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MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR
THIRD-ORDER THREE-POINT BOUNDARY-VALUE PROBLEMS

LI-JUN GUO, JIAN-PING SUN, YA-HONG ZHAO

Abstract. This paper concerns the nonlinear third-order three-point bound-

ary-value problem

u′′′(t) + h(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = αu′(η),

where 0 < η < 1 and 1 < α < 1
η
. First, we establish the existence of at least

three positive solutions by using the well-known Leggett-Williams fixed point
theorem. And then, we prove the existence of at least 2m−1 positive solutions

for arbitrary positive integer m.

1. Introduction

Third-order differential equations arise in a variety of different areas of applied
mathematics and physics, e.g., in the deflection of a curved beam having a constant
or varying cross section, a three layer beam, electromagnetic waves or gravity driven
flows and so on [5]. Recently, third-order boundary value problems (BVPs for
short) have received much attention. For example, [3, 4, 8, 11, 15] discussed some
third-order two-point BVPs, while [1, 2, 12, 13, 14] studied some third-order three-
point BVPs. In particular, Anderson [1] obtained some existence results of positive
solutions for the BVP

x′′′(t) = f(t, x(t)), t1 ≤ t ≤ t3, (1.1) 0.1

x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0 (1.2) 0.2

by using the well-known Guo-Krasnoselskii fixed point theorem [6, 9] and Leggett-
Williams fixed point theorem [10]. In 2005, the author in [13] established various
results on the existence of single and multiple positive solutions to some third-order
differential equations satisfying the following three-point boundary conditions

x(0) = x′(η) = x′′(1) = 0, (1.3) 0.3

where η ∈ [ 12 , 1). The main tool in [13] was the Guo-Krasnoselskii fixed point
theorem.
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Recently, motivated by the above-mentioned excellent works, we [7] considered
the third-order three-point BVP

u′′′(t) + h(t)f(u(t)) = 0, t ∈ (0, 1), (1.4) 1.1

u(0) = u′(0) = 0, u′(1) = αu′(η), (1.5) 1.2

where 0 < η < 1. By using the Guo-Krasnoselskii fixed point theorem, we obtained
the existence of at least one positive solution for the BVP (1.4)–(1.5) under the
assumption that 1 < α < 1

η and f is either superlinear or sublinear.
In this paper, we will continue to study the BVP (1.4)–(1.5). First, some exis-

tence criteria for at least three positive solutions to the BVP (1.4)–(1.5) are estab-
lished by using the well-known Leggett-Williams fixed point theorem. And then, for
arbitrary positive integer m, existence results for at least 2m− 1 positive solutions
are obtained.

In the remainder of this section, we state some fundamental concepts and the
Leggett-Williams fixed point theorem.

Let E be a real Banach space with cone P . A map σ : P → [0,+∞) is said to
be a nonnegative continuous concave functional on P if σ is continuous and

σ(tx + (1− t)y) ≥ tσ(x) + (1− t)σ(y)

for all x, y ∈ P and t ∈ [0, 1]. Let a, b be two numbers such that 0 < a < b and
σ be a nonnegative continuous concave functional on P . We define the following
convex sets

Pa = {x ∈ P : ‖x‖ < a},
P (σ, a, b) = {x ∈ P : a ≤ σ(x), ‖x‖ ≤ b}.

thm1.1 Theorem 1.1 (Leggett-Williams fixed point theorem). Let A : Pc → Pc be com-
pletely continuous and σ be a nonnegative continuous concave functional on P such
that σ(x) ≤ ‖x‖ for all x ∈ Pc. Suppose that there exist 0 < d < a < b ≤ c such
that

(i) {x ∈ P (σ, a, b) : σ(x) > a} 6= ∅ and σ(Ax) > a for x ∈ P (σ, a, b);
(ii) ‖Ax‖ < d for ‖x‖ ≤ d;
(iii) σ(Ax) > a for x ∈ P (σ, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 in Pc satisfying

‖x1‖ < d, a < σ(x2), ‖x3‖ > d, σ(x3) < a.

2. Preliminary Lemmas

In this section, we present several important lemmas whose proof can be found
in [7].

lem2.1 Lemma 2.1. Let αη 6= 1. Then for y ∈ C[0, 1], the BVP

u′′′(t) + y(t) = 0, t ∈ (0, 1), (2.1) (2.1)

u(0) = u′(0) = 0, u′(1) = αu′(η) (2.2) 2.2
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has a unique solution u(t) =
∫ 1

0
G(t, s)y(s)ds, where

G(t, s) =
1

2(1− αη)


(2ts− s2)(1− αη) + t2s(α− 1), s ≤ min{η, t},
t2(1− αη) + t2s(α− 1), t ≤ s ≤ η,

(2ts− s2)(1− αη) + t2(αη − s), η ≤ s ≤ t,

t2(1− s), max{η, t} ≤ s

(2.3) 2.30

is called the Green’s function.

