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EXISTENCE OF POSITIVE SOLUTIONS TO NONLINEAR
ELLIPTIC PROBLEM IN THE HALF SPACE

IMED BACHAR, HABIB MAAGLI, MALEK ZRIBI

ABSTRACT. This paper concerns nonlinear elliptic equations in the half space
R} = {z = (2',zn) € R™ : 2, > 0}, n > 2, with a nonlinear term satis-
fying some conditions related to a certain Kato class of functions. We prove
some existence results and asymptotic behaviour for positive solutions using a
potential theory approach.

1. INTRODUCTION

In the present paper, we study the nonlinear elliptic equation
Au+ f(.,u) =0, in R} (1.1)

in the sense of distributions, with some boundary values determined below (see
problems ([.6)), and ([.12)). Here R} := {z = (2/,z,) € R" : z, > 0},
(n>2).

Several results have been obtained for , in both bounded and unbounded
domain D C R" with different boundary conditions; see for example [2] B} 4, B} [7)
8, 10, 12, 13, 14, 16, 17] and the references therein. Our goal of this paper is to
undertake a study of when the nonlinear term f(z,t) satisfies some conditions
related to a certain Kato class K°°(R"} ), and to answer the questions of existence
and asymptotic behaviour of positive solutions.

Our tools are based essentially on some inequalities satisfied by the Green func-
tion G(x,y) of (—A) in R’}. This allows us to state some properties of functions in
the class K°°(R") which was introduced in [2] for n > 3, and in [3] for n = 2.

Definition 1.1. A Borel measurable function ¢ in R’ belongs to the class K> (R )
if ¢ satisfies the following two conditions

lim ( sup / U G, ) a(y) dy) =0, (1.2)

a—0 zery NB(z,a) Tn
. Yn

i (sup | G e ) ()l dy) = 0. (13)
—o° zeRy JRYN(ly|>M) Tn

The class K*°(R?) is sufficiently rich. It contains properly the classical Kato
class K;°(R" ), defined by Zhao [21], for n > 3 in unbounded domains D as follows:
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Definition 1.2. A Borel measurable function g on D belongs to the Kato class
K2°(D) if ¢ satisfies the following two conditions

lim sup Mdy) =0,
d—2
2—=04eD JDN(jz—y|<a) lz -y
lim sup/ 7|¢(y)d|_2dy) =0.
M—00 zeD J DN (|y|>M) |z —yl

Typical examples of functions ¢ in the class K°°(R"}.) are: ¢ € LP(R7)NLY(R?),

where p > 5 and n > 3; and
1
q(x) - (‘$| + 1)“’7}\1‘%7

where A < 2 < g and n > 2 (see [2, 3]).

We shall refer in this paper to the bounded continuous solution H g of the Dirich-
let problem

Au =0, inRY

. , 1.4
Jim u(a) = g(a), (1.4)

where ¢ is a nonnegative bounded continuous function in R"~! (see [I, p. 418]).
We also refer to the potential of a measurable nonnegative function f, defined on
R? by
Vi) = | Gz,y)f(y)dy.
R%

Our paper is organized as follows. Existence results are proved in sections 3, 4,
and 5. In section 2, we collect some preliminary results about the Green function
G and the class K>°(R"}). We prove further that if p > n/2 and a € LP(R’;), then
for A <2 — % <, the function

a(z)
(lz| + 1)p=ray”
is in K°°(R"}). In section 3, we establish an existence result for equation (L.1)) where

a singular term and a sublinear term are combined in the nonlinearity f(x,t).
The pure singular elliptic equation

Au+p(z)u7=0, v>0,z€ DCR"

€T —

has been extensively studied for both bounded and unbounded domains. We refer
to 7, [8, 10, 12} 13} [14] and references therein, for various existence and uniqueness
results related to solutions for above equation.

