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A MINIMAX INEQUALITY FOR A CLASS OF FUNCTIONALS
AND APPLICATIONS TO THE EXISTENCE OF SOLUTIONS
FOR TWO-POINT BOUNDARY-VALUE PROBLEMS

GHASEM ALIZADEH AFROUZI, SHAPOUR HEIDARKHANI

ABSTRACT. In this paper, we establish an equivalent statement to minimax
inequality for a special class of functionals. As an application, we prove the
existence of three solutions to the Dirichlet problem
—u"(z) + m(z)u(z) = Af(z,u(z)), =z € (a,b),
u(a) = u(b) =0,
where A > 0, f : [a,b] x R — R is a continuous function which changes sign on
la,b] x R and m(x) € C([a,b]) is a positive function.

1. INTRODUCTION

Given two Gateaux differentiable functionals ® and T on a real Banach space
X, the minimax inequality

sup nf (®(u) +A(p — T(w))) < inf ig]g(@(w +Ap—=T()), peR, (L1

plays a fundamental role for establishing the existence of at least three critical
points for the functional ®(u) — AT (u).

In this work some conditions that imply the minimax inequality are pointed
out and equivalent formulations are proved.

In this paper, our approach is based on a three critical-point theorem proved in
[8] (Theorem which stated below for the reader’s convenience. Also we state a
technical lemma that enables us to apply the theorem.

Lemma [2.2) below establishes an equivalent statement of minimax inequality
for a special class of functionals, while its consequences (Lemmas and
guarantee some conditions so that minimax inequality holds.

Finally, we apply Theorem to elliptic equations, by using an immediate con-
sequence of Lemma We consider the boundary-value problem

—u"(x) + m(x)u(z) = Nf(z,u(z)), =€ (a,b),

u(a) = u(b) =0, (1.2)
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where A > 0, f : [a,b] x R — R is a continuous function which changes sign on
[a,b] x R, m is a continuous, positive function and we establish some conditions on
f so that problem admits at least three weak solutions.

We say that u is a weak solution to if u e Wy*([a,b]) and

/ab u' (x)v' (x)dx + /ab m(z)u(z)v(z)dz — /\/ab £z, u(z))o(z)de = 0

1,2
for every v € Wy *([a, b]).

By arguments similar to those in problem ([1.2]), we will have the existence of at
least three weak solutions for the problem

—u" (x) + m(x)u(z) = My (z)ha(u(z)), =z € (a,b)

u(a) =u(b) =0 (1.3)

where hy € C([a,b]) is a function which changes sign on [a,b] and he € C(R) is a
positive function. The existence of at least three weak solutions is also proved for
the problem
—u(x) + m(z)u(z) = M (u(x)), =€ (a,b)
u(a) = u(b) =0,

where f : R — R is a continuous function which changes sign on R.

Conditions that guarantee the existence of multiple solutions to differential equa-
tions are of interest because physical processes described by differential equations
can exhibit more that one solution. For example, certain chemical reactions in tubu-
lar reactors can be mathematically described by a nonlinear, two-point boundary
value problem with the interest in seeing if multiple steady-states to the problem
exist. For a recent treatment of chemical reactor theory and multiple solutions see
[2 section 7] and references therein.

In recent years, many authors have studied multiple solutions from several points
of view and with different approaches and we refer to [II, B, 4] [7] and the references
therein for more details, for instance, in their interesting paper [3], the authors
studied problem

(1.4)

u + Mf(u) =0,

u(0) =u(l) =0,
(in the case independent of ) by using a multiple fixed-point theorem to obtain
three symmetric positive solutions under growth conditions on f.

Also, in [4], the author proves multiplicity results for the problem ([1.5) which
for each A € [0,+o0|, admits at least three solutions in Wy'2([0,1]) when f is a
continuous function.

In particular, in [I] we obtained the existence of an interval A C [0,4o0[ and a
positive real number ¢ such that, such that for each A € A problem

Apu+ M (z,u) = a(@)|ufP2u in Q,
u=0 on 01,

(1.5)

(1.6)

where Apu = div(|Vu|P~2Vu) is the p-Laplacian operator, Q C RN (N > 2) is non-
empty bounded open set with smooth boundary 9Q, p > N, A >0, f: QxR - R
is a continuous function and positive weight function a(x) € C(2), admits at least
three weak solutions whose norms in W, ?(Q) are less than g.
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For additional approaches to the existence of multiple solutions to boundary-
value problems, see [2, [5l [6] and references therein.

