

EVALUATION OF CORDOVA ACCESSOR HOST FOR RAPID DEVELOPMENT

OF IOT APPLICATIONS ON MOBILE EDGE DEVICES

by

Jesuloluwa S. Eyitayo, B. Eng

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

May 2020

Committee Members:

Anne Ngu, Chair

Vangelis Metsis

Guowei Yang

COPYRIGHT

by

Jesuloluwa S. Eyitayo

2020

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Jesuloluwa S. Eyitayo, authorize duplication of

this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

This project is dedicated to my parents who have made it possible for me to

pursue my master’s degree in computer science and to my siblings and close friends who

supported me throughout my graduate studies.

Finally, I would like to dedicate this project to God for granting me wisdom,

knowledge and understanding to complete my graduate studies with a thesis.

v

ACKNOWLEDGEMENTS

I would like to first thank my thesis advisor Dr. Anne Ngu for providing me the

opportunity to work with her on this thesis, for her continuous guidance and endless

support during my studies both as a professor and an advisor.

Thanks to Dr. Vangelis Metsis and Dr. Guowei Yang for their time and inputs

into this thesis. Also, thanks to other faculty and staff members of the Department of

Computer Science and the College of Engineering for their direct and indirect support

and for creating an excellent learning and research environment through outstanding

teaching, learning, and research facilities. I am especially grateful for the graduate

instructional/research assistantship provided to me during my master’s program by the

Computer Science department.

I wish to appreciate my colleagues that also contributed their time and expertise to

making this thesis possible.

I sincere appreciate my parents, Mr. Samuel Eyitayo and Mrs. Adejoke Eyitayo;

and my siblings, Jesuloba, Jesulayomi and Jesulonimi; and also my close friends for their

constant love and support throughout my years of study and through the process of

writing this thesis. This accomplishment would not have been possible without them.

Thank you all.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS ... x

ABSTRACT ... xi

CHAPTER

1. INTRODUCTION .. 1

2. RELATED IOT MIDDLEWARE SERVICE FRAMEWORKS 5

3. ACCESSOR DESIGN PATTERN AND ACCESSOR HOST 9

3.1. Overview ... 9

3.2. Accessor Design Pattern .. 10

3.3. Accessor Hosts .. 13

 3.3.1. The Common Host ... 14

 3.3.2. The Browser Host ... 16

 3.3.3. Node Host ... 16

 3.3.4. CapeCode Host ... 16

4. CORDOVA ACCESSOR HOST .. 17

4.1. Cordova Host ... 17

 4.1.1. Installation of the Apache Cordova .. 18

 4.1.2. Cordova Plugins ... 19

 4.1.3. Building a Cordova Plugin ... 20

4.2. Architecture of Cordova Accessor Host .. 21

5. EXPERIMENT ... 23

vii

5.1. Overview ... 23

5.2. The Setup of Cordova Accessor Host ... 23

5.3. Accessors of the Fall Detection Application 24

 5.3.1. Data Collection Accessor ... 26

 5.3.2. Data Prediction Accessor ... 26

 5.3.3. Alert Accessor .. 26

 5.3.4. Display Accessor .. 27

5.4. Accessors of the Heart Rate Monitoring Application 27

 5.4.1. Data Collection Accessor ... 28

 5.4.2. Data Processing Accessor .. 28

 5.4.3. Alert Accessor .. 28

 5.4.4. Display Accessor .. 29

5.5. Reusability of Accessors ... 29

 5.5.1. Data Collection Accessor ... 30

 5.5.2. Data Prediction Accessor ... 31

 5.5.3. Display Accessor .. 33

 5.5.4. Alert Accessor .. 33

5.6. Portability of Devices When Using Cordova Accessor Host 34

5.7. Evaluation of Battery Performance ... 37

 5.7.1. Battery Performance Setup ... 37

 5.7.2. Observations ... 38

6. CONCLUSION AND FUTURE WORK ... 40

APPENDIX SECTION ... 42

REFERENCES ... 49

viii

LIST OF TABLES

Table Page

1. Display of the Smartwatches and their Operating System .. 34

2. Display of the Smartphones and their Operating System ... 34

3. Average Battery Usage for Native (Java) App ... 39

4. Average Battery Usage for Cordova Accessor Host App ... 39

ix

LIST OF FIGURES

Figure Page

1. Cloud-based IoT Middleware [2].. 10

2. Design Pattern of Accessors taken from [23] ... 12

3. Hello World Accessor ... 13

4. Apache Cordova Architecture... 18

5. File Structure of the Cordova Plugin for an Android App.. 20

6. Cordova Accessor Host Architecture.. 22

7. SmartFall App User Interface ... 25

8. Main Accessors Used for the Fall Detection App .. 27

9. Main Accessors Used for the Heart Rate Monitor App .. 29

10. Swarmlet.js File Architecture ... 30

11. Data Collection Accessor Architecture ... 31

12. Data Prediction Accessor Architecture for the Fall Detection App 32

13. Data Processing Accessor Architecture for the Heart Rate Monitoring App 32

14. Alert Accessor Architecture .. 33

15. Fall detection App to Receive Sensor Data from MSBAND Smartwatch 35

16. Fall detection App to Receive Sensor Data from WEAROS Smartwatch.................. 36

17. Graph Showing Smartphone Battery usage of Accessor-based App Versus Native

App .. 39

x

LIST OF ABBREVIATIONS

Abbreviation Description

IoT Internet of Things

MQTT Message Oriented Telemetry Transport

CoAP Constrained Application Protocol

BLE Bluetooth Low Energy

GSN Global Sensor Network

REST Representational State Transfer

iCyPhy Industrial Cyber-Physical Systems

AAC Asynchronous Atomic Callbacks

RPC Remote Procedure Call

MSBAND Microsoft Band

npm Node Package Manager

CSS Cascade Style Sheet

APIs Application Programming Interfaces

App Application

bpm Beat per minute

xi

ABSTRACT

The Internet of Things (IoT) middleware service provides the ability for human

and computers to learn and interact from billions of things that include sensors, actuators,

applications, and other Internet connected objects. The realization of an edge-based IoT

service framework will enable seamless integration of the Cyber-world with new physical

devices and will fundamentally change and empower human interaction with the world.

While there are many cloud-based IoT service frameworks, many health-care related IoT

applications such as real-time fall detection systems cannot utilize cloud-based

framework due to latency, privacy, and security concerns.

 In this thesis, we first present an open source plug and play IoT middleware

called Cordova Accessor host and we discuss the accessor design pattern, Apache

Cordova and the accessor hosts for bridging the heterogeneity among IoT devices and

allowing for smarter interactions, sharing and portability. We discuss the Cordova

Accessor host, an edge-based IoT middleware service, and a thorough analysis of the

opportunities and challenges in the implementation of a fall detection application as

components of accessors that embrace the heterogeneity of IoT devices and supports the

composition and adaptability of IoT services. We demonstrate the reusability of accessors

by building a heart rate monitoring IoT application. Finally, we shown that IoT services

deployed on Android compatible devices using this framework consume about 35% less

battery power than the same IoT services implemented in native Java language.

 1

1. INTRODUCTION

The Internet of Things (IoT) paradigm is a domain that enables the

interconnectedness among devices, anytime, anywhere on the planet [1]. IoT provides the

ability for humans and computers to learn and interact with billions of things including

services, actuators, sensors and objects connected to the Internet [2]. The IoT is known to

be the next logical technological evolution since the Internet, providing extensive

services in smart manufacturing, smart grids, security, healthcare, automotive

engineering, education and consumer electronics. IoT provides the capability for us to

build smart cities and smart homes that are safe and energy efficient where parking

spaces, traffic congestion, urban noise, irrigation can be monitored and managed in real

time with low latency effectively [2].