For more general situations Maagli and Zribi showed in [I7] that the problem

Au+¢(,u)=0, ze€D

ulyp =0 (1.5)
lim w(x) =0, if D is unbounded
|z]—o00
admits a unique positive solution if ¢ is a nonnegative measurable function on
(0, 00), which is non-increasing and continuous with respect to the second variable
and satisfies

(HO) For all ¢ > 0, ¢(.,c) € K*°(D).
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If D =R, the result of Maagli and Zribi [I7] has been improved later by Bachar
and Maagli in [2], where they gave an existence and an uniqueness result for (|1.5)),
with the more restrictive condition

(HO") For all ¢ > 0, ¢(.,c) € K=®(RY).
On the other hand, (1.1) with a sublinear term f(.,u) have been studied in R™

by Brezis and Kamin in [5]. Indeed, the authors proved the existence and the
uniqueness of a positive solution for the problem
Au+p(x)u® =0 in R",
liminf u(z) = 0,
|z|—o00
with 0 < a < 1 and p is a nonnegative measurable function satisfying some appro-
priate conditions.
In this section, we combine a singular term and a sublinear term in the nonlin-
earity. Indeed, we consider the boundary value problem
Au+ (., u) +9Y(.,u) =0, inRY
u>0, inR"
lim u(z) =0, (1.6)
xn,—0
lim wu(z) =0,
|| —+o00
in the sense of distributions, where ¢ and v are required to satisfy the following
hypotheses:

(H1) ¢ is a nonnegative Borel measurable function on R’} x (0,00), continuous
and non-increasing with respect to the second variable.
(H2) For all ¢ > 0, x — ¢(z, cf(x)) belongs to K> (R} ), where
x
O(x) = ———.
= T faly
(H3) ) is a nonnegative Borel measurable function on R’} x (0,00), continuous
with respect to the second variable such that there exist a nontrivial non-
negative function p and a nonnegative function ¢ € K*°(R"} ) satisfying for
z € R} and t >0,

p(x)h(t) < ¢(x,t) < q(z)f (1), (1.7)

where h is a measurable nondecreasing function on [0, co) satisfying

. h(t)
lim — = 1.8
tl%l-%— t oo ( )
and f is a nonnegative measurable function locally bounded on [0, 00) sat-
isfying
t
limsup@ < |Vl so- (1.9)
t—o0

Using a fixed point argument, we shall state the following existence result.

Theorem 1.3. Assume (H1)-(H3). Then the problem (1.6 has a positive solution
u € Co(RY) satisfying for each x € R}

ab(x) < u(z) < V(p(.,a0))(x) +bVq(z),

where a,b are positive constants.
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Note that Maagli and Masmoudi studied in [I6} [I8] the case ¢ = 0, under similar
conditions to those in (H3). Indeed the authors gave an existence result for

Au+Y(.,u) =0in D, (1.10)

with some boundary conditions, where D is an unbounded domain in R™ (n > 2)
with compact nonempty boundary.
Typical examples of nonlinearities satisfying (H1)—(H3) are:

p(x,t) = p(x)(0(x)t™7,
for v > 0, and
(@, t) = p(a)t*log(1+ 1),
for o, 8 > 0 such that a4 8 < 1, where p is a nonnegative function in K*°(R? ).
In section 4, we consider the nonlinearity f(x,t) = —te(x,t) and we use a po-
tential theory approach to investigate an existence result for . Let o € [0,1]
and w be the function defined on R? by w(x) = ax, + (1 — ). We shall prove in
this section the existence of positive continuous solutions for the following nonlinear
problem
Au —up(.,u) =0, in R}
u>0, inR"
zlirilou(sc) = (1—a)g(z'), (1.11)
lim ) = al,
Ty —+00 T
in the sense of distributions, where A is a positive constant, g is a nontrivial nonneg-
ative bounded continuous function in R"~! and ¢ satisfies the following hypotheses:

(H4) ¢ is a nonnegative measurable function on R’} x [0, 00).

(H5) For all ¢ > 0, there exists a positive function ¢. € K*°(R ) such that the
map t — t(g.(z) — ¢(x, tw(z))) is continuous and nondecreasing on [0, ¢ for
every v € RY}.

Theorem 1.4. Under assumptions (H4) and (H5), problem (1.11)) has a positive
continuous solution u such that for each v € R,
cladz, + (1 —a)Hg(x)) < u(zr) < adz, + (1 —a)Hg(x),

where ¢ € (0,1).

Note that if @ = 0, then the solution u satisfies cHg(z) < w(z) < Hg(z),
c € (0,1). In particular, u is bounded on R’}. Our techniques are similar to those
used by Maagli and Masmoudi in [16), [18].