For convenience, we denote

g(s) =
1 + α

1− αη
s(1− s), s ∈ [0, 1]. (2.4) 2.05

For the Green’s function G(t, s), we have the following two lemmas.

lem2.2 Lemma 2.2. Let 1 < α < 1
η . Then for any (t, s) ∈ [0, 1]× [0, 1],

0 ≤ G(t, s) ≤ g(s).

lem2.3 Lemma 2.3. Let 1 < α < 1
η . Then for any (t, s) ∈ [ η

α , η]× [0, 1],

γg(s) ≤ G(t, s),

where 0 < γ = η2

2α2(1+α) min{α− 1, 1} < 1.

3. Main results

In the remainder of this paper, we assume that the following conditions are
satisfied:

(A1) 1 < α < 1
η ;

(A2) f ∈ C([0,∞), [0,∞));
(A3) h ∈ C([0, 1], [0,∞)) and is not identical zero on [ η

α , η].
For convenience, we let

D = max
t∈[0,1]

∫ 1

0

G(t, s)h(s)ds,

C = min
t∈[ η

α ,η]

∫ η

η
α

G(t, s)h(s)ds.

thm3.1 Theorem 3.1. Assume that there exist numbers d0, d1 and c with 0 < d0 < d1 <
d1
γ < c such that

f(u) <
d0

D
, u ∈ [0, d0], (3.1) 1

f(u) >
d1

C
, u ∈ [d1,

d1

γ
], (3.2) 2

f(u) <
c

D
, u ∈ [0, c]. (3.3) 2.1

Then the BVP (1.4)–(1.5) has at least three positive solutions.

Proof. Let the Banach space E = C[0, 1] be equipped with the norm

‖u‖ = max
0≤t≤1

|u(t)|.
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We denote

P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}.

Then, it is obvious that P is a cone in E. For u ∈ P , we define

σ(u) = min
t∈[ η

α ,η]
u(t)

and

Au(t) =
∫ 1

0

G(t, s)h(s)f(u(s))ds, t ∈ [0, 1]. (3.4) 3.1

It is easy to check that σ is a nonnegative continuous concave functional on P with
σ(u) ≤ ‖u‖ for u ∈ P and that A : P → P is completely continuous and fixed
points of A are solutions of the BVP (1.4)–(1.5).

We first assert that if there exists a positive number r such that f(u) < r
D for

u ∈ [0, r], then A : Pr → Pr. Indeed, if u ∈ Pr, then for t ∈ [0, 1],

(Au)(t) =
∫ 1

0

G(t, s)h(s)f(u(s))ds

<
r

D

∫ 1

0

G(t, s)h(s)ds

≤ r

D
max

t∈[0,1]

∫ 1

0

G(t, s)h(s)ds = r.

Thus, ‖Au‖ < r, that is, Au ∈ Pr. Hence, we have shown that if (3.1) and (3.3)
hold, then A maps Pd0 into Pd0 and Pc into Pc.

Next, we assert that {u ∈ P (σ, d1, d1/γ) : σ(u) > d1} 6= ∅ and σ(Au) > d1 for
all u ∈ P (σ, d1, d1/γ). In fact, the constant function

d1 + d1/γ

2
∈ {u ∈ P (σ, d1, d1/γ) : σ(u) > d1}.

Moreover, for u ∈ P (σ, d1, d1/γ), we have

d1/γ ≥ ‖u‖ ≥ u(t) ≥ min
t∈[ η

α ,η]
u(t) = σ(u) ≥ d1

for all t ∈ [ η
α , η]. Thus, in view of (3.2), we see that

σ(Au) = min
t∈[ η

α ,η]

∫ 1

0

G(t, s)h(s)f(u(s))ds

≥ min
t∈[ η

α ,η]

∫ η

η
α

G(t, s)h(s)f(u(s))ds

>
d1

C
min

t∈[ η
α ,η]

