EVOLVING LEARNING NEURAL NETWORKS

THESIS

Presented to the Graduate Council
of Texas State University—San Marcos
in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Christopher P. Christenson, B.S.

San Marcos, Texas

December 2004

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. Kosrow Kaikhah, whose support,
encouragement, and dedication were invaluable in the completion of my thesis. Dr.
Kaikhah taught me that nothing can be achieved without help. Without his steadying
hand, this thesis would never have been completed.

I also wish to thank Dr. Kenneth Stanley, whose expert advice on the evolution of
neural networks proved invaluable to me at the beginning and throughout my thesis.
Without his wonderful evolutionary algorithm, NEAT, my thesis would have been much
harder.

I also want to thank my brother, Ben Christenson, who has such wonderful ideas
to make my life easier. His influence within this thesis cannot be overstated. While he
did not necessarily appreciate the time I put into it, ’'m sure he is happy that it is finally
complete.

Above all, I want to thank my wife, Jamie, for her love and support. To endure
me, and all that comes with me, through this thesis shows the strength of her love.

This manuscript was submitted on December 7™, 2004.

i

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..ot e 111
LS T OF FIGURE S . oo e e e Vi
A B S T R A T e e et 1X
L INTRODUCGTTION e e e et 1
| R O EAV0) 8 0s 1 (0] AU OO UP SRR 2
1.2 EVOLUTION AND LEARNINGoitiitiietieiees ettt e ettt e e e e e e e e et a e e e e e e e e e e e e e aranee e eennsanees 3
1.3 ARTIFICIAL NEURAL NETWORKSooiiiiiiiiiiiiece oottt ettt et et e e e e e e e e e e e ea e e e e e e e e e e e et e ea e e et a e e s e e e s senaanes 4
1.4 ARTIFICIAL NEURAL NETWORKS AND LEARNINGooiiiiiiii i 5
1.5 EVOLVING ARTIFICIAL NEURAL NETWORKSottuiiiiiiieieeieetiettieiiereeeeeasitaeaeeeeeeesssieeeeeseessnnnaneaseseaasaeanns 6
1.6 EVOLVING ANNS TO LEARN .. oottt ettt 8
2ZEVOLUTION ..o e ettt 10
21 DARWINIAN Lot ettt ettt e e e e e e e ettt e e e e e ettt e e e e e e et e e e e s s en it aeeneees 11
2.2 NEO-DARWINIAN ..ottt ettt ettt et e e e e e e et ee e e ettt e e e e e s et aeseeeeeesrssrrnnnnereans 11
2B SYNTHETIC oottt s ettt e e e et e e e s e et a e naeeee s ranan e aeser et nneeeseseeannenneses 12
2.4 KIN SELECTION. ...coti et ieeeee et e et e e e e e e et ettt et e e st e e e e e et e e eeeerean e e e e eesnsaeeeeenessrrnnannnsns 12
2.5 SPECIATION ..o ettt et et arataa e e 13
2.6 EVOLUTION AND LEARNINGcoiiiiiiiiiteriieieeceetieteeeeeteeeerereeee s aee e taava et e s aaseassesssaeaaeeeasseantasseaneaeearraenens 13
2.7 EFFECTS OF LEARNING ON EVOLUTIONoooiiiiiiieioiimnie e eeeeeiee ettt eeeve e e eeaeavaiasae s asasssssmanaebesesenans 14
2.8 THE BALDWIN EEFECT ...ttt eeeenaans 15
2.9 THE BALANCE BETWEEN LEARNING AND INSTINCT ..covvvviiiiiiiiiiieie ettt eeeaaeaaanaaes 16
3 ARTIFICIAL NEURAL NETWORKS ... o 17
3.1 ANN DEFINITION ...oooiiieie et ee e e et e e ee et et asts bt ae s etete e s tastae e sanssnnnssesesnannsnsnssnsssssnrtres 18
3.2 ANN BACKGROUND ..ottt ettt e e e e e e e e e et et e e e e ettt ae e e e s ettt eeaeesaetaanneaeaaaerees 18
3.3 ANN DESIGNccvtteeieeeeee et e e et et e e e e e e et e e e e e e e e s eee e e es ettt eerenaaeaaenaaeaeeeaeaaasaeaeasaeaaaesieaeins 19
3.4 ANN DESIGN ISSUESoiiiiitiiiititii et et eee et eteaate e e e e e eresessesea s ntae s s et essaanssss s aaesasaeeansasaesseeseneensnnsnen 23
3.5 ANN AND LEARNING.....coottiirtuiuritieieteeieiritireteteetsteesieaetesasitseesesssesesssassesassessesaraenressaseessesstesesesinirnes 23
3.6 BACK-PROPAGATION ALGORITHMoiuiiiiiiiiiiiiiiieetiieieeeeeeeeee et e e eeataassaaaeeeeste e aseeeaeaesntsasaeeaaeersnann 25
3.7 ANN DESIGN ISSUES WITH LEARNINGcootiiiiiiiiiieeee et eee e e ettt e e e e e e ee e eaeaaa 28
3.8 ACCELERATING LEARNING IN AN S ...ttt ettt e e e et e e e e e e e eeeaeeeeeesnaans 29
4 EVOLVING ARTIFICIAL NEURAL NETWORKS ..o 31
4.1 NEURAL EVOLUTION OF AUGMENTING TOPOLOGIEScootititiiiiiieeeiiiiie e e eeeeiiieiaaeeeeareiiensaeeeaeaeeeeennan 32
4.2 MEANINGFUL CROSSOVER IN ANNS L.ooiiiiiiiiiiiiie oottt e e e et a e e e e e naaeaee e 33
4.3 MINIMIZING ARCHITECTURE THROUGH EVOLUTIONooiviiiiiiiiiiiieiieieiee et 35
4.4 PROTECTING SLOWLY MATURING GENOMEStiiiiiitiieieieeeiieeeeeee ettt esvrnaaestaanaee s 36
4.5 PERFORMANCE OF NEAT ..ot 37
SRELATED WORK ..ottt e e e e e e aanans 40
5.1 BALDWIN EFFECT IN DYNAMIC ENVIRONMENTS ...vvvivitiiiiieiee e eeeeeeei e ettt eeeaeeea ettt veeeeeea et e e e 40
5.2 DISPLAYING THE BALDWIN EFFECT IN THE EVOLUTION OF ANNS ..ot 42
5.3 LEARNING AND EVOLUTION IN AN S L.ttt et et e e e e e e ee e e e e e e e e e e e 44
5.4 EVOLVING ANNS WITH A PREDISPOSITION TO LEARN.......ooiiiiiiiiiiiiiiiiieiiiiiereeeees e ieeeeeesaiievee e 47

v

SRELATED WORK ... 40

5.1 BALDWIN EFFECT IN DYNAMIC ENVIRONMENTS ...oviiviiiit it ceintiee ettt ee e e e eenea e 40
5.2 DISPLAYING THE BALDWIN EFFECT IN THE EVOLUTION OF ANNS L., 42
5.3 LEARNING AND EVOLUTION IN ANNS .ot 44
5.4 EVOLVING ANNS WITH A PREDISPOSITION TO LEARNotii oo e et anaaaeee s 47
5.5 OPTIMIZING ANNS USING EVOLUTION WITH LEARNINGooiiiiiiiiitiiiieeiee e evninnrinee 48
6 EVOLVING ANNS TO LEARN ..o 51
6.1 DESIGNING A BETTER NETWORK FOR LEARNINGoocviiiiiiiiiiiiiiiiiiice e 52
6.2 COMBINING EVOLUTION AND BACK-PROPAGATION ...oouviiiiiiieineeeee et eeeieeeeeeeseseeeeeeenenannssnenssnnsssnasneees 52
6.3 ALTERING NEAT AND BACK-PROPAGATIONoumvriiiiiiiieeiiet e eeeeetv e eeeeae e e ee e e eanaee s 53
6.4 DESIGNING A DYNAMIC ENVIRONMENT «..ootiiiiitittitie vt eeeeeeeee e e e e eeae e e e eee e eeeeeestseesesessnnnnnnnnssnnnnnnennes 56
6.5 EVOLVING LEARNING NETWORKS PROCESSciviiieiere e eeeieev et e eeeeiveer e e e eaee e ae s aaeeaeennaaneas 59
T RESULTS AND AN ALY SIS e e e 65
7.1 EVOLUTION OF A 3*° DEGREE POLYSOLVERvov et eee e eee e e e seeeee e eeenassvenesrese s 65
7.2 INCREMENTAL EVOLUTION.......cotiiiiiiieieieee et ee e e e e e e e eeeeeete et e et et e ee e e et eaeesseee s ebasssararaeaenessees 69
7.3 BACKWARDS COMPATIBILITY ..oeoiiiiiieiiieieieieoieeinertsenctesteeerereiasesesesasssssesessesertsrateseesesesseasassssssssssessress 76
8 CONCLUSION AND FUTURE WORK ..ottt 81
APPENDIX ..o e e e e e et aa e 84
REFERENCES ..ottt et e e e e e e s v e taae e e s es i ee s s e ns 122

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Figure 19

LIST OF FIGURES

Neuron and CONNECIONS.oueuti ettt 15
Typical single layer feed-forward ANN.............oi 15
Sigmoid FURCHON. ... i e 16
Typical multi-layer feed-forward ANN..............c 17
EITOr FUNCHOM.t ettt 20
The Back-Propagation Algorithmccoooii 21

Kolen and Pollack’s Description of initial weights effect on convergence....23

Meaningless CroSSOVET......couiiuiiiuiiii it 27
NEAT ENCOQING. ..ottt et e 28
NEAT CroSS-0VeT....uveiiiiiii it e 29
Initial Network.o 31
Non-linearly Separable Input/Output combinations for XOR.................. 31
Nolfi Elman & Parisi’s ANN........oiiiiiii i 36
Nolfi Elman & Parisi’s self-supervised ANN................co. 38
Standard(left) vs. Evolved ANN(right).........oooiiiiiiiiii s 44
Back-propagation of error in an evolved network.t 45
2™ Degree vs. 4T DEGIEe.oee i e e e, 46
Appropriately Complex 4" degree polynomial.................ooi 47
Various appropriate fourth degree polynomials....................... 47

Vi

Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Evolving Learning Neural Networks Algorithm.................... .. 49

Evolving Polysolver’s fitness function................coo i, 50
Evolution of a 3" degree Polysolver............. 53
ANN Evolved for 3" degree polynomials............... 53
Fully-Connected ANN. ... e 53

Evolved Network vs. Traditional Network

on a 3" degree polynomial involved in evolution................................ 54
Evolved Network vs. Traditional Network

on a 3" degree polynomial not involved in evolution............................ 55
Evolution of a 4™ degree Polysolver starting from minimal structure......... 56
Structure of a 4™ degree Polysolver

incrementally evolved from 3 degree Polysolvers.................oooiin . 57
Incremental evolution of a 4™ degree Polysolver

starting from a population of 31 degree Polysolvers...................ooee. 57
Incremental evolution of a 4™ degree Polysolver

starting from a population of 2 degree Polysolvers.............c.....oo 58
Structure of a 4™ degree Polysolver incrementally

evolved from 2™ and 3" degree Polysolvers.............coooiiiiiiiiiin, 59
Incremental Evolution of a 4" degree Polysolver

starting from 2" to 3™ degree Polysolvers............ooooiiiiiiiiiii i 60
Evolved Network vs. Traditional Network

on a 4" degree polynomial not involved in evolution............................ 61

3" degree Polysolver vs. Traditional Network on a 2 degree polynomial... 62

Vil

Figure 35 31 degree Polysolver vs. Traditional Network on a 4t degree polynomial...
Figure 36 4t degree Polysolver vs. Traditional Network on a 3 degree polynomial...
Figure 37 4™ degree Polysolver vs. Traditional Network on a 2™ degree polynomial...

Figure 38 4™ degree Polysolver vs. Traditional Network on a 5t degree polynomial....

viii

ABSTRACT

EVOLVING LEARNING NEURAL NETWORKS

by

- Christopher P. Christenson, B.S.

Texas State University-San Marcos

December 2004
SUPERVISING PROFESSOR: KHOSROW KAIKHAH

Supervised learning has long been used to modify the artificial neural network in
6rder to perform classification tasks. However, the standard fully connected layered
design is often inadequate when performing such tasks. We show that evolution can be
used to design an artificial neural network that learns faster and more accurately. By
evolving artificial neural networks within a dynamic environment, the artificial neural
network is forced to use learning. This strategy combined with incremental evolution
produces an artificial neural network that outperforms the standard fully-connected
layered design. The resulting artificial neural network can learn to solve an entire
domain of problems, including those of lesser complexity. Evolution alone can be used
to create a network that solves a single task. However, real world environments are
dynamic, and thus require the ability to adapt to changes. By improving the design of the

artificial neural network for learning tasks, we have come one step closer to artificial life.

ix

1 INTRODUCTION

The brain controls practically every aspect of an animal’s life. Vision, speech,
memory, motor skills, and consciousness all require the use of our network of neurons.
Thus, it is not surprising that we have made attempts to simulate the brain’s functions
with computers. One way which has shown promise is a structure called the Artificial
Neural Network (ANN). With ANNs, computers can learn to recognize speegh, convert
handwritten text, and perform many other extraordinary tasks. The introduction of new
ANN design techniques, such as evolutionary algorithms, has brought computers closer

to simulating the brain than ever before.

In order to simulate the brain effectively, its functions must be understood fully.
The brain works on two levels, unconsciously and consciously. The unconscious
workings of the brain can be thought of as instinct. Instincts are behaviors that an
organism is born with. Conscious behaviors are those that an organism must learn
through living. Instinctual and learned behaviors are both directly related to the

environment in which an organism lives.

When attempting to simulate the brain’s ability to learn using ANN, standard

design principals have many issues that have not been resolved. In order to design the

many aspects of the ANN, a new mechanism must be found. This research will show that
evolution can be used to design an ANN that learns to solve problems faster and with less

CITor.

e 1.1 Evolution)
e 1.2 Evolution and Learning

e 1.3 Artificial Neural Network

e 1.4 Artificial Neural Networks and Learning
e 1.5 Evolving Artificial Neural Networks

e 1.6 Evolving ANNs to Learn

1.1 Evolution

Darwin describe& a mechanism that hoped to show how life forms change through
time. This mechanism, which we know as evolution, describes how organisms gain traits
based upon the environment in which they live. Reproduction, one of the key
mechanisms in evolution, allows organisms to pass traits on to the next generation. Since
the fittest organisms reproduce more, their traits become more prominent in the following
generations. The result is organisms that are custom fit to their environment. Random
mutation also plays a major role in altering the traits of organisms. Without mutation,
organisms would reach a low optimal fitness without the ability to improve. Random

new traits allow organisms to branch out into uncharted territory where their fitness may

either improve or diminish. Thus, evolution can be understood as an elaborate searching
me(/:hanism where the goal is a more custom fit solution to the current environment. The
tools of this searching algorithm are cross-over and mutation. Cross-over combines two
fit organisms in the hope that the traits found in both will produce a better fitness 1n the

child. Random mutation allows for a broader searching landscape.

1.2 Evolution and Learning

The traits that Darwin describes are found directly in the genome. Any traits
learned during the lifetime of the organism are not passed on. This would lead us to
assume that learning has no effect on Darwinian evolution. However, there have been

theories that show that learning does have a dramatic effect on evolution.

Lamarck argued that “All which has been acquired by, laid down, or changed in
the organization of individuals in the course of their life is conserved by generation and
transmitted to the new individuals which proceed from those which have undergone those
changes.” [15] In other words, Lamarck believed that organisms could actually alter their
genome during their lifetime. Baldwin, however, believed that learning affects the
genome in a more indirect way while maintaining a process that is Darwinian. In what
has been termed the Baldwin Effect, learning’s effect is determined by the environment

in which it occurs.

