃

ε
)
∇yC1

)
= q (f̂1 − C1).

On the other hand, we note that Lemma 4.5 gives the strong convergence of
˜µ(Cε

1)−1/2ε∇pε = µ(C̃ε
1)
−1/2∇yp̃

ε to µ(C1)−1/2∇yp in (L2(Ω × J × Ym))2. It is
sufficient to explicit all the limits in the former equation. We obtain the limit
equation (4.10).

Passing to the limit in the fractured part is less obvious. We are going to derive
a corrector for the Darcy velocity in the fracture. Our aim is to find a function
Vo(x, y, t) ∈ (L2(Ω× J × Y ))2 such that Vo(x, x/ε, t) is an admissible test function
for the two-scale convergence and such that

lim
ε→0

‖χε
f

(
−(Kε/µ(ξε))∇θε − Vo(x, x/ε, t)

)
‖(L2(Ω×J))2 = 0.

Then we will pass to the limit in χε
fVo(x, x/ε, t) ·∇ξε instead of χε

f (Kε/µ(ξε))∇θε ·
∇ξε; respectively we will pass to the limit in χε

fD(Vo(x, x/ε, t))∇ξε instead of
χε

fD(Kε/µ(ξε))∇θε)∇ξε. We begin with the following result.

Lemma 4.6. The following convergence hold.

lim
ε→0

∫
Ω×J

Kε

µ(ξε)
∇θε · ∇θε dx dt

=
∫

Ω×J

∫
Yf

kf (y)
µ(F1)

(∇Pf +∇yP
1
f ) · (∇Pf
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+∇yP
1
f ) dx dy dt+

∫
Ω×J

∫
Ym

k(y)
µ(C1)

∇yp · ∇yp dx dy dt.

Proof. Let us consider the following energy equation for t ∈ J . We denote Ωt the
set Ω× (0, t).

1
2

∫
Ω

Φε(θε(x, t)2 − po(x)2)dx+
∫

Ωt

Kε

µ(ξε)
∇θε · ∇θε dx ds =

∫
Ωt

q θε dx ds.

In view of the two-scale convergence of θε we have

lim
ε→0

∫
Ωt

q θε dx ds =
∫

Ωt

∫
Y

q (Pf (x, t) + χm(y)p(x, y, t)) dx dy ds,

and so, in view of the variational formulation obtained in the former subsection,

lim
ε→0

(1
2

∫
Ω

Φεθε(x, t)2 dx+
∫

Ωt

Kε

µ(ξε)
∇θε · ∇θε dx ds

)
=

1
2

∫
Ω

∫
Y

Φ(Pf + χmp)2(x, y, t) dx dy +
∫

Ωt

∫
Yf

kf (y)
µ(F1)

(∇Pf +∇yP
1
f ) · (∇Pf

+∇yP
1
f ) dx dyds+

∫
Ωt

∫
Ym

k(y)
µ(C1)

∇yp · ∇yp dx dyds,

where we recall that Φ(y) = χf (y)φf (y)+χm(y)φ(y). The limit of each term in the
left-hand side of the last relation is larger than the corresponding two-scale limit
in the right-hand side. Thus equality holds for each contribution and Lemma 4.6
is proved. �

Now, comparing the results of Lemmas 4.5 and 4.6, we conclude that

lim
ε→0

∫
Ω×J

χε
f

Kε

µ(ξε)
∇θε · ∇θε dx dt

=
∫

Ω×J

∫
Yf

kf (y)
µ(F1)

(∇Pf +∇yP
1
f ) · (∇Pf +∇yP

1
f ) dx dy dt.

We recall that Kε is a symmetric definite positive tensor and that it is considered
as an admissible test function for the two-scale convergence. Furthermore we have
showed in Lemma 4.3 that χε

f (Πεf ε
1) converges almost everywhere in Ω× J to F1.

The latter relation then leads to

lim
ε→0

∥∥∥χε
f

Kε

µ(ξε)
∇θε

∥∥∥
(L2(Ω×J))2

=
∥∥∥χf (y)

kf (y)
µ(F1)

(∇Pf +∇yP
1
f )

∥∥∥
(L2(Ω×J×Y ))2

.

