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HÖLDER CONTINUITY FOR (p, q)-LAPLACE EQUATIONS THAT
DEGENERATE UNIFORMLY ON PART OF THE DOMAIN

SARVAN T. HUSEYNOV

Communicated by Ludmila S. Pulkina

Abstract. In this article we consider p(x)-Laplace equations with two-phase

degree p(x), taking two values p and q, when the boundary of the phase in-

terface is a hyperplane. Assuming that in the part of the domain where q < p
the equation degenerates uniformly for a small parameter, Hölder continuity

of the solution is established.

1. Formulation of results

Consider in the domain D ⊂ Rn, n ≥ 2 and the family of the elliptic equations

Lεu = div(ωε(x)|∇u|p(x)−2∇u) = 0 (1.1)

with positive weight ωε(x) and degree p(x), that will be defined below. Suppose
that the domain D is divided by the hyperplane Σ = {x : xn = 0} into two parts
D(1) = D ∩ {x : xn > 0} and D(2) = D ∩ {x : xn < 0}. Also assume that for
ε ∈ (0, 1],

ωε(x) =

{
ε, x ∈ D(1)

1, x ∈ D(2),
(1.2)

and for 1 < q < p,

p(x) =

{
q, x ∈ D(1)

p, x ∈ D(2),
(1.3)

To define the solution of equation (1.1) we define a class of functions related with
the degree p(x):

Wloc(D) = {u : u ∈W 1,1
loc (D), |∇u|p(x) ∈ L1

loc(D)},

where W 1,1
loc (D) is a Sobolev space of the locally integrable in D functions together

with their first order generalized derivatives.
As a solution of equation (1.1) we take the function u ∈Wloc(D), satisfying∫

D

ωε(x)|∇u|p(x)−2∇u · ∇ϕdx = 0 (1.4)

for all test functions ϕ ∈ C∞0 (D).

2010 Mathematics Subject Classification. 35J92, 35J65, 35J70, 35J62.

Key words and phrases. (p, q)-Laplacian; elliptic equation; Hölder continuity.
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For the degree p(·), given by equality (1.3), the smooth functions are dense in
Wloc(D) (see [1]), and as a result in integral identity (1.4) as test functions the
finite functions from Wloc(D) may be taken.

The p-Laplace type equation with variable nonlinearity degree p(x) and the vari-
ational problems with integrant satisfying the non standard coercivity and growth
conditions usually arise in the modeling of the composite materials, electroreologi-
cal fluids (the characteristics of which depend on the electromagnetic filed), in the
problems of image processing. In this paper the plane junction of two different
phases is considered as a model case. The case is complicated by the presence of
the uniform degeneracy over ε in the domain D(1).

In each of the domains D(i), i = 1, 2 regularity of the solution is described by
the well developed theory (see [2]). In [3] is proved that for the degree p, given
by equality (1.3), any solution of equation (1.1) by each fixed value ε ∈ (0, 1] in
the arbitrary subdomain D′ b D belongs to the space Cα(D′) of the Hölder in D′

functions. We are interested in the problem of independence of the degree α on ε.
Consider the family {uε(x)} of the solutions of the equation Lεuε = 0, uniformly

bounded over ε in L∞ on the compact subspaces of D. The main aim of this work
is to prove the following statement.

Theorem 1.1. There exists a constant α ∈ (0, 1), not depending on ε, such that
the family {uε(x)} is compact in Cα(D′) for arbitrary subdomain D′ b D.

Note that in the case p = q a similar result is obtained in [4,5].
Choice of the weight of type (1.2) and the degree p from (1.3) makes the case

nonsymmetric with respect to the domains D(1) and D(2), and use of known results
does not allow the one to prove the above statement. We will proceed from the
modification of the Mozer’s technique [6], developed in [7,8], where the domains
D(1) and D(2) play different roles in the proof of the Theorem 1.1.