The opportunities and future prospects of IoT are numerous and exciting but it

can be challenging to seamlessly integrate the physical thing with the cyber world.

Practical Issues like the determination of device proximity, dramatic increase in network

scale, disparate connectivity protocols and IoT programming models must be addressed.

For example, Message Oriented Telemetry Transport (MQTT), Constrained Application

Protocol (CoAP) and BLE (Bluetooth Low Energy) are popular connectivity protocols

designed specifically for IoT devices. However, the plethora of IoT connectivity

protocols and middleware are not facilitating the ease of connecting IoT devices and

interpreting collected data from them. This is compounded by the fact that each IoT

middleware advocates different programming abstraction and architecture for accessing

and connecting to IoT devices. Another example is the Global Sensor Network (GSN)

project [3], the concept of virtual sensor, which is specified in XML and implemented

 2

with a corresponding wrapper, is provided as the main abstraction for developing and

connecting a new IoT device. In the Node-RED project at IBM [4], a node is proposed as

the main abstraction. In the TerraSwarm project [5], an accessor design pattern

implemented in JavaScript is proposed as the main abstraction. In the Google Fit project

[6], no particular high-level abstraction is provided for encapsulating a new device type.

The system is pre-programmed to support a fixed set of IoT devices, which can be

accessed by Representational State Transfer (REST) APIs [7]. As a result of this, the

addition of an IoT device which is not already supported requires the experience of Java

Programming in order to extend the Google Fit’s FitnessSensorService class. In addition,

data are collected and stored solely in the cloud in Google Fit which might not be

acceptable for privacy conscious consumers.

The current state-of-the-art support for IoT service development is application

specific which is equivalent to the scenario where every IoT device requires a different

web browser for connection to the Internet as echoed by Zachariah et al. in the paper

entitled “The Internet of Things Has a Gateway Problem”[8]. Therefore, there is a

demand for the urgency in launching an IoT middleware service like that of the Web

frameworks such as Laravel, ASP.NET, Django and Express.js. These frameworks

coupled with the launch of the mobile phone operating systems (Android and IOS) have

brought disruptive applications such as Airbnb and Uber and have therefore transformed

and improved how business is being conducted. As a result, we believe that the launch of

an edge IoT service middleware that can be deployed within the constrained physical IoT

devices will produce incredible and a wide range of IoT services that have impacts

beyond our imagination and fundamentally change and empower human interaction with

 3

the physical world.

The main focus of this thesis is to present and implement the open source

Cordova Accessor host, an edge-based IoT service middleware, which is built on Apache

Cordova tools —a cross platform design tool— that utilizes its plugins for integration

with the accessor design pattern [5] for the rapid prototyping of IoT services on edge

devices. While an experimental Cordova Accessor host has been developed and listed on

TerraSwarm’s accessor project website [9], but there has never been a development of a

real-world IoT service/application using that experimental host. There is no empirical

evaluation of the benefit of using Cordova Accessor host for IoT services development in

terms of re-usability of accessors, reduction of programming and deployment barriers and

conservation of battery power of the edge devices.

First, we will demonstrate in this paper how the Cordova Accessor host is used

for the development and deployment of a real-world fall detection IoT application though

the composition of accessors running on a commodity smartwatch that is paired with a

smartphone. We will further demonstrate the reusability of accessors we have previously

developed for fall detection application for composing a different IoT service that can

perform real-time heart rate monitoring. Based on these demonstrations, we will show

that the stream of accelerometer data used for fall detection application and the heart rate

data used for the heart rate monitor can be collected from multiple smartwatch vendors

with minimal programming by isolating device-specific communication codes from

application codes.

 4

The main contributions of this thesis are:

• Analysis of the advantage of an edge IoT service middleware based on Apache

Cordova platform for the development of real-world IoT applications.

• Evaluating the effectiveness of Cordova Accessor host for rapid development of

IoT services by composing two different IoT applications using accessors as the

basic components and measures the reusability and code changes required.

• Demonstrating how accessor design pattern can facilitate sensor data collection

across multi-vendors IoT devices (three different types of smartwatches from

Google, Microsoft and Huawei) with minimal additional programming.

• Demonstrating the energy efficiency of accessor- based IoT services as compared

with native implementation.

The remainder of this thesis is organized as follows:

First, we present the related IoT middleware service in Chapter 2, then the

background work in accessors design pattern and accessor hosts will be discussed in

Chapter 3. We then discuss architecture of an edge-based IoT service framework,

Cordova Accessor host, and its capabilities in Chapter 4. In Chapter 5, we present our

analysis on two IoT services developed and deployed on Cordova Accessor host and

document the reusability of accessors and reduction in deployment barriers across

heterogeneous IoT devices. In the same Chapter, we present the performance study in

battery power consumption of IoT services implemented on Cordova Accessor host

verses one on native Android environment. Finally, in Chapter 6 we present our

conclusion and future work.

 5

2. RELATED IOT MIDDLEWARE SERVICE FRAMEWORKS

We explored three classical IoT frameworks: Service-oriented, Cloud based, and

Actor oriented in search of a framework that can allow seamless integration of

heterogeneous IoT devices from multiple vendors to build real-time IoT applications with

local data storage and analysis and without dictating a particular communication protocol.

The availability of local storage is important to avoid the unpredictable latency from

wireless transmission of data to the cloud or server for analytic. In addition, to ensure that

the user’s privacy is not violated, users should have the option to archive data generated

from their personal IoT devices in a secure local storage medium of their own choice.

The service-oriented framework that we explored was Global Sensor Network

(GSN) in [3]. GSN aims to provide a uniform platform for flexible integration, sharing

and deployment of heterogeneous IoT devices. The central concept is the virtual sensor

abstraction, which enables developers to declaratively specify XML-based deployment

descriptors to describe how to connect to a physical or virtual sensor. This is similar to

the concept of deployment descriptors used in the deployment of enterprise Java beans in

J2EE server [10]. The architecture of GSN follows the same container architecture as in

J2EE where each container can host multiple virtual sensors. The container provides

functionalities/capabilities for lifecycle management of the sensors including persistency,

security, notification, resource pooling and event processing. GSN servers can fulfill our

local data storage requirement, however, GSN is a heavy weight system to run on an edge

device like a smartwatch or smartphone. Till date, there is no working edge-based GSN

framework. Another service-oriented platform for IoT is presented in [11]. The main

architecture is similar to GSN. The key contribution of this service framework is its

 6

scalability and robust scheduling that have shown to support more than 1000 services.

However, it can only be deployed on high-end servers or cloud.

We examined various cloud based frameworks such as AWS IoT from Amazon

[12], Watson IoT from IBM [13], ThingSpeak IoT [14] and Google IoT Cloud [15] (e.g.

GoogleFit). These cloud-based frameworks usually provide the following four

fundamental services:

1. Web-based administrative console for managing device connection

2. Cloud-based data storage

3. Cloud-based analytic services and

4. Advanced reporting or visualization

We also examined Google’s GoogleFit [6] cloud service in details for IoT

application development. GoogleFit provides a set of Application Programming

Interfaces (APIs) for connecting third-party IoT devices to its cloud storage. For example,

it provides APIs for subscribing to a particular fitness data type or a particular fitness

source (e.g., Fitbit or Samsung Smartwatch) and APIs for querying of historical data or

persistent recording of the sensor data from a particular source (e.g., a smartwatch).