Section 5 deals with the question of existence of continuous bounded solutions
for the problem

Au—¢(,u) =0, inRY
u>0, in Ri (112)
lim u(z) = g(z'),
Tn—0
where ¢ is a nontrivial nonnegative bounded continuous function in R”~!. We also

establish an uniqueness result for such solutions. Here the nonlinearity ¢ satisfies
the following conditions:

(H6) ¢ is a nonnegative measurable function on R x [0,00), continuous and
nondecreasing with respect to the second variable.
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(H7) o(.,0) =0.
(H8) For all ¢ > 0, ¢(.,c) € K>=(R%).

Theorem 1.5. Under assumptions (H6)-(H8), problem (1.12)) has a unique posi-
tive solution u such that for each x € R,

0 < u(z) < Hg(z).

Note that if ¢ € K*°(R") and ¢(z,t) < q(x)t locally on ¢, then the solution
u satisfies in particular cHg(z) < u(z) < Hg(z), ¢ € (0,1). This result follows
the result in [4], where we studied the following polyharmonic problem, for every
integer m,
(=A)"u+ ¢(.,u) =0, inRY
i R
u>0, inRY (1.13)
lim u(z) = g(2)

Ty —0 xT_l

(in the sense of distributions). Here ¢ is a nonnegative measurable function on
R% x (0,00), continuous and non-increasing with respect to the second variable
and satisfies some conditions related to a certain Kato class appropriate to the
m-polyharmonic case. In fact in [4], we proved that for a fixed positive harmonic
function hg in R}, if g > (1 + ¢)hg, for ¢ > 0, then the problem has a
positive continuous solution u satisfying u(z) > 2"~ tho(z) for every z € R’}. Thus
a natural question to ask is for ¢ — ¢(x,t) nondecreasing, whether or not
has a solution, which we aim to study in the case m = 1.

Notation. To simplify our statements, we define the following symbols.
RY = {x = (z1,...,2n) = (2/,2,) € R" : 2, > 0}, n > 2.
T = (2, —xy,), for z € R7.
Let B(R’) denote the set of Borel measurable functions in R} and B (R?) the set
of nonnegative functions in this space.
Cy(R%}) = {w € C(RY}) : w is bounded in R7 }
Co(RY) ={w € C(R}) : lim,, ,ow(z) =0 and lim,_ w(z) = 0}
Co(R%) = {w € C(R}) : lim|y)—o w(z) = 0}.

Note that C,(R"), Co(R%) and Co(R% ) are three Banach spaces with the uniform
norm [|wl|ee = sup,epy [w(x)].

For any ¢ € B(R"), we put

lall = swp [ LG v)la(w)ldy.
IERi Ri T

Recall that the potential V' f of a function f € BT (R?), is lower semi-continuous
in R”. Furthermore, for each function ¢ € B¥(R’}) such that V¢ < oo, we denote by
Vy the unique kernel which satisfies the following resolvent equation (see [15], [19]):

V=V, + VylaV) = Vy+ V(aVy). (1.14)
For each u € B(R"}) such that V(g|u|) < oo, we have
(I = Valg )+ V(g)u = (I +V(g))I = Vo(g.))u = u. (1.15)

Let f and g be two positive functions on a set S. We call f ~ g, if there is ¢ > 0

such that 1
—g(x) < f(z) <cg(x) foral zels.
c
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We call f < g, if there is ¢ > 0 such that
f(z) <cg(xz) forallzels.

The following properties will be used in this article: For z,y € R’ , note that
|z — 52 — |z — y|* = 42,yn. So we have

|z = 7* ~ |z = yI* + znyn (1.16)
Tn +yn < |z -7 (1.17)
Let A\, u >0 and 0 <y <1, then for ¢ > 0 we have
log(1 + At) ~ log(1 + ut), (1.18)
log(1+1¢) <t". (1.19)

2. PROPERTIES OF THE GREEN FUNCTION AND THE KATO cLASS K*°(R")

In this section, we briefly recall some estimates on the Green function G and we
collect some properties of functions belonging to the Kato class K (R’ ), which
are useful at stating our existence results. For x,y € R, we set

He-D 1 .
G(x,y) — 47?71/2 [|fI:—y‘n—2 - |m_§‘n72}’ lf n Z 3
ﬁ log (1 + éa:_z;/fg), ifn =2,

the Green function of (—A) in R} (see [I, p. 92]). Then we have the following
estimates and inequalities whose proofs can be found in [2] for n > 3 and in [3] for
n=2.

