
EVOLVING LEARNING NEURAL NETWORKS

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Christopher P. Christenson, B.S.

San Marcos, Texas

December 2004

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. Kosrow Kaikhah, whose support,

encouragement, and dedication were invaluable in the completion of my thesis. Dr.

Kaikhah taught me that nothing can be achieved without help. Without his steadying

hand, this thesis would never have been completed.

I also wish to thank Dr. Kenneth Stanley, whose expert advice on the evolution of

neural networks proved invaluable to me at the beginning and throughout my thesis.

Without his wonderful evolutionary algorithm, NEAT, my thesis would have been much

harder.

I also want to thank my brother, Ben Christenson, who has such wonderful ideas

to make my life easier. His influence within this thesis cannot be overstated. While he

did not necessarily appreciate the time I put into it, I’m sure he is happy that it is finally

complete.

Above all, I want to thank my wife, Jamie, for her love and support. To endure

me, and all that comes with me, through this thesis shows the strength of her love.

This manuscript was submitted on December 7th, 2004.

111

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

LIST OF FIGURES..vi

ABSTRACT.. ix

1 INTRODUCTION.. 1

1.1 Evolution...2
1.2 Evolution and Learning ... 3
1.3 Artificial Neural Networks...4
1.4 Artificial Neural Networks and Learning...5
1.5 Evolving Artificial Neural Networks...6
1.6 Evolving ANNs to Le a r n ..8

2 EVOLUTION... 10

2.1 Darwinian... 11
2.2 Neo-Darwinian.. 11
2.3 Synthetic.. 12
2.4 Kin Selection..12
2.5 Speciation... 13
2.6 Evolution and Learning ... 13
2.7 Effects of Learning on Evolution..14
2.8 The Baldwin Effect... 15
2.9 The Balance between Learning and Instinct.. 16

3 ARTIFICIAL NEURAL NETWORKS... 17

3.1 ANN Definition... 18
3.2 ANN B ackground...18
3.3 ANN Design...19
3.4 ANN Design Issues... 23
3.5 ANN and Learning... 23
3.6 Back-propagation Algorithm.. 25
3.7 ANN Design Issues with Learning ...28
3.8 Accelerating Learning in ANNs .. 29

4 EVOLVING ARTIFICIAL NEURAL NETWORKS...31

4.1 Neural Evolution of Augmenting Topologies... 32
4.2 Meaningful Crossover in ANNs ..33
4.3 Minimizing Architecture through Evolution... 35
4.4 Protecting Slowly Maturing Genom es..36
4.5 Performance of NEAT... 37

5 RELATED WORK..40

5.1 Baldwin Effect in Dynamic Environments..40
5.2 D isplaying the Baldwin Effect in the Evolution of ANNs ..42
5.3 Learning and Evolution in ANNs ... 44
5.4 Evolving ANNs with a Predisposition to Learn...47

IV

5 RELATED WORK 40

5.1 Baldwin Effect in Dynamic Environments..40
5.2 D isplaying the Baldwin Effect in the Evolution of ANNs ...42
5.3 Learning and Evolution in ANNs ... 44
5.4 Evolving ANNs with a Predisposition to Learn...47
5.5 Optimizing ANNs using Evolution with Learning ..48

6 EVOLVING ANNS TO LEARN...51

6 .1 Designing a Better Network for Learning ...52
6.2 Combining Evolution and Back-propagation...52
6.3 Altering NEAT and Back-propagation...53
6.4 Designing a Dynamic Environment...56
6.5 Evolving Learning Networks Process..59

7 RESULTS AND ANALYSIS..65

7.1 Evolution of a 3rd Degree Polysolver..65
7.2 Incremental Evolution...69
7.3 Backwards Compatibility... 76

8 CONCLUSION AND LUTURE WORK... 81

APPENDIX...84

REFERENCES.. 122

v

LIST OF FIGURES

Figure 1 Neuron and Connections..

Figure 2 Typical single layer feed-forward ANN...

Figure 3 Sigmoid Function...

Figure 4 Typical multi-layer feed-forward ANN..

Figure 5 Error Function..

Figure 6 The Back-Propagation Algorithm...

Figure 7 Kolen and Pollack’s Description of initial weights effect on convergence....

Figure 8 . Meaningless Crossover..

Figure 9 NEAT Encoding...

Figure 10 NEAT Cross-over..

Figure 11 Initial Network...

Figure 12 Non-linearly Separable Input/Output combinations for XOR.......................

Figure 13 Nolfi Elman & Parisi’s ANN...

Figure 14 Nolfi Elman & Parisi’s self-supervised ANN..

Figure 15 Standard(left) vs. Evolved ANN(right)..

Figure 16 Back-propagation of error in an evolved network...

Figure 17 2nd Degree vs. 4th Degree...

Figure 18 Appropriately Complex 4th degree polynomial...

Figure 19 Various appropriate fourth degree polynomials...

15

15

16

.17

20

21

23

27

28

29

31

31

36

38

.44

45

46

47

47

Figure 20 Evolving Learning Neural Networks Algorithm..49

Figure 21 Evolving Polysolver’s fitness function.. 50

Figure 22 Evolution of a 3rd degree Polysolver.. 53

Figure 23 ANN Evolved for 3ld degree polynomials.. 53

Figure 24 Fully-Connected ANN... 53

Figure 25 Evolved Network vs. Traditional Network

on a 3rd degree polynomial involved in evolution... 54

Figure 26 Evolved Network vs. Traditional Network

on a 3rd degree polynomial not involved in evolution....................................55

Figure 27 Evolution of a 4th degree Polysolver starting from minimal structure...........56

Figure 28 Stmcture of a 4th degree Polysolver

incrementally evolved from 3rd degree Polysolvers...................................... 57

Figure 29 Incremental evolution of a 4th degree Polysolver

starting from a population of 3rd degree Polysolvers.................................... 57

Figure 30 Incremental evolution of a 4th degree Polysolver

starting from a population of 2nd degree Polysolvers....................................58

Figure 31 Structure of a 4th degree Polysolver incrementally

evolved from 2nd and 3rd degree Polysolvers.. 59

Figure 32 Incremental Evolution of a 4th degree Polysolver

starting from 2nd to 3rd degree Polysolvers...60

Figure 33 Evolved Network vs. Traditional Network

on a 4th degree polynomial not involved in evolution....................................61

Figure 34 3rd degree Polysolver vs. Traditional Network on a 2nd degree polynomial... 62

vii

Figure 35

Figure 36

Figure 37

Figure 38

3rd degree Polysolver vs. Traditional Network on a 4th degree polynomial... 62

4th degree Polysolver vs. Traditional Network on a 3rd degree polynomial... 63

4th degree Polysolver vs. Traditional Network on a 2nd degree polynomial... 64

4th degree Polysolver vs. Traditional Network on a 5th degree polynomial....64

vni

ABSTRACT

EVOLVING LEARNING NEURAL NETWORKS

by

Christopher P. Christenson, B.S.

Texas State University-San Marcos

December 2004

SUPERVISING PROFESSOR: KHOSROW KAIKHAH

Supervised learning has long been used to modify the artificial neural network in

order to perform classification tasks. However, the standard fully connected layered

design is often inadequate when performing such tasks. We show that evolution can be

used to design an artificial neural network that learns faster and more accurately. By

evolving artificial neural networks within a dynamic environment, the artificial neural

network is forced to use learning. This strategy combined with incremental evolution

produces an artificial neural network that outperforms the standard fully-connected

layered design. The resulting artificial neural network can learn to solve an entire

domain of problems, including those of lesser complexity. Evolution alone can be used

to create a network that solves a single task. However, real world environments are

dynamic, and thus require the ability to adapt to changes. By improving the design of the

artificial neural network for learning tasks, we have come one step closer to artificial life.

IX

1 INTRODUCTION

The brain controls practically every aspect of an animal’s life. Vision, speech,

memory, motor skills, and consciousness all require the use of our network of neurons.

Thus, it is not surprising that we have made attempts to simulate the brain’s functions

with computers. One way which has shown promise is a structure called the Artificial

Neural Network (ANN). With ANNs, computers can learn to recognize speech, convert

handwritten text, and perform many other extraordinary tasks. The introduction of new

ANN design techniques, such as evolutionary algorithms, has brought computers closer

to simulating the brain than ever before.

In order to simulate the brain effectively, its functions must be understood fully.

The brain works on two levels, unconsciously and consciously. The unconscious

workings of the brain can be thought of as instinct. Instincts are behaviors that an

organism is bom with. Conscious behaviors are those that an organism must learn

through living. Instinctual and learned behaviors are both directly related to the

environment in which an organism lives.

When attempting to simulate the brain’s ability to learn using ANN, standard

design principals have many issues that have not been resolved. In order to design the

1

2

many aspects of the ANN, a new mechanism must be found. This research will show that

evolution can be used to design an ANN that learns to solve problems faster and with less

error.

• 1.1 Evolution i

• 1.2 Evolution and Learning

• 1.3 Artificial Neural Network

• 1.4 Artificial Neural Networks and Learning

• 1.5 Evolving Artificial Neural Networks

• 1.6 Evolving ANNs to Learn

1.1 Evolution

Darwin described a mechanism that hoped to show how life forms change through

time. This mechanism, which we know as evolution, describes how organisms gain traits

based upon the environment in which they live. Reproduction, one of the key

mechanisms in evolution, allows organisms to pass traits on to the next generation. Since

the fittest organisms reproduce more, their traits become more prominent in the following

generations. The result is organisms that are custom fit to their environment. Random

mutation also plays a major role in altering the traits of organisms. Without mutation,

organisms would reach a low optimal fitness without the ability to improve. Random

new traits allow organisms to branch out into uncharted territory where their fitness may

3

either improve or dimmish. Thus, evolution can be understood as an elaborate searching

mechanism where the goal is a more custom fit solution to the current environment. The

tools of this searching algorithm are cross-over and mutation. Cross-over combines two

fit organisms in the hope that the traits found in both will produce a better fitness m the

child. Random mutation allows for a broader searching landscape.

1.2 Evolution and Learning

The traits that Darwin describes are found directly in the genome. Any traits

learned during the lifetime of the organism are not passed on. This would lead us to

assume that learning has no effect on Darwinian evolution. However, there have been

theories that show that learning does have a dramatic effect on evolution.

Lamarck argued that “All which has been acquired by, laid down, or changed in

the organization of individuals in the course of their life is conserved by generation and

transmitted to the new individuals which proceed from those which have undergone those

changes.” [15] In other words, Lamarck believed that organisms could actually alter their

genome during their lifetime. Baldwin, however, believed that learning affects the

genome in a more indirect way while maintaining a process that is Darwinian. In what

has been termed the Baldwin Effect, learning’s effect is determined by the environment

in which it occurs.

4

In a dynamic environment, learning can improve evolution. While learned traits

are not passed on to the proceeding generations m the Baldwin Effect, the ability to learn

is. Consider the cat and its ability to alter its coat based on the temperature. This is a

good example of the Baldwin effect in everyday life. The ability to alter its traits allows

the cat to withstand the cold and endure the heat. Thus the cat has increased its fitness in

an environment where the temperature changes dramatically. We hope to show that

learning can affect evolution in dynamic environments by evolving ANNs with the ability

to learn.

Often, environments become static after genomes have been evolved to adapt to

them. Adapting has been known to solve many problems faster than evolution. After all,

evolution takes generations to have any effect. However, adapting does take time, and

when you are a kitten in the freezing cold, it doesn’t take long to die. In that perspective,

evolution can be the faster mechanism for survival. We hope to observe this second

aspect of the Baldwin Effect when we evolve ANN.

1.3 Artificial Neural Networks

Our goal in this research is to describe a process that creates a genome that can

learn to graph polynomials. The vehicle we perform evolution on is the Artificial Neural

Network (ANN). The ANN is a wonderful tool for this problem because it has been

shown to both evolve well and graph polynomials well. [5, 23]

5

The artificial neural network is a simulation of the biological neural network

found in the brains of animals. The brain is made up of a network of interconnected

neurons. Information, in the form of chemicals, is passed through this network of

neurons and produces output. For instance, the cat sees a mouse scurrying by. The

mouse image is passed from the eye through the multitude of interconnected neurons

found m its brain, and the cat recognizes the mouse as something to harass. These

neurons and their connections can be considered the relationship between the input and

the output. This relationship performs very well at tasks involving pattern recognition.

Whether the mouse was brown or white, the cat still recognized it as a mouse because of

its many mouse-like features. Furthermore, the cat would recognize a dog as not a

mouse, even though the dog has a tail, ears and other mouse-like features.

Since the brain is so good at pattern recognition, to simulate such tasks it would

seem natural to have computer programs that mimic the brain’s activities rather than

creating a procedural method. The ANN is a simulation of the brain’s makeup and

functions. The ANN is akin to a “directed graph structure where nodes perform some

simple computations, and each connection conveys a signal from one node to another.”

[17] The power behind the artificial neural network, and the brain, is its ability to learn.

1.4 Artificial Neural Networks and Learning

The ANN is not simply a directed graph, each connection m the ANN does more

than just convey signals. In fact, in order for an ANN to learn, the connections must do

6

much more. In animals, there may be sections of the brain that do not change at all. For

instance, the cat’s reaction to chase the mouse did not require any training. It could be

said that the cat was bom to chase mice. However, there are things that the cat does have

to leam, especially with humans around. The cat may leam that when it hears food

pouring into its bowl, that it is time to eat. This is called Reinforcement learning. By

running to the sound of food pouring, the cat’s brain was reinforced with the pleasure of

eating the food. Back-Propagation learning m ANNs works much the same way. Given

a set of inputs, there are a set of desired outputs. When an ANN’s output approaches the

desired output, the weights on the connections are reinforced. However, if an ANN’s

output diverges from the desired output, the weights are negatively reinforced. When the

changes of the network’s weights are made a small step at a time, the network learns to

correlate the input to the desired output. How do we decide the size of the step or even

the structure of the ANN? Traditionally, the design has been a very simple layered

system in which the architecture of the network could be easily understood. However,

we will show that evolution is a much better approach for designing learning artificial

neural networks.

1.5 Evolving Artificial Neural Networks

The brain is a very complex network of neurons. Some researchers state that

there are 100 billion neurons. Each neuron may be connected to 1500 other neurons.

This adds up to trillions of connections in the brain. [22] Researchers quickly understood

that they could never design an artificial brain. However, a recent innovation has made it

7

so that they don’t have to. By using the same mechanism that created our brains,

researchers have been able to create extremely complex ANNs without having to design

them at all. That innovation was the evolutionary algorithm. Now, impossibly complex

ANNs can be created, and soon maybe even an artificial bram.

Using genetic algorithms to evolve ANN has proven useful in complex

reinforcement learning tasks. [23] However, until recently, the evolutionary process was

limited to modifying the existing weights of the standard fully connected layered ANN.

While this worked in situations where the number of required hidden nodes was known,

it was not a robust solution for all problems.

In order to create a network to solve any problem, researchers needed the ability

to use evolutionary algorithms to alter the structure of the ANN. Difficulties in

modifying the structure arose immediately. Evolutionary algorithms require the use of

random mutation and meaningful cross-over. The problem arose when researchers tried

to develop a process where two ANNs could be combined in such a way where their traits

may be passed on to the child. Meaningful combination required very costly analysis of

the networks. Frustrated, researchers even attempted to bypass the problems of evolving

structure by randomly changing the number of hidden nodes after failed attempts at

solving the task. [11] Recently, researchers from the University of Texas came up with a

new way to evolve the structures of ANNs that has shown to be the most robust on

benchmark reinforcement learning problems.

8

NeuroEvolution of Augmenting Topologies (NEAT) has proven itself as one of

the best algorithms for evolving structure and weights in ANNs. [23] By starting with the

minimal structure and incrementally adding pieces, the result is a neural network that

performs well with minimal structure and without the need for costly complexity

analysis. Further, NEAT utilizes a genetic representation that allows ANN to cross over

in a meaningful way. By using species to protect the ANNs that need time to optimize,

NEAT makes sure that the possibly important structures are not lost prematurely.

1.6 Evolving ANNs to Learn

Traditionally evolutionary algorithms are used to solve a specific problem. Given

the input and the desired output, evolutionary mechanisms are used to slowly and

methodically drive a genome’s output towards the desired output. This serves very well

in static situations, but when the problem changes, either slightly or severely, a new

genome must be evolved. In nature, organisms have evolved to learn or adapt because

starting over is not a viable option. For example, a cat may grow a thicker coat when the

temperature drops, and later shed it when the temperature rises. Evolution did not take

place during the months between summer and winter. Rather, evolution gave the cat the

ability to adjust its amount of hair. This ability to adapt is essential when dealing with a

changing environment.