GoogleFit is not appropriate because the user is tied to storing his/her sensor data in

GoogleFit’s cloud storage, in the format dictated by GoogleFit and in the size limit

enforced by GoogleFit. It is not possible to get access to the collected raw data and pre-

process them for analysis and visualization purposes, which is a critical component for

many IoT applications. Moreover, GoogleFit requires all collected data to be stored

remotely in the Google cloud. GoogleFit is not suitable for IoT services that must be

performed quickly in real-time on the edge devices.

 7

The third framework that we investigated is the actor based IoT middleware from

the TerraSwarm project [16]. The advantage of an actor-based framework is that it is

light-weight and portable for capability and energy constrained IoT devices. The actor-

based framework (accessor host) was first presented in the paper entitled “A Vision of

Swarmlets” by Latronico, Lee, Lohstoh, Shaver, Wasicek, and Weber at University of

California, Berkeley [5]. As stated in the accessor homepage[17]:

“Accessors are a technology for making the Internet of Things accessible to a

broader community of citizens, inventors, and service providers through open interfaces,

an open community of developers, and an open repository of technology. Developed by

the TerraSwarm Research Center, accessors enable composing heterogeneous devices

and services in the Internet of Things (IoT)”.

An accessor is designed with the actor model of computation that embraces

concurrency, atomicity and asynchrony. In other words, an accessor can be viewed as an

actor that wraps a sensor, actuator, or a service and hide the different implementations

from developers. An accessor host is a service or application running on the client

platform that can provide execution environment for accessors. The client platform can

be a server (e.g. a high-end desktop computer), a gateway (e.g. smartphone) or an edge

device (e.g. a wearable device). In the context of TerraSwarm project, an accessor host is

also known as a Swarmlet host.

In iCyPhy (Industrial Cyber-Physical Systems) project, a sequel to TerraSwarm

project, a semantic accessor framework is proposed [18]. The framework is an attempt to

combine Semantic Web technology with accessor to create a platform that can

dynamically discover and instantiate context-relevant accessors for dynamic real-time

 8

IoT service provisioning such as the connected cars applications. However, this semantic

framework cannot be deployed on the edge.

In the realm of local data storage, GSN servers and accessor hosts are both able to

store data locally. However, the final choice of using the actor-based framework with

accessor and accessor host came from the fact that it gave us the flexibility to use IoT

devices from multiple vendors without dictating using a specific standard and it is very

light-weight. We describe the functionalities of accessors and accessor hosts in greater

details in the following chapter.

 9

3. ACCESSOR DESIGN PATTERN AND ACCESSOR HOST

3.1. Overview

An IoT middleware framework typically comprises of a three layers architecture

(edge, gateway, cloud) [2]. The cloud architecture [19] includes the connection of

mobile clients such as mobile phones to a powerful centralized cloud service that runs

remotely. The cloud service provides easy management of information gotten from the

clients as shown in Figure 1. It also provides frequent backup of all data, enforced

privacy and physical security. The modern clients used in this cloud architecture are both

capable and flexible to connect the cloud services to users as they now contain powerful

processors and utilize a high-performance multicore technology. The gateway

architecture further provides the management of connections among edge devices and the

cloud [20]. The traditional IoT systems consist of edge devices that consists of sensors,

actuators and a gateway connected either through wired or wireless Internet connection to

the Cloud services. The gateways are highly powered hardware devices with advanced

computing power and storage space which can collect and process data from the smart

edge device before sending it to the cloud for more computationally intensive tasks [21].

With the aim of addressing the needs of IoT in terms of managing the huge amount of

data and reducing processing latency, edge devices are now equipped with more

sophisticated processors and smarter applications to take over certain roles from the

cloud. This is referred to as edge computing which aims at pushing the computations

performed from the cloud towards the edge, with the aim of avoiding bottlenecks and

reducing latency. Developing an edge-based IoT middleware framework is essential for

the success of edge computing.

 10

Figure 1. Cloud-based IoT Middleware [2]

The term middleware and service framework are used interchangeably in this

thesis. Middleware usually refers to a software system designed to be the intermediary

between physical IoT devices and IoT applications. TerraSwarm’s IoT middleware

focuses on the open, plug and play component architecture [22]. A unique feature of this

middleware is a lightweight software system or host with standardized capabilities for

running and deploying IoT services in any layer of an IoT three layers architectural

system. The main concept proposed in such a framework for seamless interaction with an

IoT device is accessor.

3.2. Accessor Design Pattern

Accessors are defined using a lightweight JavaScript programming model

consisting of input and output events as well as a set of functions. Accessors provide the

abstraction for smart “Things” across different hardware or software platforms to interact,

bridging the heterogeneity among IoT systems and allowing for smarter interactions,

 11

sharing and portability. The JavaScript programming model of accessors enable accessors

to be ubiquitous and allow Things to communicate and share information in a message-

oriented fashion. Figure 2 shows an accessor design pattern. The horizontal traversal of

the design governs the interactions among assessors using ports while the vertical

traversal governs the asynchronous interaction with the other physical or logical devices

on the edge, on a local server or on the cloud. As shown in Figure 2, the lower box

represents an IoT device or an external service on the cloud. This means that an accessor

can send request to the lower box and receive a response from it. An Asynchronous

Atomic Callbacks (AAC) pattern is used for the request. AAC is a non-blocking protocol

and enables many concurrent pending requests to be active at once without having the

overhead of managing threads. AAC invocation is atomic as contrasted to interrupt-

driven threads or Remote Procedure Call (RPC). It does not use locks and thus cannot

deadlock. The accessor design pattern isolates the device specific communication

protocol from the IoT application and enables composition of a complex IoT service from

multi-vendors IoT devices. Each accessor is defined by an interface with a number of

input and output ports for managing and processing the data transfer between “Things”.

Ports provide a common paradigm of communication independence from the low-level

device communication protocols. These ports also connect accessors together to provide a

complex service as well as enable the ease in the exchange, deletion or addition of

capabilities to the service. The JavaScript programming model of accessors also enables

accessors to essentially act like web pages on a browser, exchanging information with a

variety of other services compliance with the vertical contract as shown in Figure 2.

 12

Figure 2. Design Pattern of Accessors taken from [23]

An accessor interface defines the modules that are required for the accessor host

in order to execute the accessor. This means an accessor host can instantiate or execute an

accessor by simply examining its interface. The setup function and the initialize function

form the basic functions for all accessors. The code below and the block diagram in

Figure 3 show the implementation of a Hello World accessor. This accessor accepts a

username through the name input port and returns a greeting message as output on the

output port of the accessor. The setup function defines the input and output port for the

accessor while the Initialize function performs the required computation the accessor is

designed for which in this case will be to concatenate Hello with the input username.

Lastly, the initialize function sends the result as output for the next accessor. The snippet

of this accessor is shown in the code below:

 13

// Hello World Accessor

exports.setup = function () {

 this.input('name');

 this.output('greeting');

};

exports.initialize = function () {

 this.addInputHandler('name', function () {

 this.send('greeting', 'Hello World, ' + this.get('name'));

 });

};

Figure 3. Hello World Accessor

3.3. Accessor Hosts

An accessor host is a service running in the network or on a client platform that

hosts applications built as a composition of accessors that stream data to each other. The

host is like a browser for Things [17]. The TerraSwarm Research Center has provided

several accessor hosts which are built on top of the Common host which contains the

 14

basic functionalities that can be reused by other hosts. The following are accessor hosts

provided by the TerraSwarm Research Center: Common host, Browser host, CapeCode

host, Node host and Cordova host.