In a dynamic environment, learning can improve evolution. While learned traits
are not passed on to the proceeding generations in the Baldwin Effect, the ability to learn
is. Consider the cat and its ability to alter its coat based on the temperature. This is a
good example of the Baldwin effect in everyday life. The ability to alter its traits allows
the cat to withstand the cold and endure the heat. Thus the cat has increased its fitness in
an environment where the temperature changes dramatically. We hope to show that
learning can affect evolution in dynamic environments by evolving ANNs with the ability

to learn.

Often, environments become static after genomes have been evolved to adapt to
them. Adapting has been known to solve many problems faster than evolution. After all,
evolution takes generations to have any effect. However, adapting does take time, and
when you are a kitten in the freezing cold, it doesn’t take long to die. In that perspective,
evolution can be the faster mechanism for survival. We hope to observe this second

aspect of the Baldwin Effect when we evolve ANN.

1.3 Artificial Neural Networks

Our goal in this research is to describe a process that creates a genome that can
learn to graph polynomials. The vehicle we perform evolution on is the Artificial Neural
Network (ANN). The ANN is a wonderful tool for this problem because it has been

shown to both evolve well and graph polynomials well. {5, 23]

The artificial neural network is a simulation of the biological neural network
found 1n the brams\ of amimals. The brain is made up of a network of interconnected
neurons. Information, in the form of chemicals, is passed through this network of
neurons and produces output. For instance, the cat sees a mouse scurrying by. The
mouse 1mage is passed from the eye through the multitude of interconnected neurons
found m its brain, and the cat recognizes the mouse as something to harass. These
neurons and their connections can be considered the relationship between the mput and
the output. This relationshi;; performs very well at tasks involving pattern recognition.
Whether the mouse was brown or white, the cat still recognized it as a mouse because of
its many mouse-like features. Furthermore, the cat would recognize a dog as not a

mouse, even though the dog has a tail, ears and other mouse-like features.

Since the brain is so good at pattern recognition, to sumulate such tasks it would
seem natural to have computer programs that mimic the brain’s activities rather than
creating a procedural method. The ANN is a simulation of the brain’s makeup and
functions. The ANN is akin to a “directed graph structure where nodes perform some
simple computations, and each connection conveys a signal from one node to another.”

[17] The power behind the artificial neural network, and the brain, is its ability to learn.

1.4 Artificial Neural Networks and Learning

The ANN is not simply a directed graph, each connection 1n the ANN does more

than just convey signals. In fact, in order for an ANN to learn, the connections must do

much more. In animals, there may be sections of the brain that do not change at all. For
instance, the cat’s reaction to chase the mouse did not require any training. It could be
said that the cat was born to chase mice. However, there are things that the cat does have
to learn, especially with humans around. The cat may learn that when it hears food
pouring into its bowl, that 1t is time to eat. This 1s called Reinforcement learning. By
running to the sound of food pouring, the cat’s brain was reinforced with the pleasure of
eating the food. Back-Propagation learning in ANNs works muci; the same way. Given
a set of inputs, there are a set of desired outputs. When an ANN’s output approaches the
desired output, the weights on the connections are reinforced. However, if an ANN’s
output diverges from the desired output, the weights are negatively reinforced. When the
changes of the network’s weights are made a small step at a time, the network learns to
correlate the input to the desired output. Howl do we decide the size of the step or even
the structure of the ANN? Traditionally, the design has been a very simple layered
system in which the architecture of the network could be easily understood. However,
we will show that evolution is a much better approach for designing learning artificial

neural networks.

1.5 Evolving Artificial Neural Networks

The brain is a very complex network of neurons. Some researchers state that
there are 100 billion neurons. Each neuron may be connected to 1500 other neurons.
This adds up to trillions of connections in the brain. [22] Researchers quickly understood

that they could never design an artificial brain. However, a recent innovation has made it

so that they don’t have to. By using the same mechanism that created our brains,
researchers have been able to create extremely complex ANNs without having to design
them at all. That innovation was the evolutionary algorithm. Now, impossibly complex

ANNSs can be created, and soon maybe even an artificial brain.

Using genetic algorithms to evolve ANN has proven useful in complex
feinforcem;nt learning tasks. [23] However, until recently, the evolutionary process was
limited to modifying the existing weights of the standard fully connected layered ANN.
While this worked in situations where the number of required hidden nodes was known,

it was not a robust solution for all problems.

In order to create a network to solve any problem, researchers needed the ability
to use evolutionary algorithms to alter the structure of the ANN. Difficulties in
modifying the structure arose immediately. Evolutionary algorithms require the use of
random mutation and meaningful cross-over. The problem arose when researchers tried
to develop a process where two ANNs could be combined in such a way where their traits
may be passed on to the child. Meaningful combination required very costly analysis of
the networks. Frustrated, researchers even atteml;ted to bypass the problems of evolving
structure by randomly changing the number of hidden nodes after failed attempts at
solving the task. [11] Recently, researchers from the University of Texas came up with a
new way to evolve the structures of ANNs that has shown to be the most robust on

benchmark reinforcement learning problems.

NeuroEvolution of Augmenting Topologies (NEAT) has proven itself as one of
the best algorithms for evolving structure and weights in ANNSs. [23] By starting with the
minimal structure and incrementally adding pieces, the result is a neural network that
performs well with minimal structure and without the need for costly complexity
analysis. Further, NEAT utilizes a genetic representation that allows ANN to cross over
in a meaningfql way. By using species to protect the ANNSs that need time to optimize,

NEAT makes sure that the possibly important structures are not lost prematurely.

1.6 Evolving ANNs to Learn

Traditionally evolutionary algorithms are used to solve a sﬁecific problem. Given
the input and the desired output, evolutionary mechanisms are used to slowly and
methodically drive a genome’s output towards the desired output. This serves very well
in static situations, but when the problem changes, either slightly or severely, a new
genome must be evolved. In nature, organisms have evolved to learn or adapt because
starting over is not a viable option. For example, a cat may grow a thicker coat when the
temperature drops, and later shed it when the temperature rises. Evolution did not take
place during the months between summer and winter. Rather, evolution gave the cat the
ability to adjust its amount of hair. This ability to adapt is essential when dealing with a

changing environment.

Using the NEAT algorithm and an augmented form of Back-propagation, a

population of ANNs will be evolved within a dynamic environment. Each generation

will be evaluated on its ability to adapt to the environmental changes. After evolution,
the resulting ANN will be able to learn to adapt to never before seen environments.
Furthermore, 1t will learn to adapt faster than the traditionally designed fully connected

ANN. This will show that the network has evolved to learn rather than simply to solve.

Evolving ANN to learn presents several possible avenues of adjustment. Back-
propagation has many factors that are not known to be optimal for solving different
problems. These include initial weights and learning rates. Moreover, architecture has

many unknown factors, including number of hidden nodes and connections.

Unlike previous research, where the goal of combining genetic algorithms and
Back-propagation was to create more optimized neural networks for a specific problems
[29], the goal of our research is to show that a network can be created that learns to solve
an entire domain of problems. If we ever hope to simulate the brains behavior, we must
mimic its ability to learn and adapt to changing environments. Can evolution be used to

design an artificial neural network that is better at learning?

2 EVOLUTION

James F Crow of the University of Wisconsin describes many of the different’
beliefs about evolution. The theory of evolution begins with the Pre-Darwinian views
and proceeds to describe the many facets of evolution including Darwinian, Neo-
Darwinian, Synthetic, Kin Selection, and finally Speciation. By understanding the many

|
1

views of evolution, we can better utilize it to design ANNS.

Before Charles Darwin presented his evolutionary mechanism in The Origin of
Species, there was recognition of biological evolution. Jean Baptiste de Lamarck -
believed that changes that occur during the lifetime of an organism are passed onto the
next generation. While intriguing, the Lamarckian belief of inheritance of acquired

characteristics cannot be proved.

e 2.1 Darwinian

e 2.2 Neo-Darwinian
e 2.3 Synthetic

e 2.4 Kin Selection

e 2.5 Speciation

e 2.6 Evolution and Learning

10

11

- 2.7 Effects of Learning on Evolution
e 2.8 The Baldwin Effect

e 2.9 The Balance between Learning and Instinct

2.1 Darwinian

When Darwin presented his idea of natural selection, many believed 1t was a
convincing theory that could be found directly in nature. Darwin’s theory stated that
individuals best able to cope with the environmental strains were the most likely to
survive and reproduce. The next generation would then have a larger fraction of these
more capable individuals. The only problem with Darwin’s theory was variability. Since
mating actually decreases the population variance, about 50% each generation, some

mechanism for variability must be present.

2.2 Neo-Darwinian

Gregor Mendel’s work on inheritance showed that the loss of variability is only a
tiny amount rather than half. Found within organisms are markers, called genes, that pass
along the characteristics of the organism to the following generations. These genes retain
their variability from generation to generation. Furthermore, the random ’changes
necessary for new variations, mutation, was introduce i 1901 by Hugo DeVries. With

Mendelian inheritance and DeVries mutation, Darwin’s theory was now viable.

12

However, there are many wrinkles that needed to be 1roned out. Thomas Huxley
did not believe evolution was gradual. He believed evolution occurred in steps rather
than a smooth curve. While most people accepted evolution as a historical fact, the

details of the Darwinian mechanism have come nto question.

2.3 Synthetic

Mathematically inclined biologists, R.A. Fisher, J B S Haldane, and Sewall
Wright found the Neo-Darwinian theory lacking a complete description of selection.
They showed the effects of various kinds of selection. Fisher’s Fundamental Theorem of
Natural Selection provided a quantitative predictor that was missing in the Neo-
Darwinian theory. Fisher failed to take into account the effects of chance except in the
smallest populations. Wright argued that selection was not the only driving force behind
evolution. If it were, an adapted population could never improve since it would have to
first pass through less fit state to achieve a better fitness. It would essentially get stuck
within a local maximum, with selection rejecting movement in all directions. By chance

and migration, Wright thought evolution could create complexity.

2.4 Kin Selection

The Darwinian Theory also failed to take into account cooperative behavior.

William Hamilton added cooperation and altruistic behavior to the ever evolving

13

Darwinian Theory. Hamilton stated that if the cost to the altruist is less than the benefit
to the recipient and the relationship to the altruist, then the trait will increase. Thus,
organisms find similarities within their kin and deem 1t acceptable to help increase their
fitness. Since they share many of the same genes, it 1s in their genes’ interest to help each

other. Here behavior can be seen as an effect of evolution driving evolution.

2.5 Speciation

“Speciation is the absence of crossing between individuals of different
species.”’[7] When two groups are in separate species, they will go down separate
evolutionary lines. This is beneficial because the two are no longer competing for fitness
which promotes variation. Without speciation, selection would reach a local optimum

due to the lack of variability.

2.6 Evolution and Learning

Evolution is a very powerful searching mechanism that alters organisms so that
they can better cope with their environment. However, when the environment changes, it
is necessary for the organism to adapt more quickly. Learning, a process brought forth
by evolution, is the mechanism that allows an organism to adapt during its lifetime. The
question as to whether learning has an effect on evolution has been raised by many

researchers. Specifically, Mark Baldwin presented his argument about learning’s effect

14

on evolution. [1] Many researchers have followed with a critique of Baldwin’s research,

which 1s now called the Baldwin Effect.

Baldwin presents two characteristics that affect an organism’s development. First
are 1ts instincts, the hard-coded behaviors and characteristics passed down from the
generations, and second are the behaviors and characteristics learned during its lifetime.
Baldwin first poses the question as to why the organism changes during its lifetime.
These reasons mclude environmental, self-promoted, and choice. When the reasons have
been accepted, Baldwin poses the greater question. What effect do these adaptations

have upon evolution?

2.7 Effects of Learning on Evolution

Baldwin begins by describing the effects of lifetime learning upon the life of the
organism. “By undergoing modifications of their congenital functions or of the structures
which they get congenitally—these creatures will live; while those which cannot, will
not.” He then concludes that since the organisms that are able to adapt will survive, they
will become more prominent in the following generation. Thus, the Lamarckian theory is
unnecessary, because the child is given the ability to learn a behavior, rather than

acquiring the learned behavior.

Baldwin’s landmark paper appeared in The American Naturalist in June of 1896.

Not surprisingly, there have been many reviews on his theory since then. Peter Turney

15

addressed the widely misunderstood Baldwin Effect. Turney states that the
misunderstandings can be grouped into two categories. The first 1s the belief that the
“Baldwin Effect is concerned with the synergy that results when there is an evolving
population of learning individuals.” He claimed that researcher focused too much on the
benefits from this synergy and ignore the cost. The second is the belief that the Baldwin
effect is Lamarckian. The Baldwin Effect 1s not Lamarckian and, in fact, it is a better

model of cultural evolution.

2.8 The Baldwin Effect

The Baldwin Effect states that lifetime learning can accelerate evolution.
However, as Turney points out, it also states that learning is expensive. So, within stable
environments evolution tends to produce instinct rather than learning. Since much of
research done in this field focused on the benefits of learning in a dynamic environment,
Turney’s paper hopes to bring a balance. He begins by reviewing the benefits of learning

versus instinct.

Learning allows organisms to “explore neighboring regions of phonotype space.”
This allows the organisms to increase its fitness to the maximum fitness in the local
region of genotype space. Thus, evolution can reach the maximum fitness easier.
However, since learning requires experimentation, it can be dangerous. Tumey points
out that instinctually avoiding snakes is much more advantages since one bite can end an

organism’s life. Furthermore, if a behavior is known to be beneficial, it could be

16

performed faster by instinct, since 1t would not spend the time required with learning.
Thus, evolution can reach the maximum fitness faster. “Learning can accelerate
evolution under certain circumstances, but 1t can also slow evolution under other
circumstances.”’[26] Turney concludes that evolution seeks to find a balance between

instinct and learning.

2.9 The Balance between Learning and Instinct

Kim Sterelny describes the balance between instinct and learning. [24] Evolution
utilizes learning when met with an enviroqmental change. The Baldwin Effect is then
described as “a process through which a trait that was once learned has become innate.”
Thus, learning the behavior allows fitness to‘be improved easier, but once the trait is

found, instinct allows the fitness to be improved sooner.

3 ARTIFICIAL NEURAL NETWORKS

Simulating the brain has been one of the greatest quests human have chosen to
embark on. Using computers, researchers have developed techniques that mimic many of
the brain’s mechanisms for pattern recognition and memory. “Artificial neural networks
(ANNSs) are new mathematical techniques which can be used for modeling real neural
networks, but also for data categorization and inference tasks in any empirical

science.”[16]

3.1 ANN Definition

e 3.2 ANN Background

e 3.3 ANN Design

e 3.4 ANN Design Issues

e 3.5 ANN and Learning

e 3.6 Back-Propagation Algorithm

e 3.7 ANN Design Issues with Learning

e 3.8 Accelerating Learning in ANNSs

17

18

3.1 ANN Definition

ANNs can be used to simulate the brain’s ability to perceive, think, remember,
mnfer, and act. It can also help with data classification and inference. Malmgren defines
an ANN as “a heterogeneous and loosely delimited set of mathematical technique that
uses techniques that bear some similarities to the way we believe that real neural
networks process information.” However, the ANN is much simpler than the neural

networks in organism’s brains.