2. MAIN RESULTS
First, we recall the three critical point theorem by Ricceri [§] when choosing
h(\) = Ap.

Theorem 2.1. Let X be a separable and reflexive real Banach space; ® : X — R
a continuously Gateauz differentiable and sequentially weakly lower semicontinuous
functional whose Gateauz derivative admits a continuous inverse on X*; ¥ : X — R
a continuously Gateauz differentiable functional whose Gateaux derivative is com-
pact. Assume that

lim (®(u) + A¥(u)) = +00

llul]|—+o00

for all X € [0, +00[, and that there exists p € R such that

sup inf (®(u) + AU(u) + Ap) < inf sup(®(u) + AP (u) + Ap).
A>0 ueX ueX A>0

Then, there exists an open interval A C [0, +oo[ and a positive real number q such
that, for each \ € A, the equation

O (u) + AV’ (u) =0
has at least three solutions in X whose norms are less than q.

Here and in the sequel, X will denote the Sobolev space VVO1 ’2([a,b]) with the

norm
b 1/2
full = ( [ @)

f:a,b] x R — R is a continuous function and g : [a,b] x R — R is defined by

Q@ﬂzlfwaﬁ

for each (z,t) € [a,b] x R. Now, we define

’ / 2 2 1/2
e = (] (1 @) + m(@)lu()]?)de)
a
So the Poincaré’s inequality and the positivity of the function m(z) € C(la,b)),
there exist positive suitable constants ¢; and cy such that
cflul] < flufls < caflul (2.1)

(i.e., the above norms are equivalent). We now introduce two positive special
functionals on the Sobolev space X: For u € X, let

2
o o Il
a

=5
b
T(u) ::/ g(z,u(z))dx
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Let p,r € R, w € X be such that 0 < p < T(w) and 0 < r < ®(w). We put

O (w)
=p—= 2.2
Bi(pvw) 1= P (2.2
T
Ba(r,w) := T@EZ , (2.3)
1 1/2
Balpw) = — (25 B (o) 2 (2.4)
Clearly, 81 (p,w), B2(r,w) and Bs(p, w) are positive. Now, we put
bh— 1/2
5y = inf (D ), € RY T(w) > g},
261
a)l/?
09 := inf {7\\1&” € R", such that
(b—a) max L glat) = p}
(@.t)efa,b)x [~ L2 ), C=@lZ )
and
5p = 61 — 52. (25)
Clearly, ;1 > §,. Taking into account that for every u € X,
(b _ a)1/2
< - 7
o u(o)] < 20 ]

and (2.1)), we have

)2
max |u(z)| < b=a)”

z€a,b] - 2¢q HUH*

for each v € X. So that
b
7(0) = [ glo,u(@)ds < (b a) maxg(z, 1)

where (2,t) € [a,b] x [~ 522 ., ¢S5 y),]. Namely

201

T(u) (b — a) max g(x, t),

where (z,1) € [a,8] x [~ ¢52" lull. , 527 |jull, ) therefore, { 52 Jul,
R*;T(u) > p} is a subset of
b— 1/2
{%HUH* € R such that
C1
(b—a) max g(z,t) = p}.
(@,)€lab]x [~ L2 ), G2y

So, we have d; > d2 and J, > 0.
Our main results depend on the following lemma:

Lemma 2.2. Assume that there exist p € R, w € X such that
(i) 0<p<T(w),
(i) (b — @) maX(a 1)elah)x [~ Bs(pw) +6,, Ba(pw)—5,] 9(@5T) < p, where Ba(p,w) is

given by (2.4) and 6, by (2.5).
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Then, there exists p € R such that

sup inﬁ((q)(u) +Ap—Tw)) < inﬁ( sup(®(u) + A(p — T'(u))).
A>0 UE ueX \>0

Proof. From (ii), we obtain

Bs(p,w) =8 ¢ {LERT : (b—a) (z,t) > p}.