Statement of Theorem 1.1 remains true also for the solutions of the equation

div
(
ωε(x)|∇u|p(x)−2a∇u

)
= 0

with measurable uniformly positive defined matrix a. Wherein Hölder degree of the
solutions will be additionally depend on the ellipticity coefficients of this matrix.

2. Auxiliary statements

Here and below u denotes the solution of equation (1.1), BR ⊂ D are balls with
centers in Σ, B(i)

R = BR∩D(i) are semiballs (i = 1, 2), |E| is n-dimensional Lebesgue
measure of the measurable set E ⊂ Rn, and

–
∫
E

fdx =
1
|E|

∫
E

f dx.

Below we use for i = 1, 2 Sobolev’s embedding theorem in the semiballs:(
–
∫
B

(i)
R

|ϕ|kqdx
)1/k

≤ CRq–
∫
B

(i)
R

|∇ϕ|q dx,

q ≥ 1, k =
n

n− 1
, ϕ ∈ C∞0 (BR),

(2.1)

where C = C(n, q).
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Everywhere below M = supBR0
|u(x)|, where BR0 ⊂ D, R0 ≤ 1/4, and for

R ≤ R0/6 is taken

M6 = sup
B6R

u, m6 = inf
B6R

u, v(x) = ln
M6 −m6 + 2R
M6 − u(x) +R

. (2.2)

It is easy to see that

R

4(M + 1)
≤ v(x) ≤ 2(M + 1)

R
x ∈ B6R. (2.3)

The odd continuation of the function f from D(2) in to D(1) with respect to the
hyperplane Σ is denoted as f̃ .

Lemma 2.1. For any R ≤ ρ < r ≤ 3R the inequality

sup
Bρ

v ≤ C(n, p, q,M)
( r

r − ρ

)a(
–
∫
Br

vp dx
)1/p

(2.4)

holds with constant a(n, p) > 0.

Proof. Choosing in (1.4) the test function as ϕ(x) = vγ+q−p(x)(M6 − u(x) +
R)1−pηp(x), where

γ ≥ 1 + p− q, (2.5)
η ∈ C∞0 (B4R), 0 ≤ η(x) ≤ 1, we find that

(γ + q − p)
∫
B4R

ωε(x)|∇u|p(x)(M6 − u+R)−pvγ+q−p−1ηp dx

+ (p− 1)
∫
B4R

ωε(x)|∇u|p(x)(M6 − u+R)−pvγ+q−pηp dx

≤ p
∫
B4R

ωε(x)|∇u|p(x)−1(M6 − u+R)1−pvγ+q−pηp−1|∇η| dx.

Omitting the second term in the left hand side and applying to the integrant
in the right hand side the Young inequality with corresponding ε we arrive to the
estimate∫

B4R

ωε(x)|∇u|p(x)(M6 − u+R)−pvγ+q−p−1ηp dx

≤ C(p)
∫
B4R

ωε(x)(M6 − u+R)p(x)−pvγ+q−p+p(x)−1|∇η|p(x) dx.
(2.6)

We narrow the integration domain in the left-hand side of (2.6) to the semiball
B

(2)
4R . Then considering (1.2) and (1.3) we can write∫

B
(2)
4R

|∇u|p(M6 − u+R)−pvγ+q−p−1ηp dx

≤ C(p)
(∫

B
(1)
4R

(M6 − u+R)q−pvγ+2q−p−1|∇η|q dx

+
∫
B

(2)
4R

vγ+q−1|∇η|p dx
)
.

(2.7)

According to (2.3) and (1.3), in B
(1)
4R the following inequalities are valid

(M6 − u+R)q−p ≤ Rq−p, vq ≤ C(p, q,M)Rq−pvp.
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Additionally

|∇v| = |∇u|
M6 − u+R

, (2.8)

and from (2.7) considering given above relations we obtain the estimate∫
B

(2)
4R

|∇v|pvγ+q−p−1ηp dx

≤ C(p, q,M)
(
Rq−p

∫
B

(1)
4R

vγ+q−1|∇η|q dx+
∫
B

(2)
4R

vγ+q−1|∇η|p dx
)
.