Proposition 2.1. For z,y € R’} , we have

Lnln if n >3,

T =22
Gla,y) ~ ool e (2.1)
22 log(1+ f2=25) ifn=2.
Corollary 2.2. For z,y € R}, we have
TnYn < G(z,y). (2.2)

(lzl + 1)yl + 1) —

Theorem 2.3 (3G-Theorem). There exists Cy > 0 such that for each x,y,z € R,
we have

G(Z,Z)G(z,y) Zn Zn
~ < OO[EG(I,Z) T yfna(y,z)]. (2.3)

Let us recall in the following properties of functions in the class K*°(R’). The
proofs of these propositions can be found in [2} B].

Proposition 2.4. Let q be a nonnegative function in K°°(R"}). Then we have: (i)

llgll < oo; (i) The function x +— Wq(z) is in LY(R"). and (iii)

CEND :m < V(x). (2.4)

For a fixed nonnegative function ¢ in K*°(R% ), we put

My ={p € BRY), |p]=q}.
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Proposition 2.5. Let q be a nonnegative function in K> (R"), then the family of
functions
ViMg) ={Ve: ¢ My}

is relatively compact in Co(R"}).

Proposition 2.6. Let q be a nonnegative function in K> (R"), then the family of
functions

Ny = {/Rn %G(ﬂc,y)lw(y)\dy tp € Mg}
+

is relatively compact in Co(R™).

In the sequel, we use the following notation
G(z,2)G(zy)
/R G(z,y)
Lemma 2.7. Let q be a function in K*°(R?}). Then we have
lall < aq < 2Co|4ll,
where Cy is the constant given in .

Proof. By (2.3), we obtain easily that gy < 2Cpl/g||. On the other hand, we have
by Fatou lemma that for each x € R’}

/ Z—”G(x,z)\q(z)\dz < liminf/ “n MG(x,Z”q(Z”dZ.
R R

v T icl—co Jry @n |2 — (I

Qg = sup lg(2)|dz.

z,y€RY JRY

Now since for each z,z € R} and ¢ € IR}, we have
G(Za y) _ Zn |1‘ - C'n
im = — .
y—¢ G(Z‘,y) LTn |Z - <|n
Then by Fatou lemma we deduce that

Zn |z — (™ o G(z,y)
————G(x, 2)|q(2)|dz < liminf G(z,z q(2)|dz < ay.
[, e E o s < [ Gt G el <o
We derive obviously that ||g]| < aq. O

Proposition 2.8. Let q be a function in K*°(R') and v be a nonnegative super-
harmonic function in R}y . Then for each x € R, we have

Gz, y)o(W)la(y)ldy < aqu(). (2.5)
RTL
i
Proof. Let v be a nonnegative superharmonic function in R’} then there exists (see
[20, Theorem 2.1]) a sequence (fy)r of nonnegative measurable functions in R’}
such that the sequence (vy)x defined on R% by v := V fi increases to v. Since for
each x,z € R, we have

A G(x,y)G(y, 2)|q(y)| dy < G, 2),
"
it follows that
Gz, y)ve(y)|a(y)| dy < agur(z).

RY

Hence, the result holds from the monotone convergence theorem. (I
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Corollary 2.9. Let q be a nonnegative function in K> (R"}) and v be a nonnegative
superharmonic function in R}, then for each x € R'} such that 0 < v(z) < oo, we
have

exp(—ag)u(z) < (v = Vo(qu))(z) < v(2).

Proof. The upper inequality is trivial. For the lower one, we consider the function
v(A) = v(z) — AVag(qu)(z) for A > 0. The function v is completely monotone on
[0,00) and so log~ is convex in [0, 00). This implies that

7(0) < (1) exp(— 5

That is
v(@) < (v = Vy(qv)) (@) exp(— =5).
So, the result holds by . O

We close this section by giving a class of functions included in K*°(R%). We
need the following key Lemma. For the proof we can see [4].

