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Resonance problems with respect to the Fuč́ık

spectrum of the p-Laplacian ∗

Kanishka Perera

Abstract

We solve resonance problems with respect to the Fuč́ık spectrum of
the p-Laplacian using variational methods.

1 Introduction

Consider the quasilinear elliptic boundary value problem

−∆p u = a (u+)p−1 − b (u−)p−1 + f(x, u), u ∈W 1, p
0 (Ω) (1.1)

where Ω is a bounded domain in Rn, n ≥ 1, ∆p u = div
(
|∇u|p−2∇u

)
is the

p-Laplacian, 1 < p <∞, u± = max {±u, 0}, and f is a Carathéodory function
on Ω× R satisfying a growth condition

|f(x, t)| ≤ V (x)p−q |t|q−1 +W (x)p−1 (1.2)

with 1 ≤ q < p and V, W ∈ Lp(Ω). The set Σp of those points (a, b) ∈ R2 for
which the asymptotic problem

−∆p u = a (u+)p−1 − b (u−)p−1, u ∈W 1, p
0 (Ω) (1.3)

has a nontrivial solution is called the Fuč́ık spectrum of the p-Laplacian on Ω.
The nonresonance case for problem (1.1), (a, b) /∈ Σp, was recently studied by
Cuesta, de Figueiredo, and Gossez [4] and the author [23, 24]. The symmetric
resonance case, a = b ∈ σ(−∆p), was considered by Drábek and Robinson
[11]. The purpose of the present paper is to study the general resonance case
(a, b) ∈ Σp.

The Fuč́ık spectrum was introduced in the semilinear case, p = 2, by Dancer
[6] and Fuč́ık [12] who recognized its significance for the solvability of problems
with jumping nonlinearities. In the semilinear ODE case p = 2, n = 1, Fuč́ık
[12] showed that Σ2 consists of a sequence of hyperbolic like curves passing
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through the points (λl, λl), where {λl}l∈N are the eigenvalues of −∆, with one
or two curves going through each point. Drábek [10] has recently shown that
Σp has this same general shape for all p > 1 in the ODE case.

In the PDE case, n ≥ 2, much of the work to date on Σp has been for
the semilinear case. It is now known that Σ2 consists, at least locally, of curves
emanating from the points (λl, λl) (see, e.g., [2, 5, 6, 9, 12, 13, 15, 16, 17, 20, 21]).
Schechter [31] has shown that Σ2 contains two continuous and strictly decreasing
curves through (λl, λl), which may coincide, such that the points in the square
(λl−1, λl+1)2 that are either below the lower curve or above the upper curve are
not in Σ2, while the points between them may or may not belong to Σ2 when
they do not coincide.

In the quasilinear PDE case, p 6= 2, n ≥ 2, it is known that the first eigen-
value λ1 of −∆p is positive, simple, and admits a positive eigenfunction ϕ1 (see
Lindqvist [19]). Hence Σp contains the two lines λ1×R and R×λ1. In addition,
σ(−∆p) has an unbounded sequence of variational eigenvalues {λl} satisfying a
standard min-max characterization, and Σp contains the corresponding sequence
of points {(λl, λl)}. A first nontrivial curve in Σp through (λ2, λ2) asymptotic to
λ1×R and R×λ1 at infinity was recently constructed and variationally charac-
terized by a mountain-pass procedure by Cuesta, de Figueiredo, and Gossez [4].
More recently, unbounded sequences of curves

{
C±l
}

in Σp (analogous to the
lower and upper curves of Schechter) have been constructed and variationally
characterized by min-max procedures by Micheletti and Pistoia [22] for p ≥ 2
and by the author [24] for all p > 1.

Let us also mention that some Morse theoretical aspects of the Fuč́ık spec-
trum have been studied in Dancer [7], Dancer and Perera [8], Perera and
Schechter [25, 26, 27, 28, 29, 30], and Li, Perera, and Su [18].

Denote by N the set of nontrivial solutions of (1.3), and set

F (x, t) :=
∫ t

0

f(x, s) ds, H(x, t) := pF (x, t)− tf(x, t). (1.4)

The main result of this paper is:

Theorem 1.1. The problem (1.1) has a solution if

(i). (a, b) ∈ C+
l and

∫
Ω
H(x, uj)→ +∞, or

(ii). (a, b) ∈ C−l and
∫

Ω
H(x, uj)→ −∞

for every sequence (uj) in W 1, p
0 (Ω) such that ‖uj‖ → ∞ and uj/‖uj‖ converges

to some element of N .