(2.9)

By the Soboloev’s embedding theorem (2.1),(
–
∫
B

(2)
4R

(vγ+q−1η)k dx
)1/k

≤ C(n, p, q,M)(γ + q − 1)p
(
Rq–
∫
B

(1)
4R

vγ+q−1|∇η|q dx+Rp–
∫
B

(2)
4R

vγ+q−1|∇η|p dx
)

in the semiball B(2)
4R .

Choosing here radial-symmetric with respect to the center of the ball BR, cutoff
function η = 1 in Bρ, |∇η| ≤ Cr(R(r − ρ))−1, we have(

–
∫
B

(2)
ρ

v(γ+q−1)k dx
)1/k

≤ C(n, p, q,M)(γ + q − 1)p
( r

r − ρ
)p–∫

Br

vγ+q−1 dx. (2.10)

Now we prove a similar estimate in the semiball B(1)
4R . Let

GR = B
(1)
4R ∩ {x : v(x) > ṽ(x)}. (2.11)

In (1.4) use the test function

ϕ(x) =

{
(vγ(x)− ṽγ(x))(M6 − u(x) +R)1−qηp(x) in GR

0 B4R \GR,

where γ > 1 satisfies to condition (2.5), the radial-symmetric function η(x) has the
same properties as above. Considering (1.2), and (1.3) we have

γ

∫
GR

|∇u|qvγ−1(M6 − u+R)−qηp dx

≤ γ
∫
GR

|∇u|q−1|∇ṽ|ṽγ−1(M6 − u+R)1−qηp dx

+ p

∫
GR

|∇u|q−1(vγ + ṽγ)(M6 − u+R)1−q|∇η|ηp−1 dx.

(2.12)

Since ṽ(x) < v(x) by x ∈ GR and 0 ≤ η ≤ 1, applying the Young inequality to
the integrant in the right hand side of (2.12), we obtain

|∇u|q−1|∇ṽ|ṽγ−1(M6 − u+R)1−qηp

≤ δ|∇u|qvγ−1(M6 − u+R)−qηp + C(δ, q)|∇ṽ|q ṽγ−1ηp,

|∇u|q−1(vγ + ṽγ)(M6 − u+R)1−q|∇η|ηq−1

≤ δ|∇u|qvγ−1(M6 − u+R)−qηp + C(δ, q)vγ+q−1|∇η|q.
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From this and (2.12) (see also (2.8)) after a corresponding choice of δ we find
that ∫

GR

|∇v|qvγ−1ηp dx

≤ C(p, q)
(∫

GR

|∇ṽ|q ṽγ−1ηp dx+
∫
GR

vγ+q−1|∇η|q dx
)
.

(2.13)

Expanding the integrals in the right hand side of (2.13) to larger set B(1)
4R , we

rewrite (2.13) in the form∫
GR

|∇v|qvγ−1ηp dx

≤ C(p, q)
(∫

B
(1)
4R

|∇ṽ|q ṽγ−1ηp dx+
∫
B

(1)
4R

vγ+q−1|∇η|q dx
)
.

(2.14)

We can not estimate the gradient v(x) over the set B(1)
4R \ GR. But this is not

important. Consider in D(1) the auxiliary function

w(x) = max (v(x), ṽ(x)). (2.15)

Since w(x) = v(x) for x ∈ GR and w(x) = ṽ(x) for x ∈ B(1)
4R \GR, we have∫

B
(1)
4R

|∇w|qwγ−1ηp dx ≤
∫
GR

|∇v|qvγ−1ηp dx+
∫
B

(1)
4R

|∇ṽ|q ṽγ−1ηp dx,

and considering (2.14),∫
B

(1)
4R

|∇w|qwγ−1ηp dx

≤ C(p, q)
(∫

B
(1)
4R

|∇ṽ|q ṽγ−1ηp dx+
∫
B

(1)
4R

vγ+q−1|∇η|q dx
)
.