3.3.1. The Common Host

The common host is a platform-independent pure-JavaScript host that provides a

constructor for instantiating an accessor. It includes the instantiateAccessor function

which takes as an argument the qualified accessor class name. This class name is enough

to instantiate the accessor. Another function getAccessorCode retrieves the accessor’s

source code when given the class name. The common host is considered the base host

when defining other hosts. This means that a defined host inherits all the functions

defined in the common host. Some of the common host functions inherited by other hosts

are described below:

• react(): This function reacts to the input provided to the accessor.

• require(): This function loads the required library for the accessor to function

correctly.

• instantiateAccessor(): This function takes as an argument the fully qualified

accessor class name and initialize it.

• getAccessorCode(): This function retrieves the accessor’s source code given

the class name.

 15

• setParameter(): This function sets a parameter with parameter reference name

and parameter value.

• initialize(): This function initializes the accessor once by the host on startup.

• fire(): This function performs a set action or output upon receiving the

appropriate input signal.

• setup(): This function provides the information to establish a preliminary

accessor such as names of all input and output ports.

• connect(): This function connects the input port of one accessor with the

output port of the previous accessor in the pipeline.

• latestOutput(): This function retrieves the latest output value produced in

react().

• send(): This function sends an output to another port,

• setTimeout(): This function sets the specified function to execute at certain

time

• setInterval(): This function sets the specified function to execute after certain

time interval, and repeat at interval,

• wrapup(): This function releases used resources and terminate the accessor

• provideInput(name, value): This function provides an input value.

 16

3.3.2. The Browser Host

The Browser host runs in web browsers and basically supports the inspection and

execution of accessors within the browser environment. The Brower host is layered on

top of the common host and loads common host’s functions if required [24].

3.3.3. Node Host

The Node host is a host defined leveraging the Node.js engine with capability of

the common host. This host requires the installation of the Node Package Manager

(npm) [25]. The Node Package Manager is an open-source online repository which has

node.js based projects published. The npm provides easy packaging of project packages

that promotes sharing and reusability across the developer’s community. The Node host

is defined as an extension of the common host and it is a pure JavaScript Swarmlet host.

Industrial Cyber – Physical Systems Center (iCyPhy) explains in detail about Node host

and available accessors in [26].

3.3.4. CapeCode Host

The CapeCode host is an interactive graphical editor for creating, composing and

executing accessors. It makes use of Java Nashorn script engine for executing accessors.

The CapeCode host provides a block diagram editor for prototyping IoT applications and

code generators for deploying those applications on other accessor hosts [27].

 17

4. CORDOVA ACCESSOR HOST

4.1. Cordova Host

Cordova host is based on Apache Cordova’s cross mobile program development

platform that is used for building applications using HTML, CSS and JavaScript [28] in

one code base and targeted to multiple platforms such as Android, IOS, Window and

Browser with no additional programming. The JavaScript interface in Cordova interacts

with native languages and APIs of physical or virtual IoT devices through a number of

plugins. In essence, the plugin hides the various native code implementations behind a

common JavaScript interface. Figure 4 shows the relationship between the mobile

devices and Apache Cordova. Developed applications are executed within wrappers

targeted to each platform and rely on standards-compliant API bindings to access each

device's capabilities such as sensors, data, network status, etc as shown in the mobile

device view in Figure 4. The web view provides the application with its entire user

interface. Applications built with Cordova are implemented like a web page by making

use of the default local file called index.html with references to the Cascade Style Sheet

(CSS), JavaScript, Images, media files and other resources needed for the application to

run. There exists a very important config.xml file that provides information about the app

such as the name and author of the application, it also specifies parameters affecting how

it works, such as whether it responds to orientation shifts.

 Cordova is useful when a mobile developer wants to build an application across

more than one platform without re-implementing it with each platform’s language and

tool set. It is also useful when a web developer wants to deploy a web application that is

packaged for distribution in various store portals. Lastly, when there is a need for a

 18

mobile developer to develop a plugin interface between native and WebView

components or a need to mix native application components with a WebView that can

access device-level APIs. One advantage of using Cordova is that it includes a lot of

plugins that can help to quickly build your application.

Figure 4. Apache Cordova Architecture

4.1.1. Installation of the Apache Cordova

In order to install the Apache Cordova, there is a requirement to install Node.js

and npm on the computer client. Node.js is a JavaScript runtime engine built on

Chrome’s V8 JavaScript engine. There will be a need to install Android Studio for the

Android application development and Xcode for IOS application development. To install

Cordova, open the command line interface on Windows, Linux or OSX and type “npm

install -g Cordova”. This command installs the Cordova command line tool that allows

you to run commands such as:

 19

• “Cordova create [arguments]” to create a new Cordova project.

• “Cordova platform add [mobile operating system]” to add a new platform to your

project. The operating systems include IOS, Android and browser.

• “Cordova platform ls” to check the current set of platforms in the Cordova

project.

• “Cordova platform add [mobile operating system]” to remove the operating

system platform in the Cordova project.

• “Cordova build [mobile operating system]” to compile and build the Cordova

project.

• “Cordova emulate android” to run the Cordova project on an emulator.

• “Cordova run android” to run the Cordova project on a connected mobile device.

4.1.2. Cordova Plugins

Cordova Plugins are very important part of building applications for the Cordova

ecosystem. They provide an interface for Cordova and native components to

communicate with each other and bindings to standard device APIs. This enables you to

invoke native code from JavaScript [28]. Apache Cordova project contains a set of basic

plugins called the Core Plugins. These core plugins provide your application to access

device capabilities such as battery, camera, contacts, Emails, SMS etc.

In addition to the core plugins, there are several custom plugins that provide

additional features not necessarily available on all platforms. You can search for Cordova

plugins using plugin search [29] or npm. Plugins is necessary to communicate between

Cordova and custom native components.

 20

4.1.3. Building a Cordova Plugin

In order to build a Cordova plugin, there is a need to develop the plugin as shown

in Figure 4. The following steps are involved in building a Cordova plugin:

1. Create the following the files as showing in Figure 5. The src/android folder

contains the source code that would be installed on the native platform (Java in

this case). The www folder contains the plugin in JavaScript that serves as the

interface to the native platform, it provides methods for accessing the native

platform defined functionalities. The package.json contains the json configuration

for the project such as the name, version, description, id and platform of the

project while the plugin.xml file contains information about how the directories in

the native platform where the plugin should be installed.

Figure 5. File Structure of the Cordova Plugin for an Android App

2. To install the plugin that was created in step 1, type “Cordova plugin add

Cordova-plugin-prediction”. This command setups the Cordova plugin for the

Cordova project. In order to remove an already installed plugin, type “Cordova

plugin remove Cordova-plugin-prediction”.

 21

Apache Cordova’s cross platform capabilities and the lightweight script engine

makes it attractive to be used as an edge IoT middleware. As we mentioned earlier, there

is a Cordova host developed by the TerraSwarm Research Center at UC Berkeley, but it

is still classified as an “Experimental Accessor Host”. However, as mobile devices

continue to phase out laptops and desktops for daily use, we need an accessor host that

can run with less processing power, storage, and energy than the established CapeCode

host. The experimental Cordova host is only tested using simple accessors. This does not

provide the evidence that it can handle continuous large streaming data from IoT devices

and serve as an IoT service framework.

