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PERIODIC SOLUTIONS FOR A KIND OF RAYLEIGH
EQUATION WITH TWO DEVIATING ARGUMENTS

YUANHENG WU, BING XIAO, HONG ZHANG

Abstract. In this paper, we use the coincidence degree theory to establish

new results on the existence of T -periodic solutions for the Rayleigh equation
with two deviating arguments of the form

x′′ + f(x(t), x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = p(t).

1. Introduction

Consider the Rayleigh equation with two deviating arguments

x′′ + f(x(t), x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = p(t), (1.1)

where τ1, τ2, p : R → R and f , g1, g2 : R × R → R are continuous functions,
f(x, 0) = 0, τ1, τ2 and p are T -periodic, g1 and g2 are T -periodic in the first
argument, and T > 0. In recent years, the problem of the existence of periodic
solutions of (1.1) has been extensively studied in the literature. We refer the reader
to [2, 4, 5, 6, 3] and the references cited therein. Moreover, in the above-mentioned
literature, we find the following assumptions:

(H0) g1(t, x) + g2(t, x) = g(x), g(x) ∈ C(R, R) and there exist constants k1 ≥ 0
and k2 ≥ 0 such that one of the following conditions holds:
(1) xg(x) > 0, for all |x| > k1, and g(x) ≥ −k2, for all x ≤ −k1,
(2) xg(x) > 0, for all |x| > k1, and g(x) ≤ k2, for all x ≥ k1;

(H1) g1(t, x)+g2(t, x) = g(x), g(x) ∈ C1(R, R) and there exists a constant K ≥ 0
such that

|g′(x)| ≤ K,∀x ∈ R;

(H2) f(x, y) = f(y), and there exist constants r ≥ 0 and K > 0 such that

|f(y)| ≤ r|y|+ K,∀y ∈ R;

(H3) f(x, y) = f(y), and there exists constants n ≥ 1 and σ > 0 such that

yf(y) ≥ σ|y|n+1, ∀y ∈ R or yf(y) ≤ −σ|y|n+1, ∀y ∈ R.
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These conditions have been considered for the existence of periodic solutions of
(1.1). However, to the best of our knowledge, few authors have considered (1.1)
without the assumptions (H0)–(H3). Thus, it is worth while to continue to inves-
tigate the existence of periodic solutions of (1.1) in this case.

The main purpose of this paper is to establish sufficient conditions for the exis-
tence of T -periodic solutions of (1.1). The results of this paper are new and they
complement previously known results. In particular, we do not use assumptions
(H0)–(H3), and we illustrate our results with examples in Section 4.

For ease of exposition, throughout this paper we will adopt the following nota-
tion:

|x|k =
( ∫ T

0

|x(t)|kdt
)1/k

, |x|∞ = max
t∈[0,T ]

|x(t)|.

Let

X = {x|x ∈ C1(R, R) : x(t + T ) = x(t), for all t ∈ R},
Y = {x|x ∈ C(R, R), x(t + T ) = x(t), for all t ∈ R}

be two Banach spaces with the norms

‖x‖X = max{|x|∞, |x′|∞}, and ‖x‖Y = |x|∞.

Define a linear operator L : D(L) ⊂ X → Y , with D(L) = {x|x ∈ X : x′′ ∈
C(R, R)} and for x ∈ D(L),

Lx = x′′. (1.2)
We also define the nonlinear operator N : X → Y by

Nx = −f(x(t), x′(t))− g1(t, x(t− τ1(t)))− g2(t, x(t− τ2(t))) + p(t). (1.3)

It is easy to see that

ker L = R, and Im L = {x : x ∈ Y,

∫ T

0

x(s)ds = 0}.

Thus, the operator L is a Fredholm operator with index zero. Define the continuous
projectors P : X → ker L and Q : Y → Y by setting

Px(t) = x(0) = x(T ), Qx(t) =
1
T

∫ T

0

x(s)ds.

and let
LP = L|D(L)∩ker P : D(L) ∩ ker P → Im L

Then, according to [4], we have that LP has continuous inverse L−1
P on Im L defined

by

L−1
P y(t) = − t

T

∫ T

0

(t− s)y(s)ds +
∫ t

0

(t− s)y(s)ds.