(2.16)

Now let us modify the first integrant in the right-hand side of (2.16). Since
p > q, according to Young’s theorem

|∇ṽ|q ṽγ−1 < Rp−q|∇ṽ|pṽγ+q−p−1 +R−q ṽγ+q−1.

So from (2.16) we obtain∫
B

(1)
4R

|∇w|qwγ−1ηp dx

≤ C(p, q)
(
Rp−q

∫
B

(1)
4R

|∇ṽ|pṽγ+q−p−1ηp dx

+
∫
B

(1)
4R

vγ+q−1|∇η|q dx+R−q
∫
B

(1)
4R

ṽγ+q−1ηp dx
)
.

(2.17)

Since ṽ(x) is an odd continuation of v(x) from D(2) to D(1) and the cutoff
function η(x) is radial symmetric, it follows that∫

B
(1)
4R

ṽγ+q−1ηp dx =
∫
B

(2)
4R

vγ+q−1ηp dx ≤
∫
B4R

vγ+q−1ηp dx,

and considering (2.9),∫
B

(1)
4R

|∇ṽ|pṽγ+q−p−1ηp dx =
∫
B

(2)
4R

|∇v|pvγ+q−p−1ηp dx
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≤ C(p, q,M)
(
Rq−p

∫
B

(1)
4R

vγ+q−1|∇η|q dx+
∫
B

(2)
4R

vγ+q−1|∇η|p dx
)
.

Therefore from (2.17) we arrive at the estimate∫
B

(1)
4R

|∇w|qwγ−1ηp dx

≤ C(p, q,M)
(∫

B
(1)
4R

vγ+q−1|∇η|q dx+Rp−q
∫
B

(2)
4R

vγ+q−1|∇η|p dx

+R−q
∫
B4R

vγ+q−1ηp dx
)
.

It follows from the above inequality that∫
B

(1)
4R

|∇(w(γ+q−1)/qηp/q)|q dx

≤ C(p, q,M)(γ + q − 1)q
(∫

B
(1)
4R

vγ+q−1|∇η|q dx

+Rp−q
∫
B

(2)
4R

vγ+q−1|∇η|p dx+R−q
∫
B4R

vγ+q−1ηp dx+
∫
B

(1)
4R

wγ+q−1|∇η|q dx
)
.

From definition (2.15) of the function w and the radial symmetricity of the cutoff
function η, we obtain∫

B
(1)
4R

wγ+q−1|∇η|q dx ≤
∫
B4R

vγ+q−1|∇η|q dx.

From (2.5) and (1.3), we have (γ + q − 1)q ≤ (γ + q − 1)p. Therefore∫
B

(1)
4R

|∇(w(γ+q−1)/qηp/q)|q dx

≤ C(p, q,M)(γ + q − 1)p
(∫

B
(1)
4R

vγ+q−1|∇η|q dx

+Rp−q
∫
B

(2)
4R

vγ+q−1|∇η|p dx+R−q
∫
B4R

vγ+q−1ηp dx+
∫
B4R

vγ+q−1|∇η|q dx
)
.

From this following to the Sobolev’s embedding theorem (2.1) in the semiball
B

(1)
4R and from the choice of the cutoff function η we find that(

–
∫
B

(1)
ρ

w(γ+q−1)k dx
)1/k

≤ C(n, p, q,M)(γ + q − 1)p
( r

r − ρ
)p–∫

Br

vγ+q−1 dx.