Using the NEAT algorithm and an augmented form of Back-propagation, a

population of ANNs will be evolved within a dynamic environment. Each generation

9

will be evaluated on its ability to adapt to the environmental changes. After evolution,

the resulting ANN will be able to learn to adapt to never before seen environments.

Furthermore, it will learn to adapt faster than the traditionally designed fully connected

ANN. This will show that the network has evolved to learn rather than simply to solve.

Evolving ANN to learn presents several possible avenues of adjustment. Back-

propagation has many factors that are not known to be optimal for solving different

problems. These include initial weights and learning rates. Moreover, architecture has

many unknown factors, including number of hidden nodes and connections.

Unlike previous research, where the goal of combining genetic algorithms and

Back-propagation was to create more optimized neural networks for a specific problems

[29], the goal of our research is to show that a network can be created that learns to solve

an entire domain of problems. If we ever hope to simulate the brains behavior, we must

mimic its ability to learn and adapt to changing environments. Can evolution be used to

design an artificial neural network that is better at learning?

i

2 EVOLUTION

James F Crow of the University of Wisconsin describes many of the different

beliefs about evolution. The theory of evolution begins with the Pre-Darwinian views

and proceeds to describe the many facets of evolution including Darwinian, Neo-

Darwinian, Synthetic, Km Selection, and finally Speciation. By understanding the many

views of evolution, we can better utilize it to design ANNs.

Before Charles Darwin presented his evolutionary mechanism in The Origin of

Species, there was recognition of biological evolution. Jean Baptiste de Lamarck

believed that changes that occur during the lifetime of an organism are passed onto the

next generation. While intriguing, the Lamarckian belief of inheritance of acquired

characteristics cannot be proved.

• 2.1 Darwinian

• 2.2 Neo-Darwinian

• 2.3 Synthetic

• 2.4 Km Selection

• 2.5 Speciation

• 2.6 Evolution and Learning

10

11

• 2.7 Effects of Learning on Evolution

• 2.8 The Baldwin Effect

• 2.9 The Balance between Learning and Instinct

2.1 Darwinian

When Darwin presented his idea of natural selection, many believed it was a

convincing theory that could be found directly in nature. Darwin’s theory stated that

individuals best able to cope with the environmental strains were the most likely to

survive and reproduce. The next generation would then have a larger fraction of these

more capable individuals. The only problem with Darwin’s theory was variability. Since

mating actually decreases the population variance, about 50% each generation, some

mechanism for variability must be present.

2.2 Neo-Darwinian

Gregor Mendel’s work on inheritance showed that the loss of variability is only a

tiny amount rather than half. Found within organisms are markers, called genes, that pass

along the characteristics of the organism to the following generations. These genes retain

their variability from generation to generation. Furthermore, the random changes

necessary for new variations, mutation, was introduce in 1901 by Hugo DeVries. With

Mendelian inheritance and DeVries mutation, Darwin’s theory was now viable.

12

However, there are many wrinkles that needed to be ironed out. Thomas Huxley

did not believe evolution was gradual. He believed evolution occurred in steps rather

than a smooth curve. While most people accepted evolution as a historical fact, the

details of the Darwinian mechanism have come into question.

2.3 Synthetic

Mathematically inclined biologists, R.A. Fisher, J B S Haldane, and Sewall

Wright found the Neo-Darwinian theory lacking a complete description of selection.

They showed the effects of various kinds of selection. Fisher’s Fundamental Theorem of

Natural Selection provided a quantitative predictor that was missing in the Neo-

Darwinian theory. Fisher failed to take into account the effects of chance except in the

smallest populations. Wright argued that selection was not the only driving force behind

evolution. If it were, an adapted population could never improve since it would have to

first pass through less fit state to achieve a better fitness. It would essentially get stuck

within a local maximum, with selection rejecting movement in all directions. By chance

and migration, Wright thought evolution could create complexity.

2.4 Kin Selection

The Darwinian Theory also failed to take into account cooperative behavior.

William Hamilton added cooperation and altruistic behavior to the ever evolving

13

Darwinian Theory. Hamilton stated that if the cost to the altruist is less than the benefit

to the recipient and the relationship to the altruist, then the trait will increase. Thus,

organisms find similarities within their kin and deem it acceptable to help increase their

fitness. Since they share many of the same genes, it is in their genes’ interest to help each

other. Here behavior can be seen as an effect of evolution driving evolution.

2.5 Speciation

“Speciation is the absence of crossing between individuals of different

species.”[7] When two groups are in separate species, they will go down separate

evolutionary lines. This is beneficial because the two are no longer competing for fitness

which promotes variation. Without speciation, selection would reach a local optimum

due to the lack of variability.

2.6 Evolution and Learning

Evolution is a very powerful searching mechanism that alters organisms so that

they can better cope with their environment. However, when the environment changes, it

is necessary for the organism to adapt more quickly. Learning, a process brought forth

by evolution, is the mechanism that allows an organism to adapt during its lifetime. The

question as to whether learning has an effect on evolution has been raised by many

researchers. Specifically, Mark Baldwin presented his argument about learning’s effect

)

14

on evolution. [1] Many researchers have followed with a critique of Baldwin’s research,

which is now called the Baldwin Effect.

Baldwin presents two characteristics that affect an organism’s development. First

are its instincts, the hard-coded behaviors and characteristics passed down from the

generations, and second are the behaviors and characteristics learned during its lifetime.

Baldwin first poses the question as to why the organism changes during its lifetime.

These reasons include environmental, self-promoted, and choice. When the reasons have

been accepted, Baldwin poses the greater question. What effect do these adaptations

have upon evolution?

2.7 Effects of Learning on Evolution

Baldwin begins by describing the effects of lifetime learning upon the life of the

organism. “By undergoing modifications of their congenital functions or of the structures

which they get congenitally—these creatures will live; while those which cannot, will

not.” He then concludes that since the organisms that are able to adapt will survive, they

will become more prominent in the following generation. Thus, the Lamarckian theory is

unnecessary, because the child is given the ability to learn a behavior, rather than

acquiring the learned behavior.

Baldwin’s landmark paper appeared in The American Naturalist in June of 1896.

Not surprisingly, there have been many reviews on his theory since then. Peter Turney

15

addressed the widely misunderstood Baldwin Effect. Turney states that the

misunderstandings can be grouped into two categories. The first is the belief that the

“Baldwin Effect is concerned with the synergy that results when there is an evolving

population of learning individuals.” He claimed that researcher focused too much on the

benefits from this synergy and ignore the cost. The second is the belief that the Baldwin

effect is Lamarckian. The Baldwin Effect is not Lamarckian and, in fact, it is a better

model of cultural evolution.

2.8 The Baldwin Effect

The Baldwin Effect states that lifetime learning can accelerate evolution.

However, as Turney points out, it also states that learning is expensive. So, within stable

environments evolution tends to produce instinct rather than learning. Since much of

research done in this field focused on the benefits of learning in a dynamic environment,

Turney’s paper hopes to bring a balance. He begins by reviewing the benefits of learning

versus instinct.

Learning allows organisms to “explore neighboring regions of phonotype space.”

This allows the organisms to increase its fitness to the maximum fitness in the local

region of genotype space. Thus, evolution can reach the maximum fitness easier.

However, since learning requires experimentation, it can be dangerous. Turney points

out that instinctually avoiding snakes is much more advantages since one bite can end an

organism’s life. Furthermore, if a behavior is known to be beneficial, it could be

16

performed faster by instinct, since it would not spend the time required with learning.

Thus, evolution can reach the maximum fitness faster. “Learning can accelerate

evolution under certain circumstances, but it can also slow evolution under other

circumstances.”[26] Turney concludes that evolution seeks to find a balance between

instinct and learning.

2.9 The Balance between Learning and Instinct

Kim Sterelny describes the balance between instinct and learning. [24] Evolution

utilizes learning when met with an environmental change. The Baldwin Effect is then

described as “a process through which a trait that was once learned has become innate.”

Thus, learning the behavior allows fitness to be improved easier, but once the trait is

found, instinct allows the fitness to be improved sooner.

3 ARTIFICIAL NEURAL NETWORKS

Simulating the brain has been one of the greatest quests human have chosen to

embark on. Using computers, researchers have developed techniques that mimic many of

the brain’s mechanisms for pattern recognition and memory. “Artificial neural networks

(ANNs) are new mathematical techniques which can be used for modeling real neural

networks, but also for data categorization and inference tasks in any empirical

science.” [16]

• 3.1 ANN Definition

• 3.2 ANN Background

• 3.3 ANN Design

• 3.4 ANN Design Issues

• 3.5 ANN and Learning

• 3.6 Back-Propagation Algorithm

• 3.7 ANN Design Issues with Learning ^

• 3.8 Accelerating Learning in ANNs

17

18

3.1 ANN Definition

ANNs can be used to simulate the brain’s ability to perceive, think, remember,

infer, and act. It can also help with data classification and inference. Malmgren defines

an ANN as “a heterogeneous and loosely delimited set of mathematical technique that

uses techniques that bear some similarities to the way we believe that real neural

networks process information.” However, the ANN is much simpler than the neural

networks in organism’s brains.

3.2 ANN Background

While true simulation of the ANN arguably began in the 1950s, its history can be

seen as far back as in the work of Pavlov, Freud, and Descartes. Hebb and others began

in the 1950s to formulate the ANN, but the ANN did not become powerful until the

1980s when computers began to improve. The ANN research then split into two fields:

simulating the brain and applying ANNs to known problems. “Because they do not

necessarily require assumptions about population distribution, economists,

mathematicians and statisticians are increasingly using ANNs for data analysis.” [21]

Due to their common simulation mechanisms, researchers who simulate the brain and

those applying ANNs to known problems borrow greatly from one another.

Understanding the brain provides insight into mechanisms for the application of ANN,

and the advances in application allow for testing theories of the brain.

3.3 ANN Design

The current ANN is much simpler in design and function than the biological

neural network. Malmgren describes it as a group of neurons that transform the input

into an output. Each node passes its input to the next node through connections that have

a weight. These connections perform the transformation through multiplication of the

node’s output by the corresponding weight (Figure 1).

20

The combination of neurons and connections vary based upon the application and

methods used. A common version of this combination is the Feed-forward network

without hidden layers.

Figure 2. Typical single layer feed-forward. ANN

As mentioned previously, ANNs are useful for classification problems. Classification

problems fall into two categories: Linearly separable or Non-Linearly separable. ANNs

without hidden layers can only be used for linearly separable problems. In order to

achieve non-linear separation, the network must be designed with a middle layer, often

called the hidden layer, and the neurons must enforce an activation function. The typical

activation function used is the sigmoid function. “A sigmoid function is smooth and

strictly monotonous function with a lower and upper bound.” [16]

m = i
(l+ex)

22

Output

Hidden

Input
Figure 4. Typical multi- layer feed-forward. ANN

Since non-linear relationships are more likely to occur than linear relationships,

the majority of research has been focused on the multi-layered ANN. [21] The hidden

layer only receives input and produces output internally. Thus, the hidden layer does not

solve the problem directly. Rather, it enables non-linear solutions by creating subgroups

that can be further classified in the output layer.

ANNs are able to learn any mathematical function by decomposing the function

in terms of the sum the neurons. Thus, if the correct combination of neurons and

weighted connections can be designed, ANNs can play a powerful role in function

approximation in many fields of study.

23

3.4 ANN Design Issues

Complicated systems, such as those found in medicine and economics, require

powerful models. ANNs can be a very powerful model and has been used successfully in

many fields of research. However, one of the biggest problems with ANNs is m the

design. A network designed with excessive structure may not generalize well. When

classifying data, it is important to generalize so that correct placement occurs even with

noisy data. Moreover, if a network is too simple, it may generalize too much and

produce incorrect classification. “The power of the net must be adapted not only to the

expected level of noise and other random elements, but also to what we know in

beforehand about the specific nature of the underlying process.” [16]

3.5 ANN and Learning

After the structure of the ANN has been determined, the connections’ weights

must be set. In simple problems, such as the logical AND, the weight values can be set

manually. In more complicated problems, a better mechanism for determining the

weights is needed. This mechanism has been termed learning because of its use of

reinforcement principles akin to biological learning. Experiments show that using

learning can improve model performance above that of standard statistical methods. [28]

24

The goal of learning is to determine the contribution of each neuron to the output

of the ANN. The weights determine this contribution by amplifying or de-amphfymg the

output of the neuron. To find the optimal set of weights, the ANN’s weights must be

changed incrementally over many iterations. When dealing with a simple single layer

ANN, learning is more straight-forward. At each iteration the following steps are

performed:

1. Present the next input vector to the input neurons.

2. Obtain the output of each input neuron by multiplying its input by the

connection’s weight.

3. Train the weights according to the following equation:

• wj (t+1) = Wj(t) + a * (d - a)

d is the desired output

a is the actual output

a is the learning rate 0.0 < a < 1.0

t is the iteration

w is the current weight

4. Repeat steps 1 through 3 until the error is reduced to acceptable levels

The error is simply the difference between the desired output and the actual output. A

common error measure is the mean-squared error. It is the error computed over the entire

set of inputs and is computed as follows:

25

• E = 1/n (di - <ii)2 + (¿2 - ^2) 2 + •• + (d„ — an) 2

E is the sum-squared Error

d is the desired output

a is the actual output

n is the number of input/output vector pairs in the training set

When dealing with a multi-layered network, the error must be propagated over multiple

layers. While we know what the desired output of the ANN is, there is no way of

determining what the hidden layer’s output should be. Back-propagation allows us to

determine the hidden layer’s error and to alter the hidden layer’s connection.

3.6 Back-propagation Algorithm

Determining the error of the output layer is a simple process of subtracting the

actual output from the desired output. However, determining the error of the hidden

layer(s) is more complicated. In order to determine the error for the hidden layer, we

calculate each hidden neuron’s contribution to the overall error. This is done by

multiplying the error of the output node by the connections between the hidden node and

the output node. Thus, the hidden layer’s error can be approximated. This process is

repeated for every hidden layer until the input layer is reached. Once the network’s error

is calculated, the weights can be modified to reduce the error.

26

Reducing the error of an ANN can be thought of as trying to find the bottom of

the deepest valley on a graph with many valleys (Figure 5). In order to reduce the error,

the weights must move downward along this curve.

In order to search for the global minimum, the gradient decent method is used. Gradient

decent alters the weights by determining the direction of the smaller error. To determine

the direction of the smaller error, the derivative of the activation function for that

connection must first be calculated. By calculating the slope of the error curve and

moving negatively down the slope, gradient decent minimizes the error.

27

♦ Step» 1 : Initialize all weights with random values.

♦ Step 2: Select a pattern and attach it to the input layer (m = 0) :

v 9 - p s w k
V] ~ ^ 3 ' • K

♦ Step 3: Propagate the signals through all layers:

Vf = g (hf) = g |) ' Wji V™ 1 , V 1 f V m

Step 4: Calculate the 0's of the output layer:

PN x ■ i J >
M-1 - Q f (T L? - V “ il s i • AAi -■ x i v i

M rl-I

♦ Step 5: Calculate the S 's for the inner layers by error backpropaaation:

= <3‘ (h ? - 1) V w ?, 1 - i] , m = M, M - 1 , .
J

1 .p S; Adapt all connection weights:

T_new _ ,o ld , A__ w ith , jn „ cm TTm-lWji = Wji + iiWji i iWji = n Ui Vj

♦ Step 7: Go back to Step 2 for the next training pattern.
Figure 6: The Back-Propagation Algorithm (Suen)

The back-propagation algorithm works well on problems dealing with function

approximation. However, one of the drawbacks of back-propagation is the amount of

time it takes to train. This is due to the small changes in weights and the trappings of the

28

local minimums. Many improvements on this algorithm have been suggested, including

how to initially set up the structure, the initial weights and the learning rates.

3.7 ANN Design Issues with Learning

Experiments have shown that Back-propagation has an extreme sensitivity to the

ANN’s initial weight configuration. [14] If the weights are all initialized to zero, it is

difficult for training to break the weight’s symmetry. Furthermore, it is very difficult for

the network to converge if the initial weights are set to very high numbers, such as 10.

The common reasoning for this is that the derivative of the sigmoid function is close to

zero for large weights. Therefore, the convention for setting the weights of a newly

created network has been a uniform distribution between -0.5 and 0.5. While the reasons

for not initializing the weights to zero or ten are known, it is not known why the

convergence is so unstable when using weights in between these ranges. Kolen et al

attempt to describe this sensitivity through a series of experiments.