2. Preliminary Results

In view of (1.2) and (1.3), the operator equation Lx = λNx is equivalent to the
equation

x′′ + λ[f(x(t), x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))] = λp(t), (2.1)

where λ ∈ (0, 1).
For convenience of use, we introduce the Continuation Theorem; see [1].
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Lemma 2.1. Let X and Y be two Banach spaces. Suppose that L : D(L) ⊂ X → Y
is a Fredholm operator with index zero and N : X → Y is L-compact on Ω, where
Ω is an open bounded subset of X. Moreover, assume that the following conditions
are satisfied:

(1) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(2) Nx 6∈ Im L, for all x ∈ ∂Ω ∩ ker L;
(3) The Brouwer degree, deg{QN, Ω ∩ ker L, 0}, is not equal to zero.

Then the equation Lx = Nx has at least one T -periodic solution in Ω.

The following lemma will be useful for proving our main results in Section 3.

Lemma 2.2. Assume that the following conditions are satisfied:

(A1) One of the following conditions holds:
(1) (gi(t, u1) − gi(t, u2))(u1 − u2) > 0, for i = 1, 2, ui ∈ R, for all t ∈ R

and u1 6= u2,
(2) (gi(t, u1) − gi(t, u2))(u1 − u2) < 0, for i = 1, 2, ui ∈ R, for all t ∈ R

and u1 6= u2;
(A2) There exists a constant d > 0 such that one of the following conditions

holds:
(1) x(g1(t, x) + g2(t, x)− p(t)) > 0, for all t ∈ R, |x| ≥ d,
(2) x(g1(t, x) + g2(t, x)− p(t)) < 0, for all t ∈ R, |x| ≥ d.

If x(t) is a T -periodic solution of (2.1), then

|x|∞ ≤ d +
√

T |x′|2. (2.2)

Proof. Let x(t) be a T -periodic solution of (2.1). Set

x(tmax) = max
t∈R

x(t), x(tmin) = min
t∈R

x(t),

where tmax, tmin ∈ R. Then

x′(tmax) = 0, x′′(tmax) ≤ 0, and x′(tmin) = 0, x′′(tmin) ≥ 0. (2.3)

In view of f(x, 0) = 0 and (2.1), Equation (2.3) implies

g1(tmax, x(tmax − τ1(tmax))) + g2(tmax, x(tmax − τ2(tmax)))− p(tmax)

= −x′′(tmax)
λ

≥ 0,
(2.4)

g1(tmin, x(tmin − τ1(tmin))) + g2(tmin, x(tmin − τ2(tmin)))− p(tmin)

= −x′′(tmin)
λ

≤ 0.
(2.5)

Since g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p(t) is a continuous function on R, it
follows from (2.4) and (2.5) that there exists a constant t1 ∈ R such that

g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1) = 0. (2.6)

Next we show that the following claim is true.

Claim: If x(t) is a T -periodic solution of (2.1), then there exists a constant t2 ∈ R
such that

|x(t2)| ≤ d. (2.7)
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Proof. Assume, by way of contradiction, that (2.7) does not hold. Then

|x(t)| > d, for all t ∈ R, (2.8)

which, together with (A2) and (2.6), implies that one of the following relations
holds:

x(t1 − τ1(t1)) > x(t1 − τ2(t1)) > d; (2.9)

x(t1 − τ2(t1)) > x(t1 − τ1(t1)) > d; (2.10)

x(t1 − τ1(t1)) < x(t1 − τ2(t1)) < −d; (2.11)

x(t1 − τ2(t1)) < x(t1 − τ1(t1)) < −d. (2.12)

Suppose that (2.9) holds, in view of (A1)(1), (A1)(2), (A2)(1) and (A2)(2), we
consider following four cases:
Case (i). If (A2)(1) and (A1)(1) hold, according to (2.9), we obtain

0 < g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1)

< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.6). This contradiction implies (2.7).
Case (ii). If (A2)(1) and (A1)(2) hold, according to (2.9), we obtain

0 < g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− p(t1)

< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.6). This contradiction implies (2.7) .
Case (iii). If (A2)(2) and (A1)(1) hold, according to (2.9), we obtain

0 > g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− p(t1)

> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.6). This contradiction implies (2.7).
Case (iv). If (A2)(2) and (A1)(2) hold, according to (2.9), we obtain

0 > g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1)

> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p(t1),

which contradicts (2.6). This contradiction implies (2.7).
Suppose that (2.10) (or (2.11), or (2.12)) holds, using the methods similarly to

those used in Cases (i)–(iv), we can show that (2.7) is true. This completes the
proof of the above claim. �

Let t2 = mT +t0, where t0 ∈ [0, T ] and m is an integer. Then, using the Schwarz
inequality and the relation

|x(t)| = |x(t0) +
∫ t

t0

x′(s)ds| ≤ d +
∫ T

0

|x′(s)|ds, t ∈ [0, T ],

we obtain
|x|∞ = max

t∈[0,T ]
|x(t)| ≤ d +

√
T |x′|2.

This completes the proof. �
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3. Main Results

Theorem 3.1. Suppose that (A1)(1) and (A2)(1) hold, and there exist nonnegative
constants m1, m2 , m3 and m4 such that 2m1+4m3 < 1

2T 2 , and one of the following
conditions holds:

(1) f(x, y) ≤ 0 for all x ∈ R, y ∈ R, |g2(t, x)| ≤ m3|x| + m4 for all t ∈ R,
x ∈ R, and

g1(t, x) + g2(t, x)− p(t) ≤ m1x + m2, ∀t ∈ R, x ≥ d;

(2) f(x, y) ≥ 0 for all x ∈ R, y ∈ R, |g2(t, x)| ≤ m3|x| + m4 for all t ∈ R,
x ∈ R, and

g1(t, x) + g2(t, x)− p(t) ≥ m1x−m2, ∀t ∈ R, x ≤ −d.

Then (1.1) has at least one T -periodic solution.

Proof. We shall seek to apply Lemma 2.1. To do this, it suffices to prove that
the set of all possible T -periodic solutions of (2.1) are bounded. Let x(t) be a
T -periodic solution of (2.1). Integrating (2.1) from 0 to T , we have∫ T

0

f(x(t), x′(t))dt+
∫ T

0

[g1(t, x(t− τ1(t)))+ g2(t, x(t− τ2(t)))− p(t)]dt = 0. (3.1)

Set

[x(t− τ1(t)) < −d] = {t|t ∈ [0, T ], x(t− τ1(t)) < −d},
[x(t− τ1(t)) ≥ −d] = {t|t ∈ [0, T ], x(t− τ1(t)) ≥ −d},

[x(t− τ1(t)) > d] = {t|t ∈ [0, T ], x(t− τ1(t)) > d},
[x(t− τ1(t)) ≤ d] = {t|t ∈ [0, T ], x(t− τ1(t)) ≤ d}.

Then, in view of (A2)(1), (3.1) implies∫
[x(t−τ1(t))<−d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

= −
∫

[x(t−τ1(t))<−d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

=
∫

[x(t−τ1(t))≥−d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

−
∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

=
∫

[x(t−τ1(t))≥−d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt (3.2)

−
∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p(t)]dt

−
∫ T

0

g2(t, x(t− τ1(t)))dt +
∫ T

0

g2(t, x(t− τ2(t)))dt

=
∫

[x(t−τ1(t))≥−d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

−
∫ T

0

g2(t, x(t− τ1(t)))dt +
∫ T

0

g2(t, x(t− τ2(t)))dt +
∫ T

0

f(x(t), x′(t))dt,
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and∫
[x(t−τ1(t))>d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

=
∫

[x(t−τ1(t))>d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

= −
∫

[x(t−τ1(t))≤d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

+
∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

= −
∫

[x(t−τ1(t))≤d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

+
∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p(t)]dt

+
∫ T

0

g2(t, x(t− τ1(t)))dt−
∫ T

0

g2(t, x(t− τ2(t)))dt

= −
∫

[x(t−τ1(t))≤d]

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

+
∫ T

0

g2(t, x(t− τ1(t)))dt−
∫ T

0

g2(t, x(t− τ2(t)))dt−
∫ T

0

f(x(t), x′(t))dt.