max g
(@,t)€[a,b] x[~1,1]
Moreover

inf{l € R*; (b — t) > p} > ;W) = Op;
nf{l € RT3 (b—a)  wmax - 9(z,t) 2 pk > fsp,w) =9,

in fact, arguing by contradiction, we assume that there is I; € RT such that

b— ) >
O e 900 20
and
ll < ﬁS(va) - 6/)7
so
(b—a) (z,t) > (b—a) ax glx,t) > p.

max g m
(z,t)€la,b]x[=B3(p,w)+d, , Bs(p,w)—0,] (z,t)€[ab] x [~11,l1]

This is a contradiction. So

inf{l € R*; (b— a) (2.8) = p} > Balp,w) — 3,

ma
(a:7t)6[a7b}xx (=80 g

Therefore,
) (b _ a)1/2
f{———||u. € RT:
inf{ 5, [
(b—a) max e 9@t) 2 p}
(@) €fab] x [~ L5 full, , L5 ).
> 53(/)71”) - 6pa

namely 83(p, w) < 1. So, we have

2
it (1 ¢ Rt 70) > ) > B (o)

or equivalently
. _ d(w
inf{®(u); u € T ([p,+o0)} > pTEw;’
and, taking in to account that (i) holds, one has
inf{®(u); u € T ([p, oo} _ Bw) — inf{B(w); u € T~ ((p, +o0)}
p T(w)—p
Now, there exists A € R such that
O(w) — inf{®(u); u€ T '([p, +o0[)}
T(w)—p

A>

and
inf{®(u); v e T ([p,+o0)}

p

A<

or equivalently

inf{@(u); we T~ ([p,+00])} > (w) + Alp — T(w))
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and
Ao < inf{@(u); we T~ ([p, +oa])}.
Therefore, thanks to the 0 < p < T'(w), we obtain

inf (D) + Mp — T(W))) < mH{®(u); ue TN ([p,+o0D}.  (26)

On other hand,
inf (®(u) + A(p — T(u))) < (2(0) + A(p — T(0))) = Ap. (2.7)

So, with (2.6) and (2.7)), one has

sup inf (B(u) +Alp ~ T(w)) < mf{P(w); u € T ([p, +o0)}-

Therefore, thanks to the

inf sup(®(u) + Mp — T(w))) = inf{@(u); u € T~ ([p, +o0])},
uEX \>0

we have

sup inﬁ((q)(u) +Ap—T(u))) < in)f( sup(®(u) + Ap — T(u))).
A>0 u€ uEX x>0

O

Remark 2.3. Note that sup, g infuex (®(u)+A(p—T(u))) is well defined, because
A — inf,ex (P(u) + Mp — T'(u))) is upper semicontinuous in [0, +oo[ and tends to
—00 as A — 400.

Remark 2.4. If 83(p,w) — 0, < 0 in Lemma ; then then the lemma still holds.

Because, f3(p, w) < §; — 02 < d1, and by arguing as in the proof of Lemma the
results holds.

If instead of condition (ii) in Lemma we put

b—a max xz,t) < p,
( ) (Iat)e[aab]x[_ﬁ?’(pﬂu) El ﬁ3(p,’w)] g( ) p

then the result holds, because
(b—a) (x,t)

max g
(z,t)€la,b]x[=Bs(p,w)+d, , Ba(p,w)—5,]
<(b—a)

max z,t) < p.
(m,t)e[a,b]x[fﬁ;;(p,w) ) ﬁS(pvw)]g( ) p

So, we have the following result.

Lemma 2.5. Assume that there exist p € R, w € X such that
(i) 0<p<T(w),
(ii) (b — a)maxX(y ¢)ela,b)x[-Bs(pw) , Bs(pw)] 9(T: 1) < p, where B3(p,w) is given
by
Then, there exists p € R such that

sup inﬁ{(@(u) +Ap—T(w)) < inﬁ( sup(®(u) + A(p — T'(u))).
A>0u€ uEX \>0

Proposition 2.6. The following assertions are equivalent:
(a) There are p € R, w € X such that
(i) 0 < p < T(w),
(ii) (b — a) MAX (4 ¢)€[a,b]x [~ Bs (pyw) ,ﬁsmw)]g(x,t) < p, where Bs(p,w) is
given by ,
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(b) There are r € R, w € X such that
(111) 0 < r < ®(w),
(iv) (b — )max( Delabix- 2 VT (1\/7 g(z,t) < Bao(r,w), where
Ba(r,w) is given by (2.3 .