Or, since w ≥ v on B
(1)
ρ , it follows that(

–
∫
B

(1)
ρ

v(γ+q−1)k dx
)1/k

≤ C(n, p, q,M)(γ + q − 1)p
( r

r − ρ
)p–∫

Br

vγ+q−1 dx. (2.18)

Summing (2.10) and (2.18) one can get(
–
∫
Bρ

v(γ+q−1)k dx
)1/k

≤ C(n, p, q,M)(γ + q − 1)p
( r

r − ρ
)p–∫

Br

vγ+q−1 dx. (2.19)
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Let us iterate this inequality. Let j = 0, 1, . . .. Denote rj = ρ+ 2−j(r − ρ),
χj = pkj and take r = rj , ρ = rj+1, γ = χj + 1 − q in (2.19). Note that by such
choice of γ the above assumption (2.5) becomes true. As a result for

Φj =
(

–
∫
Brj

vχj dx
)1/χj

we get the recurrence relation

Φj+1 ≤ C1/χj (n, p, q,M)
(
2j (1 + χj)

)p/χj ( r

r − ρ

)p/χj
Φj ,

from which follows (see [6]) the estimate (2.4). The proof is complete. �

The proof of the next statement uses the scheme given in [9].

Lemma 2.2. If for any R ≤ ρ < r ≤ 3R, inequality (2.4) is valid then the following
inequity holds

sup
BR

v ≤ C(n, p, q,M)–
∫
B2R

v dx. (2.20)

Proof. Without loss of generality we assume that

–
∫
B2R

v dx = 1. (2.21)

Denote by B(t) the concentric with BR ball of radius 3Rt and let

J(t) =
(

–
∫
B(t)

vp dx
)1/p

.

Taking r = 3Rt, ρ = 3Rτ , rewrite (2.4) in the form

sup
B(τ)

v(x) ≤ C(n, p, q,M)(t− τ)−aJ(t), 1/3 ≤ τ < t ≤ 1. (2.22)

In particular supBR v ≤ C(n, p, q,M)J(1/2), and for the proof of the lemma it is
sufficient to set the estimate J(1/2) ≤ C(n, p, q,M). Since, considering (2.21)

J(τ) ≤ C(n, p, q,M)
(

sup
B(τ)

v
)δ
, δ = 1− p−1,

then according to (2.22),

J(τ) ≤ Cδ (t− τ)−aδ Jδ(t), 1/3 ≤ τ < t ≤ 1,

ln J(τ) ≤ δ lnC + aδ ln
1

t− τ
+ δ ln J(t).

Take here τ = tb, where b > 1. It easy to see that∫ 1

(1/2)1/b

ln J(tb)
t

dt ≤ C(n, p, q, b,M) + δ

∫ 1

1/2

ln J(t)
t

dt.

Making substitution of the variables ξ = tb one can get

(1/b− δ)
∫ 1

1/2

ln J(ξ)
ξ

dξ ≤ C(n, p, q, b,M).



8 S. T. HUSEYNOV EJDE-2017/308

Let us choose here the constant b > 1 satisfying the inequality 1/b − δ > 0. As
J(ξ) ≥ C(n, p)J(1/2) by ξ ∈ [1/2, 1]. Then

ln (C(n, p)J(1/2)) ≤ C(n, p, q, b,M)
(1/b− δ) ln 2

that leads us to the seeking estimate for J(1/2). This completes the proof. �

Inequality (2.20) will be applied in some modified form. Denote by Qr, r ≥ 3R
the balls with centers in D(2), obtained by the parallel replacement of the ball
Br with the center in x0 along the normal to Σ in the distance R. Suppose that
Q

(i)
r = D(i) ∩ Qr, i = 1, 2. Let additionally w(x) = max(v(x), ṽ(x)) by x ∈ B(1)

4R

and w(x) = v(x) by x ∈ B
(2)
4R . Expanding the integral in the right hand side of

(2.20) up to larger set and replacing in the part D(1) the function v(x) by w(x), we
obtain

sup
BR

v(x) ≤ C(n, p,M)
(

–
∫
Q3R

w dx+ –
∫
Q

(2)
3R

v dx
)
. (2.23)

3. Hölder continuity of the solutions

From the results in [2] it is known that the solutions of equation (1.1) are Hölder
property inside of D(1) and D(2). It remains to prove the Hölder property of the
solution on Σ ∩D, since the seeking holder property inside of D may be obtained
by elementary ”union” of the Hölder property on Σ ∩D and in D(1), D(2).