Beginning with the very simple OR function and a 2-2-1 ANN, the researchers

displayed the sensitivity of back-propagation to initial weights ranging from -20 to 20 in

steps of 0.2. The results showed thirty-seven separate classes of convergence on a

function as simple as the OR function. Clearly, back-propagation is sensitive to initial

weights, but is it sensitive to learning rates? Kolen et al show that learning rates and

momentum also have a drastic affect on convergence. Thus, learning algorithms must

29

take into account the initial conditions; otherwise the result may vary from one

implementation to the next.

90 00 — I

80.00 —

70.00 —
Non
Convergence
After
50,000
Trials

60 00 —

50 00 —

40.00 —

30 00 — j

20.00 — j

10.00 — 1

0.00 —

0.00

I — L=1 0 M=0 0
L = 1.0 M =0 5

— L = f 0M=0‘ 9
L=2 0 M=G.O

— L=1.ÔM=Ô 5
L=2iOM^C).9

2.00 4 .00 6.00
P

8.00 10.00

Figure 7: Kolen and Pollack’s Description of initial
weights effect on convergence

3.8 Accelerating Learning in ANNs

In addition to using appropriate weights to improve back-propagation’s

convergence time, several other techniques have been employed. Resent work on a

hybrid algorithm of the least squares technique accelerates convergence. By using linear

least squares, the last layer of the ANN is optimized. The advantage to using a linear

least squares is that the dimensionality of the search space is reduced, thus reducing the

30

time it takes to optimize. The remaining layers learn through standard non-linear training

algorithms.

In simulation, when the modified least squares is compared to the conventional

least squares on identical initial 3-6-1 networks, the modified least squares converges

faster. Furthermore, in simulations where sigmoid outputs perform poorly, the modified

least squares method performs well since it does not use the activation function on the

output layer. Therefore, by using standard methods on the hidden layers and linear least

squares for the output layer, convergence time can be accelerated.

4 EVOLVING ARTIFICIAL NEURAL NETWORKS

Genetic Algorithms have been applied to the design of ANN in several ways.

First, evolution of ANNs has been applied to the search for optimal set of weights. With

a pre-established architecture, mutation and crossover are performed on the connection

weights of the ANN. Second, evolution has been applied to the search for optimal

architecture. In the search for optimal architecture, mutation includes either neuron

addition from a small initial network, or neuron deletion from a large initial network.

Third, evolution has been applied to the search for optimal learning parameters. With a

pre-established architecture, mutation and crossover are performed on the learning

parameters of each connection in the ANN.

Most of the research done on the evolution of ANNs has been focused on the

search for optimal weights. Researchers shied away from evolving structure because one

of the major genetic operators, crossover, is difficult to perform on ANNs. This is mainly

due to the complexity of ANNs. In order to perform evolution, the crossover operator

must be able to combine two highly performing networks in a meaningful way. Due to

Ann’s complexity, it is difficult to say which parts made a network obtain its high

performance. Extensive analysis of the neurons and their connection weights would have

to be performed in order to determine which weights actually contributed to the desired

31

32

outputs. Thus, until recently, evolution of ANNs was limited to weights and learning

parameters.

It has been shown that the architecture affects the speed and accuracy of learning.

[29] Further, evolving the structure would remove the trial and error approach widely

used to determine the number of hidden nodes for any given problem. Finally, evolution

of structure and weights has been shown to create networks with high performance with

minimal structure. [23]

• 4.1 Neural Evolution of Augmenting Topologies

• 4.2 Meaningful Crossover in ANNs

• 4.3 Minimizing Architecture through Evolution

• 4.4 Protecting Slowly Maturing Genomes

• 4.5 NEAT Performance

4.1 Neural Evolution of Augmenting Topologies

Neural Evolution of Augmenting Topologies (NEAT) is Ken Stanley’s algorithm

for evolving ANNs’ structure and weights. By beginning with a minimal structured

network and incrementally adding neurons and connections, the result is a network that

has close to minimal structure. This is important to the network’s ability to generalize

well to previously unseen data. NEAT uses four genetic operators to perform evolution:

33

• Mutation: Weight

• Mutation: Add neuron

• Mutation: Add connection

• Cross-over

4.2 Meaningful Crossover in ANNs

The difficulty many researchers have observed deals with the cross-over operator.

Typical crossover operators arbitrarily combine two halves of two networks. This can

lead to a network that performs worse than the two networks (Figure 8).

[A.B.C]
X[C,B.A]

Crossovers: [A,BA] [C.B.C]
Figure 8: Meaningless Crossover [23]

In Figure 8, the two networks have similar architecture, but in different order. Cross-over

may produce the two networks [A,B,A] and [C,B,C]. This results in meaningless

crossover because the two networks are missing part of the original networks, such as the

34

connections associated with nodes A and C. When structure is lost due to meaningless

crossover, evolution cannot combine two high performing networks effectively.

In order to do meaningful crossover without extensive architecture analysis,

NEAT encodes the ANN in a very special way. The genome in NEAT is made up of

connection genes. Each gene describes the input node, the output node, the weight of the

connection, whether the connection is enabled, and an innovation number (Figure 9).

Figure 9: NEAT Encoding [23]

When the initial population of minimal architecture is created, each connection is

assigned an innovation number. Thus, every individual in the initial population has

identical innovation numbers assigned to their connections. Then, by assigning each

newly mutated connection a new innovation number, it is possible to track a connection’s

history. This allows NEAT to compare two networks based upon their connection’s

innovation numbers. When the two networks cross-over, the connections with similar

innovation numbers are passed onto the child without duplication. Connections that have

35

different innovation numbers are passed on from the parent with a higher fitness. Thus,

NEAT performs a meaningful crossover through the use of the innovation numbers and

without the need of expensive architectural analysis (Figure 10).

Parenti Parents
1 5 Ì A 5 S

-4 2—>4
D B A S

¡ -■ A 5 -v ,4
l 4. 3 4 5 « 7 9 u

l — A l — i
d s s a b

3 — 4 5 - s 4
D B A S

5 — 6 « - ^ 4 1— 5 1— 6

Offspring 1
1- 4

EUSAB

3
5 — A

A
i r

■5

3ISAB

5
5---S S --4

3
1 - :

9 10
1— 6

Figure 10: NEAT Cross-over (Stanley)

4.3 Minimizing Architecture through Evolution

As described in chapter 3, ANNs are very sensitive to their architecture. Too

much complexity may lead to over-fitting and too little may lead to incorrect

classifications. Furthermore, the amount of architecture affects the convergence time and

36

accuracy. Therefore, it is important to have the minimal possible structure when

designing ANNs.

Many evolution techniques start with a population of random architectures. Some

networks may have many hidden neurons, while others may have just a few. This is done

so that evolution may get a jump start on finding a solution by starting with some

diversity. However, this method presents several problems. The most serious problem is

that the final solution is not likely to be minimal. Many of the nodes and connections

found in these random ANNs will be unnecessary to the final solution. While other

genetic operators could be added to remove this unwanted architecture, it would be costly

to the evolutionary process.

The NEAT algorithm creates ANNs with the minimal possible structure by

allowing evolution to minimize the structure from the beginning. By starting with

architectures that contain no hidden nodes and evaluating every change in architecture,

NEAT ensures that every piece is necessary to the final solution. By minimizing the

architecture, the search space is smaller and the final solution is more optimal. With a

smaller search space, the evolutionary performance is dramatically improved.

4.4 Protecting Slowly Maturing Genomes

Previous researchers gave evolution a jumpstart with a diverse initial population.

They also started with random initial populations because they had no mechanism for

37

protecting newly added architecture. When an ANN’s architecture is modified, its fitness

can be dramatically reduced because the weights have not been optimized to the new

architecture. The maturation of the network through weight mutation may take several

generations. However, when an ANN’s fitness is reduced, evolution weeds it out of the

population. Since the ANN may need that modification to reach the desired solution,

NEAT provides protection for new modifications that allows for the time necessary to

achieve higher fitness.

Through spéciation, NEAT only allows genomes to compete with similar

genomes. Thus, networks with new modifications are allowed time to optimize before

competing with the entire population. NEAT analyzes each network and determines

which species the network belongs to. By using explicit fitness sharing, similar genomes

share their fitness. When species share their fitness, each species’ population is

restricted, creating more species and ensuring population diversity.

4.5 Performance of NEAT

In order to determine whether NEAT could evolve necessary structure and do it

with minimal hidden nodes, NEAT was used to solve the classical XOR problem. XOR

is a non-linearly separable problem and would thus require hidden nodes.

38

The initial generation consisted of networks with 2 inputs, 1 bias, and 1 output

node. Each connection received an initial random valued weight (Figure 11) Fitness

was determined by summing the difference between the desired output and the actual

output for the 4 different possible combinations (Figure 12).

Out

1 0 \ □

O b ___ \ o N
0

Xj *2 f(x i,x 2)

1 1 0

1 0 1

0 1 1

0 0 0

Figure 12: Non-linearly Separable Input/Output
combinations for XOR

NEAT was able to find a structure for XOR with an average of 2.35 hidden nodes after an

average of 32 generations. [23] This is close to the optimal solution for XOR that

requires only 1 hidden node. NEAT never failed to find a solution in 100 simulations.

Furthermore, the optimal solution was found m 22 of the 100 simulations,

was able to solve the XOR problem with close to minimal structure.

Thus, NEAT

39

5 RELATED WORK

The use of evolution to design artificial neural networks has been well researched

and documented. In order to understand this research and how to extend it, many papers

were read and reviewed. The following sections are collections of reviews on the topics

dealing with this research.

• 5.1 Baldwin Effect in Dynamic Environments

• 5.2 Displaying the Baldwin Effect in the Evolution of ANNs

• 5.3 Learning and the Evolution of ANNs

• 5.4 Evolving ANNs with a Predisposition to Learn

• 5.5 Optimizing ANNs using Evolution with Learning

5.1 Baldwin Effect in Dynamic Environments

The Baldwin Effect is widely accepted as part of the evolutionary mechanism.

Many researchers have sought to prove it in a simulated environment. Research has

shown that learning has an effect on the genome in simulated evolution. [13]

40

41

Even though learned behavior is not passed directly to an organism’s offspring, learning

organisms evolve much faster than non-leaming organisms. [13] In Hinton and

Nowlan’s simulation, learning operated on the same variables as the genetic algorithm.

Their simulation focused on the comparison between learning and non-leaming

organisms by using a very simple and extreme task. The simulation was assigning the

organisms the task of finding a specific combination of switches. The simulation was an

extreme case because the organism’s fitness only increased if it found the exact

combination. Therefore, non-leaming organisms’ only mechanism for change was to

randomly change the switches through evolution. The learning organisms were allowed

to change the switches during their lifetime. In simulation, the non-leaming organisms

never found the correct combination and the learning organisms found the combination

quickly depending on the number of switches. This result is not surprising because the

simulation was built to exploit the advantages of learning and the disadvantages of non-

leaming. By creating a simple and extreme simulation Hinton & Nowlan showed that

learning can vastly increase the speed of evolution in certain tasks.

While French and Messinger’s simulation was similar to Hinton & Nowlan’s

classic simulation, their simulation created a population of organisms whose genome was

described in a string of bits. Also, the organisms were subjected to problems with

differing degrees of difficulty. Finally, the fitness function for the organisms was not

directly related to the organism’s ability to perform the desired task. By varying the

difficulty level they were better able to describe the Baldwin Effect. Thus, they were

able to demonstrate that the Baldwin Effect is contingent upon the organism’s ability to

42

learn and the difficulty of the action to be learned. Furthermore, they showed that

sexually reproducing organisms have a more pronounced Baldwin Effect than asexual

organisms.

5.2 Displaying the Baldwin Effect in the Evolution of ANNs

While the Baldwin Effect and Lamarckism may be controversial in the biological

context, they can be useful in simulation. The Baldwin effect is used by definition in the

evolution of ANNs since fitness is determined after learning. “Both the Baldwin Effect

and Lamarckism produce improvement over standard evolution” of ANNs. [10] Giraud-

Carrier utilized the Baldwin Effect and Lamarckism in his experiments evolving ANNs.

By determining fitness after learning and by altering the chromosomes prior to genetic

recombination Giraud-Carrier showed that the Baldwin Effect and Lamarckism can be

applied to ANNs with improvements to time and predictive accuracy for the problems

considered. So, the reason the learned behavior is able to pass on through the generations

is a balance between the benefits of being able to learn and the cost of such behavior. In

order to observe these effects, it is necessary to create an environment in which learning

is required.

Watson and Wiles presented further evidence of learning’s effect on evolution

with ANNs. [27] Previous research showed genetic stagnation after correct behavior was

achieved. The aim of their research was then to display the complete assimilation of the

learned behavior by introducing a cost to learning. With this evidence, both of the

43

significant aspects of the Baldwin Effect would be displayed. Their simulation consisted

of organisms whose genome consisted of connection weights and learning rates within a

single layer ANN. Again, fitness was determined after learning and the initial weights

were passed rather than the learned weights. Mutation was only performed on the

learning rates. After the first stage of the Baldwin Effect, in which a task is performed

using learning, the researchers sought to display the second stage. The second stage of

the Baldwin Effect states that after learning has provided the ability to perform a task,

evolution will select those genomes that perform the learning quicker. After generations

of selecting for faster learners, the behavior is eventually coded directly into the genome.

In order to measure this transition the researchers employed two indirect methods. First,

they observed the performance of the networks before and after learning each generation.

When the observed performances converge, learning is no longer having an effect.

Second, when the learning rates of the genome begin to fall, evolution has begun its

transition into acquiring the learned behavior. Ironically, only after the entire population

is made up of learning genomes does the cost of learning outweigh its benefits.

Previous research displaying the Baldwin Effect in ANNs focused on the weights

alone. E. Boers, M. Borst, and I. Sprinkhuizen-Kuyper describe an algorithm that adapts

weights and architecture. [3] Weights are adjusted through normal training methods.

Unlike previous methods, the architectures of the networks are changed online. After a

certain threshold of continuous sizeable weight changes, the algorithm determines that

the structure is insufficient and adds nodes. In this way, learning can be used to change

44

the weights and the structure of the ANN. Coupled with the Baldwin Effect, the result

should be a network that can adapt to the environment faster than evolution alone

5.3 Learning and Evolution in ANNs

Other researchers feel that ANNs should evolve in simulation to biology and thus

ignore the possibilities of Lamarckism. To determine the effects that learning can have

on evolution, Nolfi, Elman, and Parisi restrict their research to Darwinian mechanisms.

[18,19] Their research begins with an organism whose goal is to find and eat food in its

environment. The organism is allowed to move through its environment in search of

food and the organism’s fitness is a measure of the number of food pellets eaten divided

by its number of actions. The organism makes decisions about where to move within its

environment based upon the output of a feed forward ANN.

45

Output

Input Output

Figure 13: Nolfi Elman & Parisi’s ANN
I

Nolfi, Elman, and Parisi began their research with a simulation that would

determine if the simulated organism could evolve a behavior that would acquire lots of

food with few actions. One hundred networks are initially assigned random weights and

placed within an environment of food. After 20 epochs of interaction with the

environment, genetic algorithms were performed on the networks. Since they were

assigned random weights, some of the networks ate more food than others, thus

improving their fitness. Twenty networks were chosen based on their amount of food

consumption and each copied itself five times. Since the researchers performed no

structural change to the networks, only the weights were transferred to their copies, or

children. Mutation was performed by altering the weights of the children. Through

mutation, crossover, and fitness selection, the networks did indeed evolve behaviors that

solve a problem. The behavior was not taught explicitly, rather, it was the product of the

46

evolutionary mechanism. Furthermore, mutation and fitness selection were both

required. Without mutation, new strategies in the population would not have been

possible. Likewise, without the fitness selection, the behavior would never improve.

The first simulation in their research was successful. They showed that evolution

could be combined with ANNs to produce seemingly purposeful behavior. However, the

behavior was the result of evolution alone, and did not require any learning during the life

of the organism. Thus, in their next simulation they aimed to show the effects of life time

learning on behavior after evolution. Since the researchers wanted to simulate nature as

closely as possible, they refrained from providing any direct supervised learning. Rather,

they allowed the networks to perform an instance of “self-supervised learning.” The

ANN architecture was altered to allow the networks a way of predicting the next

movement. (Figure 14) The network then used Back-propagation to change the weights

to the motor outputs based upon the difference between the predicted sensory output and

the actual sensory input. While the weight changes during the lifetime of the organisms

were not passed on to their children, those organisms that performed better passed on the

potential for such changes. This is a direct simulation of the Baldwin Effect in ANNs.