Proof. (a) = (b). First we note that 0 < ®(w), because if ®(w) = 0, one has
=)y =0

5 Hence, taking into account (ii), one has
C1

T(w) < (b—a) max g(z,t) =0,

a1/2 _a)l/2
(wt)€la,b]x [ L= Jw|. , L2 w]|. ]

and that is in contradiction to (i). We now put 81 (p, w) = r. We obtain p = [5(r, w)
and B3(p,w) = L4 /5%r. Therefore, from (i) and (ii), one has 0 < r < ®(w) and

c1 2
(b—a) max_ g(x,t) < Ba(r,w).

b
C) —a aV et

(b) = (a) First we note that 0 < T'(w), because if 0 > T'(w), from (iii) one has

Tig:ﬁ; < 0; namely, B2(r, w) < 0. Hence, from (iv) one has

0=T(0) < (b—a) max_ (x,t) <0,
(z,t)€la, b]x[——\/ L/t

and this is a contradiction. We now put Ga(r, w) = p. We obtain r = 3;(p, w) and

% b4y = B3(p, w). Therefore, from (iii) and (iv), we have the conclusion. O

The following lemma is another consequence of Lemma
Lemma 2.7. Assume that there exist r € R, w € X such that
(i) 0<r < d(w),
(ii) (b—a) I1qax(gcﬁt)€[a}b]X{fi e,
is given by (12.3)).

Then, there exists p € R such that

sup ing(q)(u) +Ap—T(w)) < ini sup(®(u) + A(p — T'(u))).
A>0uE uEX \>0

1/ g(x,t) < Ba(r,w), where Ba(r, w)

The above lemma follows from Lemma [2.5| and Proposition
Finally, we are interested in ensuring the existence of at least three weak solutions
for the Dirichlet problem (1.2]). Now, we have the following result.

Theorem 2.8. Assume that there exist p € R, a; € L'([a,b]), w € X and a positive
constant v with v < 2 such that

() 0 < p < [ gl w(x)dr,
(11) (b - a) Mmax(z,t)ela,b]x[—Bs(p,w) , Ba(p,w)] g(xat) <p
(iii) g(z,t) < a1(x)(1 + |t|7) almost everywhere in [a,b] and for each t € R,

where B3(p,w) is given by (2.4).
Then, there exists an open interval A C [0, +oo[ and a positive real number q such
that, for each X\ € A, problem (L.2)) admits at least three solutions in X whose norms
are less than q.
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Proof. For each u €X, we put

ull?
D(u) = 1=
(u) 2 )

b
U(u) = —/ g(z,u(z))dz.
J(u) = (u) + AU (u).

In particular, for each u,v € X one has

F()0) = [ (a0 (@) + ml)ua)oo)de, ¥ (w)(e) = - [ (o u(@)o()ds

It is well known that the critical points of J are the weak solutions of , our goal
is to prove that ® and ¥ satisfy the assumptions of Theorem Clearly, ® is a
continuously Gateaux differentiable and sequentially weakly lower semi continuous
functional whose Gateaux derivative admits a continuous inverse on X* and ¥
is a continuously Gateaux differentiable functional whose Géteaux derivative is
compact.

Thanks to (iii), for each A > 0 one has

l\ﬂ\}ﬂ@(@(u) + A\¥(u)) = +oo.

Furthermore, thanks to Lemma from (i) and (ii), we have

sup inf (®(u) + AU (u) + Ap) < inf sup(P(u) + AT (u) + Ap).
A>QueEX u€X \>0

Therefore, we can apply Theorem It follows that there exists an open interval
A C [0,400[ and a positive real number ¢ such that, for each A € A, problem ([1.2)
admits at least three solutions in X whose norms are less than g. O

We also have the following existence result.