3.2 ANN Background

While true simulation of the ANN arguably began in the 1950s, its history can be
seen as far back as in the work of Pavlov, Freud, and Descartes. Hebb and others began
in the 1950s to formulate the ANN, but the ANN did not become powerful until the
1980s when computers began to improve. The ANN research then split into two fields:
simulating the brain and applying ANNs to known problems. “Because they do not
necessarily require assumptions about population distribution, economists,
mathematicians and statisticians are increasingly using ANNs for data analysis.” [21]
Due to their common simulation mechanisms, researchers who simulate the brain and

those . applying ANNs to known problems borrow greatly from one another.

19

Understanding the brain provides insight into mechanisms for the application of ANN,

and the advances 1n application allow for testing theories of the brain.

3.3 ANN Design

The current ANN is much simpler in design and function than the biological
neural network. Malmgren describes it as a group of neurons that transform the input
into an output. Each node passes its input to the next node through conlnectlons that have
a weight. These connections perform the transformation through multiplication of the

node’s output by the corresponding weight (Figure 1).

Input,

WEI

Input o] Output = Output

\ 4

> input, * weight,
1

K ight,
Input,

Figure 1. Neuron and Connections

20

The combination of neurons and connections vary based upon the application and
methods used. A common version of this combination is the Feed-forward network

without hidden layers.

Q O Oow

Input

Figure 2. Typical single layer feed-forward ANN

As mentioned previously, ANNs are useful for clagsification problems. Classification
problems fall into two categories: Linearly separable or Non-Linearly separable. ANNs
without hidden layers can only be used for linearly separable problems. In order to
achieve non-linear separation, the network must be designed with a middle layer, often
called the hidden layer, and the neurons must enforce an activation function. The typical
activation function used is the sigmoid function. “A sigmoid function is smooth and

strictly monotonous function with a lower and upper bound.” [16]

21

v

-2 -1 1 2

Figure 3. Sigmoid Function

22

Output

A

Hidden
ﬂk

Input
Figure 4. Typical multi- layer feed-forward ANN
Since non-linear relationships are more likely to occur than linear relationships,
the majority of research has been focused on the multi-layered ANN. [21] The hidden
layer only receives mput and produces output internally. Thus, the hidden iayer does not
solve the problem directly. Rather, it enables non-linear solutions by creating subgroups

that can be further classified in the output layer.

ANNSs are able to learn any mathematical function by decomposing the function
in terms of the sum the neurons. Thus, if the correct combination of neurons and
weighted connections can be designed, ANNs can play a powerful role in function

approximation 1n many fields of study.

23

3.4 ANN Design Issues

Complicated systems, such as those found in medicine and economics, require
powerful models. ANNs can be a very powerful model and has been used successfully in
many fields of research. However, one of the biggest problems with ANNs is mn the
design. A network designed with excessive structure may not generalize well. When
classifying data, it is important to generalize so that correct placement occurs even with
noisy data. Moreover, if a network 1s too simple, it may generalize too much and
produce incorrect classification. “The power of the net must be adapted not only to the
expected level of noise and other random elements, but also to what we know in

beforehand about the specific nature of the underlying process.” [16]

3.5 ANN and Learning

After the structure of the ANN has been determined, the connections’ weights
must be set. In simple problems, such as the logical AND, the weight values can be set
manually. In more complicated problems, a better mechanism for determining the
weights is needed. This mechanism has been termed learning because of its use of
reinforcement principles akin to biological learning. Experiments show that using

learning can improve model performance above that of standard statistical methods. [28]

24

The goal of learning 1s to determine the contribution of each neuron to the output
of the ANN. The weighfs determune this contribution by amplifying or de-amplifying the
output of the neuron. .To find the optimal set of weights, the ANN’s weights must be
changed incrementally over many iterations. When dealing with a simple single layer
ANN, learning is more straight-forward. At each iteration the following steps are

N

performed:

1. Present the next input vector to the input neurons.
2. Obtain the output of each input neuron by multiplying its input by the
connection’s weight.
3. Train the weights according to the following equation:
e wijt+l)=w,(t)+a*(d-a)

d is the desired output
a is the actual output
a is the learning rate 0.0 < a < 1.0
t is the iteration
w is the current weight

4. Repeat steps 1 through 3 until the error is reduced to acceptable levels

The error is simply the difference between the desired output and the actual output. A
common error measure is the mean-squared error. It is the error computed over the entire

set of inputs and is computed as follows:

25

e E=1/n(d;-a)’+(dz-2a2)+..+ (dn~-25)°
E is the sum-squared Error
d is the desired output
a 1s the actual output

n is the number of input/output vector pairs in the training set

When dealing with a multi-layered network, the error must be propagated over multiple
layers. While we know what the desired output of the ANN is, there is no way of
determining what the hidden layer’s output should be. Back-propagation allows us to

determine the hidden layer’s error and to alter the hidden layer’s connection.

3.6 Back-propagation Algorithm

Determining the error of the output layer is a simple process of subtracting the
actual output from the desired output. However, determining the error of the hidden
layer(s) is more complicated. In order to determine the error for the hidden layer, we
calculate each hidden neuron’s contribution to the overall error. This is done by
multiplying the error of the output node by the connections between the hidden node and
the output node. Thus, the hidden layer’s error can be approximated. This process is
repeated for every hidden layer until the input layer is reached. Once the network’s error

is calculated, the weights can be modified to reduce the error.

. \ 26

Reducing the error of an ANN can be thought of as trying to find the bottom of
the deepest valley on a graph with many valleys (Figure 5). In order to reduce the error,

the weights must move downward along this curve.

A E
. A2
Gradient Iocal
Decent ..
Minimum
¥4 W
Global
Minimum
W,

Figure 5: Error Function

In order to search for the global minimum, the gradient decent method is used. Gradient
decent alters the weights by determining the direction of the smaller error. To determine
the direction of the smaller error, the derivative of the activation function for that
connection must first be calculated. By calculating the slope of the error curve and

moving negatively down the slope, gradient decent minimizes the error.

27

& Step 1 Imitialize all weights with random values.

+ Step 20 Select a pattern &% and attach it to the wnput layer (m = 01

U (:ﬁ.t o
\]j = L’aj ;= k

+ Step 3: Propagate the signals through all layers:

R L
m 27 SN R m-1 - o

1

& Step s Caleulate the 0's of the output layver:
=M vy M s b 35N
S o= cy (T - o)
oy =g (hy) (T, -Vy)

+ Step 3 Calculate the 6's for the inner layers by error backpropagation:

~m-1 r yum=1- N N = :
8 " =9 (hy ;Lwijuj,mﬂfz,m_l,.
J

+ &2 Adapt all connection weights:

new old | 4., With - m _ _ em . m-1
Wji = ‘Wji + &W’ji —le =1 o3 Vj

+ Step 7. Go back to Step 2 for the next training pattern.
Figure 6: The Back-Propagation Algorithm (Suen)

The back-propagation algorithm works well on problems dealing with function
approximation. However, one of the drawbacks of back-propagation is the amount of

time it takes to train. This is due to the small changes in weights and the trappings of the

28

local minimums. Many improvements on this algorithm have been suggested, including

how to initially set up the structure, the initial weights and the learning rates.
{

3.7 ANN Design Issues with Learning

Experiments have shown that Back-propagation has an extreme sensitivity to the
ANN’s initial weight configuration. [14] If the weights are all initialized to zero, it is
difficult for training to break the weight’s symmetry. Furthermore, it is very difficult for
the network to converge if the initial weights are set to very high numbers, such as 10.
The common reasoning for this is that the derivative of the sigmoid function is close to
zero for large weights. Therefore, the convention for setting the weights of a newly
created network has been a uniform distribution between -0.5 and 0.5. While the reasons
for not initializing the weights to zero or ten are known, it is not known why the
convergence is so unstable when using weights in between these ranges. Kolen et al

attempt to describe this sensitivity through a series of experiments.

Beginning with the very simple OR function and a 2-2-1 ANN, the researchers
displayed the sensitivity of back-propagation to initial weights ranging from -20 to 20 in
steps of 0.2. The results showed thirty-seven separate classes of convergence on a
function as simple as the OR function. Clearly, back-propagation is sensitive to initial
weights, but is it sensitive to learning rates? Kolen et al show that learning rates and

momentum also have a drastic affect on convergence. Thus, learning algorithms must

29

take into account the initial conditions; otherwise the result may vary from one

implementation to the next.

on 00 —I | I ! | —L=10M=00
e LEIORMEOS
- - ,// _14'- —————————————
80.00 — W e 5 N F Y =1L
A / . L=Zaar00
o, 70.00 — ~ —""'"f""\ L7 \/ — L=20M=G5
Nen Y A AN L=20M=09
Convergence oo o PR / —
After S “V’I
50,000 P
Trials 00 — JE—
10.00 — _

| ! I
6.00 3.00 10.00

Figure 7: Kolen and Pollack’s Description of initial
_ weights effect on convergence

3.8 Accelerating Learning in ANNs

In addition to using appropriate weights to improve back-propagation’s
convergence time, several other technique\s have been employed. Resent work on a
hybrid algorithm of the least squares technique accelerates convergence. By using linear
least squares, the last layer of the ANN is optimized. The advantage to using a linear

least squares is that the dimensionality of the search space is reduced, thus reducing the

30

time 1t takes to optimize. The remaining layers learn through standard non-linear training

algorithms.

In simulation, when the modified least squares 1s compared to the conventional
least squares on identical initial 3-6-1 networks, the modified least squares converges
faster. Furthermore, in simulations where sigmoid outputs perform poorly, the modified
least squares method performs well since 1t does not use the activation function on the
output layer. Therefore, by using standard methods on the hlddf;n layers and linear least

squares for the output layer, convergence time can be accelerated.

4 EVOLVING ARTIFICIAL NEURAL NETWORKS

Genetic Algorithms have been applied to the design of ANN in several ways.
First; evolution of ANNs has been applied to the search for optimal set of weights. With
a pre-established architecture, mutation and crossover are performed on the connection
weights of the ANN. Second, evolution has been applied to the search for optimal
architecture. In the search for optimal architecture, mutation includes either neuron
addition from a small initial network, or neuron deletion from a large initial network.
Third, evolution has been applied to the search for optimal learning parameters. With a
pre-established architecture, mutation and crossover are performed on the learning

parameters of each connection in the ANN.

Most of the research done on the evolution of ANNs has been focused on the
search for optimal weights. Researchers shied away from evolving structure because one
of the major genetic operators, crossover, is difficult to perform on ANNs. This is mainly
due to the complexity of ANNs. In order to perform evolution, the crossover operator
must be able to combine two highly performing networks in a meaningful way. Due to
Ann’s complexity, it is difficult to say which parts made a network obtain its high
performance. Extensive analysis of the neurons and their connection weights would have

to be performed in order to determime which weights actually contributed to the desired

31

32

outputs. Thus, until recently, evolution of ANNs was limited to weights and learning

parameters.

It has been shown that the architecture affects the speed and accuracy of learning.
[29] Further, evolving the structure would remove the trial and error approach widely
used to determine the number of hidden nodes for any given problem. Finally, evolution
of structure and weights has been shown to create networks with high performance with

minimal structure. [23]

4.1 Neural Evolution of Augmenting Topologies
e 4.2 Meaningful Crossover in ANNs

e 4.3 Minimizing Architecture through Evolution
e 4.4 Protecting Slowly Maturing Genomes

o 4.5 NEAT Performance

4.1 Neural Evolution of Augmenting Topologies

Neural Evolution of Augmenting Topologies (NEAT) is Ken Stanley’s algorithm
for evolving ANNSs’ structure and weights. By beginning with a minimal structured
network and incrementally adding neurons and connections, the result is a network that
has close to minimal structure. This is important to the network’s ability to generalize

well to previously unseen data. NEAT uses four genetic operators to perform evolution:

33

o Mutation: Weight
e Mutation: Add neuron
e Mutation: Add connection

o Cross-over

4.2 Meaningful Crossover in ANNs

The difficulty many researchers have observed deals with the cross-over operator.
Typical crossover operators arbitrarily combine two halves of two networks. This can

lead to a network that performs worse than the two networks (Figure 8).

;

Ccé
)] ~
] 2
[A.B.C]
X[C.B.A]

Crossovers: [A.B.A] [C.B.C]

Figure 8: Meaningless Crossover [23]

In Figure 8, the two networks have similar architecture, but in different order. Cross-over
may produce the two networks [A,B,A] and [C,B,C]. This results in meaningless

crossover because the two networks are missing part of the original networks, such as the

34

connections associated with nodes A and C. When structure is lost due to meaningless

crossover, evolution cannot combine two high performing networks effectively.

In order to do meaningful crossover without extensive architecture analysis,
NEAT encodes the ANN in a very special way. The genome in NEAT is made up of
connection genes. Each gene describes the input node, the output node, the weight of the

connection, whether the connection is enabled, and an innovation number (Figure 9).

Figure 9: NEAT Encoding [23]

When the initial population of minimal architecture is created, each connection is
assigned an innovation number. Thus, every individual in the initial population has
identical innovation numbers assigned to their connections. Then, by assigning each
newly mutated connection a new innovation number, it is possible to track a connection’s
history. This allows NEAT to compare two networks based upon their connection’s
innovation numbers. When the two networks cross-over, the connections with similar

innovation numbers are passed onto the child without duplication. Connections that have

35

different innovation numbers are passed on from the parent with a higher fitness. Thus,
NEAT performs a meaningful crossover through the use of the innovation numbers and

without the need of expensive architectural analysis (Figure 10).

Parenti Parents
15 A 5 S [4 3 4 5 « T e
4 2—4 j-mA 5-v,4 I—A I—i 3—4 5-s4 5—6 «" 1-5 1—86
DBAS dssab DBAS
- 3 A u5 5 3 9 10
Offspring 1, 5_A 1T 5.5 S--4 1-: -6
EUSAB 3ISAB

Figure 10: NEAT Cross-over (Stanley)

4.3 Minimizing Architecture through Evolution

As described in chapter 3, ANNs are very sensitive to their architecture. Too
much complexity may lead to over-fitting and too little may lead to incorrect

classifications. Furthermore, the amount of architecture affects the convergence time and

36

accuracy. Therefore, it is important to have the munimal possible structure when

designing ANNS.

Many evolution techniques start with a population of random architectures. Some
networks may have many hidden neurons, while others may have just a few. This 1s done
so that evolution may get a jump start on finding a solutton by starting with some
dwversity. However, this method presents several problems. The most serious problem is
that the final solution 1s not likely to be mmimal. Many of the nodes and connections
found in these random ANNs will be unnecessary to the final solution. While other
genetic operators could be added to remove this unwanted architecture, 1t would be costly

to the evolutionary process.

The NEAT algorithm creates ANNs with the minimal possible structure by
allowing evolution to minimize the structure from the beginning. By starting with
architectures that contain no hidden nodes and evaluating every change in architecture,
NEAT ensures that every piece is necessary to the final solution. By minimizing the
architecture, the search space is smalljer and the final solution is more optimal. With a

smaller search space, the evolutionary performance is dramatically improved.

4.4 Protecting Slowly Maturing Genomes

Previous researchers gave evolution a jumpstart with a diverse initial population.

They also started with random initial populations because they had no mechanism for

37

protecting newly added architecture. When an ANN’s architecture 1s modified, its fitness
can be dramatically reduced because the weights have not been optimized to the new
architecture. The maturation of the network through weight mutation may take several
generations. However, when an ANN’s fitness 1s reduced, evolution weeds 1t out of the
population. Since the ANN may need that modification to reach the desired solution,
NEAT provides protection for new modifications that allows for the time necessary to

achieve higher fitness.