Furthermore, the simulation with learning yielded better performances than the

simulation without learning.

47

Motor
Output

Predicted
Sensory

Input

Figure 14: Nolfi Elman & Parisi’s self-supervised ANN

Nolfi, Elman, and Parisi concluded that “the role of learning m evolution is that of

a third evolutionary mechanism.” It is a mechanism that allows organisms to take their

environment into account when solving problems. Reproduction is thus affected since

learning creates more organisms with a high fitness. This should improve evolution

because it makes the search more effective. However, as these researchers point out, the

learned task must be positively related to the evolutionary pressures.

5.4 Evolving ANNs with a Predisposition to Learn

Nolfi, Elman, and Parisi also show that the inherited initial weights provide the

ANN with a predisposition to learn the task they were evolved for. They show this by

48

erasing the inherited initial weights and replacing them with random values. The ANNs

were then allowed to learn the task. With random initial weights on all but the teaching

neurons, the ANN’s performance remained constantly low throughout their life.

Therefore, while the teaching connections were performing the same function, without

the evolved initial weights, the network lacked the predisposition to learn. The weights

provide a predisposition to learn by “enhancing the perceived differences within the

current environment in order to allow learning to produce different adaptive

changes.”! 18]

5.5 Optimizing ANNs using Evolution with Learning

Determining the proper ANN structure, initial weights and learning rates can be

difficult, especially within unfamiliar environments. Convergence can be slow and very

dependent on the initial weights, convergence on a global optimum is not guaranteed and

there is no proven method for determining the size of the hidden layer. [6] Evolution has

been shown to be a good mechanism for the global search of neural networks, but it fails

to perform fine tuning. Researchers have combined evolution with local search

techniques in order to improve the efficiency of .a given task and to seek out the elusive

global optimum.

In order to use evolution to optimize a network to solve a task, Beliakov and

Abraham employed standard evolutionary and learning techniques. [2] Evolution would

find the region of the search space that includes the optimum and learning would

49

optimize the network. The researchers began with a randomly generated population of

ANN. This included the architecture and connection weights. The architecture was

randomly created with one hidden layer that had a maximum of four neurons. The

researchers restricted the network’s architecture due to the exponential increase in

complexity with each increase in neurons. The ANNs were then trained using Back-

propagation and other learning techniques. After the training session, each network was

evaluated and a genetic algorithm was performed. Each learning technique applied

different mutations. The mutations for Back-propagation included learning rates and

momentum. After applying mutation, the offspring were produced to replace the poorly ,

performing networks of the generation. Training was performed followed by evolution

until the optimal solution was found. The Meta-learning algorithm, as this method is

called, performed well for finding near global minima on the error surface.

Castillo et al showed that combining Back-propagation with genetic algorithms

can produce ANNs that “are smaller and achieve a higher level of generalization than

other perceptron training algorithms and other evolutive algorithms.” [6] Unlike Meta-

leaming, G-Prop has no restriction upon the size of the hidden layer. Further, G-Prop

applies genetic algorithms to the initial weights only, and allows Back-propagation to

train from the initial weights. The G-Prop algorithm can obtain a better solution than

standard Back-propagation in comparable time.

The G-Prop algorithms selects ANNs based upon their classification accuracy and

their number of hidden nodes. Thus, if two ANNs have the same classification accuracy

50

the ANN with less hidden nodes would receive a higher fitness. This increases

generalization and decreases computation time. Lamarckian principles were also

employed by making one of the genetic operators carry over trained networks to the next

generation. In fact, these researchers have been doing an extensive search for new

genetic operators. While NEAT contains four genetic operators (neuron addition,

connection addition, weight mutation, and crossover) G-prop contains six genetic

operators (mutation, cross-over, neuron addition, neuron elimination, neuron

substitution, and finally training).

6 EVOLVING ANNS TO LEARN

Research has shown that evolution can be used to design the artificial neural

network. Previously, it has been used to evolve ANNs to solve a specific problem. Our

research will show that evolution can be used to create an ANN that can adapt to solve

any problem within the environment it was evolved in. This functionality is imperative

for the future of artificial life, because organisms do not live in isolation. The world is

always changing, and the ability to adapt to change will provide for more robust artificial

life. We will show that evolution can be applied to design an artificial neural network

that has the ability to adapt to drastic changes in its environment.

• 6.1 Designing a Better Network for Learning

• 6.2 Combining Evolution and Back-propagation

• 6.4 Altering NEAT and Back-propagations

• 6.5 Designing the Dynamic Environment

• 6.6 Evolving Learning Networks Algorithm

51

52

6.1 Designing a Better Network for Learning

When deciding to use Back-propagation on a classification task, the first problem

that must be addressed is the design of the ANN. Determining how many hidden nodes,

hidden layers, initial weights, and learning rates has quantifiable effects upon the speed

and accuracy of the Back-propagation algorithm. Attempts had been made to iteratively

determine these values. A learning rate would be used for a certain amount of iterations,

and then it would be altered based upon the networks convergence rate. This method of

trial and error is too problematic and time extensive to be of real use. Ultimately, the

researchers were searching for the optimum combination of variables. Evolutionary

algorithms have been shown to be a promising searching mechanism for multiple

unknowns. Thus, our research combines evolutionary algorithms and Back-propagation

in order to design an ANN that is optimal for learning.

6.2 Combining Evolution and Back-propagation

Previous research has combined evolution and Back-propagation. However, this

research was focused on improving the speed and accuracy of evolution. [29] Zhang

states that evolution performs well for the global search and Back-propagation performs

well for the local search. [29] While optimizing evolution is valid, it did not address the

fundamental purpose of learning. Learning’s fundamental purpose is to facilitate

adaptation to a changing environment. The Baldwin Effect describes learning as

53

smoothing the fitness curve so that evolution can climb it with less difficulty. This

difficulty arises when the environment changes. Thus, without a dynamic environment,
A

learning has little purpose. This is shown in the second aspect of the Baldwin Effect m

which the genome acquires the traits as instinct that previously had to be learned. So, in

order to find the optimum design for an ANN to use Back-propagation, evolution must

take place in a dynamic environment.

Forcing an ANN to solve many problems drives evolution to optimize the ANN

for learning. A network’s fitness in a changing environment such as this is based upon

the network’s ability to learn. After many generations, the fittest network will be able to

adapt to any problem in its environment. The result of this process is a network that will

even be able to learn to solve problems it has never seen before. If an evolved network

can learn to solve a problem it did not encounter during evolution faster and more

accurately than a traditional fully connected layered network, we will conclude that

evolution has produced an optimal learning network.

6.3 Altering NEAT and Back-propagation

(

ANNs perform best when solving classification problems. In order to determine

whether a network could be evolved to learn many problems, we chose the problem of

graphing high-degree polynomials. Graphing polynomials is an interesting application

for this research because polynomials can be easily visualized and the error calculation is

straightforward. Furthermore, by simply changing the degree of the polynomial it is

54

possible to create varying degrees of complexity. Thus, we have named our evolving

ANNs Polysolvers.

We used the NEAT algorithm as the basis for evolving the artificial neural

networks. However, NEAT is not equipped with any supervised learning. Therefore, we

modified the NEAT algorithm and its genome encoding in order to incorporate Back-

propagation learning. We began by changing the genome encoding to include learning

rates and initial weights. NEAT did not change the weights of the networks during their

lifetimes, thus it had no reason to include learning rates, or to make the distinction

between weights and initial weights. Kolen demonstrates that the initial weights have an

affect on the speed and accuracy of Back-propagation. [14] Therefore, we store the

connections’ initial weights in the genome rather than resetting the connections to

random initial weights. Finally, we added a learning mechanism to the lifetime of our

evolved networks.

The Back-propagation algorithm is designed for the traditional fully-connected

layered networks. While Back-propagation works with varying number of layers, it

cannot handle connections that pass over layers. Such connections are extremely

common in evolved networks (Figure 15).

Pass-over Connection

Figure 15: Standard(left) vs. Evolved ANN(right)

In order to accommodate the possibility of pass-over connections within the Back-

propagation algorithm, error cannot be calculated by layers. If we were to calculate the

error by layers, we would ignore the error emitted by these pass-over connections. Thus,

we have implemented a recursive error calculation. Starting from the output node’s error,

the hidden node’s contribution to the error is determined by recusively moving through

all possible connections. Each node’s connections’ weight is then modified by the

product of the node’s input, error, and learning rate.

56

Figure 16: Back-propagation of error in an evolved network

In Figure 16, A’s error would be based on the sum of C’s error and B’s error. However,

since B is not an output node, its error would be based on the sum of C’s error and D’s

error. This modified approach for error calculation of the Back-propagation algorithm

can accommodate any combination of nodes and connections, including the standard

fully connected layered network. After modifying NEAT and the Back-propagation

algorithm, we were then able to begin evolving ANNs to learn.

6.4 Designing a Dynamic Environment

57

The outcome of evolution is highly dependent upon the environment and the

fitness function. The environment for our experiments was made up of different

polynomials of the same degree. We evolved networks to learn to graph 3rd and 4th

degree polynomials. However, many 4th degree polynomials have similar graphs to 2nd

degree polynomials (Figure 15).

Figure 17: 2nd Degree v.v. 4th Degree

While the polynomials in Figure 17 have very different magnitudes, their complexity is

very similar. ANNs performance is based on the problem’s complexity rather than its

magnitude, thus it would not be surprising to find that the training time for an ANN

would be similar for the 2nd degree and 4th degree. Thus, in order to evolve a network

58

that can learn to solve all 4th degree polynomials it is important that we create an

environment that takes into account the full complexity of the 4th degree

polynomial^Figure 18).

Figure 18: Appropriately Complex 4th degree polynomial

Therefore, the appropriate environment of polynomials will vary within the complex form

of the degree. However, there are variations on the complex form (Figure 19).

59

Figure 19: Various appropriate fourth degree polynomials

6.5 Evolving Learning Networks Process

In order to create an environment that forces evolution toward learning rather than

specializing, we set each Polysolver to the task of graphing five significantly different

complex 3rd degree polynomials. Each Polysolver was given a certain number of

iterations to learn to graph each polynomial. After each polynomial, each Polysolver’s

weights were reset to the initial weights that are stored in their genome. Thus, the

Polysolver’s lifetime is made up of the entire set of polynomials. After the population of

Polysolvers has had a chance to learn to graph each polynomial, the Polysolver’s fitness

is calculated. NEAT was then performed on the population based upon the calculated

fitness (Figure 20).

60

After the Polysolver has had a chance to graph a polynomial for a preset amount

of iterations, the Polysolver’s network is reset to the initial weights stored in its genome.

This is important to the evolution of a learning network because it has been shown that

Back-propagation is sensitive to the initial weights. [14] With the weights reset after

each polynomial, the Polysolver is able to be evaluated upon its ability to graph each

polynomial from the same starting point. Furthermore, the initial weights are stored in

the Polysolver’s genome and thus get passed down to the following generation. When

fitness is evaluated based upon the network’s ability to graph from a defined starting

point, evolution is able to optimize a network to learn to graph any polynomial. Without

a defined starting point, learning would actually be hampered by the modified weights

since the weights from the previous polynomial have been specialized to that polynomial.

The Baldwin Effect further emphasizes the need to reset the weights to an initial starting

point. The Baldwin Effect states that evolution does not pass on learned behavior, rather

it passes on the ability to learn.

61

Figure 20: Evolving Learning Neural Networks Algorithm

Having created an environment that will focus evolution towards learning; the next step

was to create an appropriate fitness function. Our desired outcome after evolution is an

initial ANN, including hidden nodes, connections, learning rates and initial weights. This

initial ANN should perform two functions. It should be able to leam to graph fourth

degree polynomials accurately and quickly. Therefore, our fitness function is based upon

the Polysolver’s ability to perform these two functions. However, evolution works best

when it can improve incrementally. In order to allow evolution to work incrementally,

the Polysolver’s fitness was first determined by its summed error from each polynomial.

If the summed error for each polynomial is reduced to an acceptable level, then the

fitness improves based upon the speed (Figure 21).

While (not at the end of the Polynomial set)

If (Polysolver’s error for this Polynomial is below the error threshold)

Fitness += Success Bonus

+ Number of Iterations

- Time to Reach the Error Threshold

Else

Fitness += Success Bonus

- Total Error

Next Polynomial

Fitness = Fitness / (#Polynomials * (Success Bonus + # Iterations)) * 100

f

62

Figure 21: Evolving Polysolver’s fitness function

63

Total Error is the difference between the actual output set and the desired output set of

each polynomial. This difference is summed to determine the Polysolver’s total error.

Fitness is then determined by the difference between the Success Bonus and the Total

Error. Thus, if the Polysolver has low Total Error, then it will obtain a high Fitness.

However, since we are interested in reducing error and increasing speed, Fitness is

increased when the Total Error reaches an acceptable level. Thus, Fitness is determined

based upon the Number of Iterations that have been completed when the Total Error

drops below the desired Error Threshold. When the Total Error drops below the Error

Threshold, Fitness is equal to the sum of the Success Bonus and the difference between

the Number of Iterations and the Time to Reach the Error Threshold. Thus, fitness

improves when the Polysolver requires less time to reach the Error Threshold. Fitness is

then normalized be dividing Fitness by the maximum fitness possible. We do not expect

to achieve 100% Fitness. To achieve 100% Fitness, the network would have to be able

graph each of the polynomials immediately. This is not a plausible scenario since each

polynomial is significantly different. Since we expect to have to allocate some time for

learning, achieving Fitness of 70% or higher would be considered successful. With this

error function, speed is not optimized until error is reduced to acceptable levels.

Furthermore, a network that improves speed-and accuracy will receive a higher Fitness

than one that improves accuracy alone.

Once Fitness is determined, evolutionary algorithms can be performed. The

Polysolvers who achieved high Fitness are allowed to remain in the following generation.

64

Furthermore, the high performing Polysolvers are allowed to crossover with other high

performing Polysolvers. In order to create diversity and innovation, a portion of the

population will be mutated. New nodes and connections can be added to the Polysolver’s

genome Furthermore, the initial weights and learning rates can be mutated by either

adding or subtracting a small floating point number. The mutation of the initial weights,

learning rates, and structure allow evolution to search for optimal conditions for learning.

Therefore, evolution can be used to design a network that is better suited for learning.

J

7 RESULTS AND ANALYSIS

By implementing the Evolving Learning Neural Networks Algorithm for graphing

polynomials, we will show that evolution can be used to design ANNs that are better at

learning to graph polynomials than the standard fully connected ANNs. Through a new

mechanism, termed Incremental Evolution, we will determine whether stepwise evolution

can be used to design ANNs to graph very complex polynomials. Finally, we will

analyze the ANN’s ability to learn to graph polynomials of lesser complexity than those it

was exposed to during evolution.

• 7.1 Evolution of a 3rd Degree Polysolver

• 7.2 Incremental Evolution

• 7.3 Backwards Compatibility

7.1 Evolution of a 3 d Degree Polysolver

We evolved a Polysolver for 3rd degree polynomials. During their lifetime,

Polysolvers learn to graph the following complex 3rd degree polynomials:

• 2.0x3 - 6.0x2 + 3.0x - 2.0

65

6 6

• 3.0x3 + 4.0 x2 - 4.0x + 3.0

• 1.7x3 - 5.0x2 + l.Ox + 2.0

• -1.4x3 + 4.8x2 - 3.0x - 0.5

• -1.4x3 - 4.5x2 - 3.0x + 2.4

We were expecting to achieve a fitness of 70% in order to consider our Polysolver

successful. Surprisingly, fitness reached a saturation level of 80% after 775 generations

(Figure 22). The resulting network has 6 hidden nodes and 13 connections (Figure 23).

Each connection has an evolved initial weight and learning rate.

Generation

Figure 22: Evolution of a 3rd degree Polysolver

67

«§■

Figure 23: ANN Evolved for 3,d
degree polynomials

\
o o o o

\ \ . V \ | \ \ \ \
X y t \w \ \ \ \ . , ,

/ X\\..\\V l if

f l
1 /
/

'NN-3 WIJ //

Figure 24: Fully-Connected ANN

The 3rd degree Polysolver is able to graph each of the five polynomials in its lifetime

within a total error of 3 units. However, success was not only dependant upon the ability

to graph the third degree polynomials. In order to be truly successful, the Polysolver

would need to accurately graph the five polynomials quickly. Since speed is relative to

the problem, we compared the speed of the Polysolver to graph the 3rd degree polynomial

with the traditionally designed fully-connected ANN. When the evolved network and the

fully connected network were trained to graph a 3rd degree polynomial, the evolved

network was able to achieve acceptable error (less than 3 units) 400 iterations faster than

the fully connected network (Figure 25).