To demonstrate the practically and advantage of Cordova host as an edge IoT

middleware, we refactored two monolithic mobile Apps: 1) Fall Detection and 2) Heart

Rate Monitoring into composition of accessors. We analyzed the reusability of accessors,

the barrier of programming and deployment for consumers and the power consumption

IoT services running on Cordova host.

4.2. Architecture of Cordova Accessor Host

Figure 6 shows the architecture of Cordova Accessor host. The capabilities of the

Cordova Accessor host are found in the JS directory of Cordova/Webview. It is in the

folders of Cordovahost and Commonhost in Figure 6. The accessors folder houses all the

custom accessors contributed by the communities of developers. The Cordova plugins

provide the association or binding between custom accessor’s interfaces and their native

implementation of the functionalities of those devices. For example, the data collection

accessor can access the WEAROS APIs to obtain specific sensor data from a WEAROS

 22

compatible smartwatch via WEAROS plugin and MSBAND SDK to obtain sensor data

from a Microsoft watch. The plugins for each type of IoT device needs to be developed

once and shared with the communities. The swarmlet.js is used to compose a pipeline of

accessors to perform a specific task (a.k.a an IoT service).

Figure 6. Cordova Accessor Host Architecture

 23

5. EXPERIMENT

5.1. Overview

In this section, the practicality of Cordova Accessor host would be demonstrated

by showing the advantages of using the Cordova host as an edge IoT middleware. We

would be refactoring two monolithic mobile Application - The Fall Detection application

and the Heart Rate Monitoring application - into composition of accessors. Furthermore,

there would be a need to analyze the reusability, portability of accessors, the barrier of

programming and deployment for consumers and the power consumption IoT services

running on Cordova host.

5.2. The Setup of Cordova Accessor Host

Getting started with Cordova Accessor host requires some installations and setup

which will require the following prerequisites similar to the Cordova host described in

Section 4.1. In order to install the Cordova host, the following steps are required:

1. Install the Node package manager by typing “npm install -g Cordova” in the

command line / terminal of windows, OSX or Linux.

2. To get started with our Fall Detection Application developed with Cordova

Accessor Host, clone the public Repository at

https://github.com/jileyitayo/Cordova-accessor-host.

3. Configure the downloaded project by setting up the config.xml and package.json

files found in the root folder based on the specifics of the project.

 24

The config.xml file consists of the widget id which includes the identifier for your

project which can be edited by the developer, the name tag which includes the

name the developer wishes to give the Application while the description explains

briefly what the application is about and lastly, the author tag which includes the

details of the developer building the application. These details would be loaded

into the application once you build the application for the first time.

The package.json file is similar to the config.xml file but consists of the more

information as follow: name, displayName, version, description, main, scripts,

author, licence, Cordova plugins information, platforms and dependencies.

4. In the directory, change directory to the platforms/android.

5. In order to run the application, you need to open it with Android Studio, then

Build and Run.

5.3. Accessors of the Fall Detection Application

The Fall detection is an application that senses the streaming accelerometer data

from a commodity-based smartwatch device and applies a deep learning algorithm over

the streaming data to detect falls. The smartwatch is paired with a smart phone that has

the fall detection application installed in it. The application on the smartphone performs

the necessary computations required for a fall prediction in real time with little or no

latency. Figure 7 shows the main user interfaces of the Fall Detection App.

 25

Figure 7. SmartFall App User Interface

The screen on the left shows the home screen UI for the application and the

second screen shows the UI when a fall is detected. The home screen (leftmost screen in

Figure 7) launches the App when the user presses the “ACTIVATE” button. The user

must set up a profile and load the profile before the App can be activated.

When a fall is detected, the second screen of Figure 7 pops up on the smartphone,

an audible sound is generated, and a timer of 30 seconds is initiated. The user is shown

three buttons for interaction. The “NEED HELP” button will send a text message to the

caregiver and also save and label the sensed data samples as true positives. The “FELL

BUT OK” button will save the sensed data during that prediction interval as true positives

without notifying the caregiver. The “I’M OKAY” button will save these data as false

positives. If a fall is detected and the user does not interact with any of these three

buttons, after the timer expires, the system assumes that the user might be hurt or

unconscious and an alert message is generated and sent to the caregiver automatically.

The third UI screen is for the one-time initialization of the user profile before the

application can be launched. This UI includes setting up the contact details of the

 26

caregiver. Note that minimal personal data is collected, and all those data are stored

locally in the phone.

We refactored this Java implementation of Fall Detection application into various

accessors as shown in Figure 8 such that each accessor performs a particular function or

service and interact with other accessors in the pipeline via message passing. For Fall

Detection application, we created the Data Collection Accessor, Data Prediction

Accessor, Alert Accessor and the Display Accessor.

5.3.1. Data Collection Accessor

When the fall application is activated, the Data Collection Accessor is triggered to

collect accelerometer sensor data from the smartwatch in a set interval/sampling period

and sends the data as an output to the Data Prediction Accessor.

5.3.2. Data Prediction Accessor

The Data Prediction Accessor takes a sequence/stream of accelerometer sensor

data as input and predict fall or not fall as the output which is passed to the Display

Accessor. The data Prediction Accessor predicts fall by making use of the pre-trained

deep learning RNN model.

5.3.3. Alert Accessor

The Alert Accessor receives the prediction status as input and send either an E-

mail or SMS to a registered recipient (care giver) if a fall is detected.

 27

5.3.4. Display Accessor

This accessor is responsible for displaying the accelerometer data to the user as a

sign that communication between the watch and the phone is not faulty. It is used as a

debugging tool.

Figure 8. Main Accessors Used for the Fall Detection App

5.4. Accessors of the Heart Rate Monitoring Application

The Heart Rate Monitoring application utilizes the heart rate data collected from a

smartwatch (IoT) device and a threshold algorithm to detect if there is an unusual high

heartbeat per minute (bpm) given the current context of the user and alert the user.

Similarly, the Heart Rate Monitoring application can be composed of different accessors.

In fact, some of the accessors can be reused as it is from those already defined for the fall

detection application as shown in Figure 9. The accessors for the Heart Rate Monitoring

application are the Data Collection Accessor, Data Processing Accessor, Alert Accessor

and the Display Accessor.

 28

5.4.1. Data Collection Accessor

This application, similar to the fall detection application, commences with the

data collection accessor which collects heart rate sensor data (bpm) from the smartwatch

through the smartphone and sends the data as output to the Data Processing Accessor.

The only change required in this accessor is the selection of heart rate rather than

accelerometer sensor.

5.4.2. Data Processing Accessor

The Data Processing Accessor takes the heartbeat per minutes (bpm) data as input

and gives an output of status of high bpm which is passed to the Display Accessor. The

Data Processing Accessor performs a simple threshold algorithm to determine this high

bpm based on its input. The threshold algorithm currently is set to a simple conditional

statement, but it can be replaced by other more complex algorithm based on the activity

level of a user. This is the only accessor that needs to be written from scratch for this

application.

5.4.3. Alert Accessor

In the same way, the Alert Accessor receives the status as input and send either E-

mail or SMS to a registered recipient if a high bpm is detected. This accessor is reused as

it is from the Fall Detection.

 29

5.4.4. Display Accessor

This accessor is responsible for displaying the heart rate information to the user as

well as the status of monitoring. Since the type of data displayed is different from fall

detection, the only change needed is to set the data to be displayed to a different type.