Lemma 2.10. For z,y in R}, we have the following properties:

(1) If xpyn < |z —y|? then (z, Vy,) < @m -y

(2) If |v — y|? < xpy, then 3*2‘/530,1 <y, < 3+T‘/5xn and %\/gm < |yl <
M|x|
5 .

In what follows we will use the following notation

Dy = {y e R} : 2y, < |z — y[*},
Dy = {y € Ri : |l‘ - y|2 < xnyn}

We point out that Dy = B(Z, %xn), where T = (z1,...,2n-1, %xn) and conse-
quently Dy = B(Z, éxn)

Proposition 2.11. Let p > n/2 and a be a function in LP(R"). Then for X <
2 — 2 < p, the function ¢(x) = W is in K> (R").

Proof. Let p > n/2 and ¢ > 1 such that % + % = 1. Let a be a function in
LP(RY) and A < 2 — 2 < p. First, we claim that the function ¢ satisfies (1.2).
Let 0 < a < 1. Since z,, < (1 + |z|) and y, < (1 + |y|), then we remark that if

|z —y| < a, then (Jz| + 1) ~ (Jy| + 1) and consequently
e —g| 2 (ly| +1), forye B(z,a). (2.6)

Put AT = max(\,0). So to show the claim, we use the Holder inequality and we
distinguish the following two cases:
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Case 1. n > 3. Using (2.1), (1.17) and the fact that |z — y| < |z — 7| and
Yn < (1 +|y|), we deduce that

/ Y2 G, y)oly)dy
B

(z, ) MR} Ln

Q=

Yo
<l | : )
" awarnzy [z — gl =2l — g2 (y] + 1N
dy 1
<l | W
: B(z,0)NR% |z — y|(n—2+AF)e

_n_\t
_<0[2p)\,

which tends to zero as @ — 0.

Case 2. n = 2. Using (2.1)), (2.6), (1.17) and taking v € (%, %) in (1.19), we
obtain that

/ 2 G, y)e(y)dy
B(z,a)

NR2 T2
(2—=X)q —2
Ys \x - ?J|
< Jlallo( / _ (log(1 + ))idy)
P ooy 1o — 71yl + 1) 7 yP?

Q=

+
|z — |22 e N
< llallo( / dy)’
i B(z,a)NRZ (|y| + 1)(M_A+)q|x —y|*
1 1
<lal([ oy
i B(z,a)NR3 |l‘ - y|2'yq

< a272'yq
which tends to zero as v — 0.

Now, we claim that the function ¢ satisfies (1.3). Let M > 1 and put Q := {y €
Ry (jyl = M)N (|l —y[ = a)} and

I(z, M) = A %"G(%y)w(y)dy-

By the above argument, to show the claim we need only to prove that I(z, M) — 0,

as M — oo, uniformly on z € R’}. So we use the Holder inequality and we
distinguish the following two cases:

Case 1. y € Dy. From (2.1, it is clear that G(x,y) <

“nbn.. Then we have

[z —y|"
y y(2—>\)q Y
" G, y)p(y)dy < llall,( / d dy)V/1,
/Qle Ln b QND; |y‘(”_)‘)q|JC - y|nq

Now we write that 2— A = (2— A — %) + % and we put v = p— 2+ %. Hence, using
the fact that y, < max(|yl|,|z — y|), we deduce that

Yn dy
/Q Y G o)y < Jlalln( /

7)1/(1_
nD, Zn anp, |7 —y[" |y
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On the other hand

/ |z —y| ™" [y|""dy
QNDy

< sup |z —y|™ "yl "dy

+ sup / |z —y[ "y dy
lz|> 24 J(max(M, ) <|y|<2|z))nR7 N(Jz—y|>a)
+ sup lz —y| " |y| " "dy

l2)> % J (Jy|>2]e)NR7N(Je—y|> o)

+ sup / |z —y|™ "yl "dy
|lz[>2M J(M<|y|<ZH)nRT N (Jo—y|>a)
log (%)
j/ ———dy+ sup —>—
(yizan) (Y1707 s |2
1 log (%))
jm“r sup W