6 8

Evolved...— Fully Connected

Iteration

Figure 25: Evolved Network Vs Traditional Network
on a 3rd degree polynomial involved in evolution:

f(x) = 3xJ + 4x2 -4x +3

Evolution was able to determine a near optimal design including hidden nodes,

connections, initial weights, and learning rates. Clearly the evolved design is more

accurate and faster at graphing polynomials than the traditional design. However, is it

more versatile than the traditional design? The previous results were based on a

polynomial that was included in evolution. Therefore, it is not surprising that the evolved

network would be good at graphing a polynomial that it was evolved to graph. Thus, a

further test of the evolved network would include a polynomial that it did not encounter

during evolution.

When the evolved network is compared to the traditional network on a previously

unseen 3rd degree polynomial, the evolved network still outperforms the traditional

network (Figure 26). On the previously unseen polynomial the evolved network was

able to achieve acceptable error (less than 3 units) after 14 iterations, 60 iterations faster

69

than the fully-connected network. Furthermore, it achieved a more accurate classification

with only half the total error of the fully-connected network even after 800 iterations.

Thus, we conclude that evolution can be used to design a faster, more accurate, and more

versatile network than traditional design techniques.

X

Figure 26: Evolved Network Vs Traditional Network
on a 3rd degree polynomial not involved in evolution:

f(x) = 2x3 - 6x2 + 3x - 2

7.2 Incremental Evolution

In the previous section, we described the virtues of using evolution to design a

network for learning to graph 3rd degree polynomials. However, when the Evolving

Learning Neural Networks Algorithm was applied to a set of 4th degree polynomials,

evolution required many more generations to achieve marginal fitness (Figure 27). After

1200 generations, the fitness remained at 60%.

70

Figure 27: Evolution of a 4th degree Poly solver
starting from minimal structure

As previously stated, evolution performs best under conditions in which it can

improve its fitness incrementally rather than in spurts. If a network was first evolved to

learn to graph 3rd degree polynomials and then evolved to learn to graph 4th degree, we

hypothesized that it would take fewer generations to achieve high fitness than it would

take to evolve from minimal structure. Therefore, rather than evolving the 4th degree

Polysolver from a minimal structure, we began evolution from a population of previously

evolved 3rd degree Polysolver (Figure 28).

71

Figure 28: Structure of a 4th degree Poly solver
r dincrementally evolved from 3 degree Polysolvers

Figure 29: Incremental evolution of a 4th degree
Poly solver starting from a population of 3rd degree

Polysolvers

72

The fitness level of 80% for 3rd degree Polysolver dropped to 50% when the network

started to graph 4th degree polynomials. This is not surprising since the Polysolver had

evolved the structure necessary to graph 3rd degree polynomials, which is less complex.

However, after only 60 generations, the fitness level of the Polysolver rose to above 80%.

This is a dramatic reduction in the number of generations compared to a Polysolver

starting from a minimal structure. Incremental evolution achieved a fitness level of over

80% in 1000 generations, while evolution from minimal structure only achieved a fitness

level of 66% in 1200 generations.

To further study the effects of incremental evolution, we evolved a 4th degree

Polysolver from a population of 2nd degree Polysolvers. Again, the fitness dropped from

85% to 25% when presented with 4th degree polynomials (Figure 30). This drop was

more dramatic than the drop resulting from a 3rd degree Polysolver being introduced with

4th degree polynomials. This is a direct result of the 2nd degree Polysolver’s structure.

Since 2nd degree polynomials are less complex than 3rd degree, the 2nd degree Polysolver

is evolved to contain less structure. However, the number of generations required to

achieve a high performing 4th degree Polysolver is comparable for 2nd and 3rd degree

incremental evolution. Whether evolution began from 2nd degree or 3rd degree, the

number of generations required to evolve a 4th degree Polysolver was approximately

1000 generations. This is due to the fact that a 2nd degree Polysolver takes less

generations (approximately 500) than the 3rd degree Polysolver (approximately 900), and

therefore has more generations to evolve to the 4th degree. <

73

Polysolver starting from a population of 2nd degree
Polysolvers

To complete our analysis of incremental evolution, we evolved a 4th degree

Polysolver incrementally starting with 2nd to 3rd degree (Figure 31). As expected, there

was a drop of fitness from the 2nd degree to the 3rd degree and again from the 3rd degree

to the 4th degree (Figure 32). The result of incremental evolution through 2nd and 3rd

degree was a high performing 4th degree Polysolver in approximately 200 less

generations than the incremental evolution starting from either 2nd or 3rd degree.

Incremental evolution achieved high performance in less generations because it was able

to evolve a Polysolver for a less complex polynomial first and then build upon that

structure. Since it is easier for evolution to find a high performing ANN to graph 2nd

degree polynomials, it was able to evolve a high performing Polysolver more quickly.

Then, it was able to utilize the evolved structure, learning rates, and initial weights to

74

learn to graph 3rd degree polynomials. Since 3rd degree polynomials are less complex

than 4th degree polynomials, the transition from 2nd to 3rd degree took less generations.

Finally, evolving a Polysolver from 3rd to 4th degree was a less complex transition than

2nd to 4th (Figure 31).

Figure 31: Structure of a 4th degree Poly solver
incrementally evolved from 2nd and 3rd degree

Polysolvers

75

Figure 32: Incremental Evolution of a 4th degree
Poly solver starting from 2nd to 3rd degree Poly solvers

Incremental evolution is clearly a major improvement in terms of the number of

generations required to achieve high fitness. It allows for the evolution of more complex

classification tasks by first evolving for less difficult tasks. The evolved 4th degree

Polysolver was able to graph a 4th degree polynomial 1000 iterations faster than the fully

connected network and did so with less error (Figure 33). We conclude that incremental

evolution can be used to design a faster, more accurate, and more versatile network than

traditional design techniques even on very complex tasks.

76

Figure 33: Evolved Network vs Traditional Network
on a 4th degree polynomial not involved in evolution

f(x) = -2x 4 + x 3 + 3x2 + x - 1

7.3 Backwards Compatibility

We have shown that evolution can be used to evolve ANNs that are better at

learning to graph polynomials. To extend this research, we were interested in the

capacity of the ANN that has been evolved for learning. For instance, could it learn to

graph polynomials of different degrees? Our hypothesis is that an evolved network

would have the structure necessary to learn problems of lesser complexity but not

problems of greater complexity. Thus, a network evolved to solve a 4th degree

polynomial will be able to learn to graph a 3rd degree polynomial but not a 5th degree

polynomial.

77

As expected, the 3rd degree Polysolver was able to graph 2nd degree polynomials

with very little error. Furthermore, it was able to graph the 2nd degree polynomial faster

and more accurately than a fully connected network (Figure 34). However, the 3rd degree

Polysolver was not able to graph a 4th degree polynomial as accurately as the fully-

connected network (Figure 35). We believe this is the case because evolution only adds

enough structure necessary to graph 3rd degree polynomials. With more structure, the

time required to optimize the weights increases due to the increased number of weights.

Thus, evolution does not select networks with more structure due to their lack of speed.

Evolved------- Fully Connected

Iteration

Figure 34: 3rd degree Polysolver vs Traditional
Network on a 2nd degree polynomial

f(x) = 1.5x2 - 5x + 2

78

Figure 35: 3rd degree Polysolver vs Traditional
Network on a 4th degree polynomial:

f(x) = 1.7x4 + .3x3 - 4x2 - Ax

Furthermore, we expect an even better backwards compatibility when analyzing

the incrementally evolved 4th degree Polysolver since it has experienced 3rd degree

polynomials previously. As expected, the incrementally evolved 4th degree Polysolver

was able to graph the 2nd and 3rd degree polynomials faster and more accurately than the

fully-connected network (Figures 36 and 37). Moreover, the 4th degree Polysolver was

not able to accurately graph a 5th degree polynomial (Figure 38). Again, this is due to

evolution’s selection of only the minimal necessary structure.

79

Figure 36: 4th degree Polysolver v.s' Traditional
Network on a 3rd degree polynomial:

f(x) = 2x3 - 6x2 + 3x • 2

Figure 37: 4th degree Polysolver vs Traditional
Network on a 2nd degree polynomial:

f(x) = 1.5x2 - 5x + 2

80

Figure 38: 4th degree Polysolver vs Traditional
Network on a 5th degree polynomial:

f(x) = - l .lx 5 + 1.7x4 + 4.1x3- 4.2x2 - 1.4X + .6

8 CONCLUSION AND FUTURE WORK

There are many difficulties associated with designing artificial neural networks to

use Back-propagation. Determining the number of hidden nodes, and even hidden layers

has lead to many ad-hoc algorithms that deal with complexity analysis or simply trial and

error. The goal of this research was to find a method for designing a network that could

be used on many different learning tasks. This method would have to be able to

determine the number of hidden nodes, initial weights, and the learning rates.

Furthermore, the desired method would create a network that could be applied to any

problem within the desired domain.

The Evolving Learning Networks Algorithm used in this research applied

evolution to ANNs that use Back-propagation in a dynamic environment. By setting the

fitness function based on the networks ability to solve an array of problems from the

desired domain, the networks were forced to use learning. The ability to learn was then

optimized by setting the fitness function to increase as the learning time decreased.

x.l_

When this method was applied with Incremental Evolution to 4 degree

polynomials, evolution designed a network that could learn to graph any 4th degree

polynomial, even those it had not experienced during evolution. To measure evolution’s

81

82

ability to design networks that learn, the best performing network was compared to the

traditionally designed fully connected layered network. The evolved design

outperformed the traditional design in speed and accuracy. Furthermore, the network

evolved on an environment of 4th degree polynomials outperformed the standard design

on 3rd and 2nd degree polynomials as well. This shows that these networks are evolved to

learn complex tasks rather than specializing on a specific task. We expect that these

results will generalize towards further degrees of complexity. Thus, the best method of

creating a Polysolver to graph any polynomial would be to start with 2nd degree and

incrementally evolve the subsequent degrees. The ability to learn complex tasks while

retaining the ability to learn less complex tasks should improve artificial neural network’s

contribution to the field of artificial life.

Future work could include an analysis of the structures and values that evolution

finds for other supervised learning tasks. This could include problems that require many

input and output nodes, or problems with small or large training sets. With analysis on

these many different tasks, it may be possible to define what makes a network better at

learning on a case by case basis. From that knowledge, we could create a procedure for

designing ANNs depending on the number of input and output nodes, the task’s

approximate complexity, and the training set.

While the Back-propagation algorithm is very powerful when using supervised

learning, there are many applications where the desired output is not known. Such

unsupervised learning tasks typically use the Hebbian learning algorithm. Networks that

83

use Hebbian learning have many of the same design issues as networks that use Back-

propagation. Since Hebbian learning more closely simulates the mechanisms for learning

used in the brain, research into evolving ANNs for unsupervised learning would be a very

exciting addition to the field of artificial life. With the new knowledge of evolution’s

ability to design a better supervised learning network, it probably could also be used to

design an unsupervised learning network as well.

APPENDIX

#include "CController.h
#include <stdlib.h>
#include <ctime>

/ /
// initilaize the PolySolvers, their brains and the GA facto
/ /

CController::CController(HWND hwndMain,
int cxClient,
int cyClient):

m_NumPolySolvers(CParams::iPopSize),

m_hwndMain(hwndMain),

m_iGenerations(0),

m_bFastRender(false) ,

m_bRenderFCWeights(false)

m_hwnd!nfo(NULL),

m_cxClient(cxClient),
m_cyClient(cyClient),

TurnOffRenderWeights() ;
RenderFCWeightsToggle() ;

CParams::iCurrentTick = 0;

m_CurrentPolynomial = 0;
if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedGenome.CreateFromFile(CParams:rcFileName);

//create the network
CNeuralNet* net = m_EvolvedGenome.CreatePhenotype()

//insert the brain
m_EvolvedSolver.InsertNewBrain(net);

84

m_EvolvedSolver.Born();
m_EvolvedSolver.EraseMemory();

}
if(CParams:rbStatic)
{

/ / c r c a t o t h e ru 11 y co n n ec tc -d g e n o ty p c :
m_FullyConnectedGenome = CGenome(-1,

CParams::iNumlnputs,

CParams::iNumHiddens,

CParams::iNumOutputs);

//set the depth
m_FullyConnectedGenome.SetDepth(3);

//create the network
CNeuralNet* net = m_FullyConnectedGenome.CreatePhenotype()

//insert the brain
m_FullyConnectedSolver.InsertNewBrain(net);
m_FullyConnectedSolver.Born();
m_FullyConnectedSolver.EraseMemory();

}

if(CParams::bEvolving)
{

//leu s create the Pol/Solvers
for (int i=0; i<m_NumPolySolvers; ++i)
{

m_vecPolySolvers.push__back(CPolySolver());

}

//create the gencti^pes
m_pPop = new Cga(CParams::iPopSrze,

CParams::iNumlnputs,
CParams::iNumOutputs)

//create the phenotypes
vector<CNeuralNet*> pBrains = m pPop->CreatePhenotypes();

//assten the phenotypes
for (i^O; i<m_NumPolySolvers; i++)
{

m_vecPolySolvers[i].InsertNewBrain(pBrains[i]);
m_vecPolySolvers[i].Born();
m_vecPolySolvers[i].EraseMemory();

}

86

//and the vector o£ PoLySoivers mich writ hoLd trie best
p errorni ng ? o 1 y S o 1 v e r s

for (i=0; i<CParams::iNumBestPolySolvers; ++i)
{

m_vecBestPolySolvers.push_back(CPolySolver());
m_vecBestPolySolvers[i] .InsertNewBrain(pBrains [i]) ;
m_vecBestPolySolvers[i].Born();
m_vecBestPolySolvers[i].EraseMemory();

}
}

//create a pen for
m_BluePen
m_RedPen =
m_GreenPen =
m_GreyPenDotted =
m_RedPenDotted =

the graph d"':awi ng
CreatePen (PS,_SOLID, 1, RGB (o, 0, 255))
CreatePen (PS,_SOLID, 1 , RGB (255, 0, 0))
CreatePen (PS._SOLID, 1 , RGB (0, 255, 0))
CreatePen (PS._DOT, 1, RGB(100, 100, 100
CreatePen (PS._DOT, 1, RGB(2 00, 0, 0)i) ;

m_01dPen = NULL;

//and the brushes
m_BlueBrush = CreateSolidBrush(RGB(0,0,244));
m_RedBrush = CreateSolidBrush(RGB(150,0,0));

destructor

CController::-CController()
{

i f (CParams::bEvolving)
{

if (m__pPop)
{

delete m. pPop;
}

}

DeleteObject(m_BluePen);
DeleteObject(m_RedPen) ;
DeleteObject(m_GreenPen);
DeleteObj ect (m__OldPen) ;
DeleteObject(m_GreyPenDotted);
DeleteObject(m_RedPenDotted);
DeleteObject(m_BlueBrush);
DeleteObject(m_RedBrush);

initial ire

87

/ > Setup Lnc polynomials
/ /

void CController::Initialize()
{

//solutoon stores the x -> y mapping
SInputOutput solution;
//solutionVector stores all the x -> y mappings
vector<SInputOutput> solutionVector;
double i;
string polynomial;

if(CParams:rbFirstDegree)
{

polynomial = "First Degree";
for(int numPolys = 0; numPolys < 5; numPolys++)
{

double a = 5 *RandomClamped'i() ;
double b = 5*RandomClamped() ;

for(i = -10; i <= 10; i++)
{

solution.input = i;
solution.output = b*i + a;
solutionVector.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector,
polynomial));

solutionVector.clear() ;
CParams::iNumPolynomials++;

}
}

if(CParams::bSecondDegree)
{

polynomial = "Second Degree";
double arrayA[5] = { 0.5, 0.5, 0.5, -0.5, -1.0);
double arrayB[5] = { -4.0, 4.0, 0.0, 2.5, -4.0};
double arrayC[5] = { 2.0, 2.0, 0.0, 1.0, 1.0};

for(int numPolys =' 0; numPolys < 5; numPolys++)
{

double a = arrayA[numPolys] ;
double b = arrayB[numPolys] ;
double c = arrayC[numPolys];

for(i = -10; i <= 10; i++)
{

solution.input = i;
solution.output = a*i*i + b*i + c;
if(solution.output > 10 I I solution.output < -