As is usually the case in resonance problems, the main difficulty here is
the lack of compactness of the associated variational functional. We will over-
come this difficulty by constructing a sequence of approximating nonresonance
problems, finding approximate solutions for them using linking and min-max
type arguments, and passing to the limit. But first we give some corollar-
ies. In what follows, (uj) is as in the theorem, i.e., ρj := ‖uj‖ → ∞ and
vj := uj/ρj → v ∈ N .
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First we give simple pointwise assumptions on H that imply the limits in
the theorem.

Corollary 1.2. Problem (1.1) has a solution in the following cases:

(i). (a, b) ∈ C+
l , H(x, t)→ +∞ a.e. as |t| → ∞, and H(x, t) ≥ −C(x),

(ii). (a, b) ∈ C−l , H(x, t)→ −∞ a.e. as |t| → ∞, and H(x, t) ≤ C(x)

for some C ∈ L1(Ω).

Note that this corollary makes no reference to N .

Proof. If (i) holds, then H(x, uj(x)) = H(x, ρj vj(x)) → +∞ for a.e. x such
that v(x) 6= 0 and H(x, uj(x)) ≥ −C(x), so∫

Ω

H(x, uj) ≥
∫
v 6=0

H(x, uj)−
∫
v=0

C(x)→ +∞ (1.5)

by Fatou’s lemma. Similarly,
∫

Ω
H(x, uj)→ −∞ if (ii) holds.

Note that the above argument goes through as long as the limits in (i) and
(ii) hold on subsets of {x ∈ Ω : v(x) 6= 0} with positive measure. Now, taking
w = v+ in ∫

Ω

|∇v|p−2∇v · ∇w =
∫

Ω

[
a (v+)p−1 − b (v−)p−1

]
w (1.6)

gives

‖v+‖p =
∫

Ω+

a (v+)p ≤ a ‖v+‖pp∗ µ(Ω+)p/n

≤ aS−1 ‖v+‖p µ(Ω+)p/n (1.7)

where Ω+ = {x ∈ Ω : v(x) > 0}, p∗ = np/(n−p) is the critical Sobolev exponent,
S is the best constant for the embedding W 1, p

0 (Ω) ↪→ Lp
∗
(Ω), and µ is the

Lebesgue measure in Rn, so

µ(Ω+) ≥
(
S

a

)n/p
. (1.8)

A similar argument shows that

µ(Ω−) ≥
(
S

b

)n/p
(1.9)

where Ω− = {x ∈ Ω : v(x) < 0}, and hence

µ
(
{x ∈ Ω : v(x) = 0}

)
≤ µ(Ω)− Sn/p

(
a−n/p + b−n/p

)
. (1.10)

Thus,
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Corollary 1.3. Problem (1.1) has a solution in the following cases:

(i). (a, b) ∈ C+
l , H(x, t)→ +∞ in Ω′ as |t| → ∞, and H(x, t) ≥ −C(x),

(ii). (a, b) ∈ C−l , H(x, t)→ −∞ in Ω′ as |t| → ∞, and H(x, t) ≤ C(x)

for some Ω′ ⊂ Ω with µ(Ω′) > µ(Ω)− Sn/p
(
a−n/p + b−n/p

)
and C ∈ L1(Ω).

Next note that

H+(x) (v+(x))q +H−(x) (v−(x))q ≤ lim inf
H(x, uj(x))

ρqj

≤ lim sup
H(x, uj(x))

ρqj
≤ H+(x) (v+(x))q +H−(x) (v−(x))q

(1.11)

where

H±(x) = lim inf
t→±∞

H(x, t)
|t|q

, H±(x) = lim sup
t→±∞

H(x, t)
|t|q

. (1.12)

Moreover,

|H(x, uj(x))|
ρqj

≤ (p+ q)V (x)p−q |vj(x)|q +
(p+ 1)W (x)p−1 |vj(x)|

ρq−1
j

(1.13)

by (1.2), so it follows that∫
Ω

H+(v+)q +H−(v−)q ≤ lim inf

∫
Ω
H(x, uj)
ρqj

≤ lim sup

∫
Ω
H(x, uj)
ρqj

≤
∫

Ω

H+(v+)q +H−(v−)q.
(1.14)

Thus we have

Corollary 1.4. Problem (1.1) has a solution in the following cases:

(i). (a, b) ∈ C+
l and

∫
Ω
H+(v+)q +H−(v−)q > 0 ∀v ∈ N ,

(ii). (a, b) ∈ C−l and
∫

Ω
H+(v+)q +H−(v−)q < 0 ∀v ∈ N .