This relation is sufficient to assert the following result.

Proposition 4.7. Let us define

Vo(x, y, t) = −χf (y)
kf (y)

µ(F1(x, t))
(∇Pf (x, t) +∇yP

1
f (x, y, t)).

Assume that Vo is an admissible test function for the two-scale convergence, that
is limε→0

∫
Ω×J

|V0(x, x/ε, t)|2dx dt ≤
∫
Ω×J

∫
Y
|V0(x, y, t)|2dxdy dt. The function

V0(x, x/ε, t) is a corrector for the flux function in the following sense.

lim
ε→0

∥∥∥−χε
f

Kε

µ(ξε)
∇θε − V0(x,

x

ε
, t)

∥∥∥
(L2(Ω×J))2

= 0.

We then can substitute V0(x, x/ε, t) to χε
f (Kε/µ(ξε))∇θε to pass to the limit in

the different equations. We get (4.3). This completes the proof of Theorem 4.1.
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5. The macroscopic model: the case of a partially fractured medium
(α > 0)

In the present section, we derive rigorously the homogenized model corresponding
to the partially fractured model (2.15)-(2.21), (2.23)-(2.32) when α > 0. The limit
model is described in Theorem 5.5 at the end of the section.

We begin by recalling the estimates derived in Section 3.

‖χε
fp

ε
f‖L∞(J;L2(Ω)) + ‖χε

f∇pε
f‖(L2(Ω×J))2 ≤ C,

‖χε
mp

ε‖L∞(J;L2(Ω)) + ‖χε
mα(cε1 + cε2)∇pε‖(L2(Ω×J))2 ≤ C,

‖χε
ff

ε
1‖L∞(Ω×J) + ‖χε

f (1 + |∇pε
f |)∇f ε

1‖(L2(Ω×J))2 ≤ C,

‖χε
mC

ε
1‖L∞(J;L2(Ω)) + ‖χε

m(1 + |Vε
s|)∇Cε

1‖(L2(Ω×J))2 ≤ C,

‖χε
mc

ε
i‖L∞(J;L2(Ω)) + ‖χε

m(1 + |Vε
s|)∇cεi‖(L2(Ω×J))2 ≤ C, i = 1, 2.

For the rest of this article, we assume that the pressure equation (2.20) is not
degenerate, that is the constant Cα defined in (2.34) satisfies

Cα > 0.

The more technical degenerate case when Cα = 0 is postponed to a forthcom-
ing paper. In view of (2.39) in Theorem 2.1, we now have 0 < Cα ≤ cε1(x, t) +
cε2(x, t) ≤ 1 a.e. in Ω × J and ‖χε

m∇pε‖(L2(Ω×J))2 ≤ C. Thus there exist func-
tions p ∈ L∞(J ;L2(Ω)) ∩ L2(J ;H1(Ω)), p1 ∈ L2(Ω× J ;H1

per(Y )), (f1, C1, c1, c2) ∈
(L∞(J ;L2(Ω)) ∩ L2(J ;H1(Ω)))4 and (f1

1 , C
1
1 , c

1
1, c

1
2) ∈ (L2(Ω× J ;H1

per(Y )))4 such
that, up to extracted subsequences, as ε→ 0,

θε = χε
fp

ε
f + χε

mp
ε 2
⇀ p, ∇θε 2

⇀ ∇p(x, t) +∇yp
1(x, y, t)),

χε
ff

ε
1

2
⇀ χf (y)f1, χε

f∇f ε
1

2
⇀ χf (y)(∇f1(x, t) +∇yf

1
1 (x, y, t)),

χε
mC

ε
1

2
⇀ χm(y)C1, χε

m∇Cε
1

2
⇀ χm(y)(∇C1(x, t) +∇yC

1
1 (x, y, t)),

χε
mc

ε
i

2
⇀ χm(y)ci, χε

m∇cεi
2
⇀ χm(y)(∇ci(x, t) +∇yc

1
i (x, y, t)), i = 1, 2.

We begin with the following result linking the limit concentrations f1 and m1 =
αc1 + βC1.