Through speciation, NEAT only allows genomes to compete with similar
genomes. Thus, networks with new modifications are allowed time to optimize before
competing with the entire population. NEAT analyzes each network and determines
which species the network belongs to. By using explicit fitness sharing, similar genomes
share their fitness. When species share their fitness, each species’ population is

restricted, creating more species and ensuring population diversity.

4.5 Performance of NEAT

In order to determine whether NEAT could evolve necessary structure and do it
with minimal hidden nodes, NEAT was used to solve the classical XOR problem. XOR

is a non-linearly separable problem and would thus require hidden nodes.

38

The initial generation consisted of networks with 2 inputs, 1 bias, and 1 output
node. Each connection received an initial random valued weight (Figure 11) Fitness
was determined by summing the difference between the desired output and the actual

output for the 4 different possible combinations (Figure 12).

Out

IIl1 In2 Bias

Figure 11: Initial Network

X7 x2 | fixnx)
N 1 1 0
10 . U
. . 1 0 1
O '—l \\\ O \\\ O 1].
0 1 0 0 0

Figure 12: Non-linearly Separable Input/Output
combinations for XOR

NEAT was able to find a structure for XOR with an average of 2.35 hidden nodes after an
average of 32 generations. [23] This is close to the optimal solution for XOR that

requires only 1 hidden node. NEAT never failed to find a solution in 100 simulations.

39

Furthermore, the optimal solution was found 1n 22 of the 100 simulations. Thus, NEAT

was able to solve the XOR problem with close to minimal structure.

5 RELATED WORK

The use of evolution to design artificial neural networks has been well researched
and documented. In order to understand this research and how to extend 1t, many papers
were read and reviewed. The following sections are collections of reviews on the topics

dealing with this research.

5.1 Baldwin Effect in Dynamic Environments

e 5.2 Displaying the Baldwin Effect in the Evolution of ANNs
e 5.3 Learning and the Evolution of ANNs

¢ 5.4 Evolving ANNs with a Predisposition to Learn

e 5.5 Optimizing ANNSs using Evolution with Learning

5.1 Baldwin Effect in Dynamic Environments

The Baldwin Effect is wideiy accepted as part of the evolutionary mechanism.
Many researchers have sought to prove it in a simulated environment. Research has

shown that learning has an effect on the genome 1n simulated evolution. [13]

41

Even though learned behavior is not passed directly to an organism’s offspring, learning
organisms evolve much faster than non-learning organisms. [13] In Hinton and
Nowlan’s simulation, learning operated on the same variables as the genetic algorithm.
Their simulation focused on the comparison between learning and non-learning
organisms by using é very simple and extreme task. The simulation was assigning the
organisms the task of finding a specific combination of switches. The simulation was an
extreme case because the organism’s fitness only increased if it found the exact
combnation. Therefore, non-learning organisms’ only mechanism for change was to
randomly change the switches through evolution. The learning organisms were allowed
to change the switches during their lifetime. In simulation, the non-learning organisms
never found the correct combination and the learning organisms found the combination
quickly depending on the number of switches. This result is not surprising because the
simulation was built to exploit the advantages of learning and the disadvantages of non-
learning. By creating a simple and extreme simulation Hinton & Nowlan showed that

learning can vastly increase the speed of evolution in certain tasks.

While French and Messinger’s simulation was similar to Hinton & Nowlan’s
claésic simulation, their simulation created a population of organisms whose genome was
described in a string of bits. Also, the organisms were subjected to problems with
differing degrees of difficulty. Finally, the fitness function for the organisms was not
directly related to the organism’s ability to perform the desired task. By varying the
difficulty level they were better able to describe the Baldwin Effect. Thus, they were

able to demonstrate that the Baldwin Effect is contingent upon the organism’s ability to

t

42

learn and the difficulty of the action to be learned. Furthermore, they showed that
sexually reproducing organisms have a more pronounced Baldwin Effect than asexual

organisms.

5.2 Displaying the Baldwin Effect in the Evolution of ANNs

While the Baldwin Effect and Lamarckism may be controversial 1n the biological
context, they can be useful in simulation. The Baldwin effect is used by definition in the
evolution of ANNSs since fitness is determined after learning. “Both the Baldwin Effect
and Lamarckism produce improvement over standard evolution” of ANNs. [10] Giraud-
Carrier utilized the Baldwin Effect and Lamarckism in his experiments evolving ANNS.
By determining fitness after learning and by altering the chromosomes prior to genetic
recombination Giraud-Carrier showed that the Baldwin Effect and Lamarckism can be
applied to ANNs with improvements to time and predictive accuracy for the problems
considered. So, the reason the learned behavior is able to pass on through the generations
is a balance between the benefits of being able to learn and the cost of such behavior. In
order to observe these effects, it is necessary to create an environment in which learning

is requured.

Watson and Wiles presented further evidence of learning’s effect on evolution
with ANNs. [27] Previous research showed genetic stagnation after correct behavior was
achieved. The aim of their research was then to display the complete assimilation of the

learned behavior by introducing a cost to learning. With this evidence, both of the

43

significant aspects of the Baldwin Effect would be displayed. Their simulation consisted
of organisms whose genome consisted of connection weights and learning rates within a
single layer ANN. Again, fitness was determined af;er learning and the itial weights
were passed rather than the learned weights. Mutation was only performed on the
learning rates. After the first stage of the Baldwin Effect, in which a task is performed
using learning, the researchers sought to display the second stage. The second stage of
the Baldwin Effect states that after learning has provided the ability to perform a task,
evolution will select those genomes that perform the learning quicker. After generations
of selecting for faster learners, the behavior is eventually coded directly into the genome.
In order to measure this transition the researchers employed two indirect methods. First,
they observed the performance of the networks before and after learning each generation.
When the observed performances converge, learning is no longer having an effect.
Second, when the learning rates of the genome begin to fall, evolution has begun its

transition into acquiring the learned behavior. Ironically, only after the entire population

is made up of learning genomes does the cost of learning outweigh its benefits.

- Previous research displaying the Baldwin Effect in ANNs focused on the weights
alone. E. Boers, M. Borst, and I. Sprinkhuizen-Kuyper describe an algorithm that adapts
weights and architecture. [3] Weights are adjusted through normal training methods.
Unlike previous methods, the architectures of the networks are changed online. After a
certain threshold of continuous sizeable weight changes, the algorithm determines that

the structure is insufficient and adds nodes. In this way, learning can be used to change

44

the weights and the structure of the ANN. Coupled with the Baldwin Effect, the result

should be a network that can adapt to the environment faster than evolution alone

5.3 Learning and Evolution in ANNs

Other researchers feel that ANNs should evolve in simulation to biology and thus
ignore the possibilities of Lamarckism. To determine the effects that learning can have
on evolution, Nolfi, Elman, and Parisi restrict their research to Darwinian mechanisms.
[18,19] Their research begins with an organism whose goal is to find and eat food in its
environment. The organism is allowed to move through its environment in search of
food and the organism’s fitness is a measure of the number of food pellets eaten divided
by its number of actions. The organism makes decisions about where to move within its

environment based upon the output of a feed forward ANN.

45

ensory
Input Output

Figure 13: Nolfi Elman & Parisi’s ANN

Nolfi, Elman, and Parisi began their research with a simulation that would
determine if the simulated organism could evolve a behavior that would acquire lots of
food with few actions. One hundred networks are initially assigned random weights and
placed within an environment of food. After 20 epochs of interaction with the
environment, genetic algorithms were performed ‘on the networks. Since they were
assigned random weights, some of the networks ate more food than others, thus
improving their fitness. Twenty networks were chosen based on their amount of food
consumption and each copied itself five times. Since the researchers performed no
structural change to the networks, only the weights were transferred to their copies, or
children. Mutation was performed by altering the weights of the children. Through
mutation, crossover, and fitness selection, the networks did indeed evolve behaviors that

solve a problem. The behavior was not taught explicitly, rather, it was the product of the

46

evolutionary mechanism. Furthermore, mutation and fitness selection were both
required. Without mutation, new strategies in the population would not have been

possible. Likewise, without the fitness selection, the behavior would never improve.

The first stmulation in their research was successful. They showed that evolution
could be combined with ANNs to produce seemingly purposeful behavior. However, the
behavior was the result of evolution alone, and did not require any learning during the life
of the organism. Thus, in their next simulation they aimed to show the effects of life time
learning on behavior after evolution. Since the researchers wanted to simulate nature as
closely as possible, they refrained from providing any direct supervised learning. Rather,
they allowed the networks to perform an instance of “self-supervised learning.” The
ANN architecture was altered to allow the networks a way of predicting the next
movement. (Figure 14) The network then used Back-propagation to change the weights
to the motor outputs based upon the difference between the predicted sensory output and
the actual sensory input. While the weight changes during the lifetime of the organisms
were not passed on to their children, those organisms that performed better passed on the
potential for such changes. This is a direct simulation of the Baldwin Effect in ANNSs.
Furthermore, the simulation with learning yielded better performances than the

simulation without learning.

47

Predicted
Sensory

Sensory Previous
Input Output

Figure 14: Nolfi Elman & Parisi’s self-supervised ANN

Nolfi, Elman, and Parisi concluded that “the role of learning in evolution is that of
a third evolutionary mechanism.” It is a mechan;sm that allows organisms to take their
environment into account when solving problems. Reproduction is thus affected since
learning creates more organisms with a high fitness. This should improve evolution
because it makes the search more effective. However, as these researchers point out, the

learned task must be positively related to the evolutionary pressures.

5.4 Evolving ANNs with a Predisposition to Learn

Nolfi, Elman, and Parisi also show that the inherited initial weights provide the

ANN with a predisposition to learn the task they were evolved for. They show this by

- 48

erasing the inherited mitial weights and replacing them with random values. The ANNS
were then allowed to learn the task. With random initial weights on all but the teaching
neurons, the ANN’s performance remained constantly low throughout their life.
Therefore, while the teaching connections were performing the same function, without
the evolved initial weights, the network lacked the predisposition to learn. The weights
provide a predisposition to learn by “enhancing the perceived differences within the
current environment in order to allow learning to produce different adaptive

changes.”[18]

5.5 Optimizing ANNs using Evolution with Learning

Determining the proper ANN structure, initial weights and learning rates can be
difficult, especially within unfamiliar environments. Convergence can be slow and very
dependent on the initial weights, convergence on a global optimum is not guaranteed and
there is no proven method for determining the size of the hidden layer. [6] Evolution has
been shown to be a good mechanism for the global search of neural networks, but it fails
to perform fine tuning. Researchers have combined evolution with local search
techniques in order to improve the efficiency of a given task and to seek out the elusive

global optimum.

In order to use evolution to optimize a network to solve a task, Beliakov and
Abraham employed standard evolutionary and learning techniques. [2] Evolution would

find the region of the search space that includes the optimum and learning would

49

optimize the network. The researchers began with a randomly generated population of
ANN. This included the architecture and connection weights. The architecture was
randomly created with one hidden layer that had a maximum of four neurons. The
researchers restricted the network’s architecture due to the exponential increase in
complexity with each increase in neurons. The ANNs were then trained using Back-
propagation and other learning techniques. After the training session, each network was
evaluated and a genetic algorithm was performed. Each learning technique applied
different mutations. The mutations for Back-propagation included learning rates and
momentum. After applying mutation, the offspring were produced to replace the poorly
performing networks of the generation. Training was performed followed by evolution
until the optimal solution was found. The Meta-learning algorithm, as this method is

called, performed well for finding near global minima on the error surface.

Castillo et al showed that combining Back-propagation with genetic algorithms
can produce ANNs that “are smaller and achieve a higher level of generalization than
other perceptron training algorithms and other evolutive algorithms.” [6] Unlike Meta-
learning, G-Prop has no restriction upon the size of the hidden layer. Further, G-Prop
applies genetic algorithms to the initial weights only, and allows Back-propagation to
train from the initial weights. The G-Prop algorithm can obtain a better solution than

standard Back-propagation in comparable time.

The G-Prop algorithms selects ANNs based upon their classification accuracy and

their number of hidden nodes. Thus, if two ANNs have the same classification accuracy

50

the ANN with less hidden nodes would receive a higher fitness. This increases
generalization and decreases computation time. Lamarckian principles were also
employed by making one of the genetic operators carry over trained networks to the next
generation. In fact, these researchers have been doing an extensive search for new
genetic operators. While NEAT contains four genetic operators (neuron addition,
connection addition, weight mutation, and crossover) G-prop contains six genetic
operators (mutation, cross-over, neuron addition, neuron elimination, neuron

substitution, and finally training).

6 EVOLVING ANNS TO LEARN

Research has shown that evolution can be used to design the artificial neural
network. Previously, it has been used to evolve ANNs to solve a specific problem. Our
research will show that evolution can be used to create an ANN that can adapt to solve
any problem within the environment it was evolved in. This functionality is imperative
for the future of artificial life, because organisms do not live in 1solation. The world is
always changing, and the ability to adapt to change will provide for more robust artificial
life. We will show that evolution can be applied to design an artificial neural network

that has the ability to adapt to drastic changes in its environment.

e 6.1 Designing a Better Network for Learning

e 6.2 Combining Evolution and Back-propagation
e 6.4 Altering NEAT and Back-propagations

¢ 6.5 Designing the Dynamic Environment

e 6.6 Evolving Learning Networks Algorithm

51

52

6.1 Designing a Better Network for Learning

When deciding to use Back-propagation on a classification task, the first problem
that must be addressed 1s the design of the ANN. Determining how many hidden nodes,
hidden layers, initial weights, and learning rates has quantifiable effects upon the speed
and accuracy of the Back-propagation algorithm. Attempts had been made to iteratively
determine these values. A learning rate would be used for a certain amount of iterations,
and then it would be altered based upon the networks convergence rate. This method of
trial and error 1s too problematic and time extensive to be of real use. Ultimately, the
researchers were searching for the optimum combination of variables. Evolutionary
algorithms have been shown to be a promising searching mechanism for multiple
unknowns. Thus, our research combines evolutionary algorithms and Back-propagation

in order to design an ANN that is optimal for learning.

6.2 Combining Evolution and Back-propagation

Previous research has combined evolution and Back-propagation. However, this
research was focused on improving the speed and accuracy of evolution. [29] Zhang
states that evolution performs well for the global search and Back-propagation performs
well for the local search. [29] While optimizing evolution is valid, it did not address the
fundamental purpose of learning. Learning’s fundamental purpose is to facilitate

adaptation to a changing environment. The Baldwin Effect describes learning as

53

smoothing the fitness curve so that evolution can chimb it with less difficulty. This
difficulty arises when the environment changes. Thus, without a dynamic environment,
learning has little purpose. This 1s shown in the second aspect of the Baldwin Effect in
which the genome acquires the traits as instinct that previously had to be learned. So, in
order to find the optimum design for an ANN to use Back-propagation, evolution must

take place in a dynamic environment.

Forcing an ANN to solve many problems drives evolution to optimize the ANN
for learning. A network’s fitness 1n a changing environment such as this is based upon
the network’s ability to learn. After many generations, the fittest network will be able to
adapt to any problem in its environment. The result of this process is a network that will
even be able to learn to solve problems it has never seen before. If an evolved network
can learn to solve a problem it did not encounter during evolution faster and more
accurately than a traditional fully connected layered network, we will conclude that

evolution has produced an optimal learning network.

6.3 Altering NEAT and Back-propagation

{

ANNSs perform best when solving classification problems. In order to determine
whether a network could be evolved to learn many problems, we chose the problem of
graphing high-degree polynomials. Graphing polynomials is an interesting application
for this research because polynomials can be easily visualized and the error calculation is

straightforward. Furthermore, by simply changing the degree of the polynomial 1t is

54

possible to create varying degrees of complexity. Thus, we have named our evolving

ANNSs Polysolvers.