Finally we note that if

tf(x, t)
|t|q

→ f±(x) a.e. as t→ ±∞, (1.15)

then

F (x, t)
|t|q

=
1
|t|q

∫ t

0

[
sf(x, s)
|s|q

− f±(x)
]
|s|q−2s ds+

f±(x)
q
→ f±(x)

q
(1.16)

and hence
H(x, t)
|t|q

→
(
p

q
− 1
)
f±(x), (1.17)

so Corollary 1.4 implies
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Corollary 1.5. Problem (1.1) has a solution in the following cases:

(i). (a, b) ∈ C+
l and

∫
Ω
f+(v+)q + f−(v−)q > 0 ∀v ∈ N ,

(ii). (a, b) ∈ C−l and
∫

Ω
f+(v+)q + f−(v−)q < 0 ∀v ∈ N .

2 Preliminaries on the Fuč́ık Spectrum

As in Cuesta, de Figueiredo, and Gossez [4], the points in Σp on the line parallel
to the diagonal a = b and passing through (s, 0) are of the form (s + c+, c+)
(resp. (c−, s+ c−)) with c± a critical value of

J±s (u) =
∫

Ω

|∇u|p − s (u±)p, u ∈ S =
{
u ∈W 1, p

0 (Ω) : ‖u‖p = 1
}

(2.1)

and J±s satisfies the Palais-Smale compactness condition. Since Σp is clearly
symmetric with respect to the diagonal, we may assume that s ≥ 0. In par-
ticular, the eigenvalues of −∆p on W 1, p

0 (Ω) correspond to the critical values of
the even functional J = J±0 . As observed in Drábek and Robinson [11], we can
define an unbounded sequence of critical values of J by

λl := inf
A∈Fl

max
u∈A

J(u), l ∈ N (2.2)

where

Fl =
{
A ⊂ S : there is a continuous odd surjection h : Sl−1 → A

}
(2.3)

and Sl−1 is the unit sphere in Rl, although it is not known whether this gives
a complete list of eigenvalues.

Suppose that l ≥ 2 is such that λl > λl−1 and let 0 < ε < λl−λl−1 be given.
By (2.2), there is an Al−2 ∈ Fl−1 such that

max
u∈Al−2

J(u) < λl−1 + ε. (2.4)

Let hl−2 : Sl−2 → Al−2 be any continuous odd surjection and let

F+
l =

{
A+ ⊂ S : there is a continuous surjection h : Sl−1

+ → A+

such that h|Sl−2 = hl−2

}
(2.5)

where Sl−1
+ is the upper hemisphere of Sl−1 with boundary Sl−2. Then F+

l is
a homotopy-stable family of compact subsets of S with closed boundary Al−2,
i.e,

(i). every set A+ ∈ F+
l contains Al−2,

(ii). for any set A+ ∈ F+
l and any η ∈ C([0, 1] × S;S) satisfying η(t, u) = u

for all (t, u) ∈ ({0} × S) ∪ ([0, 1]×Al−2) we have that η({1} ×A) ∈ F+
l .
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For s ∈ Iεl := [0, λl − λl−1 − ε], set

c±l (s) := inf
A+∈F+

l

max
u∈A+

J±s (u). (2.6)

If c±l (s) < λl − s, taking A+ ∈ F+
l with

max
u∈A+

J±s (u) < λl − s (2.7)

and setting A = A+ ∪ (−A+) we get a set in Fl for which

max
u∈A

J(u) = max
u∈A+

J(u) ≤ max
u∈A+

J±s (u) + s < λl, (2.8)

a contradiction. Thus

c±l (s) ≥ λl − s ≥ λl−1 + ε > max
u∈Al−2

J(u) ≥ max
u∈Al−2

J±s (u), (2.9)

and it follows from Theorem 3.2 of Ghoussoub [14] that c±l (s) is a critical value
of J±s . Hence

C±l :=
{

(s+ c±l (s), c±l (s)) : s ∈ Iεl
}
∪{(c±l (s), s+c±l (s)) : s ∈ Iεl } ⊂ Σp. (2.10)

Note that (2.9) implies c±l (0) ≥ λl →∞.

3 Proof of Theorem 1.1

As is well-known, solutions of (1.2) are the critical points of

Φ(u) =
∫

Ω

|∇u|p − a (u+)p − b (u−)p − pF (x, u), u ∈W 1, p
0 (Ω). (3.1)

We only consider (i) as the proof for (ii) is similar. Let (a, b) = (s+c+l (s), c+l (s)),
s ≥ 0 and

Φj(u) = Φ(u) +
1
j

∫
Ω

|u|p =
∫

Ω

|∇u|p − s (u+)p −
(
c+l (s)− 1

j

)
|u|p − pF (x, u).