{

}
continue;

}
solutionVector.push_back(solution);

m_vecPolynomials .push_back (CPolynomial (solutionVector,
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials + +;

}
}

if(CParams::bThirdDegree)
{

polynomial = "Third Degree";
double arrayA[5] = { 3.0, 3.0, 1.7, -1.4, -1.4);
double arrayB[5] = { 4.0, 4.0, -5.0, 4.8, -4.5);
double arrayC[5] = (-4.0, -4.0, 1.0, -3.0, -3.0);
double arrayD[5] = (-3.0, 3.0, 2.0, -0.5, 2.4);

for(int numPolys
{

double a =
double b =
double c =
double d =

= 0; numPolys < 5; numPolys++)

arrayA[numPolys];
arrayB[numPolys];
arrayC[numPolys];
arrayD[numPolys];

for(i = -5; i <= 5; i+=.25)J
{

solution.input = i;
solution.output = a*i*i*i + b*i*i + c*i + d;
if(solution.output > 10 |] solution.output <

{
continue;

}
solutionVectpr.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector,
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials++;

}
}

if(CParams::bFourthDegree)
{

polynomial = "Fourth Degree";
double arrayA[5] = { 1.7, 3.0, 1.0, -2.0, -2.0}
double arrayB[5] = { 0.3, 3.0, -0.6, -0.5, 0.8}
double arrayC[5] = (-4.0, -5.0, -3.5, 5.0, 5.0}
double arrayD[5] = (-0.4, -1.0, -1.1, -1.0, -0.9}
double arrayE[5] = { 0.0, 4.0, 3.5, 0.0, -1.4}

for(int numPolys = 0; numPolys < 5; numPolys++)
{

double a = arrayA[numPolys];
double b = arrayB[numPolys];

89

double c = arrayC[numPolys];
double d = arrayD[numPolys];
double e = arrayE[numPolys];

for(i = -5; i <= 5; i+=.25)
{

solution.input = i;
; solution.output = a*i*i*i*i + b*i*i*i + c*i*i +

if(solution.output > 10 | j solution.output < -

{
continue ;

}
solutionVector.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector,
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials++;

}
}
if(CParams::bFifthDegree)
{

polynomial = "Fifth Degree";

for(int numPolys
{

double a =
double b =
double c =
double d =
double e =
double f =

= 0; numPolys < 5; numPolys++)

5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();

+ d*(i*i*i)

10)

for(i = -5; i <= 5; i+=.5)
{

solution.input = i;
solution.output = (f*(i*i*i*i*i) + e*(i*i*i*i)

+ c*i*i + b*i + a);
if(solution.output > 10 || solution.output < -

{
continue;

}
solutionVector.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector,
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials++;

}

}

90

This is the main workhorse. The entire simulation is controlled
from here.

bool CController::Update()
{

if(m_CurrentPolynomial < m_vecPolynomials.size())
{

//run the sweepers through NUM__TICKS amount of cycles.
During this loop each

//sweepers NN is constantly updated with the appropriate
informat i on f r ora i t s

//surroundings. The output from the NN is obtained and the
sweeper is moved.

if(CParams::iCurrentTick++ < CParams::iNumTicks)
{

if(CParams::bFromFile && !CParams::bEvolving)
{

//update the NN of the evolved solver

m_EvolvedSolver.Update(m_vecPolynomials[m_CurrentPolynomial],
m_CurrentPolynomial);

}
if(CParams::bEvolving)
{

//update the NNs of this genereation
for (int i = 0; i < m_NumPolySolvers; ++i)
{

//update the NN and position

m_vecPolySolvers[i].Update(m_vecPolynomials[m_CurrentPolynomial],
m_CurrentPolynomial);

}

//update the NNs of the last generations best-
performers

for (i=0; i<m_vecBestPolySolvers.size(); ++i)
{

//update the NN and position

m_vecBestPolySolvers[i].Update(m_vecPolynomials[m_CurrentPolynomi
al], m_CurrentPolynomial);

}
}
if(CParams:rbStatic)
{

//update the NN of the fully connected solver

m_FullyConnectedSolver.Update(m_vecPolynomials[m_CurrentPolynomia
1] , m_CurrentPolynomial) ;

}
/ / c 1 e a r i n f o w i n d o w
InvalidateRect(m_hwndlnfo, NULL, TRUE);
UpdateWindow(m_hwndlnfo);

91

}
else
{

if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedSolver.EraseMemory();
}
if(CParams::bEvolving)
C

for (int polysolver=0;
polysolver<m_vecPolySolvers.size(); ++polysolver)

{

m_vecPolySolvers[polysolver].EraseMemory();
}
for (polysolver=0;

polysolver<m_vecBestPolySolvers.size(); ++polysolver)
{

m_vecBestPolySolvers[polysolver].EraseMemory();
}

}
if(CParams::bStatic)
{

m_FullyConnectedSolver.EraseMemory();
}

/ / nout. Po 1 ynomJ a 1
m_CurrentPolynomial++ ;
//reset cycles
CParams::iCurrentTick = 0;

}
}

//We have completed another generation so now we need to run the
GA

if(m__CurrentPolynomial >= m_vecPolynomials.size())
{

//add to each PolySolvers! fitness scores.
//then reset their weights
if(CParams::bEvolving)
{

for (int polysolver=0;
polysolver<m_vecPolySolvers.size(); ++polysolver)

{

m_vecPolySolvers[polysolver].EndOfRunCalculations();
} ^
//Output the species information
m__pPop->OutputPerGeneration () ;

//Evaluate the generation
//Sat up the spaeies Fcr genetic algorithms
m pPop->Evaluate(GetFitnessScores());

' //perform an eooch and gsab the new brains
vector<CNeuralNet*> pBrains = m_pPop->Epoch();

92

/ / I n s e r t : f:l'ic:̂ n ew b r a i n s i n t o t h e P o l . v i o ■ -vs
/ / R e s e v. t 1: e i r f i t: r i e o : ■
for (int i=0; i<m_NumPolySolvers; + + i)
{

ra_vecPolySolvers[i].InsertNewBrain(pBrains[i]);

m_vecPolySolvers[i].Born();
m_vecPolySolvers[i].EraseMemory();
m_vecPolySolvers[i].ResetFitness();

}

//Grab the NNs of the best performers from the last
generation

//Put them into our record of the best PolySolvers
vector<CNeuralNet*> pBestBrains - m_pPop-

>GetBestPhenotypesFromLastGeneration();
for (i = 0; i<m_vecBestPolySolvers.size(); ++i)
{

m_vecBestPolySolvers[i].InsertNewBrain(pBestBrains[i]);
m_vecBestPolySolvers[i].Born();
m_vecBestPolySolvers[i].EraseMemory();

}
if(CParams::bStatic)
{

//Add to the fully connected1s fitness score

m_FullyConnectedSolver.EndOfRunCalculations();
/*
//Output the fully connected PolySolver1s fitness
ofstream fout;
fout.open("fitness.dat”, ios::app};
fout « CParams::iCurrentTick << endl;
fout.close(};

//reset the fully connected PolySolver’s brain
m_Fu11yConnec t edSo1ver.Born() ;

//crea te the fully connected genotype
m_FullyConnectedGenome = CGenome(-1,

CParams::iNumlnputs,

CParams::iNumHiddens,

CParams::iNumOutputs);

/ / s e t t h e d e p t h
m_FullyConnectedGenome.SetDepth(3);

93

/ / c r e a t e c hie n e t w o r k
CNeuralNet* net =

m_FullyConnectedGenome.CreatePhenotype();

m_FullyConnectedSolver.InsertNewBrain(net);
m_FullyConnectedSolver.Born();
m_FullyConnectedSolver.EraseMemory();

}

if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedSolver.EndOfRunCalculations();

m_EvolvedGenome.CreateFromFile(CParams::cFileName);

/ / c r e a. t e t h e n e t w o r k.
CNeuralNet* net = m_EvolvedGenome.CreatePhenotype();

/ / i n s e r t t h e b r ¿a i n
m_EvolvedSolver.InsertNewBrain(net);
m_EvolvedSolver.Born();
m_EvolvedSolver.EraseMemory();
m_EvolvedSolver.ResetFitness();

}
//increment the generation counter
++m_iGenerations;
//reset the polynomial
m_CurrentPolynomial = 0;
/ / r e s e t c. y c 1 e s
CParams::iCurrentTick = 0;
/ / c I ear i n f o wi.ndow
InvalidateRect(m_hwndInfo, NULL, TRUE);
UpdateWindow(m_hwndInfo);

}
if(CParams: :bEvolving)
{

if(m pPop->BestCurrentFitness() > CParams::iTargetFitness)
return false;

else
return true;

}
}

//----------------------------------- RenderNetworks ------------------

// Renders the best four phenotypes from the previous generation
//............... -..-....... -...

void CController: :RenderNetworks(HDC &surface)
{

//Draw the network of the best 4 genomes.
/ / F i r s> f. g e t t he d i men s; i. o n s o f the i n f o w i n dow
RECT rect;

94

GetClientRect(m_hwndlnfo, &rect) ;

int cxlnfo = rect.right;
int cylnfo = rect.bottom;

string s;
s = "Best Solvers";
TextOut(surface, 150, 5, s.c_str(), s.size());

/ / now a raw the t oest netwoxxs
if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedSolver.DrawNet(surface, 0, cxInfo/2, cyInfo/2, 0);
}
if(CParams::bEvolving)
{

m_vecBestPolySolvers[0].DrawNet(surface, 0, cxInfo/2,
cylnfo/2, 0);

m_vecBestPolySolvers[1].DrawNet(surface, cxInfo/2, cxlnfo,
cylnfo/2, 0);

m_vecBestPolySolvers[2].DrawNet(surface, 0, cxInfo/2,
cylnfo, cyInfo/2);

}
if(CParams::bStatic)
{

ra_FullyConnectedSolver.DrawNet(surface, cxInfo/2, cxlnfo,
cylnfo, cyInfo/2);

}
}

// Renders the best four phenotypes from the previous generation
/ /---

void CController:;RenderFCWeights(HDC &surface)
{

//Draw the network of the best 4 genomes.
//First get the dimensions of the info window
RECT rect;
GetClientRect(m_hwndInfo, &rect);

int cxlnfo = rect.right;
int cylnfo = rect.bottom;

string s;
s = "Connections Weight Init Weight Learning

Rate";
TextOut(surface, 10, 5, s.c_str(), s.size());

s = "From To";
TextOut(surface, 10, 35, s.c_str(), s.size());

int y = 50;
for(int i = 0; i < m_FullyConnectedSolver.ItsBrain()-

>ItsLinks().size(); i++)
{

95

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]-
>pIn->iNeuronID)

+ " ->
+ ftos (m__FullyConnectedSolver. ItsBrain {) ~

>ItsLinks()[i]->pOut->iNeuronID);
TextOut(surface, 20, y, s.c_str () , s.sizeO);

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]-
>dWeight);

TextOut (surf ace, 110, y, s.c_str(), s.sizeO);

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]-
>dInitialWeight);

TextOut (surface, 190, y, s.c_str(), s.sizeO);

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]-
>dLearningRate);

TextOut (surface, 3 00, y, s.c_str(), s.sizeO);

y += 20;
}

y += 20;
s = "Neuron Output";
TextOut (surface, 15, y, s.c_str(), s.sizeO);
y += 15;
for(i =0; i < m_FullyConnectedSolver.ItsBrain()-

>ItsNeurons().size(); i++)
{

s = ftos(m_FullyConnectedSolver.ItsBrain()-
>ItsNeurons()[i]->iNum)ii _ H

+ ftos(m_FullyConnectedSolver.ItsBrain()-
>ItsNeurons()[i]->dOutput);

TextOut (surface, 35, y, s.c_str(), s.sizeO);

y += 20;
}

}
/ /----------------------------------- PenderNet'works--------------

/ /
// Renders the best fou“̂ phenotypes rrorri the previous generation
/ /-------------------------------- ---------------------------------

void CController::RenderWeights(HDC ¿surface)
{

//Draw the network or the best £ genoires.
//First get the dinensions of the info window
RECT rect;
GetClientRect(m_hwndInfo, ¿rect);

96

int cxlnfo = rect.right;
int cylnfo = rect.bottom;
int i = 0 ;
int y = 0 ;
string s;
s = "Connections Weight Init Weight Learning

Rate";
TextOut(surface, 10, 5, s.c_str(), s.sizef));

s = "From To";
TextOut(surface, 10, 35, s.c_str(), s.size());

y = 50;
for(i =0; i < m_vecBestPolySolvers[0].ItsBrain()-

>ItsLinks().size(); i++)
{

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]-
>pIn->iNeuronID)

+ " ->
+ ftos(m_vecBestPolySolvers[0].ItsBrain()-

>ItsLinks()[i]->pOut->iNeuronID);
TextOut(surface, 20, y, s.c_str(), s.sizef));

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]-
>dWeight);

TextOut (surface, 110, y, s.c_str () , s.sizeO);

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]-
>dInitialWeight);

TextOut (surface, 190, y, s.c_str(), s.sizeO);

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]-
>dLearningRate) ;

TextOut (surface, 3 00, y, s.c_str () , s.sizeO);

y += 20;
}

y += 20;
s = "Neuron ^ Output";
TextOut(surface, 15, y, s.c_str(), s.sizef));
Y += 15;
for(i =0; i < m_vecBestPolySolvers[0].ItsBrain()-

>ItsNeurons().size(); i++)
{

s = ftos(m_vecBestPolySolvers[0].ItsBrain()-
>ItsNeurons{)[i]->iNum)

+ "
+ f tos (m__vecBestPolySolvers [0] . ItsBrain () -

>ItsNeurons()[i]->dOutput);

TextOut (surface, 35, y, s.c_str(), s.sizeO);

y += 20;
}

97

Output Network. " ;
15, y, s.c.str(), s.size{)};

vecBes tPo 1 ySo 1 vers [0] . 11sBrain () -
+)

_CurrentPolynomial] .m_vecInput.OutputPairs [i] . inp

ftos(m_vec Polynomi a1s[m.CurrentPolynomial] .m_vecInputOutputPairs[i] .out
put)

+ ftos(m_vecBestPolySolvers[0].ItsBrain()-
>ItsOutput()[i]);

TextOut(surface, 35, y, s.c_str(), s.size());

y += 20;

/ * y + = À 0 ;

TextOut(surface,
y += 15;
for(i = 0 ; i < m_

>11 s Output () .size() ; i +
{

ftos(m_vec Po1ynomi a1s [m
ut)

*/

}

/ ///--

void CController::Render(HDC ¿surface)
{

//do not render if running at accelerated speed
if (!m_bFastRender)
{

string s = "Generation: " + itos(m_iGenerations);
TextOut(surface, 5, 0, s.c_str(), s.sizeO);

s = "Time left:
CParams: :iCurrentTick) ;

TextOut(surface,

+ itos(CParams: :iNumTicks

5, 20, s.c_str(), s.sizeO) ;

s = "Evolved";
TextOut(surface, 70, 80, s.c_str(), s.sizeO);

s = "Fully Connected";
TextOut(surface, 250, 80, s.c_str(), s.sizeO);

//select in the blue pen
m_OldPen = (HPEN)SelectObject(surface, m_BluePen);

if(CParams::iCurrentTick > 0)
{

//render the axis
RenderAxis(surface);
//render the polynomia1s
RenderPolynomial(surface);

98

if(CParams::bFromFile && !CParams::bEvolving)
{

//render the best PolySolver from the previous
generation

RenderPolySolvers(surface, m_EvolvedSolver, 1);
}
if (CParams: :bEvolving)
{

//render the best PolySolver from the previous
generation

RenderPolySolvers(surface,
m_vecBestPolySolvers[0], 1);

}
if(CParams:rbStatic)
{

//Render the fully connected solver
RenderPolySolvers(surface,

m_FullyConnectedSolver, 3);
}

}

}//end i f

else
{

if(CParams::bEvolving)
{

PlotStats(surface);

RECT sr;
sr.top = m_cyClient-50;
sr.bottom = m_cyClient;
sr.left = 0;
sr.right = m_cxClient;

//render the species chart
m pPop->RenderSpecies!nfo(surface, sr);