Let M means exact upper bound of the module of the solution in the ball BR0 ⊂
D of radius R0 ≤ 1/2 and osc{u,Br} = supBr u(x)− infBr u(x), where Br are balls
with centers in x0 ∈ Σ ∩ D. Hölder continuity of the solutions in the point x0

follows from the following “scattering lemma”:

osc{u,BR} ≤ (1− δ) osc{u,B6R}+R, δ = δ(n, p, q,M) > 0, R ≤ R0/6. (3.1)

From this lemma (see [10]) it follows the estimate

osc{u,Br} ≤ Crα(R−α0 osc{u,BR0}+ 1), r ≤ R0

with positive constants C = C(δ) and α = α(δ). In particular

|u(x)− u(x0)| ≤ C|x− x0|α(R−α0 osc{u,BR0}+ 1), |x− x0| ≤ R0,

that sets Hölder property of the solutions in the point x0.
Using denotation (2.2), consider two sets:

F = {x ∈ Q3R : u(x) ≤ (M6 +m6)/2}, (3.2)

G = {x ∈ Q3R : M6 +m6 − u(x) ≤ (M6 +m6)/2}. (3.3)

One of the following inequalities is always true:

|F | ≥ 1
2
|Q3R| (3.4)

or

|G| ≥ 1
2
|Q3R|. (3.5)

If we show that from the condition (3.4) for u(x) follows

sup
BR

u(x) ≤M6 − δ osc{u,B6R}+R, δ > 0, (3.6)
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then this result applied to the function M6 +m6−u(x) guarantees under condition
(3.5) the estimate

sup
BR

(M6 +m6 − u(x)) ≤M6 − δ osc{u,B6R}+R

and in both cases we arrive to (3.1).
The following embedding fact will be used below.∫

Br

|ϕ| dx ≤ C(n, ν)r
∫
Br

|∇ϕ| dx, (3.7)

for ϕ ∈ C∞
(
B̄r
)
, ϕ|E = 0, |E| ≥ ν|Br|, ν > 0.

Note that this embedding theorem holds also in the case of truncated balls
Br ∩D(2) with centers in D(2).

Proof of theorem 1.1. For the sake of simplicity assuming the fulfilment of condition
(3.4), consider the function v(x), introduced in (2.2). Our aim is obtaining the
estimate

sup
BR

v(x) ≤ c0(n, p, q,M). (3.8)

From this explicitly follows the scattering property (3.6) (δ = e−c0), effecting Hölder
property of the solution in the point x0. To result (3.8) it needs to estimate the
integrals in the right hand side of (2.23). Those estimations are based on the
following inequalities ∫

Q
(2)
3R

|∇v| dx ≤ C(n, p, q,M)Rn−1, (3.9)∫
Q3R

|∇w| dx ≤ C(n, p, q,M)Rn−1 (3.10)

that will we set now.
Choosing in (1.4) the test function

ϕ(x) = (M6 − u(x) +R)1−pηp(x),

where η ∈ C∞0 (Q4R) is a radial-symmetric with respect to the center of the ball Q4R

cutoff function, satisfying the condition 0 ≤ η ≤ 1, η = 1 in Q3R and |∇η| ≤ CR−1,
we obtain ∫

Q4R

ωε(x)|∇u|p(x)(M6 − u+R)−pηp dx

≤ C(p)
∫
Q4R

ωε(x)|∇u|p(x)−1(M6 − u+R)1−pηp−1|∇η| dx.

Appling Young’s inequality to the integrant in the right-hand side gives∫
Q4R

ωε(x)|∇u|p(x)(M6 − u+R)−pηp dx

≤ C(p)
∫
Q4R

ωε(x)(M6 − u+R)p(x)−p|∇η|p(x) dx.

and∫
Q

(2)
4R

|∇u|p(M6 − u+R)−pηp dx ≤ C(p)
∫
Q4R

(M6 − u+R)p(x)−p|∇η|p(x) dx.
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Repeating now the considerations of lemma 2.1, used in the setting of estimate
(2.9) from relation (2.7), it can be obtained∫

Q
(2)
4R

|∇v|pηp dx ≤ C(p, q,M)
(
Rq−p

∫
Q

(1)
4R

|∇η|q dx+
∫
Q

(2)
4R

|∇η|pdx
)
.