Lemma 5.1. The concentrations f1(x, t) and m1(x, t) = αc1(x, t) + βC1(x, t) are
equal almost everywhere in Ω× J .

Proof. Let cε = χε
ff

ε
1 + χε

mm
ε
1 ∈ L2(J ;H1(Ω)). It satisfies γε

fc
ε = γε

ff
ε
1 = γε

mm
ε
1 =

γε
mc

ε and ε∇cε = εχε
fγf

ε
1 + εχε

mm
ε
1 ∈ (L2(Ω× J))2. We know that cε 2

⇀ χf (y)f1 +

χm(y)m1 and ε∇cε
2
⇀0. For any Ψ ∈ (C∞o (Ω; C∞per(Y )))2 we write∫

Ω

ε∇cε ·Ψ(x,
x

ε
) dx = −

∫
Ω

cε
(
εdiv

x
Ψ(x,

x

ε
) + div

y
Ψ(x,

x

ε
)
)
dx.

We take the two-scale limits on both sides. We get

0 = −
∫

Ω

∫
Y

(χf (y)f1(x, t) + χm(y)m1(x, t)) div
y

Ψ(x, y) dx dy

= −
∫

Ω

∫
∂Yf

f1(x, t)Ψ(x, s) · νf dx ds−
∫

Ω

∫
∂Ym

m1(x, t)Ψ(x, s) · νm dx ds.
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This proves that f1(x, t) = m1(x, t) for s ∈ ∂Yf ∩ ∂Ym = Γfm and thus f1(x, t) =
m1(x, t) a.e. in Ω× J . �

We then claim and prove the following compactness result.

Lemma 5.2. The sequences (χε
ff

ε
1), (χε

mm
ε
1) and (χε

m(cε1 + cε2)) are sequentially
compact in L2(Ω× J).

Proof. On the one hand, let ψ ∈ L2(J ;H2(Ω)). We multiply (2.15) by (α2+β2)χε
fψ

and (2.40) by χε
mψ. We integrate over Ω × J and sum up the results. Using the

same type of arguments than in the proof of Lemma 4.3, we conclude that the
sequence ∂t(φε

f (α2 +β2)χε
ff

ε
1 +φεχε

mm
ε
1) is uniformly bounded in L2(J ; (H2(Ω))′).

Since (φε
f (α2 +β2)χε

ff
ε
1 +φεχε

mm
ε
1) is uniformly bounded in L∞(Ω×J), a standard

argument of Aubin’s type proves that (φε
f (α2+β2)χε

ff
ε
1+φεχε

mm
ε
1) lies in a compact

subset of L2(J ; (H1(Ω))′). Therefore, there is ξ ∈ L2(J ; (H1(Ω))′), such that, up
to an extracted subsequence,

φε
f (α2 + β2)χε

ff
ε
1 + φεχε

mm
ε
1 → ξ in L2(J ; (H1(Ω))′) as ε→ 0.

Two-scale convergence arguments show that

ξ = (α2 + β2)(
∫

Yf

φf (y)dy)f1 + (
∫

Ym

φ(y)dy)m1,

where m1 = αc1 + βC1 = f1 by Lemma 5.1.
On the other hand, the sequence (χε

ff
ε
1 + χε

mm
ε
1) is uniformly bounded in space

L2(J ;H1(Ω)). We thus can pass to the limit in the product 〈φf (α2 + β2)χε
ff

ε
1 +

φεχε
mm

ε
1, χ

ε
ff

ε
1 + χε

mm
ε
1〉(H1(Ω))′×H1(Ω) as follows.

lim
ε→0

(〈
χε

f (α2 + β2)φε
ff

ε
1 + χε

mφ
εmε

1, χ
ε
ff

ε
1

〉
+

〈
χε

f (α2 + β2)φε
ff

ε
1

+ χε
mφ

εmε
1, χ

ε
mm

ε
1

〉)
=

〈(
(α2 + β2)

∫
Yf

φf (y)dy +
∫

Ym

φ(y)dy
)
f1, |Yf |f1

〉
+

〈(
(α2 + β2)

∫
Yf

φf (y)dy +
∫

Ym

φ(y)dy
)
f1, |Ym|m1

〉
=

〈(
(α2 + β2)

∫
Yf

φf (y)dy +
∫

Ym

φ(y)dy
)
f1, f1

〉
.