}

}

}
//-----------------------------------Render A x i s ------------
/ /
// Renders the four Axis

void CController : : RenderAxis (HDC ¿¿surface)
{

TextOut(surface, 150, 5,
m_vecPolynomials[m_CurrentPolynomial].m_sPolynomial.c_str(),
m_vecPolynomials[m_CurrentPolynomial].m_sPolynomial.size());

int StartX;
int StartY;
int EndX;
int EndY;

99

//create some pens and brushes to draw with
HPEN GreyPen = CreatePen(PS_SOLID, 1, RGB(200, 200, 200));
HPEN RedPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));
HPEN GreenPen = CreatePen(PS_SOLID, 1, RGB(0, 200, 0));
HPEN OldPen = NULL ;

/ / c r e a t e a s o 1 i d b r u s h
HBRUSH RedBrush = CreateSolidBrush(RGB(255, 0, 0)) ;
HBRUSH OldBrush = NULL;

OldPen = (HPEN) SelectObject(surface, RedPen);
OldBrush = (HBRUSH)SelectObject(surface,

GetStockObject(HOLLOW_BRUSH));

SelectObject(surface, GreenPen);

//render the evolved network's axis
StartX = CParams:: InfoWindowWidth / 4 - 100,
StartY = CParams:: InfoWindowHeight / 2 ;
EndX = CParams:: InfoWindowWidth / 4 + 100,
EndY = CParams:: InfoWindowHeight / 2;

//draw the y Axis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

StartX = CParams: : InfoWindowWidth / 4;
StartY = CParams ::InfoWindowHeight / 2 - 90;
EndX = CParams ::InfoWindowWidth / 4;
EndY = CParams ::InfoWindowHeight / 2 + 90;

//draw the x Axis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

//render the fully connected network’s axis
StartX = CParams:: InfoWindowWidth / 4 * 3 - 9 0
StartY = CParams:: InfoWindowHeight / 2;
EndX = CParams:: InfoWindowWidth / 4 * 3 + 90
EndY = CParams:: InfoWindowHeight / 2;

//draw the y Axis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

StartX = CParams: : InfoWindowWidth / 4 * 3;
StartY = CParams:: InfoWindowHeight / 2 - 90
EndX = CParams:: InfoWindowWidth / 4 * 3;
EndY = CParams: : InfoWindowHeight / 2 + 90

//draw the x Axis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

100

//cleanup
SelectObject(surface, OldPen);
SelectObject(surface, OldBrush);

DeleteObject(RedPen);
DeleteObject(GreyPen);
DeleteObject(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObject(OldBrush);

}
//--------------------------------- Rende r S o 1 u t. i on

/ /
// Renders the actual output of the polynomial

void CController: :RenderPolynomial(HDC ¿surface)
{

double StartX;
double StartY;
double EndX;
double EndY;

//create some pens and brushes to draw with
HPEN RedPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));
SelectObject(surface, RedPen);

for (int point=0;
point<m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs.size(
)-1 ; ++point)

{
StartX = CParams: : InfoWindowWidth / 4

+
m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point].inpu
t

* 25;
StartY = CParams::InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point].outp
ut

* 10;

EndX = CParams: : InfoWindowWidth / 4
+

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].in
put

* 25;
EndY = CParams: : InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].ou
tput

* 10;

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

101

}
for (point=0;

point<m__vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs.size(
)-1; ++point)

{
StartX = CParams: : InfoWindowWidth / 4 * 3

+
m_vecPolynomials[m_CurrentPolynomial].m_veclnput0utputPairs[point].inpu
t

* 25;
StartY = CParams: : InfoWindowWidth / 2

m_vecPolynomials[m__CurrentPolynomial].m_vecInputOutputPairs[point].outp
ut

* 10;

EndX = CParams: : InfoWindowWidth / 4 * 3
+

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].in
put

* 25;
EndY = CParams: : InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].ou
tput

* 10;

//draw the 1i nk
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

DeleteObject(RedPen);
}

/ /
/'/ Renders the best phenotype from the previous generation
/ /--

void CController::RenderPolySolvers(HDC &surface, CPolySolver
PolySolver, int Multiplier)
{

double StartX;
double StartY;
double EndX;
double EndY;

//create some pens and brushes to draw with
HPEN BluePen = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
SelectObject(surface, BluePen);

for (int point=0;
point<m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs.size(
)-1; ++point)

{

102

StartX = CParams::InfoWindowWidth / 4 * Multiplier
+

m_vecPolynomials[m_CurrentPolynomial].m_vec!nputOutputPairs[point].inpu
t

StartY =

>ItsOutput()[point]

* 25;
CParams::InfoWindowWidth / 2

- PolySolver.ItsBrain()-

* 10;

EndX = CParams::InfoWindowWidth / 4 * Multiplier
+

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].in
put

* 25;

EndY = CParams::InfoWindowWidth / 2
- PolySolver.ItsBrain()-

>ItsOutput()[point+1]
* 10;

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

}

//cleanup
DeleteObject(BluePen);

}

// Given a surface to draw on this function displays some simple stats
//--

void CController::PlotStats(HDC surface)
{

string s;

s = "Best Fitness so far: " + ftos(m pPop->BestEverFitness());
TextOut(surface, 5, 5, s.c_str(), s.size());

s = "Previous Generation Fitness: " + ftos(m_pPop-
>BestCurrentFitness());

TextOut(surface, 5, 25, s.c_str(), s.size());

s = "Generation: " + itos(m_iGenerations);
TextOut(surface, 5, 45, s.c_str(), s.size());

s

}

Num Species: " + itos(m_pPop->NumSpecies());
TextOut(surface, 5, 65, s.c_str(), s.size());

/ /--- GetFitnessScore s

103

/ /
// returns a std:¡vector containing the genomes fitness

vector<double> CController::GetFitnessScores()const
{
vector<double> scores;

for (int i=0; i<m_vecPolySolvers.size(); ++i)
{

scores.push_back(m_vecPolySolvers[i].Fitness());
}
return scores;

scores

104

#include "phenotype.h

#include <math.h>
#include <stdlib.h>

...... S i gmo i d f unc t i on -

double Sigmoid(double netinput, double response)
{

return (1 / (1 + exp(-netinput / response)));
}

void CNeuralNet: :BinaryConversion(int realNumber)
{

int remainder;

if(realNumber <= 1)
{

m_RecursiveVar = 7-m_RecursiveVar;
m_iBinaryNumber[m_RecursiveVar] = realNumber;
m_RecursiveVar++;
return;

}
m_RecursiveVar++;
remainder = realNumber%2;
BinaryConversion(realNumber >> 1);

m_iBinaryNumber[m_RecursiveVar] = remainder ;
m_Recurs iveVar+ + ;

}

int CNeuralNet::RealNegativeConversion()
{

int digit = 7;
while(m_iBinaryNumber[digit] == 0)
{

m_iBinaryNumber[digit] = 1;
digit--;

}
m__iBinaryNumber [digit] = 0;

for(int i = 0; i < 8; i++)
{

m_iBinaryNumber [i] = ! m__iBinaryNumber [i] ;
}

int realOutput = 0;
for(digit = 0; digit < 8; digit++)
{

double NeuronOutput = m_iBinaryNumber[7-digit];
NeuronOutput *= pow(2, digit);
realOutput += NeuronOutput;

}
return -realOutput;

105

}
int CNeuralNet: :RealConversion()
{

int realOutput = 0;
for(int digit = 0; digit < 8; digit++)
{

double NeuronOutput = m_iBinaryNumber[7-digit];
NeuronOutput *= pow(2, digit);
realOutput += NeuronOutput;

}
return realOutput;

}
void CNeuralNet::TwosCompliment()
{

for(int i = 0; i < 8; i + +)
{

m_iBinaryNumber[i] = !m_iBinaryNumber[i];
}
i = 7 ;
while(m_iBinaryNumber[i] == 1)
{

m_iBinaryNumber[i] = 0;
i- - ;

}
m_iBinaryNumber[i] = 1;

}
//-------------------------------- ctor------------------
/ i

CNeuralNet::CNeuralNet()
{
}
CNeuralNet::CNeuralNet(vector<SNeuron*> neurons,

vector<SLink*> links,
int depth)

{
m_vecpNeurons = neurons;
m_vecpLinks = links;
m_iDepth = depth;

/ /
/ /

CNeuralNet::CNeuralNet(const CNeuralNet &Brain)
{

m_vecpNeurons = Brain.m_vecpNeurons;
m_vecpLinks = Brain.m_vecpLinks;
m_iDepth = Brain.m_iDepth;

}

106

/ / dtor

CNeuralNet::-CNeuralNet()
{

//delete any live neurons
for (int i=0; i< m_vecpNeurons.size()
{

if (m_vecpNeurons[i])
{

delete m_vecpNeurons[i];

m_vecpNeurons[i] = NULL;
}

}
}

++i)

// takes a list of doubles as inputs into the network then steps
through
// the neurons calculating each neurons next output.
/ /
// finally returns a std:¡vector of doubles as the output from the
net.
//--

void CNeuralNet::Update(CPolynomial kcurrentPolynomial, int &index)
{

//Cleanup from previous update
for (int n=0; n<ra_vecpNeurons.size(); ++n)

{
m_vecpNeurons[n]->dOutput = 0;
m_vecpNeurons[n]->dActivatedOutput = 0;
m_vecpNeurons[n]->dError = 0;
m_vecpNeurons[n]->iNum = n;

>

//this is an index into the current neuron
int currentlnputNeuron = 0;

/'/'Set the outputs of the ’input' neurons to be equal
//to the values passed into the function
while (m__vecpNeurons[currentlnputNeuron]->NeuronType == input)
{

m_vecpNeurons[currentlnputNeuron]->dActivatedOutput

currentPolynomial.m_vecInputOutputPairs[index].input;
++currentInputNeuron;

}

//Set the output of the bias to 1
m_vecpNeurons[currentlnputNeuron]->dActivatedOutput = 1;

107

//Find the first output neuron
int cNeuron = 0;
while (m_vecpNeurons[cNeuron]->NeuronType != output)
{

cNeuron++;
}

//Determine the output for each 'output' neuron
while (m_vecpNeurons[cNeuron]->NeuronType == output)
{

DetermineOutput(cNeuron) ;

/ / add to our ou touts
m_vecdOutputs.push_back(m_vecpNeurons[cNeuron]->dOutput);

//View the Output &test
double testOutput = m_vecpNeurons[cNeuron]-

>dActivatedOutput;

//next neuron
//test for the end of the outputs
if(++cNeuron >= m_vecpNeurons.size())

break;
}

}

//-----------------------------------Determine Output-----------------

// Recursive function that starts with the output node and recursively
calls
// nodes down the network until the input nodes are reached

void CNeuralNet::DetermineOutput(int &cNeuron)
{

//Base Case:
//Stop when we hit the input layer
if(m_vecpNeurons[cNeuron]->NeuronType == input

|| m_vecpNeurons[cNeuron]->NeuronType == bias)
return;

//Sum this neuron's inputs
//By iterating through all the links into the neuron
for (int lnk=0; lnk<m_vecpNeurons[cNeuron]->vecpLinksIn.size();

++lnk)
{

//Recursive Call
if(!m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->bRecurrent)
{

DetermineOutput(m_vecpNeurons[cNeuron]-
>vecpLinksIn[Ink]->pIn->iNum);

}

./'/Get this 1 ink’ s weight
double Weight = m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]-

>dWeight;

108

//Get the output from the neuron this link is coming from
double Neuronlnput = m_vecpNeurons[cNeuron]-

>vecpLinksIn[Ink]->pIn->dActivatedOutput;

//Determine the output of this neuron
m_vecpNeurons[cNeuron]->dOutput += Weight * Neuronlnput;

}

//Put the output of each neuron through the Activation Function
i f(CParams: :bTanh)
{

m_vecpNeurons[cNeuron]->dActivatedOutput

tanh(m__vecpNeurons[cNeuron]->dOutput);
}
else if(CParams::bSigmoid)
{

m_vecpNeurons[cNeuron]->dActivatedOutput

.5 * m_vecpNeurons[cNeuron]->dOutput));
}
else
{

m_vecpNeurons[cNeuron]->dActivatedOutput

m_vecpNeurons[cNeuron]->dOutput;
}

1 / (1 + exp(-

}

/ /---------------------------------- Determine Output--------------------

/(Recursive function that starts with the output node and recursively
call s
.// nodes down the network until the input nodes are reached
/ /--

double CNeuralNet::OutputError(CPolynomial ¿currentPolynomial, int
¿index)
{

double dError;

//determine absolute error
dError = currentPolynomial.m_vecInputOutputPairs[index].output -

m_vecdOutputs[index];

//magnitude does not have direction
if(dError < 0)
{

dError = -dError;
}

return dError;

}
/ / Train

109

void CNeuralNet::Train(CPolynomial ¤tPolynomial, int
&DesiredIndex, int &ActualIndex)
{

//Cleanup the previous training
m_vecdDesiredOutput.clear();
int CurrentDesiredOutput = 0;
int CurrentOutputNeuron = 0;

m_vecdDesiredOutput.push_back(currentPolynomial.m_vecInputOutputP
airs[Desiredlndex].output);

//this finds the index to the first output neuron
while(m_vecpNeurons[CurrentOutputNeuron]->NeuronType != output)
{

CurrentOutputNeuron++;
}

double desiredOutput =
m_vecdDesiredOutput[CurrentDesiredOutput] ;

double neuronOutput =
m_vecpNeurons[CurrentOutputNeuron]->dOutput;

double activatedOutput = m_vecpNeurons[CurrentOutputNeuron]-
>dActivatedOutput;

double testError = desiredOutput - activatedOutput;

////////////////////////// ERROR CALCULATIONS
/ /

//determine the error for the output neurons
while(m_vecpNeurons[CurrentOutputNeuron]->NeuronType == output)
{

if(CParams::bTanh)
{

m_vecpNeurons[CurrentOutputNeuron]->dError
= (

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput
)

* (1

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
★

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
) ;

}
else if(CParams::bSigmoid)
{

m_vecpNeurons[CurrentOutputNeuron]->dError
= (

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput
)

* .5

110

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
* (1

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
) ;

}
else
{

m_vecpNeurons[CurrentOutputNeuron]->dError
= (

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput
) ;

}
testError = m_vecpNeurons[CurrentOutputNeuron]->dError;
if(++CurrentOutputNeuron >= m_vecpNeurons.size())

break;
CurrentDesiredOutput++;

}

int firstNeuron = 0;

DetermineHiddenError(firstNeuron);

//////////////////////////WEIGHT
CHANGES//////////// / / // / ///// / /// / /

int cNeuron = m_vecpNeurons.size()
int lastlnputNeuron = 0;

1;

//this finds the index to the last input neuron
//inc1udes the bias
while(m_vecpNeurons[lastlnputNeuron]->NeuronType == input)
{

++lastlnputNeuron;
}
//step backwards through the network a neuron at a. time
//changing the weights of the incoming connections
//stop when we hit the inputs
while (cNeuron > lastlnputNeuron)
{

for (int lnk=0; lnk<m_vecpNeurons[cNeuron]-
>vecpLinksIn.size(); ++lnk)

{
testError = m_vecpNeurons[cNeuron]->dError;
activatedOutput = m_vecpNeurons[cNeuron]-

>vecpLinksIn[Ink]->pIn->dActivatedOutput;
neuronOutput = m_vecpNeurons[cNeuron]-

>vecpLinksIn[Ink]->pln->d0utput;

double WeightChange = m_vecpNeurons[cNeuron]-
>vecpLinksIn[Ink]->pIn->dActivatedOutput

*

m_vecpNeurons[cNeuron]->dError
★

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dLearningRate;

I l l

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dWeight
+ =

WeightChange
+

(m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dMomentum
★

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dLearningRate);

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dMomentum =
WeightChange;

}
cNeuron--;

}
}
//-----------------------------Determine Hidden Error-------------------

// Recursive function that starts with the Input node and recursively
calls
// nodes up the network until the output nodes are reached
/ /---

void CNeuralNet::DetermineHiddenError(int &cNeuron)
{

//Stop when we hit the output layer
if(m_vecpNeurons[cNeuron]->NeuronType == output)

return;

//Sum this neuron's inputs
//By iterating through all the links into the neuron
for (int lnk=0; lnk<m_vecpNeurons[cNeuron]->vecpLinksOut.size();

++lnk)
{

//Recursive Call
if(!m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]->bRecurrent)
{

DetermineHiddenError(m_vecpNeurons[cNeuron]-
>vecpLinksOut[Ink]->pOut->iNum);

}

//Get this link's weight
double Weight = m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]-

>dWeight;