From this, considering the choice of the cutoff function, follows the estimate∫
Q

(2)
3R

|∇v|p dx ≤ C(n, p, q,M)Rn−p, (3.11)

that leads to (3.9). In particular since p > q, following Young’s inequality

|∇ṽ|q < Rp−q|∇ṽ|p +R−q

in the domain Q
(1)
3R (3.11) and radial simmetricity of η we find that∫

Q
(1)
4R

|∇ṽ|qηp dx ≤ Rp−q
∫
Q

(1)
4R

|∇ṽ|pη̃p dx+Rn−q ≤ C(n, p, q,M)Rn−q. (3.12)

To proof estimate (3.10) we use more complicated test function. Note that
u(x) > ũ(x) on the set GR ⊂ B

(1)
4R (see(2.11)). Let us chose in integral identity

(1.4)

ϕ(x) =

{(
(M6 − u(x) +R)1−q − (M6 − ũ(x) +R)1−q

)
ηp(x) in GR

0 in Q4R \GR,

where η has the same sense as above. Then∫
GR

|∇u|q(M6 − u+R)−qηp dx

≤
∫
GR

|∇u|q−1|∇ũ|(M6 − ũ+R)−qηp dx

+
p

q − 1

∫
GR

|∇u|q−1(M6 − u+R)−q|∇η|ηp−1 dx.

Applying Young’s inequality to the integrant in the right-hade side, and using
the definition GR, one gets∫

GR

|∇u|q(M6 − u+R)−qηp dx

≤ C(p, q)
(∫

GR

|∇ũ|q(M6 − ũ+R)−qηp dx+
∫
GR

|∇η|q dx
)
.

From this, by relation (2.8) and the choice the cutoff function we obtain∫
GR

|∇v|qηp dx ≤ C(n, p, q)
(∫

GR

|∇ṽ|qηp dx+Rn−q
)
.

Thus, ∫
Q

(1)
4R

|∇w|qηp dx =
∫
Q

(1)
4R\GR

|∇ṽ|qηp dx+
∫
GR

|∇v|qηp dx

≤ C(n, p, q)
(∫

B
(1)
4R

|∇ṽ|qηp dx+Rn−q
)
.
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Considering (3.12), ∫
Q

(1)
3R

|∇w|q dx ≤ C(n, p, q,M)Rn−q,

which together with (3.9) gives (3.10).
Now let us estimate the integrals in the right-hand side of (2.23). We use the

assumption (3.4) for the first one and note that |F ∩Q(2)
3R| ≥ const.|Q3R| (see (3.2)).

Since v(x) ≤ ln 2 on F and w(x) = v(x) in Q
(2)
3R, then for E = {x ∈ Q3R : w(x) ≤

ln 2} we have the estimate |E| ≥ const.|Q3R|. Therefore by inequality (3.7) in the
ball Q3R, ∫

Q3R\E
|w − ln 2| dx ≤ C(n)R

∫
Q3R

|∇w| dx

and according to (3.10), ∫
Q3R

w dx ≤ C(n, p, q,M)Rn.

The second integral in (2.23) may be estimated similarly. Really, |E ∩ Q(2)
3R| ≥

const.|Q3R| and again by the inequality (3.7) in the truncated ball Q(2)
3R,∫

Q
(2)
3R\E

|v − ln 2| dx ≤ C(n)R
∫
Q

(2)
3R

|∇v| dx.

The inequality (3.9) leads us to the estimate∫
Q

(2)
3R

v dx ≤ C(n, p, q,M)Rn,

that proves (3.1). �
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