(3.3)
Now suppose that (1) (or (2)) holds. We shall consider two cases as follows.
Case 1: If (1) holds, it follows from (2.2) and (3.2) that∫

[x(t−τ1(t))<−d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

≤
∫

[x(t−τ1(t))≥−d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫ T

0

|g2(t, x(t− τ1(t)))|dt +
∫ T

0

|g2(t, x(t− τ2(t)))|dt

≤
∫
{t|t∈[0,T ],|x(t−τ1(t))|≤d}

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫

[x(t−τ1(t))>d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt (3.4)

+
∫ T

0

(m3|x(t− τ1(t))|+ m4)dt +
∫ T

0

(m3|x(t− τ2(t))|+ m4)dt

≤ T (max{|g1(t, x) + g2(t, x)− p(t)| : t ∈ R, |x| ≤ d})

+
∫ T

0

(m1|x(t− τ1(t))|+ m2)dt + 2T (m3|x|∞ + m4)

≤ T (max{|g1(t, x) + g2(t, x)− p(t)| : t ∈ R, |x| ≤ d}+ m2 + 2m4)

+ T (m1 + 2m3)|x|∞
≤ T (θ1 + m2 + 2m4) + T (m1 + 2m3)(

√
T |x′|2 + d),



EJDE-2006/107 PERIODIC SOLUTIONS 7

where θ1 = max{|g1(t, x) + g2(t, x)− p(t)| : t ∈ R, |x| ≤ d}. Then, (3.4) implies∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

=
∫

[x(t−τ1(t))<−d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫

[x(t−τ1(t))≥−d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

≤ 2T (θ1 + m2 + m4) + 2T (m1 + m3)(
√

T |x′|2 + d),

(3.5)

and∫ T

0

|f(x(t), x′(t))|dt = −
∫ T

0

f(x(t), x′(t))dt

=
∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p(t)]dt

=
∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)]dt

−
∫ T

0

g2(t, x(t− τ1(t)))dt +
∫ T

0

g2(t, x(t− τ2(t)))dt

≤
∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫ T

0

|g2(t, x(t− τ1(t)))|dt +
∫ T

0

|g2(t, x(t− τ2(t)))|dt

≤ 2T (θ1 + m2 + 2m4) + 2T (m1 + 2m3)(
√

T |x′|2 + d).
(3.6)

Case 2: If (2) holds, it follows from (2.2) and (3.3) that∫
[x(t−τ1(t))>d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

≤
∫

[x(t−τ1(t))≤d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫ T

0

|g2(t, x(t− τ1(t)))|dt +
∫ T

0

|g2(t, x(t− τ2(t)))|dt

≤
∫
{t|t∈[0,T ], |x(t−τ1(t))|≤d}

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫

[x(t−τ1(t))<−d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫ T

0

(m3|x(t− τ1(t))|+ m4)dt +
∫ T

0

(m3|x(t− τ2(t))|+ m4)dt

≤ T (max{|g1(t, x) + g2(t, x)− p(t)| : t ∈ R, |x| ≤ d})

+
∫ T

0

(m1|x(t− τ1(t))|+ m2)dt + 2T (m3|x|∞ + m4)

≤ T (θ1 + m2 + 2m4) + T (m1 + 2m3)(
√

T |x′|2 + d),

(3.7)
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which implies∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

=
∫

[x(t−τ1(t))>d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫

[x(t−τ1(t))≤d]

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

≤ 2T (θ1 + m2 + m4) + 2T (m1 + m3)(
√

T |x′|2 + d),

(3.8)

and ∫ T

0

|f(x(t), x′(t))|dt

=
∫ T

0

f(x(t), x′(t))dt

= −
∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p(t)]dt

≤
∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫ T

0

|g2(t, x(t− τ1(t)))|dt +
∫ T

0

|g2(t, x(t− τ2(t)))|dt

≤ 2T (θ1 + m2 + 2m4) + 2T (m1 + 2m3)(
√

T |x′|2 + d).