Figure 9. Main Accessors Used for the Heart Rate Monitor App

5.5. Reusability of Accessors

This sub-section discusses the reusability of accessors. Across the 2 applications,

the Fall Detection application and the Heart Rate Monitoring application, the Data

Collection Accessors and the Alert Accessors are reusable while the Data Prediction

Accessor and Display Accessor are not reusable. The double bordered boxes represent

the portion of the accessors that are reusable while the single bordered boxes represent

the part of the accessors that are not reusable.

 30

5.5.1. Data Collection Accessor

 The Data Collection Accessor perform calls to the Cordova Plugin similar

to a regular function call with the aim of retrieving the sensor data from the smartwatch.

In order to achieve this, the supported device type and the type of sensor data to retrieve

has to be specified in the data collection file. The Figure 9, 10 and the code snippet

shown below are to be considered when as an overview during the discussion of the

reusability of the Data Collection accessor. The Fall Detection application makes use of

the accelerometer data as shown in the code snippet for the Data Collection Accessor and

can be reused by simply changing a single line of code.

The highlighted lines of code on line 3 and 6 indicate the types of sensor the Data

Collection accessor currently support and also shows how to make the accessor subscribe

to sensor on the defined devices. In order to change the Data Collection Accessor to

receive HEART_RATE sensor data for the Heart Rate Monitoring application, line 6 of

the data collection accessor snippet code would need to be change to var sensor_type =

Sensors[0];. This implementation makes it easy for the Data Collection Accessor to be

reusable across the different IoT devices.

Figure 10. Swarmlet.js File Architecture

 31

Figure 11. Data Collection Accessor Architecture

1 // SENSOR DATA and DEVICES

2 // variable declarations

3 var Sensors = ["HEART_RATE", "ACCELEROMETER"];

4 var Devices = ["WEAROS", "MSBAND"];

5 // set sensor to ACCELEROMETER

6 var sensor_type = Sensors[1];

7 // set device to WEAROS

8 var device_type = Devices[0];

...

...

5.5.2. Data Prediction Accessor

 The Figure 12 shows the architecture for the Data Prediction Accessor. The Data

Prediction Accessor is not reusable because it is an accessor specific to the Fall Detection

 32

application. When building the Heart Rate Monitoring application, there would be a need

to develop an application specific accessor to process the heart rate sensor data as shown

in Figure 12.

Figure 12. Data Prediction Accessor Architecture for the Fall Detection App

Figure 13. Data Processing Accessor Architecture for the Heart Rate Monitoring App

 33

5.5.3. Display Accessor

 The Display Accessor can be reusable since the different sensor data types can be

displayed on the same display along with process results from predictions and processes.

Some applications make use of array data type like in the case of the Fall Detection

Application while some make use of string data type.

5.5.4. Alert Accessor

 The Figure 13 shows the architecture for the Alert Accessor. This accessor is

completely reusable because the application involves notifying a registered contact for

the user of the application. The features of the alert accessor include sending SMS to

registered contacts. These features can also be extended to other contact methods like

phone calls, sending EMAIL. The Fall Detection application and the Heart Rate

Monitoring application both use the same alert accessor without making any change its

code.

Figure 14. Alert Accessor Architecture

In conclusion, the total number of codes changed when reusing the reusable

accessors is minimal. It is one line of code in the case of Data Collection Accessor.

 34

5.6. Portability of Devices When Using Cordova Accessor Host

The portability of devices when using Cordova Accessor Host refers to the

support Cordova Accessor host provide for different devices and how easy it is to port

from one device to another. As previously discussed, the only accessor that

communicates with the device is the Data Collection Accessor. Due to this, the Data

Collection Accessor has been designed to support multiple devices and has provided an

easy way to switch between devices. Figure 14 and 15 are considered when assessing the

portability of devices when using Cordova Accessor host. Different Smartphones and

Smartwatches were used and tested for portability. The following Smart Phones and

Smartwatches shown in Table 1 and 2 were used in our experiments.

Table 1. Display of the Smartwatches and their Operating System

SmartWatch Operating System

Huawei Watch 2 Android Wear OS (Version 2)

TicWatch Pro Android Wear OS (Version 2)

Microsoft Band 2 Microsoft OS

Table 2. Display of the Smartphones and their Operating System

Smartphone Operating System

Huawei Mate 9 Android OS (Version 8)

Google Nexus 5 Android OS (Version 8)

 35

The smartwatches and smartphones were grouped into Operating systems. The

MSBAND and WEAROS were used for the smartwatches while the ANDROID OS was

used for the smartphones. The code below shows the source code for porting from

MSBAND to WEAROS supported devices. The changes are highlighted in line 4 and 8.

1 // SENSOR DATA and DEVICES

2 // variable declarations

3 var Sensors = ["HEART_RATE", "ACCELEROMETER"];

4 var Devices = ["WEAROS", "MSBAND"];

5 // set sensor to ACCELEROMETER

6 var sensor_type = Sensors[1];

7 // set device to WEAROS

8 var device_type = Devices[0];

...

...

Figure 15. Fall detection App to Receive Sensor Data from MSBAND Smartwatch

 36

Figure 16. Fall detection App to Receive Sensor Data from WEAROS Smartwatch

There was a challenge noticed when porting to the WEAROS supported

smartwatches. While the Microsoft Band 2 smartwatch did not require a separate

application to be developed in order to retrieve sensor data, there was a need to develop

an application for the WEAROS supported Smartwatches (Huawei Watch 2 and

TicWatch Pro) so that sensor data can be retrieved from the them. This is because the

MSBAND Cordova Plugin was created by Microsoft and it was designed to provide an

SDK library to assess data from the smartwatch without the need to develop a separate

application for the MSBAND smartwatch. This is not the case for the WEAROS

supported smartwatches, we noticed that there the WEAROS made use of a separate

method of extracting sensor data therefore we had to develop the WEAROS Cordova

Plugin and its corresponding WEAROS application running on the smartwatches.

In order to change the type of sensor data received from the WEAROS

smartwatch, the 3 highlighted lines of code that need to be modified in the WEAROS

Smartwatch application as shown below in the code below.

 37

...

heartrate = mSensorManager.getDefaultSensor(Sensor.TYPE_HEART_RATE);

boolean sensorHeartRateRegistered = mSensorManager.registerListener(this, heartrate,

SensorManager.SENSOR_DELAY_FASTEST);

...

5.7. Evaluation of Battery Performance

An edge-based IoT framework must be energy-efficient since it is deployed on

power constrained IoT devices. In this section, we evaluate energy efficiency of Cordova

Accessor host by comparing the battery power consumption of running an accessor-based

Fall Detection App verses a native Java-based Fall Detection App. The two versions of

Fall Detection App will be running on a TicWatch Pro smartwatch paired with Huawei

Mate 9 smartphone running Android OS (version 8.0).

5.7.1. Battery Performance Setup

Both the phone and watch batteries are fully charged, and each application is

made to run continuously for four hours for each test. The test is carried out by wearing

the watch and activating the Fall Detection App on the phone while carrying out daily

activities and recording the battery percentage at various intervals. Five tests will be run

for each version of the Fall Detection App. The battery percentage of both the

smartphone and the smartwatch will be recorded at every hour from the start of the

experiment having 100% until the smartwatch gets to 0%. We report the average battery

consumption percentage over the five tests for each application on the smartphone and

the smartwatch.

 38

5.7.2. Observations

We ran the first test for the accessor-based Fall Detection App deployed on the

Cordova Accessor host and its corresponding test for the native Java Fall Detection App.