As a consequence we have

lim
ε→0

〈(
(α2 + β2)χε

fφ
ε
f + χε

mφ
ε
)
(χε

ff
ε
1 + χε

mm
ε
1 − f1), χε

ff
ε
1 + χε

mm
ε
1 − f1

〉
= lim

ε→0

(〈(
(α2 + β2)χε

fφ
ε
f + χε

mφ
ε
)
(χε

ff
ε
1 + χε

mm
ε
1), χ

ε
ff

ε
1 + χε

mm
ε
1

〉
− 2

〈(
(α2 + β2)χε

fφ
ε
f + χε

mφ
ε
)
(χε

ff
ε
1 + χε

mm
ε
1), f1

〉
+

〈(
(α2 + β2)χε

fφ
ε
f + χε

mφ
ε
)
f1, f1

〉)
= 0.

Since α2 + β2 > 0, φf , φ
ε ≥ φ− > 0, this shows that (χε

ff
ε
1 + χε

mm
ε
1) strongly

converges to f1 in L2(Ω× J). A similar calculation using (2.45) gives the result for
χε

m(cε1 + cε2). The proof of the Lemma is complete. �

We now have the tools to pass to the limit in the pressure equation. The structure
of the problem satisfied by θε is similar with the one of the pressure problem in the
fractured part in the totally fractured setting (Section 4). We thus do not detail the
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details of the convergence. We claim that the limit homogenized pressure problem
in Ω× J is the following.

φ∂tp− div
(∫

Y

(
χf (y)

kf (y)
µ(f1)

+ χm(y)α(c1 + c2)
k(y)
µ(m1)

)
(∇p+∇yp

1) dy
)

= q,

−div
y

((
χf (y)

kf (y)
µ(f1)

+ χm(y)α(c1 + c2)
k(y)
µ(m1)

)
(∇p+∇yp

1)
)

= 0 in Y,(
χf (y)

kf (y)
µ(f1)

+ χm(y)α(c1 + c2)
k(y)
µ(m1)

)
(∇p+∇yp

1) · ν = 0 on Γ× J,

where φ is defined by

φ =
∫

Yf

φf (y) dy +
∫

Ym

φ(y) dy = φf
Yf + φ

Ym
. (5.1)

Let vj(x, y, t) be the Y -periodic solution of the cell-problem

−div
y

(
(χf (y)kf (y) + χm(y)α(c1 + c2)k(y))(∇yv

j + ej)
)

= 0 in Y,∫
Y

vj dy = 0.
(5.2)

Defining an homogenized tensor of permeability K = (Kij)1≤i,j≤2 in Ω by

Kij(x, t) =
∫

Y

(
χf (y)kf (y) + χm(y)α(c1 + c2)k(y)

)
× (∇yv

i(x, y, t) + ei)(∇yv
j(x, y, t) + ej) dy,

(5.3)

and setting

p1(x, t, y) =
2∑

j=1

vj(x, y, t) ∂jp(x, t),

we claim the following result.

Proposition 5.3. The homogenized pressure problem is

φ∂tp+ div v = q, v = − 1
µ(f1)

K∇p in Ω× J, (5.4)

v · ν
∣∣
Γ×J

= 0, p
∣∣
t=0

= po, (5.5)

where φ (respectively K) is the homogenized porosity (respectively permeability ten-
sor) given in (5.1) (respectively in (5.3)).

As in Section 4, we have to introduce a corrector for the Darcy velocity in order
to pass to the limit in the concentration equation. We denote

vo(x, t, y) = −(χf (y)
kf (y)
µ(f1)

+ χm(y)α(c1 + c2)
k(y)
µ(f1)

)(∇p+∇yp
1),

vε
o(x, t) = vo(x, t, x/ε), (x, t) ∈ Ω× J.

Following the lines of Subsection 4.4, we can prove the following corrector result.