Theorem 2.9. Assume that there existr € R, ag € L'([a,b]), w € X and a positive
constant v with v < 2 such that
2

(1) O<r< ||U;H*’

() (6 = @Iy pepopx- Ly BEr | & /B 900 0) < Balr w);

(iii) g(z,t) < ao(z)(1 + [t|7) almost everywhere in [a,b] and for each t € R,

where Ba(r,w) is given by (2.3).

Then, there exists an open interval A C [0, +o0[ and a positive real number q such

that, for each A € A, problem (L.2)) admits at least three solutions in X whose
norms are less than q.

The above theorem follows from Lemma 2.7 and Theorem 2.8
Let hy € C([a,b]) be a function which changes sign on [a, b] and he € C(R) be a
positive function. For for (z,t) € [a,b] x R, put

f(@,t) = hi(z)ha(t).
For for t € R, put

alt) = /0 ha(€)de
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For almost every x € [a, b], put

a1(x)

" ()

Then, using Theorem [2.8] we have the following result.

asz(x)

Theorem 2.10. Assume that there exist p € R, ag € L'([a,b]), w € X and a
positive constant v with v < 2 such that

() 0 < p < [, ((@)a(w(z)))de;
(i) (b — a) maxeefap) h1(2) < 5EGmy
(iil) a(t) < ag(x)(1+¢7) almost everywhere in [a,b] and for each t € R, where
Bs(p, w) is given by (2.4).
Then, there exists an open interval A C [0, +oo[ and a positive real number q such
that, for each A € A, problem admits at least three solutions in X whose norms
are less than q.

Put
_ ax(2)
ha(x)
for almost every x € [a,b]. Then, by Theorem we have the following existence
result.

aq(x)

Theorem 2.11. Assume that there ezist r € R, ay € L'([a,b]), w € X and a
positive constant v with v < 2 such that

2
(1) O<r< ||7112H*7

(ii> (b - G/) MaXye[q,b] hl(CL‘) < Ba(r,w)

a(E Vi)’
(iil) a(t) < as(x)(1+¢|7) almost everywhere in [a,b] and for each t € R, where
Ba(r,w) is given by (2.3).
Then, there exists an open interval A C [0, +oo[ and a positive real number q such
that, for each X € A, problem admits at least three solutions in X whose
norms are less than q.

We now want to point out two simple consequences of Theorems [2.8 and [2:9
Let f: R — R be a continuous function which changes sign on R. For t € R, put
g(t) = fot f(&)dE. So we have the following results.

Theorem 2.12. Assume that there exist p € R, w € X and two positive constants
v and n with v < 2 such that

i) 0<p< f:g(w(x))da:,
(ii) (b —a)maxie(—g(pu) , gs(pw)) 9(1) < p;
(iii) g(t) <n(1+ [t|") for each t € R, where B3(p, w) is given by (2.4).
Then, there exists an open interval A C [0, +oo[ and a positive real number q such
that, for each X € A, problem admits at least three solutions in X whose
norms are less than q.

Theorem 2.13. Assume that there exist r € R, w € X and two positive constants
v and p with v < 2 such that
2
(1) O<r< ||71;H*7

((11) (b — a) maxte[_ﬁ@7 %\/@] g(t) < 52(7", ’LU),'
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(iii) g(t) < pw(L+|¢]7) for each t € R, where Bo(r,w) is given by (2.3).

Then, there exists an open interval A C [0, +oo[ and a positive real number q such
that, for each A € A, problem (1.4) admits at least three solutions in X whose
norms are less than q.

Example 2.14. Let 2 = (0,1) and consider the problem

—u” +e"u = Ne“u?(3+u), x€(0,1)
u(0) =u(1) =0.
Then, there exists an open interval A C [0, +oo[ and a positive real number ¢ such

that, for each A € A, problem (2.8) admits at least three solutions in WO1 ’2([07 1))
whose norms are less than ¢. In fact, by choosing p = i and

(2.8)

z, x€(0,1)

w(zr) = :
0, otherwise

so that B3(p, w) = £ (5¢=1-)1/2, all assumptions of Theorem are satisfied with

c1 \96—32¢
v =1, ¢1 is positive constant such that the inequality (2.1)) hold for m(x) = e* and
7 sufficiently large, also with choose r = % so that Ga(r,w) = 661218, all assumptions

of Theorem [2.13] are satisfied with y sufficiently large.
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