(3.9)

Multiplying (2.1) by x(t) and then integrating from 0 to T , by (2.3), (3.5) , (3.6),
(3.8) and (3.9), we have

|x′|22

= λ

∫ T

0

{f(x(t), x′(t)) + [g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p(t)]}x(t)dt

= λ

∫ T

0

{f(x(t), x′(t)) + [g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)

− g2(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))]}x(t)dt

≤
∫ T

0

|f(x(t), x′(t))||x(t)|dt

+
∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)||x(t)|dt

+
∫ T

0

|g2(t, x(t− τ1(t)))||x(t)|dt +
∫ T

0

|g2(t, x(t− τ2(t)))||x(t)|dt (3.10)

≤ |x|∞{
∫ T

0

|f(x(t), x′(t))|dt

+
∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt + 2T (m3|x|∞ + m4)}

≤ 2T [(2θ1 + 2m2 + 4m4) + (2m1 + 4m3)(
√

T |x′|2 + d)](
√

T |x′|2 + d)

= 2(2m1 + 4m3)T 2|x′|22 + 2T [(2θ1 + 2m2 + 4m4) + 2(2m1 + 4m3)d]
√

T |x′|2
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+ 2Td[(2θ1 + 2m2 + 4m4) + (2m1 + 4m3)d].

Since 0 ≤ 2m1 +4m3 < 1
2T 2 , (3.10) implies that there exists a positive constant D1

such that
|x′|2 ≤ D1 and |x|∞ ≤

√
T |x′|2 + d ≤ D1. (3.11)

In view of (3.5), (3.6), (3.8) and (3.9), it follows from (2.1) that∫ T

0

|x′′(t)|dt

≤
∫ T

0

|f(x(t), x′(t))|dt +
∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)

− g2(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))|dt

≤
∫ T

0

|f(x(t), x′(t))|dt +
∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ1(t)))− p(t)|dt

+
∫ T

0

|g2(t, x(t− τ1(t)))|dt +
∫ T

0

|g2(t, x(t− τ2(t)))|dt

≤ 2T [(2θ1 + 2m2 + 4m4) + (2m1 + 4m3)(
√

T |x′|2 + d)]

≤ 2T [(2θ1 + 2m2 + 4m4) + (2m1 + 4m3)(
√

TD1 + d)] := D2.

(3.12)
Since x(0) = x(T ), it follows that there exists a constant ζ ∈ [0, T ] such that
x′(ζ) = 0 and

|x′(t)| = |x′(ζ) +
∫ t

ζ

x′′(s)ds| ≤
∫ T

0

|x′′(t)|dt ≤ D2, ∀t ∈ [0, T ],

which, together with (3.11), implies

‖x‖X ≤ |x|∞ + |x′|∞ < D1 + D2 + 1 := M1.

If x ∈ Ω1 = {x|x ∈ ker L ∩ X and Nx ∈ Im L}, then there exists a constant M2

such that

x(t) ≡ M2 and
∫ T

0

[g1(t, M2) + g2(t,M2)− p(t)]dt = 0.

Thus,
|x(t)| ≡ |M2| < d, for all x(t) ∈ Ω1. (3.13)

Let M = M1 + d + 1. Set

Ω = {x|x ∈ X, |x|∞ < M, |x′|∞ < M}.

It is easy to see from (1.3) and (1) that N is L-compact on Ω. We have from (3),
(3.13) and the fact M > max{M1, d} that the conditions (1) and (2) in Lemma 2.1
hold.

Furthermore, we define a continuous function H(x, µ) by setting

H(x, µ) = −(1− µ)x− µ · 1
T

∫ T

0

[g1(t, x) + g2(t, x)− p(t)]dt; µ ∈ [0, 1].

In view of (A2)(1), we have

xH(x, µ) 6= 0 for all x ∈ ∂Ω ∩ ker L.
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Hence, using the homotopy invariance theorem, we obtain

deg{QN, Ω ∩ ker L, 0} = deg{− 1
T

∫ T

0

[g1(t, x) + g2(t, x)− p(t)]dt,Ω ∩ ker L, 0}

= deg{−x, Ω ∩ ker L, 0} 6= 0.

In view of the discussions above, from Lemma 2.1 we complete the proof of Theorem
3.1. �

A similar argument leads to the following result.