Lemma 5.4. We have, for a subsequence,∫
Ω×J

|χε
fv

ε
f + χε

mV
ε − vε

o|2 dx dt→ 0 as ε→ 0.
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Let us now turn to the concentration problem. Once again, the technical difficul-
ties are not greater than the ones of Subsection 4.4 in the fractured part. We thus
only give the outline of the convergence study. At the limit, we need to characterize
the behavior of two global concentrations, f1 = m1 and (c1 + c2).

We begin with f1. We multiply (α2 + β2)(2.15) + (2.40) by a test function
ψ(x, t) + εψ1(x, x/ε, t), with ψ ∈ D(Ω× J), ψ1 ∈ D(Ω× J ; C∞per(Y )). The terms on
Γfm are equal to zero when we integrate by parts. Noting that χε

f (α2+β2)kε
f∇pε

f +
χε

mk
ε∇pε = (α2 + β2)(χε

fk
ε
f∇pε

f + χε
mk

ε∇pε) + (1− α2 − β2)χε
mk

ε∇pε and passing
to the limit, we get the following homogenized problem in Ω× J .(

(α2 + β2)φf
Yf + φ

Ym
)
∂tf1 −

(α2 + β2)
µ(f1)

K∇p · ∇f1

+ (1− α2 − β2)
∫

Ym

χm(y)vo(x, t, y) · (∇f1 +∇yf
1
1 ) dy − div(D(∇p, µ(f1))∇f1)

=
(
(α2 + β2)|Yf |+ |Ym|

)
q (f̂1 − f1),

(5.6)

D(∇p, µ(f1))∇f1 · ν
∣∣
Γ×J

= 0, f1
∣∣
t=0

= fo
1 . (5.7)

The function f1
1 and the tensor of diffusion D = (Dij)1≤i,j≤2 are defined by

f1
1 (x, t, y) =

2∑
j=1

wj(x, t, y) ∂jf1, (5.8)

Dij(∇p, µ(f1))

=
∫

Y

(
(α2 + β2)χf (y) + χm(y)

)
D(vo)

(
∇yw

i(x, y) + ei
)
·
(
∇yw

j(x, y) + ej
)
dy,

(5.9)

where wj(x, t, y) is the Y -periodic solution of the following cell-problem for (x, t) ∈
Ω× J :

−div
y

((
(α2 + β2)χf (y) + χm(y)

)
D(vo)(∇yw

j + ej)
)

= 0 in Y,∫
Y

wj(x, t, y) dy = 0, j = 1, 2.
(5.10)

For the asymptotic study of (cε1 + cε2) we exploit Problem (2.45)-(2.47). It leads to
the following homogenized problem

φ
Ym

∂t(c1 + c2) +
∫

Ym

χm(y)vo(x, t, y) · (∇(c1 + c2) +∇y(c11 + c12)) dy

− div(Dm(∇p, µ(f1))∇(c1 + c2))

= |Ym|q (1− c1 − c2) in Ω× J,

(5.11)

Dm∇(c1 + c2) · ν
∣∣
Γ×J

= 0, (c1 + c2)
∣∣
t=0

= co1 + co2. (5.12)

The functions c11, c
1
2 and the homogenized tensor of diffusion Dm = (Dmij )1≤i,j≤2

are defined by

(c11 + c12)(x, t, y) =
2∑

j=1

wj
m(x, t, y) ∂j(c1 + c2), (5.13)
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Dmij
(∇p, µ(f1)) =

∫
Ym

D(vo)(∇yw
i
m + ei) · (∇yw

j
m + ej) dy, (5.14)

where wj
m(x, t, y) is the Y -periodic solution of the following cell-problem for (x, t) ∈

Ω× J :
−div

y
(D(vo)(x, t, y)(∇yw

j
m(x, t, y) + ej)) = 0 in Ym,

D(vo)(∇yw
j
m + ej)) · νy = 0 on Γfm, j = 1, 2.

(5.15)

We summarize the results of the present section in the following theorem.