//Get the error from the neuron this link is coming from
double Error = m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]-

>pOut->dError;

m_vecpNeurons[cNeuron]->dError
+= m_vecpNeurons[cNeuron]-

>vecpLinksOut[Ink]->pOut->dError
* m_vecpNeurons[cNeuron]-

>vecpLinksOut[Ink]->dWeight;
}

112

if(CParams::bTanh)
{

m_vecpNeurons[cNeuron]->dError

m_vecpNeurons[cNeuron]->dActivatedOutput
*

m_vecpNeurons[cNeuron]->dActivatedOutput);
}
else if(CParams::bSigmoid)
{

m_vecpNeurons[cNeuron]->dError
*= . 5
* m_vecpNeurons[cNeuron]-

>dActivatedOutput
* (1

m_vecpNeurons[cNeuron]-
>dActivatedOutput

*= (1

/ /------------------------------Ti dyXSplits---------------------

// This is a fix to prevent neurons overlapping when they are
displayed
/ / ---

void TidyXSplits(vector<SNeuron*> toeurons)
//void TidyXSplits (C Ar r ay < SNeu r on * > ¿¿neurons)
{
//stores the index of any neurons with identical splitY values
vector<int> SameLevelNeurons;

/'/'stores all the splitY values already checked
vector<double> DepthsChecked;

//for each neuron find all neurons of identical ySplit level
for (int n=0; n<neurons.size(); ++n)
{
double ThisDepth = neurons[n]->dSplitY;

.//check to see if we have already adjusted the neurons at this
depth

bool bAlreadyChecked = false;

for (int i=0; i<DepthsChecked.size(); ++i)
{
if (DepthsChecked[i] == ThisDepth)
{
bAlreadyChecked = true;

break;
}

}

113

//add this depth to the depths checked.
DepthsChecked.push_back(ThisDepth);

//if this depth has not. already been adjusted
if (!bAlreadyChecked)
{
//clear this storage and add the neuron's index we are checking
SameLevelNeurons.clear() ;
SameLevelNeurons.push_back(n) ;

//find all the neurons with this splitY depth
for (int i=n+l; icneurons.size(); ++i)
{
if (neurons[i]->dSplitY == ThisDepth)
{

//add the index to this neuron
SameLevelNeurons.push_back(i);

}
}

//calculate the distance between each neuron
double slice = 1.0/(SameLevelNeurons.size()+1);

//separate all neurons at this level
for (i = 0; i<SameLevelNeurons.size() ; + + i)
{
int idx = SameLevelNeurons[i];

neurons[idx]->dSplitX = (i+1) * slice;
}

}

} / /'next neuron to check

//------------------------------ DrawNet -----------------------------

/ /
// creates a representation of the ANN on a device context
/ /
/ / ---

void CNeuralNet::DrawNet(HDC ¿surface, int Left, int Right, int Top,
int Bottom)
{
//the border width
const int border = 10;

//max line thickness
const int MaxThickness = 5;

TidyXSplits(m_vecpNeurons);

//go through the neurons and assign x/y coords
int spanX = Right - Left;
int spanY = Top - Bottom - (2*border);

114

for (int cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)
{
m_vecpNeurons[cNeuron]->iPosX = Left +

spanX*m_vecpNeurons[cNeuron]->dSplitX;
m_vecpNeurons[cNeuron]->iPosY = (Top - border) - (spanY *

m_vecpNeurons[cNeuron]->dSplitY);
}

//create s ome pens and brushes to draw with
HPEN GreyPen = CreatePen(PS_S0LID, i, RGB(200, 200 , 200)
HPEN RedPen = CreatePen(PS_S0LID, i, RGB(255, 0, 0)) ;
HPEN GreenPen = CreatePen(PS_S0LID, i, RGB(0, 200, 0)) ;
HPEN OldPen = NULL;

//c rea te a s olid brus h
HBRUSH RedBrush = CreateSolidBrush(RGB(255, 0, 0));
HBRUSH OldBrush = NULL;

OldPen = (HPEN) SelectObject(surface, RedPen);
OldBrush = (HBRUSH)SelectObject(surface,

GetStockObject(HOLLOW_BRUSH));

/'/'radius of neurons
int radNeuron = spanX/60;
int radLink = radNeuron * 1.5;

//now we have an X,Y pos for every neuron we can get on with the
//drawing. First step through each neuron in the network and draw
//the 1inks
for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)
{

//grab this neurons position as the start position of each
//connection
int StartX = m_vecpNeurons[cNeuron]->iPosX;
int StartY = m_vecpNeurons[cNeuron]->iPosY;

//is this a bias neuron? If so, draw the link in green
bool bBias = false;

if (ra_vecpNeurons[cNeuron]->NeuronType == bias)
{
bBias = true;

}

//now iterate through each outgoing link to grab the end points
for (int cLnk=0; cLnk<m_vecpNeurons[cNeuron]->vecpLinksOut.size();

+ + cLnk)
{
int EndX = m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->pOut-

>iPosX;
int EndY = m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->pOut-

>iPosY;

//if link is forward draw a straight line

115

if((!m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->bRecurrent) &&
IbBias)

{
int thickness = (int)(fabs(m_vecpNeurons[cNeuron]-

>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);

HPEN Pen;

//create a yellow pen for inhibitory weights
if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)
{
Pen = CreatePen(PS_SOLID, thickness, RGB(240, 230, 170));

}

//grey for excitory
else
{
Pen = CreatePen(PS_SOLID, thickness, RGB(200, 200, 200));

}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);

DeleteObject(Pen);
}

else if((!m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]-
>bRecurrent) && bBias)

{
SelectObject(surface, GreenPen);

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

}

//recurrent link draw in red
else
{
if ((StartX == EndX) && (StartY == EndY))
{

int thickness = (int)(fabs(m_vecpNeurons[cNeuron]-
>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);

HPEN Pen;

//blue for inhibitory

116

if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)
{
Pen = CreatePen(PS_SOLID, thickness, RGB(0,0,255));

}

//red f o r exc i to r y
else
{
Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));

}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//we have a recursive link to the same neuron draw7 an ellipse
int x = m_vecpNeurons[cNeuron]->iPosX ;
int y = m_vecpNeurons[cNeuron]->iPosY - (1.5 * radNeuron);

Ellipse(surface, x-radLink, y-radLink, x+radLink, y+radLink);

SelectObject(surface, tempPen);

DeleteObject(Pen);

else
{
int thickness = (int)(fabs(m_vecpNeurons[cNeuron]-

>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);

HPEN Pen;

//blue for inhibitory
if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)
{
Pen = CreatePen(PS_SOLID, thickness, RGB(0,0,255));

>

/'/'red for excitory
else
{
Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));

}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);

DeleteObject(Pen);
}

}

117

}
}

//now draw7 the neurons and their IDs
SelectObject(surface, RedBrush);
SelectObject(surface, GetStockObject(BLACK_PEN));

for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)
{
int x = m_vecpNeurons[cNeuron]->iPosX;
int y = m_vecpNeurons[cNeuron]->iPosY;

//display the neuron
Ellipse(surface, x-radNeuron, y-radNeuron, x+radNeuron,

y+radNeuron);
}

//cleanup
SelectObject(surface, OldPen);
SelectObject(surface, OldBrush);

DeleteObject(RedPen);
DeleteObject(GreyPen);
DeleteObject(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObject(OldBrush);

118

#include "polysolvers.h"

CPolySolver::CPolySolver(void)
{

SEvaluation starter ;
starter.m_bSuccessful = false;
starter.m_dTotalError = 0;
starter.m_iSuccessfulTime = 0;
for(int i = 0; i < CParams: ;iNumPolynomials; i + +)
{

Evaluations.push_back(starter);
}
m_dFitness = 0;

}
CPolySolver::-CPolySolver(void)
{

}

void CPolySolver::Born()
{

for(int i = 0; i < Evaluâtions.size(); i++)
{

Evaluations[i].m_bSuccessful = false;
Evaluations[i].m_dTotalError = 0;
Evaluations[i].m_iSuccessfulTime = 0;

}
}
//------------------------- EraseMemory() -------------------

/ /
i l --

void CPolySolver::EraseMemory()
{

//removeWeights
for(int link = 0; link < m pitsBrain->ItsLinks().size(); link++)
{

if(CParams: :bReinitializeWeights)
{

if(CParams: :bMutatelnitialWeights)
{

m_pItsBrain->ItsLinks()[link]->dWeight =
m_pItsBrain->ItsLinks()[link]->dInitialWeight;

}
else
{

if(CParams::bRandomWeights)
{

m_p!tsBrain->ItsLinks()[link]->dWeight =
RandomClamped();

}
else if(CParams: :bTestingWeights)
{

1;

119

m_pltsBrain->ItsLinks()[link]->dWeight =

.1;

}
/ / --

}
else
{

m_pItsBrain->ItsLinks()[link]->dWeight =

}
}

}
m_pltsBrain->ItsLinks()[link]->dMomentum = 0;

Update{)

// First we take sensor readings and feed these into the
po lyso 1 ver 1 s brain..
j /
/i The inputs are:
/ /
// The readings from the values associated with the current polynomial
/ /
/ /--

bool CPolySolver::Update(CPolynomial ¿¿currentPolynomial, int
&polynomialIndex)
{
// if(Evaluations[polynomiallndex].m__bSuccessful == true)
// return true ;

Evaluations[polynomiallndex].m_dTotalError = 0;
m_pItsBrain->ClearItsOutput();

//input sensors into net
for (int index=0; index <

currentPolynomial.m_vecInputOutputPairs.size(); ++index)
{

//update the brain
m_pItsBrain->Update(currentPolynomial, index);

//Train the Network
if(CParams::bTrainable)
{

m_pItsBrain->Train(currentPolynomial, index, index);
}

}
//det e rmine error after tra ining
m_pItsBrain->ClearItsOutput();
for (index=0; index <

currentPolynomial.m_vecInputOutputPairs.size() ; + + index)
{

//update the brain
m_pItsBrain->Update(currentPolynomial, index);
Evaluations[polynomiallndex].m_dTotalError += m_pItsBrain-

>OutputError(currentPolynomial, index);
}

120

Evaluations[polynomiallndex].m_dErrorPerInput =
Evaluations[polynomiallndex].m_dTotalError /
currentPolynomial.m_vecInputOutputPairs.size();

//determine if it was successful
if(CParams::bTrainable)
{

if(Evaluations[polynomiallndex].m_dTotalError < 3 &&
Evaluations[polynomiallndex].m_bSuccessful == false)

{
Evaluations[polynomiallndex].m_bSuccessful = true;

Evaluations[polynomiallndex].m_iSuccessfulTime =
CParams: :iCurrentTick;

}
}

return true;
}

//creates a list of random indecies
vector<int> CPolySolver: : RandomizeIndex(int size)
{

vector<int> Sortedlndex;
vector<int> Randomindex;
for(int i = 0; i < size; i++)
{

Sortedlndex.push_back(i);
}
while(Sortedlndex.size() > 0)
{

int Index = Randlnt(0, Sortedlndex.size ()-1) ;
Randomindex.push_back(Sortedlndex[Index]);
for(int j = Index; j < Sortedlndex.size() - 1; j++)
{

Sortedlndex[j] = Sortedlndex[j + 1];
}
Sortedlndex.pop_back();

}
return Randomindex;

}
//-------------------------- SndOfRunCalculations() ---------------

/ /
/ / ------------------ :---

void CPolySolver::EndOfRunCalculations()
{

for(int polynomiallndex = 0; polynomiallndex <
Evaluations.size(); polynomialIndex++)

{
if(Evaluations[polynomiallndex],m_bSuccessful == true)
{

m dFitness += 100

121

Evaluations[polynomiallndex].m_dTotalError
+ CParams: :iNumTicks

Evaluations[polynomiallndex].m_iSuccessfulTime;
}
else
{

m_dFitness += (100 -
Evaluations [polynomiallndex] .m__dTotalError) ;

}

}
m_dMaxFitness = Evaluations.size()*(100 +

CParams: :iNumTicks);
m_dFitness = (m_dFitness / m_dMaxFitness) * 100;

REFERENCES

[1] Baldwin, Mark J (1896). A new Factor in Evolution. Adaptive Individuals in

Evolving Populations: Models and Algorithms. Addison-Wesley, Reading, MA.

[2] Beliakov, Gleb and Abraham, Ajith. Global Optimization of Neural Networks Using

a Deterministic Hybrid Approach. Deakin University. Clayton, Melbourne,

Australia.

[3] Boers, E.J.W. and Spnnkhuized-Kuyper, I.G (1995). Evolving Artificial Neural

Networks using the “Baldwin Effect” Artificial Neural Nets and Genetic

Algorithms. 333-336. New York, NY

[4] Branke, Jurgen. Evolutionary Algorithms for Neural Network Design and Training.

Unversity of Karlsruhe. Karlsruhe, Germany.

[5] Caruana, R., Lawrence, S., and Giles, L. (2000). Overfitting in Neural Nets:

Backpropagation, Conjugate Gradient, and Early Stopping., In Neural

Information Processing Systems. Denver, CO.

[6] Castillo, P.A., Gonz'alez, J. Merelo, J.J., Rivas, V., Romero, G., and Prieto, A.

(1998). G-Prop: Global Optimization of Multilayer Perceptrons using GAs.

Submitted to Neurocomputing,.

[7] Crow, James F. (2003). Evolution: Views. Encyclopedia of the Human Genome.

Macmillan Publishers Ltd, Nature Publishing Group.

[8] de Jong, Edwin and Pollack, Jordan. Utilizing Bias to Evolve Recurrent Neural

Networks. Brandeis University. Waltham, MA.

[9] French, Robert and Messinger, Adam. Genes, Phenes and the Baldwin Effect:

Learning and Evolution in a Simulated Population. Willamette University.

Salem, OR.

122

123

[10] Giraud-Carrier, Christophe. Unifying Learning with Evolution Through Baldwinian

Evolution and Lamarckism: A Case Study. University of Bristol. Bristol, UK.

[11] Gomez, D E., and Miikkulainen, R. (1999). Solving Solving non-Markovian control

tasks with neuroevolution. In Dean, T., editor, Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, pages 1356-1361,

Morgan Kaufmann, San Francisco, CA.

[12] Gomez, D.E., and Miikkulainen, R. (1997). Incremental evolution of complex

general behavior. Adaptice Behavior, 5:317-342.

[13] Hinton, Geoffrey E., Nowlan, Steven J. How Learning Can Guide Evolution.

Complex Systems, 1, 495-502.

[14] Kolen, John and Pollack, Jordan. Back Propagation is Sensitive to Initial

Conditions. Ohio State University Columbus, Ohio.

[15] Lamarck, J.B. (1815). “Zoological Philosophy: An Exposition with Regard to the

Natural History of Animals”, 1984, University of Chicago Press, Chicago, IL.

[16] Malmgren, Helge (2000). Artificial Neural Networks in Medicine and Biology.

Department of philosophy, Goteborg University.

[17] Mehrotra, K., Mohan, C. K., and Ranka, S. (2000). Elements of Artificial Neural

Networks. The MIT Press. Cambridge, Massachusetts.

[18] Nolfi, Stefano and Parisi, Domenico. Learning to adapt to changing environments in

evolving neural networks. Institute of Psychology. Rome, Italy.

[19] Nolfi, Stefano, Elman, Jeffrey, Parisi, Domenico. Learining and Evolution in Neural

Networks. University of California. La Jolla, CA.

[20] Radi, Amr and Poli, Riccardo. Evolutionary Discovery of Learning Rules for

Feedforward Neural Networks with Step Activation Function. University of

Birmingham. Birmingham, UK.

[21] Shachmurove, Yochanan. Applying Artificial Neural Networks to Business,

Economics and Finance. University of Pennsylvania, Philidelphia, PA.

[22] Shore, R. (1997). Rethinking the Brain: New Insights into Early Development. New

York, NY: Families and Work Institute, pp. 16-17.

VITA

Christopher Patrick Christenson was bom in Lake Jackson, Texas, on Febmary

20, 1980, the son of Christopher Paul Christenson and Patricia Jo Christenson. After

receiving his degree of Bachelor of Science from Texas Lutheran University, Seguin,

Texas, in 2002, he entered Texas State Umversity-San Marcos. In August of 2002, he

entered the Graduate College of Texas State University-San Marcos. During his study,

he was employed as a computer lab worker and as an adjunct faculty.

Permanent Address: 1381 Old Colony Rd.

Seguin, Texas 78155

This thesis was typed by Christopher Patrick Christenson.