We used the NEAT algorithm as the basis for evolving the artificial neural
networks. However, NEAT is not equipped with any supervised learning. Therefore, we
modified the NEAT algorithm and its genome encoding in order to incorporate Back-
propagation learning. We began by changing the genome encoding to include learning
rates and initial weights. NEAT did not change the weights of the networks during their
lifetimes, thus it had no reason to inclﬁde learning rates, or to make the distinction
between weights and initial weights. Kolen demonstrates that the initial weights have an
affect on the speed and accuracy of Back-propagation. [14] Therefore, we store the
connections’ initial weights in the genome rather than resetting the connections to
random initial weights. Finally, we added a learning mechanism to the lifetime of our

evolved networks.

The Back-propagation algorithm is designed for the traditional fully-connected
layered networks. While Back-propagation works with varying number of layers, it
cannot handle connections that pass over layers. Such connections are extremely

common in evolved networks (Figure 15).

55

Pass-over Connection

1

L
Figure 15: Standard(left) vs. Evolved ANN(right)

In order to accommodate the possibility of pass-over connections within the Back-
propagation algorithm, error cannot be calculated by layers. If we were to calculate the
error by layers, we would ignore the error emitted by these bass-over connections. Thus,
we have implemented a recursive error calculation. Starting from the output node’s error,
the hidden node’s contribution to the error is determined by recusively moving through
all possible connections. Each node’s connections’ weight is then modified by the

product of the node’s input, error, and learning rate.

56

Figure 16: Back-propagation of error in an evolved network

In Figure 16, A’s error would be based on the sum of C’s error and B’s error. However,
since B is not an output node, its error would be based on the sum of C’s error and D’s
error. This modified approach for error calculation of the Back-propagation algorithm
can accommodate any combination of nodes and connections, including the standard
fully connected layered network. After modifying NEAT and the Back-propagation

algorithm, we were then able to begin evolving ANNs to learn.

Ay

6.4 Designing a Dynamic Environment

57

The outcome of evolution is highly dependent upon the environment and the
fitness function. The environment for our experiments was made up of different
polynomials of the same degree. We evolved networks to learn to graph 3 and 4"
degree polynomials. However, many 4t degree polynomials have similar graphs to nd

degree polynomials (Figure 15).

B [o |
A\ e T \\ /

T ik
In M+ |

40]
“ \\ /] |
TN] el |
) I N A e N
0 . , \/ ‘ , 0 ' xj

3 2 - 0 1 2 3 3 2 - 0 1 2 3
Figure 17: 2" Degree vs. 4™ Degree

While the polynomials in Figure 17 have very different magnitudes, their complexity is
very similar. ANNs performance is based on the problem’s complexity rather than its
magnitude, thus it would not be surprising to find that the training time for an ANN

would be similar for the 2™ degree and 4t degree. Thus, in order to evolve a network

58

that can learn to solve all 4™ degree polynomials it is important that we create an
environment that takes into account the full complexity of the 4 degree

polynomial(Figure 18).

Figure 18: Appropriately Complex 4™ degree polynomial

Therefore, the appropriate environment of polynomials will vary within the complex form

of the degree. However, there are variations on the complex form (Figure 19).

59

Figure 19: Various appropriate fourth degree polynomials

6.5 Evolving Learning Networks Process

In order to create an environment that forces evolution toward learning rather than
specializing, we set each Polysolver to the task of graphing five significantly different
complex 3 degree polynomials. Each Polysolver was given a certain number of
iterations to learn to graph each polynomial. After each polynomial, each Polysolver’s
weights were reset to the initial weights that are stored in their genome. Thus, the
Polysolver’s lifetime is made up of the entire set of polynomials. After the population of
Polysolvers has had a chance to learn to graph each polynomial, the Polysolver’s fitness

is calculated. NEAT was then performed on the population based upon the calculated

fitness (Figure 20).

60

After the Polysolver has had a chance to graph a polynomial for a preset amount
of 1terations, the Polysolver’s network is reset to the initial weights stored in 1its genome.
This is important to the evolution of a learning network because it has been showﬁ that
Back-propagation is sensitive to the initial weights. [14] With the weights reset after
each polynomial, the Polysolver is able to be evaluated upon its ability to graph each
polynomial from the same starting point. Furthermore, the initial weights are stored in
the Polysolver’s genome and thus get passed down to the following generation. When
fitness is evaluated based upon the network’s ability to graph from a defined starting
point, evolution is able to optimize a network to learn to graph any polynomial. Without
a defined starting point, learning would actually be hampered by the modified weights
since the weights from the previous polynomial have been specialized to that polynomial.
The Baldwin Effect further emphasizes the need to reset the weights to an initial starting
point. The Baldwin Effect states that evolution does not pass on learned behavior, rather

it passes on the ability to learn.

Start

Y

Create the initial genomes with
minimal structure, random initial
weights, and random learning
rates

\ 4
Create ANNs with the structure
and connection weights stored
within their genome

A

Perform NEAT

Have we reached
desired fitness?

Y

Update the network’s output with
the current polynomial’s input

61

A

A 4

Determine Error

A 4

Perform Back-propagation

v

A 4

Increment the current input.

Are we at the
end of the mput
set?

Increment the iteration.
Reset the current input.

Have we run out
of iterations?

Increment the current polynomial.
Reset the 1teration.

Are we at the
end of the
nolvnomal set?

Determine Fitness

Figure 20: Evolving Learning Neural Networks Algorithm

62

Having created an environment that will focus evolution towards learning; the next step
was to create an appropriate fitness function. Our desired outcome after evolution is an
mitial ANN, including hidden nodes, connections, learning rates aﬁd initial weights. This
mitital ANN should perform two functions. It should be able to learn to graph fourth
degree polynomials accurately and quickly. Therefore, our fitness function is based upon
the Polysolver’s ability to perform these two functions. However, evolution works best
when 1t can improve incrementally. In order to allow evolution to work incrementally,
the Polysolver’s fitness was first determined by its summed error from each polynomial.
If the summed error for each polynomial is reduced to an acceptable level, then the

fitness improves based upon the speed (Figure 21).

While (not at the end of the Polynomial set)
If (Polysolver’s error for this Polynomial is below the error threshold)
Fitness += Success Bonus
+ Number of Iterations
- Time to Reach the Error Threshold
Else
Fitness += Success Bonus
- Total Error
Next Polynomial

Fitness = Fitness / (#Polynomials * (Success Bonus + # Iterations)) * 100

Figure 21: Evolving Polysolver’s fitness function

63

Total Error is the difference between the actual output set and the desired output set of
each polynomual. This difference 1s summed to determine the Polysolver’s total error.
Fitness is then determined by the difference between the Success Bonus and the Total
Error. Thus, 1if the Polysolver has low Total Error, then 1t will obtain a high Fitess.
However, since we are interested in reducing error and increasing speed, Fitness is
increased when the Total Error reaches an acceptable level. Thus, Fitness is determined
based upon the Number of Iterations that have been completed when the Total Error
drops below the desired Error Threshold. When the Total Error drops below the Error
Threshold, Fitness is equal to the sum of the Success Bonus and the difference between
the Number of Iterations and the Time to Reach the Error Threshold. Thus, fitness
improves when the Polysolver requires less time to reach the Error Threshold. Fitness is
then normalized be dividing Fitness by the maximum fitness possible. We do not expect
to achieve 100% Fitness. To achieve 100% Fitness, the network would have to be able
graph each of the polynomials immediately. This is not a plausible scenario since each
polynomial is significantly different. Since we expect to have to allocate some time for
learning, achieving Fitness of 70% or higher would be considered successful. With this
error function, speed 1s not optimized until error is reduced to acceptable levels.
Furthermore, a network that improves speed and accuracy will receive a higher Fitness

than one that improves accuracy alone.

Once Fitness is determined, evolutionary algorithms can be performed. The

Polysolvers who achieved high Fitness are allowed to remain in the following generation.

64

Furthermore, the high performing Polysolvers are allowed to crossover with other high
performing Polysolvers. In order to create diversity and innovation, a portion of the
population will be mutated. New nodes and connections can be added to the Polysolver’s
genome Furthermore, the initial weights and learning rates can be mutated by either
adding or subtracting a small floating point number. The mutation of the initial weights,
learplng rates, and structure allow evolution to search for optimal conditions for learning.

Therefore, evolution can be used to design a network that 1s better suited for learning.

7 RESULTS AND ANALYSIS

By implementing the Evolving Learning Neural Networks Algorithm for graphing
polynomials, we will show that evolution can be used to design ANNSs that are better at
learning to graph polynomials than the standard fully connected ANNs. Through a new
mechanism, termed Incremental Evolution, we will determine whether stepwise evolution
can be used to design ANNs to graph very | complex polynomials. Finally, we will
analyze the ANN’s ability to learn to graph polynomials of lesser complexity than those it

was exposed to during evolution.
e 7.1 Evolution of a 3 Degree Polysolver

e 7.2 Incremental Evolution

e 7.3 Backwards Compatibility

7.1 Evolution of a 3 Degree Polysolver

We evolved a Polysolver for 3" degree polynomials. During their lifetime,
Polysolvers learn to graph the following complex 3 degree polynomials:

e 2.0x°-6.0x+3.0x -2.0

65

66

3.0x° +4.0x%-4.0x +3.0
1.7x° -5.0x* + 1.0x + 2.0
-1.4x° + 4.8x% - 3.0x - 0.5

-1.4x3 - 4.5%%* - 3.0x + 2.4

We were expecting to achieve a fitness of 70% in order to consider our Polysolver

successful. Surprisingly, fitness reached a saturation level of 80% after 775 generations

(Figure 22). The resulting network has 6 hidden nodes and 13 connections (Figure 23).

Each connection has an evolved initial weight and learning rate.

100
90

80 "/r,__,_*

70

I I 776, 79.1498

50 o

40 ~

30 ,rf

20 T

10

0

Fitness

1 84 167 250 333 416 499 582 665 748 831 914 997
Generation

Figure 22: Evolution of a 3 degree Polysolver

67

]
0000
(SN VAR Y IR SRR 11‘/I
X 8
/ XA\.\\WV Iif
NN-3W//
Figure 23: ANN Evolvedfor 3,d Figure 24: Fully-Connected ANN

degree polynomials

The 3rd degree Polysolver is able to graph each of the five polynomials in its lifetime
within a total error of 3 units. However, success was not only dependant upon the ability
to graph the third degree polynomials. In order to be truly successful, the Polysolver
would need to accurately graph the five polynomials quickly. Since speed is relative to
the problem, we compared the speed of the Polysolver to graph the 3rd degree polynomial
with the traditionally designed fully-connected ANN. When the evolved network and the
fully connected network were trained to graph a 3rd degree polynomial, the evolved
network was able to achieve acceptable error (less than 3 units) 400 iterations faster than

the fully connected network (Figure 25).

68

Evolved ~ - - - Fully Connected

50
45
40
35
30

s 1 -
\
\

£
Error

1.75
1.25
0.75
-0.25
0.25
0.75
1.25
t.75

20

B 15
: 430, 5.13929

E 105 51000 T
5 Q = = .

0

1 51 101 151 201 251 301 351 401 451 501
Iteration

Figure 25: Evolved Network Vs Traditional Network
ona 3™ degree polynomial involved in evolution:
flx)=3x" +4x" - 4x +3

Evolution was able to determine a near optimal design including hidden nodes,
connections, initial weights, and learning rates. Clearly the evolved design is more
accurate and faster at graphing polynomials than the traditional design. However, is it
more versatile than the traditional design? The previous results were based on a
polynomial that was included in evolution. Therefore, it is not surprising that the evolved
network would be good at graphing a polynomial that it was evolved to graph. Thus, a
further test of the evolved network would include a polynomial that it did not encounter

during evolution.

When the evolved network is compared to the traditional network on a previously
unseen 3" degree polynomial, the evolved network still outperforms the traditional
network (Figure 26). On the previously unseen polynomial the evolved network was

able to achieve acceptable error (less than 3 units) after 14 iterations, 60 iterations faster

69

than the fully-connected network. Furthermore, it achieved a more accurate classification

with only half the total error of the fully-connected network even after 800 iterations.

Thus, we conclude that evolution can be used to design a faster, more accurate, and more

versatile network than traditional design techniques.

200
180
160
140
120

Error

)
' 80
60
40
20

-20

100 -

Evolved - - -~ Fully Connected
|
\\
A\
14, 9.85594 82, 9.86872
1 51 101 151 201 251
Iteration

Figure 26: Evolved Network Vs Traditional Network
ona3"™ degree polynomial not involved in evolution:
fix)=2x"-6x" +3x-2

7.2 Incremental Evolution

In the previous section, we described the virtues of using evolution to design a

network for learning to graph 31 degree polynomials. However, when the Evolving

Learning Neural Networks Algorithm was applied to a set of 4t degree polynomials,

evolution required many more generations to achieve marginal fitness (Figure 27). After

1200 generations, the fitness remained at 60%.

70

100 e i et e i s e it ot s S e

90
80
70

60

50 J“'———_——‘—/
40

30 f_l_

20 .»ff-—'—’r

10

Fitness

1 90 179 268 357 446 535 624 713 802 891 980 1069 1158 1247

Generation

Figure 27: Evolution of a 4" degree Polysolver
starting from minimal structure

As previously stated, evolution performs best under conditions in which it can
improve its fitness incrementally rather than in spurts. If a network was first evolved to
learn to graph 3" degree polynomials and then evolved to learn to graph 4 degree, we
hypothesized that it would take fewer generations to achieve high fitness than it would
take to evolve from minimal structure. Therefore, rather than evolving the 4™ degree

Polysolver from a minimal structure, we began evolution from a population of previously

evolved 3" degree Polysolver (Figure 28).

Figure 28: Structure ofa 4thdegree Polysolver
incrementally evolvedfrom 3 degree Polysolvers

Figure 29: Incremental evolution ofa 4thdegree
Polysolver startingfrom a population of 3rddegree
Polysolvers

71

72

The fitness level of 80% for 3™ degree Polysolver dropped to 50% when the network
started to graph 4 degree polynomuals. This is not surprising since the Polysolver had
evolved the structure necessary to graph 3™ degree polynomuals, which is less complex.
However, after only 60 generations, the fitness level of the Polysolver rose to above 8§0%.
This is a dramatic reduction in the number of generations compared to a Polysolver
starting from a minimal structure. Incremental evolution achieved a fitness level of over
80% 1n 1000 generations, while evolution from minimal structure only achieved a fitness
level of 66% 1n 1200 generations.

To furtﬁer study the effects of incremental evolution, we evolved a 4t degree
Polysolver from a population of 2™ degree Polysolvers. Again, the fitness dropped from
85% to 25% when presented with 4™ degree polynomials (Figure 30). This drop was
more dramatic than the drop resulting from a 3¢ degree Polysolver being introduced with
4™ degree polynomials. This is a direct result of the 2™ degree Polysolver’s structure.
Since 2™ degree polynomials are less complex than 31 degree, the 2 degree Polysolver
is evolved to contain less structure. However, the number of generations required to
achieve a high performing 4™ degree Polysolver is comparable for 2™ and 3™ degree
incr@mental evolution. Whether evolution began from 2nd degree or 3™ degree, the
number of generations required to evolve a 4™ degree Polysolver was approximately
1000 generations. This is due to the fact that a 2" degree Polysolver takes less
generations (approximately 500) than the 3 degree Polysolver (approximately 900), and

therefore has more generations to evolve to the 4™ degree. .