Theorem 5.5. The homogenized partially fractured model in Ω× J is:

(φf
Yf + φ

Ym) ∂tp+ div v = q, v = − 1
µ(f1)

K∇p,

v · ν
∣∣
Γ×J

= 0, p
∣∣
t=0

= po,

p1(x, t, y) =
2∑

j=1

vj(x, y, t) ∂jp(x, t),

vo(x, t, y) = −(χf (y)
kf (y)
µ(f1)

+ χm(y)α(c1 + c2)
k(y)
µ(f1)

)(∇p+∇yp
1),(

(α2 + β2)φf
Yf + φ

Ym
)
∂tf1 + (α2 + β2)v · ∇f1

+ (1− α2 − β2)
∫

Ym

χm(y)vo(x, t, y) · (∇f1 +∇yf
1
1 ) dy − div(D(∇p, µ(f1))∇f1)

=
(
(α2 + β2)|Yf |+ |Ym|

)
q (f̂1 − f1),

f1
1 (x, t, y) =

2∑
j=1

wj(x, t, y) ∂jf1,

D(∇p, µ(f1))∇f1 · ν
∣∣
Γ×J

= 0, f1
∣∣
t=0

= fo
1 ,

φ
Ym

∂t(c1 + c2) +
∫

Ym

χm(y)vo(x, t, y) · (∇(c1 + c2) +∇y(c11 + c12)) dy

− div(Dm(∇p, µ(f1))∇(c1 + c2))

= |Ym|q (1− c1 − c2),

(c11 + c12)(x, t, y) =
2∑

j=1

wj
m(x, t, y) ∂j(c1 + c2),

Dm∇(c1 + c2) · ν
∣∣
Γ×J

= 0, (c1 + c2)
∣∣
t=0

= co1 + co2.

The auxiliary functions vj, wj, wj
m are defined by the cell problems (5.2), (5.10),

(5.15). The homogenized permeability is given in (5.3), while the diffusion tensors
D and Dm are given in (5.9) and (5.14).

Remark 5.6. The latter model is consistent with the one corresponding to a non-
fractured porous medium. Indeed, letting α→ 1 and |Ym| → 0, one gets

φ
Y
∂tp+ div v = q, v = − 1

µ(f1)
K∇p,

v · ν
∣∣
Γ×J

= 0, p
∣∣
t=0

= po,
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p1(x, t, y) =
2∑

j=1

vj(x, y, t) ∂jp(x, t), vo(x, t, y) = − k(y)
µ(f1)

(∇p+∇yp
1),

φ
Y
∂tf1 + v · ∇f1 − div(D(∇p, µ(f1))∇f1) = q (f̂1 − f1),

D(∇p, µ(f1))∇f1 · ν
∣∣
Γ×J

= 0, f1
∣∣
t=0

= fo
1 .

Note that this model is the homogenized form corresponding to the following micro-
scopic model in a non-fractured porous medium (see [9] for a rigorous derivation):

φε∂tp
ε + div(vε) = q, vε = − kε

µ(f ε
1)
∇pε in Ω× J,

φε∂tf
ε
1 + vε · ∇f ε

1 − div(D(vε)∇f ε
1) = q(f̂1 − f ε

1) in Ω× J,

vε · ν
∣∣
Γ×J

= 0, D(vε)∇f ε
1 · ν

∣∣
Γ×J

= 0, pε
f

∣∣
t=0

= po, f ε
1

∣∣
t=0

= fo
1 .

Remark 5.7. Let us add some “physical” comments on the homogenized model
of miscible displacement in partially fractured media described in Theorem 5.5.
Contrary to the one-component flow considered in [13], it seems that the double
porosity characteristics (that is a system of equations in the homogenized fracture
coupled with one in a microscopic matrix block) disappear as soon as a direct flow
occurs in the matrix part, that is as soon as α > 0. This corresponds to some
experimental data ([3] and references therein). However, the model of Theorem
5.5 is also not a single porosity model as the one described in Remark 5.6. It
really contains some matrix effects. We recall in particular that the smaller α is,
the more important is the storage in the matrix. And in the model of Theorem
5.5, the homogenized permeability is concentration (α(c1 + c2)) dependent, and
the convective effects in the homogenized fracture depend on α. One can compare
this effects with some models where the permeability is concentration dependent:
propagation in clays (see [16] and the references therein) or blood flow in micro
vessels (see [20] and the references therein) for instance.
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