∫ η

η
α

G(t, s)h(s)ds = d1

as required.
Finally, we assert that if u ∈ P (σ, d1, c) and ‖Au‖ > d1/γ, then σ(Au) > d1. To

see this, we suppose that u ∈ P (σ, d1, c) and ‖Au‖ > d1/γ, then, by Lemma 2.2
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and Lemma 2.3, we have

σ(Au) = min
t∈[ η

α ,η]

∫ 1

0

G(t, s)h(s)f(u(s))ds

≥ γ

∫ 1

0

g(s)h(s)f(u(s))ds ≥ γ

∫ 1

0

G(t, s)h(s)f(u(s))ds

for all t ∈ [0, 1]. Thus

σ(Au) ≥ γ max
t∈[0,1]

∫ 1

0

G(t, s)h(s)f(u(s))ds = γ‖Au‖ > γ
d1

γ
= d1.

To sum up, all the hypotheses of the Leggett-Williams theorem are satisfied. Hence
A has at least three fixed points, that is, the BVP (1.4)–(1.5) has at least three
positive solutions u, v, and w such that

‖u‖ < d0, d1 < min
t∈[ η

α ,η]
v(t), ‖w‖ > d0, min

t∈[ η
α ,η]

w(t) < d1.

�

thm3.2 Theorem 3.2. Let m be an arbitrary positive integer. Assume that there exist
numbers di (1 ≤ i ≤ m) and aj (1 ≤ j ≤ m − 1) with 0 < d1 < a1 < a1

γ < d2 <

a2 < a2
γ < · · · < dm−1 < am−1 < am−1

γ < dm such that

f(u) <
di

D
, u ∈ [0, di], 1 ≤ i ≤ m, (3.5) 4.1

f(u) >
aj

C
, u ∈ [aj ,

aj

γ
], 1 ≤ j ≤ m− 1. (3.6) 4.2

Then, the BVP (1.4)–(1.5) has at least 2m− 1 positive solutions in Pdm
.

Proof. We use induction on m. First, for m = 1, we know from (3.5) that A : Pd1 →
Pd1 , then, it follows from Schauder fixed point theorem that the BVP (1.4)–(1.5)
has at least one positive solution in Pd1 .

Next, we assume that this conclusion holds for m = k. In order to prove that
this conclusion also holds for m = k + 1, we suppose that there exist numbers di

(1 ≤ i ≤ k + 1) and aj (1 ≤ j ≤ k) with 0 < d1 < a1 < a1
γ < d2 < a2 < a2

γ < · · · <
dk < ak < ak

γ < dk+1 such that

f(u) <
di

D
, u ∈ [0, di], 1 ≤ i ≤ k + 1, (3.7) 5

f(u) >
aj

C
, u ∈ [aj ,

aj

γ
], 1 ≤ j ≤ k. (3.8) 6

By assumption, the BVP (1.4)–(1.5) has at least 2k − 1 positive solutions ui (i =
1, 2, . . . , 2k − 1) in Pdk

. At the same time, it follows from Theorem 3.1, (3.7) and
(3.8) that the BVP (1.4)–(1.5) has at least three positive solutions u, v, and w in
Pdk+1 such that

‖u‖ < dk, ak < min
t∈[ η

α ,η]
v(t), ‖w‖ > dk, min

t∈[ η
α ,η]

w(t) < ak.

Obviously, v and w are different from ui (i = 1, 2, . . . , 2k− 1). Therefore, the BVP
(1.4)–(1.5) has at least 2k + 1 positive solutions in Pdk+1 , which shows that this
conclusion also holds for m = k + 1. �
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Example 3.3. We consider the BVP

u′′′(t) + 24f(u(t)) = 0, t ∈ (0, 1), (3.9) 10

u(0) = u′(0) = 0, u′(1) =
3
2
u′(

1
2
), (3.10) 11

where

f(u) =



u2+1
28 , u ∈ [0, 1

2 ],
275
56 u− 135

56 , u ∈ [ 12 , 1],
2u

1
4 + 1

2 , u ∈ [1, 90],
u−90

20 (160 · 110
1
8 − 2 · 90

1
4 − 1

2 ) + 2 · 90
1
4 + 1

2 , u ∈ [90, 110],
160u

1
8 , u ∈ [110,∞).

A simple calculation shows that

D = 11, C =
11
27

, γ =
1
90

.

Let m = 3. If we choose

d1 =
1
2
, d2 = 90.1, d3 = 11000, a1 = 1, a2 = 110,

then the conditions (3.5) and (3.6) are satisfied. Therefore, it follows from Theorem
3.2 that the BVP (3.9)–(3.10) has at least five positive solutions.
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