(3.2)
First we show that, for sufficiently large j, there is a uj ∈W 1, p

0 (Ω) such that

‖uj‖ ‖Φ′j(uj)‖ → 0, inf Φj(uj) > −∞. (3.3)

Let ε and Al−2 be as in Section 2. By (2.9),

max
u∈Al−2

J±s (u) ≤ c±l (s)− 2
j

(3.4)



EJDE–2002/36 Kanishka Perera 7

for sufficiently large j. For such j, u ∈ Al−2, and R > 0,

Φj(Ru) = Rp
[
J+
s (u)−

(
c+l (s)− 1

j

)]
−
∫

Ω

pF (x,Ru)

≤ −R
p

j
+ p

(
‖V ‖p−qp Rq + ‖W‖p−1

p R
)

(3.5)

by (1.2), so
max
u∈Al−2

Φj(Ru)→ −∞ as R→∞. (3.6)

Next let
F =

{
u ∈W 1, p

0 (Ω) : J+
s (u) ≥ c+l (s) ‖u‖pp

}
. (3.7)

For u ∈ F ,

Φj(u) ≥
‖u‖pp
j
− p

(
‖V ‖p−qp ‖u‖qp + ‖W‖p−1

p ‖u‖p
)
, (3.8)

so

inf
u∈F

Φj(u) ≥ C := min
r≥0

[
rp

j
− p

(
‖V ‖p−qp rq + ‖W‖p−1

p r
)]

> −∞. (3.9)

Now use (3.6) to fix R > 0 so large that

max Φj(B) < C (3.10)

where B =
{
Ru : u ∈ Al−2

}
.

Next consider the homotopy-stable family of compact subsets of X with
boundary B given by

F =
{
A ⊂ X : there is a continuous surjection h : Sl−1

+ → A

such that h|Sl−2 = Rhl−2

}
(3.11)

where hl−2 is as in Section 2. We claim that the set F is dual to the class F ,
i.e.,

F ∩B = ∅, F ∩A 6= ∅ ∀A ∈ F . (3.12)

It is clear from (3.9) and (3.10) that F ∩B = ∅. Let A ∈ F . If 0 ∈ A, then we
are done. Otherwise, denoting by π the radial projection onto S, π(A) ∈ F+

l

and hence
max
u∈π(A)

J+
s (u) ≥ c+l (s), (3.13)

so F ∩ π(A) 6= ∅. But this implies F ∩A 6= ∅.
Now it follows from a deformation argument of Cerami [3] that there is a uj

such that
‖uj‖ ‖Φ′j(uj)‖ → 0, |Φj(uj)− cj | → 0 (3.14)

where
cj := inf

A∈F
max
u∈A

Φj(u) ≥ C, (3.15)
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from which (3.3) follows.
We complete the proof by showing that a subsequence of (uj) converges to a

solution of (1.1). It is easy to see that this is the case if (uj) is bounded, so sup-
pose that ρj := ‖uj‖ → ∞. Setting vj := uj/ρj and passing to a subsequence,
we may assume that vj → v weakly in W 1, p

0 (Ω), strongly in Lp(Ω), and a.e. in
Ω. Then∫

Ω

|∇vj |p−2∇vj · ∇(vj − v) =

(
Φ′j(uj), vj − v

)
p ρp−1

j

+
∫

Ω

[(
a− 1

j

)
(v+
j )p−1

−
(
b− 1

j

)
(v−j )p−1 +

f(x, uj)
ρp−1
j

]
(vj − v)→ 0, (3.16)

and we deduce that vj → v strongly in W 1, p
0 (Ω) (see, e.g., Browder [1]). In

particular, ‖v‖ = 1, so v 6= 0. Moreover, for each w ∈ W 1, p
0 (Ω), passing to the

limit in(
Φ′j(uj), w

)
p ρp−1

j

=
∫

Ω

|∇vj |p−2∇vj · ∇w −
[(
a− 1

j

)
(v+
j )p−1

−
(
b− 1

j

)
(v−j )p−1 +

f(x, uj)
ρp−1
j

]
w (3.17)

gives ∫
Ω

|∇v|p−2∇v · ∇w −
[
a (v+)p−1 − b (v−)p−1

]
w = 0, (3.18)

so v ∈ N . Thus, (
Φ′j(uj), uj

)
p

− Φj(uj) =
∫

Ω

H(x, uj)→ +∞, (3.19)

contradicting (3.3).
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[24] K. Perera. On the Fuč́ık spectrum of the p-Laplacian. preprint.

[25] K. Perera and M. Schechter. Computation of critical groups in Fuč́ık res-
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