73

100
90

80] e —

70 /

o)/ 1] /

o |/ /
S/

40 End of 2nd

Fitness

End of 4™
30 degree i degree

20 +——¥—- - —evolution evolution
10 iy

1 101 201 301 401 501 601 701 801 901

Generation

e—
'—-_I

Figure 30: Incremental evolution of a 4" degree
Polysolver starting from a population of 2 degree
Polysolvers

To complete our analysis of incremental evolution, we evolved a 4™ degree
Polysolver incrementally starting with 2™ to 3" degree (Figure 31). As expected, there
was a drop of fitness from the 2" degree to the 3" degree and again from the 3™ degree
to the 4™ degree (Figure 32). The result of incremental evolution through 2" and 3™
degree was a high performing 4t degree Polysolver in approximately 200 less
generations than the incremental evolution starting from either 2" or 3" degree.
Incremental evolution achieved high performance in less generations because it was able
to evolve a Polysolver for a less complex polynomial first and then build upon that
structure. Since it is easier for evolution to find a high performing ANN to graph ond
degree polynomials, it was able to evolve a high performing Polysolver more quickly.

Then, it was able to utilize the evolved structure, learning rates, and initial weights to

74

learn to graph 3rd degree polynomials. Since 3rd degree polynomials are less complex
than 4th degree polynomials, the transition from 2rd to 3rd degree took less generations.
Finally, evolving a Polysolver from 3rd to 4th degree was a less complex transition than

2rdto 4th (Figure 31).

Figure 31: Structure ofa 4thdegree Polysolver
incrementally evolvedfrom 2ndand 3rddegree
Polysolvers

100
90
80
70
60
50
40
30
20
10

Fitness

A
) "/

/
)/ /|

Va4 /

// End of 2nd End of 3™ End of 4™
degree degree
evolution evolution
201 301 401 501 601
Generation

Incremental evolution is clearly a major improvement in terms of the number of
generations required to achieve high fitness. It allows for the evolution of more complex
classification tasks by first evolving for less difficult tasks. The evolved 4™ degree
Polysolver was able to graph a 4™ degree polynomial 1000 iterations faster than the fullyﬂ
connected network and did so with less error (Figure 33). We conclude that incremental

evolution can be used to design a faster, more accurate, and more versatile network than

Figure 32: Incremental Evolution of a 4" degree

Polysolver starting from 2" 10 3™ degree Polysolvers

traditional design techniques even on very complex tasks.

76

T T T T
I <+ ™ o

—la o W

Evolved ~ - — ~ Fully Connected

50

45

40
35

30

Error

25 }
20 =

15 \ -
10

1030, 3.02974

z A_

1 90

179 268 357 446 535 624 713 802 891 980

Iteration

Figure 33: Evolved Network vs Traditional Network
on a 4™ degree polynomial not involved in evolution

fx) =2+ X+ 3% +x-1

7.3 Backwards Compatibility

We have shown that evolution can be used to evolve ANNSs that are better at

learning to graph polynomials.

To extend this research, we were interested in the

capacity of the ANN that has been evolved for learning. For instance, could it learn to

graph polynomials of different degrees?

Our hypothesis is that an evolved network

would have the structure necessary to learn problems of lesser complexity but not

problems of greater complexity.

Thus, a network evolved to solve a 4™ degree

polynomial will be able to learn to graph a 3" degree polynomial but not a 5™ degree

polynomial.

77

As expected, the 3" degree Polysolver was able to graph o degree polynomials
with very little error. Furthermore, it was able to graph the o degree polynomial faster
and more accurately than a fully connected network (Figure 34). However, the 3% degree
Polysolver was not able to graph a 4t degree polynomtal as accurately as the fully-
connected network (Figure 35). We believe this is the case because evolution only adds
enough structure necessary to graph 3 degree polynomials. With more structure, the
time required to optimize the weights increases due to the increased number of weights.

Thus, evolution does not select networks with more structure due to their lack of speed.

Evolved ———- Fully Connected

100

90

80 T

70
60

50
40

|
® °
IS
o
&
<
o
1
2]
Fitness

30

20 ;
© 2,858659. 90, 8.80009
10 4 3

0
-10 121 41 61 81 101 121 141 161 181 201 221 241 261 281

x Iteration

N

Figure 34: 3" degree Polysolver vs Traditional
Network on a 2™ degree polynomial
flx)=1.5x-5x+2

78

Ewlved —~ — — - Fully Connected

: 45
‘ 40
. 35
30 44—

25 S
20
15

]
Fitness
d

N 10 118,6.67567 el 958,3.21643

1 92 183 274 365 456 547 638 729 820 911

x Iteration

Figure 35: 3" degree Polysolver vs Traditional
Network on a 4™ degree polynomial:
fix) = L7x% + .3x7 - 4x? - 4x

Furthermore, we expect an even better backwards compatibility when analyzing
the incrementally evolved 4'h degree Polysolver since it has experienced 3 degree
polynomials previously. As expected, the incrementally evolved 4™ degree Polysolver
was able to graph the 2™ and 3" degree polynomials faster and more accurately than the
fully-connected network (Figures 36 and 37). Moreover, the 4t degree Polysolver was
not able to accurately graph a 5t degree polynomial (Figure 38). Again, this is due to

evolution’s selection of only the minimal necessary structure.

f{x)

1 Evolved -~ - - Fully Connected
50 -
40
w30 i~
1 e N
w 20
<
10
\ e
0
1 201 401 601 801 1001 1201 1401 1601
lteration

Figure 36: 4" degree Polysolver vs Traditional
Network on a 3™ degree polynomial:
fx) = 2x7-6x* +3x-2

p 4 3 2

\/3 ‘

Error

400

350

300

250

200

150

100

50

0

Evolved ~ ~ — ~ Fully Connected

—
NS
T S e T v oo o s ooy

1

14 27 40 53 66 79 92 105 118 131 144 157,

lteration

Figure 37: 4" degree Polysolver vs Traditional
Network on a 2" degree polynomial:
fix) = 1.5 - 5x +2

79

1(x)

Evolved — — — - Fully Connected |

120
100
80 4

2

3

4

s,
Error

60 -
40 4
20

0

1 165 329 493 657 821 985 1149 1313 1477 1641 1805

iteration

80

Figure 38: 4™ degree Polysolver vs Traditional
Network on a 5" degree polynomial:
fix)=-LIx" + L.7x" + 4.1x° = 4.2x* - 1.4x + .6

8 CONCLUSION AND FUTURE WORK

There are many difficulties associated with designing artificial neural networks to
use Back-propagation. Determining the number of hidden nodes, and even hidden layers
has lead to many ad-hoc algorithms that deal with complexity analysis or simply trial and
error. The goal of this research was to find a method for designing a network that could
be used on many different learning tasks. This method would have to be able to
determine the number of hidden nodes, initial weights, and the learning rates.
Furthermore, the desired method would create a network that could be applied to any

problem within the desired domain.

The Evolving Learning Networks Algorithm used in this research applied
evolution to ANNSs that use Back-propagation in a dynamic environment. By setting the
fitness function based on the networks ability to solve an array of problems from the
desired domain, the networks were forced to use learning. The ability to learn was then

optimized by setting the fitness function to increase as the learning time decreased.

When this method was applied with Incremental Evolution to 4t degree
polynomials, evolution designed a network that could learn to graph any 4" degree

polynomial, even those it had not experienced during evolution. To measure evolution’s

81

82

ability to design networks that learn, the best performing network was compared to the
traditionally designed fully connected layered network. The evolved design
outperformed the traditional design in speed and accuracy. Furthermore, the network
evolved on an environment of 4™ degree polynomials outperformed the standard design
on 3 and 2™ degree polynomials as well. This shows that these networks are evolved to
learn complex tasks rather than -specializing on a specific task. We expect that these
results will generalize towards further degrees of complexity. Thus, the best method of
creating a Polysolver to graph any polynomial would be to start with 2™ degree and
mcrementally evolve the subsequent degrees. The ability to learn complex tasks while
retaining the abulity to learn less complex tasks should improve artificial neural network’s

contribution to the fiéld of artificial life.

Future work could include an analysis of the structures and values that evolution
finds for other supervised learning tasks. This could include problems that require many
input and output nodes, or problems with small or large training sets. With analysis on
these many different tasks, it may be possible to define what makes a network better at
learning on a case by case basis. From that knowledge, we could create a procedure for
designing ANNs depending on the number of input and output nodes, the task’s

approximate complexity, and the training set.

While the Back-propagation algorithm is very powerful when using supervised
learning, there are many applications where the desired output is not known. Such

unsupervised learning tasks typically use the Hebbian learning algorithm. Networks that

83

use Hebbian learning have many of the same design tssues as networks that use Back-
propagation. Since Hebbian learning more closely simulates the mechanisms for learning
used in the brain, research into evolving ANNs for unsupervised learning would be a very
exciting addition to the field of artificial life. With the new knowledge of evolution’s
ability to design a better supervised learning network, it probably could also be used to

design an unsupervised learning network as well.

\

APPENDIX

#include "CController.h
#include <stdlib.h>
#include <ctime>

/1
// initilaize the PolySolvers, their brains and the GA facto

/1

CController: :CController(HWND hwndMain,
int cxClient,
int cyClient):

m_NumPolySolvers(CParams: :iPopSize),

m_hwndMainChwndMain),
m_hwnd!nfo(NULL),

m_iGenerations(0),
m_cxClient(xClient),
m_cyClient(cyClient),
m_bFastRender (false) ,

m_bRenderFCWeights(false)

TurnOffRenderWeights(;
RenderFCWeightsToggleQ ;

CParams::iCurrentTick = O;

m_CurrentPolynomial = O;
if(CParams::bFromFile && ICParams::bEvolving)

{

m_EvolvedGenome CreateFromFile(CParams:rcFileName);

//create the network
CNeuralNet* net = m_EvolvedGenome.CreatePhenotype()

//insert the brain
m_EvolvedSolver ._InsertNewBrain(net);

84

m_EvolvedSolver .BornQ;
m_EvolvedSolver EraseMemory(Q);

i F(CParams:rbStatic)

/lcrcato the rully connectc-d genotypc:
m_FullyConnectedGenome = CGenome(-1,

CParams::iNumlnputs,
CParams::iNumHiddens,
CParams::iNumOutputs);

//set the depth
m_FullyConnectedGenome .SetDepth(3);

//create the network
CNeuralNet* net = m_FullyConnectedGenome.CreatePhenotype()

//insert the brain
m_FullyConnectedSolver.InsertNewBrain(net);
m_FullyConnectedSolver.Born(Q;
m_FullyConnectedSolver .EraseMemoryQ;

}

if(CParams: :bEvolving)
//leu s create the Pol/Solvers
for (int i=0; i<m_NumPolySolvers; ++i)

{

m_vecPolySolvers.push__back(CPolySolver(Q);

//create the gencti”pes

m_pPop = new Cga(CParams::iPopSrze,
CParams::iNumlnputs,
CParams: :iNumOutputs)

//create the phenotypes
vector<CNeuralNet*> pBrains = m pPop->CreatePhenotypes(Q;

//assten the phenotypes

for (i70; i<m_NumPolySolvers; i++)
m_vecPolySolvers[i].InsertNewBrain(pBrains[i]);
m_vecPolySolvers[i] .-BornQ;
m_vecPolySolvers[i].EraseMemoryQ;

//and the vector of PoLySoivers mich writ hoLd trie best

perrorning ?olySolvers

for (i=0; i<CParams::iNumBestPolySolvers; ++i)

m_vecBestPolySolvers.push_back(CPolySolver(Q);
m_vecBestPolySolvers[i] .InsertNewBrain(pBrains [i] ;
m_vecBestPolySolvers[i] -Born();
m_vecBestPolySolvers[i].EraseMemoryQ);

) }

//create a pen for the graph d"awing

m_BluePen CreatePen (?S,_SOLID, 1, RGB (o, 0, 255))

m_RedPen = CreatePen (FS,_SOLID, 1, RGB 255, 0, 0))
m_GreenPen = CreatePen (;S._SOLID, 1. RGB (0, 255, 0))
m_GreyPenDotted CreatePen (°5._DOT, 1, RGB(00, 100, 100
m_RedPenDotted CreatePen (;BS._DOT, 1, RGB(@00, 0, Oi);

m_01dPen = NULL;
//and the brushes

m_BlueBrush = CreateSolidBrush(RGB(0,0,244));
m_RedBrush = CreateSolidBrush(RGB(150,0,0));

destructor

CController::-CController(

{

if CParams::bEvolving)

{
if (n_pPop)

delete m pPop;

}

DeleteObject(m_BluePen);
DeleteObject(m_RedPen) ;
DeleteObject(m_GreenPen);
DeleteObj ect (m_OldPen) ;
DeleteObject(m_GreyPenDotted);
DeleteObject(m_RedPenDotted);
DeleteObject(m_BlueBrush);
DeleteObject(m_RedBrush);

86

/> Setup Lnc polynomials
/1l

void CController::Initialize(

{ //solutoon stores the x -> y mapping
SInputOutput solution;
//solutionVector stores all the x -> y mappings
vector<SIlnputOutput> solutionVector;
double i;
string polynomial;

iT(CParams:rbFirstDegree)

{

87

polynomial = "First Degree';
for(int numPolys = 0; numPolys < 5; numPolys++)
double a = 5*RandomClamped™i() ;
double b = 5*RandomClamped() ;
for(i = -10; i <= 10; i++)
{
solution.input = i;
solution.output = b*i + a;

solutionVector .push_back(solution);

¥

m_vecPolynomials .push_back(CPolynomial (solutionVector,

polynomial));
solutionVector.clear(Q ;
CParams::iNumPolynomials++;

¥

i F(CParams: :bSecondDegree)

{

polynomial = "Second Degree";
double arrayA[5] = { 0.5, 0.5, 0.5, -0.5, -1.0);
double arrayB[5] = {-4.0, 4.0, 0.0, 2.5, -4.0};
double arrayC[5] = { 2.0, 2.0, 0.0, 1.0, 1.03};
for(int numPolys = 0; numPolys < 5; numPolys++)
{
double a = arrayA[numPolys];
double b = arrayB[numPolys] ;
double c = arrayC[numPolys];
for(i = -10; i <= 10; i+t)
{
solution.input = 1i;
solution.output = a*i*i + b*i + c;

if(solution.output > 10

Il solution.output < -

continue;

solutionVector push_back(olution);

¥

m_vecPolynomials _push_back (CPolynomial (solutionVector,
polynomial));
solutionVector.clear();
CParams: :iNumPolynomials ++;

}

if(CParams: :bThirdDegree)

{

polynomial = "Third Degree™;

double arrayA[5] = { 3.0, 3.0, 1.7, -1.4, -1.4);
double arrayB[5] = { 4.0, 4.0, -5.0, 4.8, -4.5);
double arrayC[5] = (-4.0, -4.0, 1.0, -3.0, -3.0);
double arrayD[5] = (-3.0, 3.0, 2.0, -0.5, 2.4);

for(int numPolys = 0; numPolys < 5; numPolys++)

{
double a = arrayA[numPolys];
double b = arrayB[numPolys];
double ¢ = arrayC[numPolys];
double d = arrayD[numPolys];

for(i = -5; i <= 5; i+=.25)J

{

solution.input = 1;
solution.output = a*i*i*i + b*i*i + c*i + d;
if(solution.output > 10 |] solution.output <

{

continue;

solutionVectpr push_back(solution);

¥

m_vecPolynomials _push_back(CPolynomial (solutionVector,
polynomial));
solutionVector.clear();
CParams: :iNumPolynomials++;

¥

i f(CParams: :bFourthDegree)