We observed that the accessor-based version deployed on Cordova Accessor host

performed a lot better than the native application. For example, we noticed that the native

application had its smartphone’s battery at 8% when the smartwatch battery became 0%

while the accessor-based application had its smartphone’s battery still at 35% when the

smartwatch battery became 0%. We examined the codes in the native application and

realized that it made use of some of the background services which might consume more

battery as compared to the accessor-based application that did not make use of the

background services. In order to compare them fairly, we removed the background

service codes in the native application that might account for the differences.

After the modification, we performed the second of the five tests and noted that

there was a little improvement with, but the difference is not that significance. The

remaining three tests shows the similar trend. The average battery usage over the five

tests at each one-hour interval are displayed in Table 3 and 4. We also plotted the line

graphs showing the smartphone battery usage of accessor-based App versus native App

in Figure 16.

The accessor-based App running on Cordova host used around 32.65% less

battery power than the native App. The graph in Figure 16 gives a visual representation

of the battery usage at each time interval. The battery usage of the smartwatch is the same

because in both experiment the same service is run on the smartwatch to send the sensed

data to the smartphone periodically.

 39

Table 3. Average Battery Usage for Native (Java) App

Time (hr) 0 1 2 3 4

SmartPhone (%) 100 73.00 47.20 19.20 11.60

SmartWatch (%) 100 70.00 42.20 12.40 0.00

Table 4. Average Battery Usage for Cordova Accessor Host App

Time (hr) 0 1 2 3 4

SmartPhone (%) 100 84.75 68.75 50.25 44.25

SmartWatch (%) 100 72.00 42.25 12.00 0.00

Figure 17. Graph Showing Smartphone Battery usage of Accessor-based App Versus

Native App

 40

6. CONCLUSION AND FUTURE WORK

We discussed the need for an edge-base IoT service framework and explored the

Cordova Accessor host for that. We presented the architecture of Cordova Accessor host

and analyzed the advantage of an edge IoT service middleware based on Apache

Cordova platform for the development of real-world IoT applications with experimental

evaluations of the effectiveness of Cordova Accessor host for rapid development of IoT

services by composing two different IoT applications using accessors as the basic

components and measures the reusability and code changes required.

 We have also further demonstrated how accessor design pattern can facilitate

sensor data collection across three different types of smartwatches from Google,

Microsoft and Huawei with minimal additional programming. We also performed

experiments to demonstrate the better battery utilization using IoT services on Cordova

Accessor host verses native implementation.

In the Future, there will be a need to update accessors like the data collection

accessor that supports the portability of heterogeneous IoT device such as Arduino,

Raspberry Pi and other IoT devices other than smartwatches. There will also be a need to

extend the alert accessor by adding more notification features like making phone calls.

We have discussed the development of accessors and have made use of ANDROID

operating system for our development, there will be a need to demonstrate the cross-

platform feature of Cordova to deploy the accessor-based Fall Detection app and Heart

Rate Monitoring app in IOS operating system for iPhones. Lastly, in terms of

performance test, we only completed the study on battery consumption. There is a need to

investigate other performance metrics. For example, there will be a need to study the

 41

latency when collecting sensor data and undergo performance evaluation by comparing a

similar framework (an edge-based framework) to the Cordova accessor host as well as

comparing the memory utilization of using the Cordova accessor host when building apps

versus using the native app.

 42

APPENDIX SECTION

Appendix A: Setting up Apache Cordova

Step 1: Requirements

The following must be installed in order to start using Apache Cordova

1. Node.js

2. Apache Cordova – install by typing “npm install -g Cordova”

3. Install the following for Android

a. Android Studio

b. Java JDK

c. Android SDK

d. Android target (android-19, android-20)

e. Gradle

4. For more requirements needed to be installed, type “cordova requirements”

Step 2: Create the Application

1. Create the required directory needed for your cordova app by typing

“cordova create test com.example.testapplication TestApplication”

2. Add a platform to the Cordova application by typing “cordova platform add

<platform name>”

3. View the current set of platforms by typing “cordova platform ls”

Step 3: Build the Application

1. To build the project for all platforms, type “cordova build”

2. To build for just a particular platform, for example: android.

Type “cordova build android”

 43

Step 4: Run the Application

There are different ways of running the application

1. Running with Android Studio

a. Open the Android Cordova application using Android Studio

b. Build the application and install missing android dependencies

c. Run the application by clicking on the play Icon as shown in the Android

Studio interface below

2. Running with Cordova command line

a. Open command line for windows and Terminal for Mac or Linux

b. Change directory to your project path

c. From the command line, run “cordova run <platform name>”. For

example, to run an android application “cordova run android”

 44

Appendix B: Working with Cordova Plugins

There are 2 ways to create cordova plugins

Using Plugman

1. To Install Plugman, type “npm install -g plugman”

2. Change directory to your project plugins found in “web/hosts/cordova/plugins/”.

3. To create a plugin, type “plugman create --name huawei --plugin_id cordova-

plugin-huawei -plugin_version 0.0.1”.

4. Change directory to the plugin just created.

5. Create package json by typing, “plugman createpackagejson <name of the

plugman plugin created >”. For example: “plugman createpackagejson Huawei”

6. To install the created plugin, type “plugman install --platform android --project

platforms/android --plugin <plugin_name>”.

7. To uninstall the installed plugin, type “plugman uninstall --platform android --

project platforms/android --plugin <plugin_name>”

Using Cordova

1. Clone the sample cordova plugin repository at

https://github.com/jileyitayo/cordova-plugin-wearos

2. Reconstruct this plugin to fit your desired plugin configuration

3. Change directory to your cordova application

4. Add the plugin to your application by typing, “cordova plugin add

<plugin_name>”.

https://github.com/jileyitayo/cordova-plugin-wearos

 45

Appendix C: Developing WearOS Application for a Phone Application

Building the WearOS application to receive accelerometer data

DataService.java

This file is found in “cordova-accessor -

host/platforms/android/wearos/src/main/java/com/jse52/sensors_wearos/DataService.java

”

MainActivity.java

This file is found in cordova-accessor-

host/platforms/android/wearos/src/main/java/com/jse52/sensors_wearos/MainActivity.jav

a”

activity_main.xml

This file is found in “cordova-accessor-

host/platforms/android/wearos/src/main/res/layout/activity_main.xml”

wear.xml

This file is found in “cordova-accessor-

host/platforms/android/wearos/src/main/res/values/wear.xml”. This file should also be

copied and pasted in the same location for the app module for the smartphone.

Integrating the WearOS application with Android SmartPhone Application

The following checks has to be considered when Integrating to Android SmartPhone

Application.

 46

• In the SmartPhone and Smartwatch manifest file, the manifest attribute package

has to match as shown below

package="com.jse52"

• The “applicationId” in the gradle has to match

• for both phone and watch, create a resource file in res/values/wear.xml that has

the same item attribute “android_ wearos_capability”.

Setting Permissions when running Wearos application

When you run the wearos app for the first time, there will be a need to allow

permission for the watch to receive the data from the watch. This can be done by going to

Settings, Apps and permissions then the application name.