M
|Z|27

Case 2. y € Dy. From Lemma[2.10, we have that |y| ~ |z|, y», ~ @, ~ |z —7|. This
implies:
If n > 3, then by (2.1]), we deduce that
Yn 1 dy L
—=G(z,y)e(y)dy = [|af 7(/ )"
/Qsz Tn Pa |zl =2 Jonp,ean) [T — yl(r=2a
2-A-2

X
= Ha||p|;|ﬁ
= HGIIpW~

If n = 2, then from (2.1)) and (1.18]) it follows that

Y2 1 x% 1
Y2 G, y)oly)dy < llally——— ( / (log(1 + —2—_))ady)}
/Q pa’j%‘|$|u_A QNB(z,cxn) |l‘ - y|2

NnD, T2

Hence we conclude that I(z, M) converges to zero as M — oo uniformly on z € R”}.
This completes the proof. (]

3. PrROOF oF THEOREM [L.3]
Recall that 0(z) = M’:ﬁ on R7.

Proof of Theorem[1.3 Assuming (H1)—(H3), we shall use the Schauder fixed point
theorem. Let K be a compact of R’ such that, using (H3), we have

0<a:= /K 0(y)p(y)dy < oo.
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We put 8 := min{f(z) : x € K}. We note that by (2.2) there exists a constant
a1 > 0 such that for each z,y € R}

a10(2)0(y) < G(z,y). (3.1)
Then from (|1.8)), we deduce that there exists a > 0 such that
arah(af) > a. (3.2)

On the other hand, since ¢ € K*(R"} ), then by Proposition we have that
[IV@|loo < o0. So taking 0 < § < W we deduce by (1.9) that there exists p > 0
such that for t > p we have f(t) < dt. Put v = supy<;<, f(t). So we have that

0< f(t)<dt+~, t>0. (3.3)
Furthermore by (2.4]), we note that there exists a constant as > 0 such that
azf(x) < Vq(x), VxeRY, (3.4)

and from (H2) and Proposition 2.5, we have that ||V (., af)|/o < oo. Let
a 6[Ve(.,ab)lle +
b =max {—,
ay’ 1-0|Vyls j
and consider the closed convex set
A ={uc Co(RY) :ab(x) <u(zx) < Vo(.,ad)(x)+bVq(z), Ve € R }.
Obviously, by (3.4)) we have that the set A is nonempty. Define the integral operator
T on A by

Tu(z) = [ G(z,y)e(y,u(y)) +¥(y,uly))]dy, VYaecRY.

R%
Let us prove that TA C A. Let u € A and x € R”}, then by (3.3) we have
Tu(x) < Ve(,a0)(z) + [ Glx,y)q(y)f(u(y))dy

RZ
< V(.. ab)(x) + o G(z,y)a(y)duly) + v]dy
i
< V(. a0)(z) + . Gz, y)aW)[o([[Ve(., ab)|l + bl[Vallo) +]dy
+
<Vo(.,ab)(x)+ bVq(x).
Moreover from the monotonicity of h, and , we have

Tu(e) > [ Glau)vta. utn)dy
> and(e) [ 0up)h(adm)dy
> aub(ah(ad) | Oy

K

> agah(af)f(x)
> af(z).

On the other hand, we have that for each u € A,

o(0) < p(oa8) and () < BVl ad)] +bIVall) +7la.  (35)
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This implies by Proposition that T'A is relatively compact in Co(R%). In
particular, we deduce that TA C A.

Next, we prove the continuity of 7' in A. Let (ug)x be a sequence in A which
converges uniformly to a function w in A. Then since ¢ and v are continuous with
respect to the second variable, we deduce by the dominated convergence theorem
that

Vo € RY, Tuy(x) — Tu(x) as k — oo.
Now, since T'A is relatively compact in Cy(R?), then we have the uniform conver-

gence. Hence T is a compact operator mapping from A to itself. So the Schauder
fixed point theorem leads to the existence of a function u € A such that

u(r) = e Gz, y)[e(y, uly) + Py, u(y))ldy, Vo eRY. (3.6)

Finally, since ¢ and ¢(.,af) are in K*°(R"), we deduce by (3.5) and Proposition
B, that v = ol () + (. 0(4) € L (BY). Morcover,since u € ColRD)
we deduce from (B.6)), that V(¢(.,u) +9(.,u)) € L}, .(R"). Hence u satisfies in the
sense of distributions the elliptic equation

Au+ (., u) + (., u) =0, in R’

and so it is a solution of the problem (1.6). O

Example 3.1. Let a,3 > 0 such that 0 < o+ < 1 and p € K*°(R"). Then the
problem

Au+ p(a)[(u(@) 77 (0(2))” + (u(@))*log(1 + (u(z))?)] =0, n R}

. (3.7)
u>0, inRY
has a solution v € Cy(R" ) satisfying af(z) < u(x) < bVp(x), where a,b > 0.