{

polynomial = "Fourth Degree";

double arrayA[5] = { 1.7, 3.0, 1.0, -2.0, -2.0}
double arrayB[5] = { 0.3, 3.0, -0.6, -0.5, 0.8}
double arrayC[5] = (-4.0, -5.0, -3.5, 5.0, 5.0}
double arrayD[5] = (-0.4, -1.0, -1.1, -1.0, -0.9}
double arrayE[5] = { 0.0, 4.0, 3.5, 0.0, -1.4}%

for(int numPolys 0; numPolys < 5; numPolys++)

double a
double b

arrayA[numPolys];
arrayB[numPolys];

89

double c¢ = arrayC[numPolys];
double d = arrayD[numPolys];
double e = arrayE[numPolys];

for(i = -5; i <= 5; i+=.25)

solution.input = 1i;
;solution.output = a*i*i*i*i + b*i*i*i + c*i*i +

ifolution.output > 10 |j solution.output < -

{

continue ;

solutionVector.push_back(solution);

¥

m_vecPolynomials _push_back(CPolynomial (solutionVector,
polynomial));
solutionVector .clear();
CParams: :iNumPolynomials++;

}

i f(CParams: :bFifthDegree)
polynomial = "Fifth Degree";

for(int numPolys = 0; numPolys < 5; numPolys++)

{
double
double
double
double
double
double

5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped(Q;

-0 O0OT®

for(i = -5; i1 <= 5; i+=.5)
solution.input = i;
solution.output = (F*G*iI*1*i*i) + e*(I*i*i*i)
+ d*(i*i*i) + c*i*i + b*i + a);
if(olution.output > 10 || solution.output < -
10)
{

continue;

solutionVector.push_back(solution);

¥

m_vecPolynomials _push_back(CPolynomial (solutionVector,
polynomial));
solutionVector.clear(;
CParams: ciNumPolynomials++;

90

This is the main workhorse. The entire simulation is controlled
from here.

bool CController::Update(
if(m_CurrentPolynomial < m_vecPolynomials.size())

//run the sweepers through NUM__TICKS amount of cycles.
During this loop each

//sweepers NN is constantly updated with the appropriate
information froma its

//surroundings. The output from the NN is obtained and the
sweeper is moved.

i fCParams::iCurrentTick++ < CParams::iNumTicks)

if(CParams::bFromFile && ICParams::bEvolving)

{

//update the NN of the evolved solver

m_EvolvedSolver Update(m_vecPolynomials[m_CurrentPolynomial],
m_CurrentPolynomial);

i f(CParams::bEvolving)

//update the NNs of this genereation
for (int 1 = O; 1 < m_NumPolySolvers; ++i)

//update the NN and position

m_vecPolySolvers[i].Update(m_vecPolynomials[m_CurrentPolynomial],
m_CurrentPolynomial);

//update the NNs of the last generations best-
performers

for (i=0; 1i<m_vecBestPolySolvers.size(; ++i)
//update the NN and position

m_vecBestPolySolvers[i].-Update(m_vecPolynomials[m_CurrentPolynomi
al]l, m_CurrentPolynomial);

i f(CParams:rbStatic)

{

//update the NN of the fully connected solver

m_FullyConnectedSolver Update(m_vecPolynomials[m_CurrentPolynomia
1] , m_CurrentPolynomial);
//clear info window
InvalidateRect(m_hwndInfo, NULL, TRUE);
UpdateWindow(m_hwndInfo);

91

else

if(CParams::bFromFile && ICParams::bEvolving)

{

m_EvolvedSolver .EraseMemory(Q;

i f(CParams: :bEvolving)
C

for (int polysolver=0;
polysolver<m_vecPolySolvers.size(); ++polysolver)

{

m_vecPolySolvers[polysolver].EraseMemoryQ;

for (polysolver=0;
polysolver<m_vecBestPolySolvers.size(); ++polysolver)

m_vecBestPolySolvers[polysolver].EraseMemoryQ;

if(CParams::bStatic)

m_FullyConnectedSolver _EraseMemory(Q;

¥

//nout. PolynomJal
m_CurrentPolynomial++ ;
//reset cycles
CParams::iCurrentTick = O;

}

//We have completed another generation so now we need to run the

GA
i f(m__CurrentPolynomial >= m_vecPolynomials.size())

{
//add to each PolySolvers! fitness scores.
//then reset their weights
i F(CParams: :bEvolving)

for (int polysolver=0;
polysolver<m_vecPolySolvers.size(); ++polysolver)

{

m_vecPolySolvers[polysolver].EndOfRunCalculations(Q;
N

//0utput the species information
m__pPop->0utputPerGeneration Q ;

//Evaluate the generation
//Sat up the spaeies Fcr genetic algorithms
m pPop->Evaluate(GetFitnessScores());

" //perform an eooch and gsab the new brains
vector<CNeuralNet*> pBrains = m_pPop->Epoch(Q);

generation

92

/llnsert: flic® new brains into the Pol.viom -
/ /Resev tleir fitrieo:m
for (int i=0; i<m_NumPolySolvers; ++0I)

{

ra_vecPolySolvers[i].InsertNewBrain(pBrains[i]);

m_vecPolySolvers[i]-BornQ;
m_vecPolySolvers[i]-EraseMemoryQ;
m_vecPolySolvers[i].ResetFitness(;

¥

//Grab the NNs of the best performers from the last

//Put them into our record of the best PolySolvers
vector<CNeuralNet*> pBestBrains - m_pPop-

>GetBestPhenotypesFromLastGeneration();

for (1=0; i<m_vecBestPolySolvers.size(; +ti)

{

m_vecBestPolySolvers[i].InsertNewBrain(pBestBrains[i]);

m_vecBestPolySolvers[i].-BornQ;
m_vecBestPolySolvers[i]-EraseMemory(Q;

if(CParams::bStatic)

{

//Add to the fully connectedls fitness score

m_FullyConnectedSolver .EndOfRunCalculations(;

/*

//0utput the fully connected PolySolverls fitness
ofstream fout;

fout.open("fitness.dat”, ios::app};

fout « CParams::iCurrentTick << endl;
fout.close(};

//reset the fully connected PolySolver’s brain

m_FullyConnec tedSolver .Born(Q ;

//create the fully connected genotype
m_FullyConnectedGenome = CGenome(-1,

CParams::iNumlnputs,
CParams::iNumHiddens,
CParams::iNumOutputs);

//set the depth
m_FullyConnectedGenome .SetDepth(3d);

93

/lcreate chie network
CNeuralNet* net =
m_FullyConnectedGenome .CreatePhenotype(;

m_Ful lyConnectedSolver .InsertNewBrain(et);
m_FullyConnectedSolver .Born(Q;
m_Ful lyConnectedSolver _EraseMemory();

}

if(CParams::bFromFile && ICParams::bEvolving)

{

m_EvolvedSolver .EndOfRunCalculations();
m_EvolvedGenome .CreateFromFile(CParams::cFileName);

//create the network
CNeuralNet* net = m_EvolvedGenome.CreatePhenotype(;

//insert the brain
m_EvolvedSolver._.InsertNewBrain(net);
m_EvolvedSolver .Born(Q;
m_EvolvedSolver .EraseMemory(;
m_EvolvedSolver .ResetFitness();
;/increment the generation counter
++m_iGenerations;
//reset the polynomial
m_CurrentPolynomial = 0;
//reset cycles
CParams::iCurrentTick = 0O;
//clear info wi.ndow
InvalidateRect(m_hwndInfo, NULL, TRUE);
UpdateWindow(m_hwndInfo);

if(CParams: :bEvolving)

iT(m pPop->BestCurrentFitness(> CParams::iTargetFitness)
return false;

else
return true;

// Renders the best four phenotypes from the previous generation

void CController::RenderNetworks(HDC &surface)
//Draw the network of the best 4 genomes.
//Firsft get the dimensions of the info window
RECT rect;

94

GetClientRect(m_hwndInfo, &rect) ;

int cxInfo
int cylnfo

= rect.right;

= rect._bottom;

string s;

s = "Best Solvers";

TextOut(surface, 150, 5, s.c_str(), s.size());

//now araw the t oest netwoxxs
i FfCParams::bFromFile && ICParams::bEvolving)

{

m_EvolvedSolver DrawNet(surface, 0, cxInfo/2, cylnfo/2, O0);
i F(CParams::bEvolving)

{ m_vecBestPolySolvers[0].DrawNet(surface, 0, cxInfo/2,
cylnfo/2, 0);
m_vecBestPolySolvers[1l].DrawNet(surface, cxInfo/2, cxlInfo,
cylnfo/2, 0);
m_vecBestPolySolvers[2].DrawNet(surface, 0, cxInfo/2,
cylnfo, cylnfo/2);

i F(CParams::bStatic)

ra_FullyConnectedSolver .DrawNet(surface, cxInfo/2, cxlInfo,
cylnfo, cylInfo/2);

¥

// Renders the best four phenotypes from the previous generation

void CController:;RenderFCWeights(HDC &surface)

//Draw the network of the best 4 genomes.
//First get the dimensions of the info window
RECT rect;

GetClientRect(m_hwndInfo, &rect);

int cxInfo
int cylnfo

= rect.right;
= rect._bottom;

string s;

s = "Connections Weight Init Weight Learning
Rate'’;

TextOut(surface, 10, 5, s.c_str(), s.size());

s = "From To";
TextOut(surface, 10, 35, s.c_str(), s.size());

int y = 50;
for(int i1 = 0; 1 < m_FullyConnectedSolver.ltsBrain()-
>ltsLinks().size(Q; i+H)

{

95

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks () [i]-
>pIn->iNeuronID)
+ " —-> "
+ ftos (m_FullyConnectedSolver.ItsBrain()-
>TtsLinks () [i]->pOut->iNeuronID) ;
TextOut {surface, 20, vy, s.c_str(), s.size());

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks () [1]-
>dWeight) ;
TextOut (surface, 110, y, s.c_str{), s.size());

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[1]-
>dInitialWeight) ;
TextOut (surface, 190, y, s.c_str(), s.size());

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks () [1]-
>dLearningRate) ;
TextOut (surface, 300, y, s.c_str(), s.size());

v += 20;
}
vy += 20;
s = "Neuron Output";
TextOut (surface, 15, y, s.c_str(), s.size());
y += 15;

for(i = 0; i < m _FullyConnectedSolver.ItsBrain()-
>ItsNeurons () .size(); i++)

{

g = ftos(m_FullyConnectedSolver.ItsBrain()-
) [1]->1iNum)

+ n = "

+ ftos (m_FullyConnectedSolver.ItsBrain()-
>ItsNeurons () [1]~>dOutput) ;

>TItsNeurons (

TextOut (surface, 35, y, s.c_str(), s.size());
v += 20;
}
}
F e RenderNetworks ————-—r——rmm oo
/7

// Renders thao best four phenotypes rrom the provious genaration

void CController: :RenderWeights (HDC &surface)

{
//Draw the network of the bost 4 genores.
//¥irst get the dimensionsg of the info window
RECT rect;
GetClientRect (m_hwndInfo, &rect);

96

int cxInfo rect.right;

int cyInfo = rect.bottom;

int 1 = 0;

int y = 0;

string s;

s = "Connections Weight Init Weight Learning
Rate";

TextOut (surface, 10, 5, s.c_str(), s.size());

s = "From To";

TextOut (surface, 10, 35, s.c_str((), s.size());

y = 50;

for(i = 0; 1 < m_vecBestPolySolvergs([0].ItsBrain()-
>ItsLinks () .size(); i++)

{

s = ftos(m_vecBestPolySolvers([0].ItsBrain()->ItsLinks(){i]-
>pIn->iNeuronID)

+ " ->
+ ftos(m_vecBestPolySolvers([0] .ItsBrain()-
>ItsLinks () [1] ->pOut->iNeuronlID) ;
TextOut (surface, 20, y, s.c_str(), s.size());

s = ftos(m_vecBestPolySolvers[0].ItsBrain{)->ItsLinks() [i]-

>dWeight) ;
TextoOut (surface, 110, y, s.c_str(), s.size());

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks () [i]-
>dInitialWeight) ;

TextOut (surface, 190, y, s.c_str(), s.sizel());

s = ftos (m_vecBestPolySolvers[0].ItsBrain()->ItsLinks () {i]-

>dLearningRate) ;
TextOut (surface, 300, y, s.c_str(), s.size());
y += 20;
}
vy += 20;
s = "Neuron _ Output";
TextOut (surface, 15, vy, s.c_str(), s.size());
v += 15;
for{(i = 0; 1 < m_vecBestPolySolvers[0].ItsBrain()-
>ItsNeurons() .size(); 1++)
{

s = ftos(m_vecBestPolySolvers[0].ItsBrain()-

>ITtsNeurons () [1]~->iNum)
+ n =
+ ftos(m_vecBestPolySolvers[0].ItsBrain()-

>ItsNeurons () [1]->dOutput) ;

TextOut (surface, 35, y, s.c_str(), s.size());

y += 20;

97

/* y += 40;
Output Network. *';
TextOut(surface, 15, y, s.c.str(Q, s.sized};
y += 15;
for(i = 0; i < m_vecBestPolySolvers [0] -11sBrain Q-
>11sOutput () -size(Q ; i++)
{

ftos@_vecPolynomials |n_CurrentPolynomial] .m veclnput.OutputPairs [i] -inp
ut)

ftos@_vecPolynomials[m.CurrentPolynomial] .n_veclnputOutputPairs[i] .out
put)

+ ftos(m_vecBestPolySolvers[0].ItsBrain(Q-
>1tsOutputQQILil);

TextOut(surface, 35, y, s.c_str(), s.size(Q);
y += 20;
*/

}
/]

void CController::Render(HDC ¢surface)

{
//do not render if running at accelerated speed
if (Im_bFastRender)

{

string s = "Generation: + 1tos(m_iGenerations);
TextOut(surface, 5, 0, s.c_str(), s.sizeO);

s = "Time left: + itos(CParams::iNumTicks
CParams: :iCurrentTick) ;
TextOut(surface, 5, 20, s.c_str(), s.size0);

s = "Evolved";
TextOut(surface, 70, 80, s.c_str(), s-sizeO);

s = "Fully Connected";
TextOut(surface, 250, 80, s.c str(), s.size0);

//select in the blue pen
m_OldPen = (HPEN)SelectObject(surface, m_BluePen);

i f(CParams::iCurrentTick > 0)

{
//render the axis
RenderAxis(surface);
//render the polynomials
RenderPolynomial (surface);

98

if(CParams::bFromFile && ICParams::bEvolving)

//render the best PolySolver from the previous

generation
RenderPolySolvers(surface, m_EvolvedSolver, 1);
if (CParams: :bEvolving)
//render the best PolySolver from the previous
generation

RenderPolySolvers(surface,
m_vecBestPolySolvers[0], 1);

i f(CParams:rbStatic)

//Render the fully connected solver
RenderPolySolvers(surface,
m_FullyConnectedSolver, 3);

¥
¥
}//end if
else
if(CParams::bEvolving)

{

PlotStats(surface);

RECT sr;

sr.top = m_cyClient-50;
sr.bottom = m_cyClient;
sr._left = 0;

sr.right = m_cxClient;

//render the species chart
m pPop->RenderSpeciesInfo(surface, sr);

// Renders the four Axis

void CController : :RenderAxis (HDC ¢¢surface)

TextOut(surface, 150, 5,
m_vecPolynomials[m_CurrentPolynomial] .m_sPolynomial.c_str(Q,
m_vecPolynomials[m_CurrentPolynomial].m_sPolynomial size(Q);

int StartX;
int StartY;
int EndX;

int EndY;