Theorem 3.2. Suppose that (A1)(2) and (A2)(2) holds, and there exist nonneg-
ative constants m1, m2 , m3 and m4 such that 2m1 + 4m3 < 1

2T 2 , and one of the
following two conditions holds:

(1) f(x, y) ≥ 0 for all x ∈ R, y ∈ R, |g2(t, x)| ≤ m3|x| + m4 for all t ∈ R,
x ∈ R, and g1(t, x) + g2(t, x)− p(t) ≥ −m1x−m2, for all t ∈ R, x ≥ d;

(2) f(x, y) ≤ 0 for all x ∈ R, y ∈ R, |g2(t, x)| ≤ m3|x| + m4 for all t ∈ R,
x ∈ R, and

g1(t, x) + g2(t, x)− p(t) ≤ −m1x + m2, for all t ∈ R, x ≤ −d.

Then (1.1) has at least one T -periodic solution.

4. Examples and Remarks

Example 4.1. Let g(t, x) = x13 + 1
72π2 x for t ∈ R, x ≤ 0, and g(t, x) = 1

36π2 x for
t ∈ R, x > 0. Then the Rayleigh equation

x′′ − (x′)4 + g(t, x(t− sin(t))) = ecos2 t, (4.1)

has at least one 2π-periodic solution.

Proof. Let g2(t, x) = 1
72π2 x for t ∈ R, x ∈ R, g1(t, x) = x13 for t ∈ R, x ≤ 0, and

g1(t, x) = 1
72π2 x for t ∈ R, x > 0. Then (4.1) is equivalent to the equation

x′′ − (x′)4 + g1(t, x(t− sin(t))) + g2(t, x(t− sin(t))) = ecos2 t. (4.2)

From (4.2), we have f(x, y) = −y4 ≤ 0, τ1(t) = τ2(t) = sin t, p(t) = ecos2 t and
g1(t, x) + g2(t, x) − p(t) = 1

36π2 x − ecos2 t ≤ 1
36π2 x + e, for all t ∈ R, x > 0. It is

straightforward to check that all the conditions needed in Theorem 3.1 are satisfied.
Therefore, (4.2) has at least one 2π-periodic solution. This implies that (4.1) has
at least one 2π-periodic solution. �

Remark 4.2. Equation (4.1) is a very simple version of Rayleigh equation. Obvi-
ously, the conditions (H0)–(H3) are not satisfied. Therefore, the results in [2, 4, 5,
6, 3] and the references cited therein cannot be applied to (4.1). This implies that
the results of this paper are essentially new.

Example 4.3. Let g1(t, x) = − 1
72π2 x for t ∈ R, x ∈ R, g2(t, x) = −x13 for t ∈ R,

x ≤ 0, and g2(t, x) = − 1
72π2 x for t ∈ R, x > 0. Then, the Rayleigh equation

x′′ + x4(x′)6 + g1(t, x(t− cos(t))) + g2(t, x(t− sin(t))) =
1
4

cos2 t. (4.3)

has at least one 2π-periodic solution.
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Proof. From (4.3), we can obtain f(x, y) = x4y6, τ1(t) = cos(t), τ2(t) = sin(t),
p(t) = 1

4cos2t and g1(t, x) + g2(t, x) − p(t) = − 1
36π2 x − 1

4cos2t ≥ − 1
36π2 x − 1

4 ,
for t ∈ R, x > 0. It is obvious that all the conditions needed in Theorem 3.2
are satisfied. Hence, by Theorem 3.2, equation (4.3) has at least one 2π-periodic
solution. �

Remark 4.4. In view of (4.3), it is clear that (H0)–(H3), do not hold for (4.3),
and so the results obtained in [2, 4, 5, 6, 3] and the references cited therein cannot
be applied to (4.3).

Remark 4.5. Using the methods similarly to those used for (1.1), we can study
the Rayleigh equation with multiple deviating arguments

x′′ + f(x(t), x′(t)) +
n∑

i=1

gi(t, x(t− τi(t))) = p(t), (4.4)

where τi(i = 1, 2, . . . , n), p : R → R and f , gi : R×R → R are continuous functions,
f(x, 0) = 0, τi and p are T -periodic, gi are T -periodic in the first argument, and
T > 0 (i = 1, 2, . . . , n). One may also establish the results similarly to those in
Theorems 3.1 and 3.2 under some minor additional assumptions on gi(t, x) (i =
1, 2, . . . , n).
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