Remark 3.2. Taking in Example|3.1|the function p(z) = W, for A <2<

i, we deduce from [2] [B] that the solution of (3.7)) has the following behaviour
2—X

(i) u(z) = ()log(M) 1f/\—1andu>n+10r>\<1andu—n—|—1
(iil) u(z) = 6(x), 1f)\<1and,u>n+1
(iv) u(z) < ﬁ,lfn<u<mm(n+l,n+2—)\).

4. PROOF OF THEOREM [I.4]

In this section, we are interested in the existence of continuous solutions for the
problem (1.11). We recall that w(z) = ax, + (1 — ), € R}, where o € [0,1]. We
aim to prove Theorem So we need the following lemma

Lemma 4.1. Let q be a nonnegative function in K*°(R), then the family of
functions

{ ) Gz, y)leW)ldy : ¢ € My}

is relatively compact in C’O(Ri).
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Proof. We remark that

w(y) = ayn + (1= a) < max(1 yl) < 1+yi
w(z) azp+(1—a) — Txn T T
So the result holds from Propositions 2.5 and [2.6] a

Proof of Theorem[I.]] Let A > 0 and ¢ := sup{\, ||g|]lsc}. Then by (H5), there
exists a nonnegative function ¢ := g. € K*°(R"}), such that the map
t— t(q(z) — oz, tw(z))) (4.1)
is continuous and nondecreasing on [0, ¢|. We denote by h(z) = adz,+(1—a)Hg(z).
Let
A:={ueB"(RY}):exp(—ag)h <u<h}.
Note that since for u € A, we have u < h < ¢ w, then (4.1) implies in particular
that for u € A
0<¢(,u) <q. (4.2)
We define the operator T on A by
Tu(z) := h(z) — Vo(gh)(x) + Vol(qg — o (., u))ul(z).
First, we claim that A is invariant under T'. Indeed, for each u € A we have
Tu(z) < h(z) — Va(qh)(x) + Vo(qu)(z) < h(z).
Moreover, by (4.2) and Corollary we obtain
Tu(z) > h(z) — Vg(gh)(x) = exp(—ag)h(z).
Next, we prove that the operator T is nondecreasing on A. Let u,v € A such that
u < v, then from (4.1) we have
Tv—Tu=Vgl(g—o(.,v))v = (g —p(,u))u] = 0.
Now, we consider the sequence (u;) defined by ug = h—V,(gh) and w11 = T'u; for

j € N. Then since A is invariant under T, we obtain obviously that u; = Tug > ug
and so from the monotonicity of T', we deduce that

up <up <--- <y <
Hence by (4.1) and the dominated convergence theorem, we deduce that the se-
quence (u;) converges to a function u € A, which satisfies
u(z) = h(z) = Vo(gh)(x) + Vollg — o (., u))u](2).
Or, equivalently
u—Vo(qu) = (h = Vg(gh)) = Vo(usp(., w)).

Applying the operator (I + V(gq.)) on both sides of the above equality and using
(1.14), we deduce that u satisfies

u=h—V(ue(,u)). (4.3)
Finally, we need to verify that u is a positive continuous solution for the problem
(1.11)). Indeed, from (4.2), we have

up(.,u) < gh < cqw. (4.4)
This implies by Proposition that either u and ue(.,u) are in L{ (R7). Fur-
thermore, from (4.4), we have that %wp(.,u) € M,. Which implies by Lemma
that LV (up(.,u)) € Co(R%). In particular, we have V(up(.,u)) € LL_(R%).

loc
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Hence, by (4.3), we obtain that v is continuous on R’} and satisfies (in the sense of
distributions) the elliptic differential equation

Au —up(.,u) =0 in RY.