 47

Appendix D: Getting Started with Cordova Accessor host with Fall Detection

Application

Step 1: Requirements

The following must be installed in order to start using Cordova Accessor host

a. Node.js

b. Apache Cordova – install by typing “npm install -g Cordova”

c. Install the following for Android

• Android Studio

• Java JDK

• Android SDK

• Android target (android-19, android-20)

• Gradle

d. For more requirements needed to be installed, type “cordova requirements”

Step 2: Building the Fall Detection Application

a. Create a folder you want to save the Application

b. Open Terminal or Command line and Change directory to the created folder

c. Clone the Cordova Accessor host repository that contains the Fall detection

application by typing “git clone https://github.com/jileyitayo/cordova-accessor-

host”

d. Open Android Studio and Open the existing folder found at

“<created_folder>/cordova-accessor-host/platforms/android”, then open the

android folder.

e. Android studio will the build the application. This can take a while.

https://github.com/jileyitayo/cordova-accessor-host
https://github.com/jileyitayo/cordova-accessor-host

 48

f. Once the gradle builds, select which device to run the application on. You can

install on smartwatch (WearOS) or the smartphone(app)

g. To Run the application, click on the play button as shown below

 49

REFERENCES

[1] R. Want, B. N. Schilit, and S. Jenson, "Enabling the Internet of Things,"

Computer, Periodical vol. 48, no. 1, pp. 28-35, 01/01/ 2015, doi:

10.1109/MC.2015.12.

[2] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, "IoT Middleware:

A Survey on Issues and Enabling Technologies," IEEE Internet of Things

Journal, Internet of Things Journal, IEEE, IEEE Internet Things J., Periodical

vol. 4, no. 1, pp. 1-20, 02/01/ 2017, doi: 10.1109/JIOT.2016.2615180.

[3] A. Karl Aberer, A. Manfred Hauswirth, and A. Ali Salehi, "A middleware for fast

and flexible sensor network deployment," ed: VLDB Endowment, 2006, p. 1199.

[4] "NodeRed." http://nodered.org (accessed April 8th, 2020).

[5] E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver, A. Wasicek, and M. Weber, "A

Vision of Swarmlets," (in English), IEEE Internet Computing, Article vol. 19, no.

2, pp. 20-28, 03 / 01 / 2015, doi: 10.1109/MIC.2015.17.

[6] "Google Fit." https://developers.google.com/fit/ (accessed April 8th, 2020).

[7] "Architectural Styles and Design of Network-based Software Architectures."

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm (accessed 2000).

[8] A. Thomas Zachariah, A. Noah Klugman, A. Bradford Campbell, A. Joshua

Adkins, A. Neal Jackson, and A. Prabal Dutta, "The Internet of Things Has a

Gateway Problem," ed. New York, NY, USA: ACM, 2015, p. 27.

[9] "CordovaHost." https://wiki.eecs.berkeley.edu/accessors/Main/CordovaHost

(accessed April 8th, 2020).

http://nodered.org/
https://developers.google.com/fit/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://wiki.eecs.berkeley.edu/accessors/Main/CordovaHost

 50

[10] "Entreprise JavaBeans." https://en.wikipedia.org/wiki/Enterprise_JavaBeans

(accessed April 8th, 2020).

[11] A. HyunJae Lee, A. EunJin Jeong, A. Donghyun Kang, A. Jinmyeong Kim, and

A. Soonhoi Ha, "A novel service-oriented platform for the internet of things," ed.

New York, NY, USA: ACM, 2017, p. 1.

[12] "AWS IoT." https://aws.amazon.com/iot/ (accessed April 8th, 2020).

[13] "Watson IoT." https://www.ibm.com/internet-of-things/learn/what-is-iot/

(accessed April 8th, 2020).

[14] "ThingSpeak IoT." https://thingspeak.com (accessed April 8th, 2020).

[15] "Google Cloud IoT." https://cloud.google.com/solutions/iot (accessed April 8th,

2020).

[16] "The TerraSwarm Research Center."

https://ptolemy.berkeley.edu/projects/terraswarm/ (accessed April 8th, 2020).

[17] "Accessors." https://www.terraswarm.org/accessors (accessed April 8th, 2020).

[18] M. Weber, R. Akella, and E. A. Lee, "Service Discovery for the Connected Car

with Semantic Accessors," ed: IEEE, 2019, pp. 2417-2422.

[19] X. Lu, "An investigation on service-oriented architecture for constructing

distributed web GIS application," 2005 / 01 / 01 / 2005, vol. I, pp. 191-197, doi:

10.1109/SCC.2005.27. [Online]. Available:

http://libproxy.txstate.edu/login?url=http://search.ebscohost.com/login.aspx?direc

t=true&db=edselc&AN=edselc.2-52.0-33745966720&site=eds-live&scope=site

https://en.wikipedia.org/wiki/Enterprise_JavaBeans
https://aws.amazon.com/iot/
https://www.ibm.com/internet-of-things/learn/what-is-iot/
https://thingspeak.com/
https://cloud.google.com/solutions/iot
https://ptolemy.berkeley.edu/projects/terraswarm/
https://www.terraswarm.org/accessors
http://libproxy.txstate.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-33745966720&site=eds-live&scope=site
http://libproxy.txstate.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-33745966720&site=eds-live&scope=site

 51

[20] B.-Y. Ooi, Z.-W. Kong, W.-K. Lee, S.-Y. Liew, and S. Shirmohammadi, "A

collaborative IoT-gateway architecture for reliable and cost effective

measurements," IEEE Instrumentation & Measurement Magazine,

Instrumentation & Measurement Magazine, IEEE, IEEE Instrum. Meas. Mag.,

Periodical vol. 22, no. 6, pp. 11-17, 12/01/ 2019, doi:

10.1109/MIM.2019.8917898.

[21] B. D. Marah et al., "Smartphone architecture for edge-centric iot analytics," (in

English), Sensors (Switzerland), Article vol. 20, no. 3, 02 / 01 / 2020, doi:

10.3390/s20030892.

[22] C. Brooks et al., "A Component Architecture for the Internet of Things," (in

English), Proceedings of the IEEE, Article vol. 106, no. 9, pp. 1527-1542, 09 / 01

/ 2018, doi: 10.1109/JPROC.2018.2812598.

[23] C. Brooks et al., "A Component Architecture for the Internet of Things," vol.

106, ed, 2018, pp. 1527-1542.

[24] "BrowserHost." https://wiki.eecs.berkeley.edu/accessors/Main/BrowserHost

(accessed April 8th, 2020).

[25] "Node Package Manager." https://www.npmjs.com (accessed April 8th, 2020).

[26] "NodeHost." https://wiki.eecs.berkeley.edu/accessors/Main/NodeHost (accessed

April 8th, 2020).

[27] "CapeCode." http://capecode.org/ (accessed April 8th, 2020).

[28] "Apache Cordova."

https://cordova.apache.org/docs/en/latest/guide/overview/index.html (accessed

April 8th, 2020).

https://wiki.eecs.berkeley.edu/accessors/Main/BrowserHost
https://www.npmjs.com/
https://wiki.eecs.berkeley.edu/accessors/Main/NodeHost
http://capecode.org/
https://cordova.apache.org/docs/en/latest/guide/overview/index.html

 52

[29] "Cordova Plugin." https://cordova.apache.org/plugins/ (accessed April 8th, 2020).

https://cordova.apache.org/plugins/

	EVALUATION OF CORDOVA ACCESSOR HOST FOR RAPID DEVELOPMENT OF IOT APPLICATIONS ON MOBILE EDGE DEVICES
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	1. INTRODUCTION
	2. RELATED IOT MIDDLEWARE SERVICE FRAMEWORKS
	3. ACCESSOR DESIGN PATTERN AND ACCESSOR HOST
	4. CORDOVA ACCESSOR HOST
	5. EXPERIMENT
	6. CONCLUSION AND FUTURE WORK
	APPENDIX SECTION
	REFERENCES