On the other hand, since LV (ug(.,u)) € Co(R7) and Hg(z) is bounded on R’} and
satisfies lim,, .o Hg(z) = g(z'), we deduce easily that lim,, _ou(z) = (1 —a)g(z’)

u(@)

—— = a\. This completes the proof. ([l

and lim, 4
Example 4.2. Let v > 1, « € [0,1], 6 > 0 and A < 2 < u. Let g be a nontrivial
nonnegative bounded continuous function in R*~! and p € BT (R7) satisfying

1
(|z| + D)r=2z) (@, + 1)1

p(z) =
Then the problem
Au —p(x)u’(x) =0, in R}
lim u(x) = (1 - a)g(e)

=(1
lim u(@)

Ty —+00 Tn

= O‘ﬂa
(in the sense of distributions) has a continuous positive solution u satisfying

u(x) ~ afx, + (1 — a)Hg(x).

5. PROOF OF THEOREM

In this section, we need the following standard Lemma. For u € B(R?), put

ut = max(u,0).
Lemma 5.1. Let ¢ and ¢ satisfy (H6)-(HS8). Assume that ¢ < 1 on R} x Ry
and there exist continuous functions u,v on R’} satisfying

(a) Au—op(,ut)=0=Av—9¢(,v") in R}

(b) u,v e Cy(RY)

(c) u>wv on ORY.
Then u > v in R7.
Proof of Theorem[I-5 An immediate consequence of the comparison principle in
Lemma is that problem (I.12]) has at most one solution in R”}. The existence

of a such solution is assured by the Schauder fixed point Theorem. Indeed, to
construct the solution, we consider the convex set

A={ueGRY):u<lgllo}-
We define the integral operator 1" on A by
Tu(z) = Hg(x) - V(p(,, u"))(x).
Since Hg(x) < ||g||, for € R?, we deduce that for each u € A,
Tu < ||gloo, in RY.

Furthermore, putting ¢ = ¢(.,[|g]|o), we have by (H8) that ¢ € K*(R%). So
by (H6), we deduce that V(o(.,u™)) € V(M,). This together with the fact that
Hg € Cy(R?}) imply by Proposition that T'A is relatively compact in Cy(R"})
and in particular TA C A.
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From the continuity of ¢ with respect to the second variable, we deduce that
T is continuous in A and so it is a compact operator from A to itself. Then by
the Schauder fixed point Theorem, we deduce that there exists a function u € A
satisfying

u(z) = Hg(x) = V(p(,uh))(z).
This implies, using Proposition and the fact that V(¢(.,u")) € Co(R?), that u
satisfies in the sense of distributions
Au—o(,ut) =0
limou(:c) = g(z").
Hence by (H7) and Lemma [5.1} we conclude that u > 0 in R’}. This completes the
proof. O

Corollary 5.2. Let ¢ satisfying (H6)—(H8) and g be a nontrivial nonnegative
bounded continuous function in R"~1. Suppose that there exists a function q €
K*(R%) such that

0 <op(z,t) < g(z)t  onRY x[0,[|gll]- (5.1)
Then the solution u of given by Theorem satisfies
e~ Hy(z) < u(x) < Hy(x).
Proof. Since u satisfies the integral equation

u(z) = Hyg(z) = V(p(,, u))(x),

using (1.15), we obtain

u—Vy(qu) = (Hg = V4(gHg)) = (V(¢(;, ) = Va(aV (e (. u))

= (Hg = Vy(qH g)) = Vy(e(.,u).
That is,
u=(Hg = Vy(qHg)) + Vy(qu — (., u)).
Now since 0 < u < ||g]|co then by (5.1), the result follows from Corollary O
Example 5.3. Let g be a nontrivial nonnegative bounded continuous function in
R™!. Let ¢ > 0 and ¢ € K~(R"). Put ¢(z,t) = q(x)t. Then the problem
Au—q(z)u® =0, inRY

limou(x) =g(z")

Tn—

(in the sense of distributions) has a positive bounded continuous solution v in R’
satisfying
0 < Hg(z) —u(z) < [|lglZVa(@).
Furthermore, if ¢ > 1, we have by Corollary [5.2] that for each z € R,
e “Hg(r) <u(r) < Hg(x).
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