//create some pens and brushes to draw with

HPEN GreyPen CreatePen(PS_SOLID, 1, RGB(200, 200, 200));
HPEN RedPen CreatePen(®S_SOLID, 1, RGB(255, 0, 0));
HPEN GreenPen CreatePen(®S_SOLID, 1, RGB(, 200, 0));
HPEN OldPen NULL ;

//create a solid brush
HBRUSH RedBrush = CreateSolidBrush(RGB(255, 0, 0));
HBRUSH OldBrush = NULL;

OldPen = (HPEN) SelectObject(surface, RedPen);
OldBrush = (HBRUSH)SelectObject(surface,
GetStockObject(HOLLOW_BRUSH));

SelectObject(surface, GreenPen);

//render the evolved network®"s axis

StartX = CParams::InfoWindowWidth / 4 - 100,
StartY = CParams: :InfoWindowHeight / 2;
EndX = CParams::InfoWindowWidth / 4 + 100,
EndY = CParams: :InfoWindowHeight / 2;

//draw the y Axis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

StartX = CParams::InfoWindowWidth 7/ 4;
StartY = CParams ::InfoWindowHeight /7 2 - 90;
EndX = CParams ::InfoWindowWidth 7/ 4;
EndY = CParams ::InfoWindowHeight /7 2 + 90;

//draw the x AXxis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

//render the fully connected network’s axis

StartX = CParams::InfoWindowWidth / 4 * 3-90
StartY = CParams::InfoWindowHeight / 2;
EndX = CParams::InfoWindowWidth / 4 * 3 + 90
EndY = CParams: :InfoWindowHeight / 2;

//draw the y Axis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

StartX = CParams: :InfoWindowWidth / 4 * 3;
StartY = CParams::InfoWindowHeight / 2 - 90
EndX = CParams::InfoWindowWidth / 4 * 3;
EndY = CParams: :InfoWindowHeight / 2 + 90

//draw the x Axis
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

100

//cleanup
SelectObject(surface, OldPen);
SelectObject(surface, OldBrush);

DeleteObject(RedPen);
DeleteObject(GreyPen);
DeleteObject(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObject(0OldBrush);

/- RenderSolution

/1
// Renders the actual output of the polynomial

void CController::RenderPolynomial (HDC ¢surface)
double StartX;
double StartY;
double EndX;
double EndY;

//create some pens and brushes to draw with
HPEN RedPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));
SelectObject(surface, RedPen);

for (int point=0;
point<m_vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs.size(
)-1; ++point)

StartX = CParams::InfoWindowWidth 7/ 4

+
m_vecPolynomials[m_CurrentPolynomial] .m_veclnputOutputPairs[point].inpu
t
* 25;

StartY = CParams::InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs[point].outp
ut
* 10;

EndX = CParams::InfoWindowWidth 7/ 4
+
m_vecPolynomials[m_CurrentPolynomial] .m_veclnputOutputPairs[point+1l].in
put
* 25;
EndY = CParams::InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial] .m_veclnputOutputPairs[point+1] .ou
tput
* 10;

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

101

}

for (point=0;
point<m__vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs.size(
)-1; ++point)

StartX = CParams::InfoWindowWidth /7 4 * 3

+
m_vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs[point].inpu
t

* 25;

StartY = CParams::InfoWindowWidth 7/ 2

m_vecPolynomials[m__CurrentPolynomial].m_veclnputOutputPairs[point].outp
ut
* 10;

EndX = CParams::InfoWindowWidth /7 4 * 3
+
m_vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs[point+l].in
put
* 25;
EndY = CParams::InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs[point+1].ou
tput
* 10,

//draw the 1link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

DeleteObject(RedPen);
}
/1
// Renders the best phenotype from the previous generation
[

void CController::RenderPolySolvers(HDC &surface, CPolySolver
PolySolver, int Multiplier)
{ double StartX;

double StartY;

double EndX;

double EndY;

//create some pens and brushes to draw with
HPEN BluePen = CreatePen(PS_SOLID, 1, RGB(, 0, 255));
SelectObject(surface, BluePen);

for (int point=0;
point<m_vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs.size(
)-1; ++point)

StartX = CParams::InfoWindowWidth /7 4 * Multiplier

+

102

m_vecPolynomials[m_CurrentPolynomial].m_vec!nputOutputPairs[point].inpu

t
* 25;
StartY = CParams::InfoWindowWidth / 2
- PolySolver.ltsBrain(Q-
>1tsOutput([point]
* 10;

EndX = CParams::InfoWindowWidth /7 4 * Multiplier

+

m_vecPolynomials[m_CurrentPolynomial].m_veclnputOutputPairs[point+1l].

put
* 25;

EndY = CParams::InfoWindowWidth / 2
- PolySolver.ltsBrain(Q)-
>1tsOutput(Q[point+l]
* 10;

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

}

//cleanup
DeleteObject(BluePen);

// Given a surface to draw on this function displays some

void CController::PlotStats(HDC surface)

string s;

s = "Best Fitness so far: " + ftos(m pPop->BestEverFitness();

TextOut(urface, 5, 5, s.c_str(), s.size());

s = "Previous Generation Fitness: " + fTtos(m_pPop-
>BestCurrentFitness();

TextOut(surface, 5, 25, s.c_str(), s-.size());

s = "Generation: " + 1tos(m_iGenerations);
TextOut(surface, 5, 45, s.c_str(), s.size());

S Num Species: " + 1tos(m_pPop->NumSpecies());
TextOut(surface, 5, 65, s.c_str(), s.size());

//—— GetFitnessScores

simple stats

103

Il

// returns a std:jvector containing the genomes fitness scores

vector<double> CController: :GetFitnessScores(const
vector<double> scores;

for (int i=0; i<m_vecPolySolvers.size(; ++i)

{
¥

return scores;

scores _push_back(m_vecPolySolvers[i]-Fitness(Q);

104

#include 'phenotype.h

#include <math.h>
#include <stdlib.h>

...... Sigmoid function-

double Sigmoid(double netinput, double response)

{
k

void CNeuralNet::BinaryConversion(int realNumber)

{

return (1 /7 (1 + exp(netinput / response)));

int remainder;

i f(realNumber <= 1)

{ m_RecursiveVar = 7-m_RecursiveVar;
m_iBinaryNumber[m_RecursiveVar] = realNumber;
m_RecursiveVar++;
return;

g;RecursiveVar++;

remainder = realNumber%2;

BinaryConversion(realNumber >> 1);

m_iBinaryNumber[m_RecursiveVar] = remainder ;
m_Recurs iveVar++;

¥

int CNeuralNet: :RealNegativeConversion(

t
int digit = 7;
while(m_iBinaryNumber[digit] == 0)

m_iBinaryNumber[digit] = 1;
digit--;

m__iBinaryNumber [digit] = O;

for(int i = 0; i < 8; iI+)

{
k

int realOutput = 0;
for(digit = 0; digit < 8; digit++)

m_iBinaryNumber [i] = Im__iBinaryNumber [i];

double NeuronOutput = m_iBinaryNumber[7-digit];
NeuronOutput *= pow(2, digit);
realOutput += NeuronOutput;

}

return -realOutput;

105

int CNeuralNet: :RealConversion(

int realOutput = O;
for(int digit = 0; digit < 8; digit++)

double NeuronOutput = m_iBinaryNumber[7-digit];
NeuronOutput *= pow(2, digit);
realOutput += NeuronOutput;

}

return realOutput;

void CNeuralNet: :TwosCompliment()

{

for(int i = 0; i < 8 i+

{

m_iBinaryNumber[i] = m_iBinaryNumber[i];
}
1 =7;
while(m_iBinaryNumber[i] == 1
{
m_iBinaryNumber[i] = O;
i--;

-

CNeuralNet::CNeuralNet(

{

CNeuralNet: :CNeuralNet(vector<SNeuron*> neurons,
vector<SLink*> links,
int depth)

m_vecpNeurons = neurons;
m_vecpLinks = links;
m_iDepth = depth;

I
I

CNeuralNet::CNeuralNet(const CNeuralNet &Brain)
m_vecpNeurons = Brain.m_vecpNeurons;
m_vecpLinks = Brain.n_vecpLinks;
m_iDepth = Brain.m_iDepth;

106

1/ dtor

CNeuralNet::-CNeuralNet(
//delete any live neurons
for (int i=0; i< m_vecpNeurons.size(Q ++i)
{ if (m_vecpNeurons[i])
delete m_vecpNeurons[i];

m_vecpNeurons[i] = NULL;

// takes a list of doubles as inputs into the network then steps
through

f7 the neurons calculating each neurons next output.

// finally returns a std:jvector of doubles as the output from the
net.
/)~

void CNeuralNet::Update(CPolynomial kcurrentPolynomial, int &index)

//Cleanup from previous update
for (int n=0; n<ra_vecpNeurons.size(); ++n)

{ m_vecpNeurons[n]->dOutput = O;
m_vecpNeurons[n]->dActivatedOutput = O;
m_vecpNeurons[n]->dError = O;
m_vecpNeurons[n]->iNum = n;

//this is an index into the current neuron
int currentlnputNeuron = 0;

/°/"St the outputs of the ’input®™ neurons to be equal
//to the values passed into the function
while (m__vecpNeuronsfcurrentlnputNeuron]->NeuronType == input)

{

m_vecpNeurons[currentinputNeuron]->dActivatedOutput
currentPolynomial m_veclnputOutputPairs[index] -input;

++currentinputNeuron;

//Set the output of the bias to 1
m_vecpNeurons[currentlnputNeuron]->dActivatedOutput = 1;

107

//Find the Ffirst output neuron
int cNeuron = O;
while (m_vecpNeurons[cNeuron]->NeuronType !

{
¥

//Determine the output for each “output®™ neuron
while (m_vecpNeurons|[cNeuron]->NeuronType == output)

output)

cNeuron++;

DetermineOutput(cNeuron) ;

//add to our outouts
m_vecdOutputs ._push_back(m_vecpNeurons[cNeuron]->dOutput);

//View the Output &test
double testOutput = m_vecpNeurons[cNeuron]-
>dActivatedOutput;

//next neuron

//test for the end of the outputs

if(++cNeuron >= m_vecpNeurons.size())
break;

// Recursive function that starts with the output node and recursively
calls
// nodes down the network until the input nodes are reached

void CNeuralNet::DetermineOutput(int &cNeuron)
//Base Case:
//Stop when we hit the input layer

i f(m_vecpNeurons[cNeuron]->NeuronType == input
Il m_vecpNeurons[cNeuron]->NeuronType == bias)
return;

//Sum this neuron®s inputs

//By iterating through all the links into the neuron

for (int Ink=0; Ink<m_vecpNeurons[cNeuron]->vecpLinkslin.size();
++1Ink)

//Recursive Call
i T(Im_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->bRecurrent)

DetermineOutput(m_vecpNeurons[cNeuron]-
>vecpLinksIn[Ink]->pIn->iNum);

}

/et this link’s weight
double Weight = m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]-
>dWeight;

108

//Get the output from the neuron this link is coming from
double Neuronlnput = m_vecpNeurons[cNeuron]-
>vecpLinksin[Ink]->pIn->dActivatedOutput;

//Determine the output of this neuron
m_vecpNeurons[cNeuron]->dOutput += Weight * Neuronlnput;

¥

//Put the output of each neuron through the Activation Function
ifCParams::bTanh)

{

m_vecpNeurons[cNeuron]->dActivatedOutput
tanh(m__vecpNeurons[cNeuron]->dOutput);

else if(CParams::bSigmoid)

{

m_vecpNeurons[cNeuron]->dActivatedOutput
1/ a + exp(-

.5 * m_vecpNeurons[cNeuron]->dOutput));
else
{

m_vecpNeurons[cNeuron]->dActivatedOutput

m_vecpNeurons[cNeuron]->dOutput;

/(Recursive function that starts with the output node and recursively
calls
// nodes down the network until the input nodes are reached

double CNeuralNet::OutputError(CPolynomial ¢currentPolynomial, int
¢ index)
double dError;
//determine absolute error
dError = currentPolynomial .m_veclnputOutputPairs[index] .output -

m_vecdOutputs[index];

//magnitude does not have direction
if(dError < 0)

dError = -dError;

¥

return dError;

/1l Train

109

void CNeuralNet::Train(CPolynomial ¤tPolynomial, int
&DesiredIndex, iInt &Actuallndex)
{ //Cleanup the previous training
m_vecdDesiredOutput.clear(Q;
int CurrentDesiredOutput = O;
int CurrentOutputNeuron = O;

m_vecdDesiredOutput.push_back(currentPolynomial m_veclnputOutputP
airs|[Desiredlndex].output);

//this finds the index to the first output neuron
while(m_vecpNeurons[CurrentOutputNeuron]->NeuronType I= output)

{
¥

double desiredOutput =
m_vecdDesiredOutput[CurrentDesiredOutput] ;

double neuronOutput =
m_vecpNeurons[CurrentOutputNeuron]->dOutput;

CurrentOutputNeuron++;

double activatedOutput = m_vecpNeurons[CurrentOutputNeuron]-
>dActivatedOutput;
double testError = desiredOutput - activatedOutput;

///////////////7///7/7///7///7 ERROR CALCULATIONS
////////77/77//7//7//7/7/77777
//determine the error for the output neurons
while(m_vecpNeurons[CurrentOutputNeuron]->NeuronType == output)

ifT(CParams: :bTanh)

m_vecpNeurons[CurrentOutputNeuron]->dError

m_vecdDesiredOutput[CurrentDesiredOutput]
m_vecpNeurons[CurrentOutputNeuron]->dOutput
* 2 1

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput

)

else if(CParams::bSigmoid)

m_vecpNeurons[CurrentOutputNeuron]->dError

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput

* 5

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
* (1
m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
);

else

{

m_vecpNeurons[CurrentOutputNeuron]->dError

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput

)
}

testError = m_vecpNeurons[CurrentOutputNeuron]->dError;

if(++CurrentOutputNeuron >= m_vecpNeurons.size())
break;
CurrentDesiredOutput++;

¥

int firstNeuron = O;
DetermineHiddenError(FirstNeuron);

117717777777 7/7//7/77/7777/VWEIGHT
CHANGES//////7/////7 /177 /77777777777
int cNeuron = m_vecpNeurons.size(1;
int lastlnputNeuron = O0;

//this finds the index to the last iInput neuron
//includes the bias

while(m_vecpNeurons[lastinputNeuron]->NeuronType == input)

++lastinputNeuron;

//step backwards through the network a neuron at a time
//changing the weights of the incoming connections
//stop when we hit the inputs

while (cNeuron > lastlnputNeuron)

for (int Ink=0; Ink<m_vecpNeurons[cNeuron]-
>vecpLinkslin.size(Q; ++Ink)

testError = m_vecpNeurons[cNeuron]->dError;

activatedOutput = m_vecpNeurons[cNeuron]-
>vecpLinksIn[Ink]->pIn->dActivatedOutput;

neuronOutput = m_vecpNeurons[cNeuron]-
>vecpLinksIn[Ink]->pIn->dOutput;

110

double WeightChange = m_vecpNeurons[cNeuron]-

>vecpLinksIn[Ink]->pIn->dActivatedOutput

*

m_vecpNeurons[cNeuron]->dError

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dLearningRate;

m_vecpNeurons|[cNeuron]->vecpLinksIn[Ink]->dWeight
+=
WeightChange
+

(m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dMomentum
m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dLearningRate);

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dMomentum =
WeightChange;

cNeuron--;

// Recursive function that starts with the Input node and recursively
calls
// nodes up the network until the output nodes are reached

void CNeuralNet::DetermineHiddenError(int &cNeuron)

{

//Stop when we hit the output layer
if(m_vecpNeurons[cNeuron]->NeuronType == output)
return;

//Sum this neuron®s inputs
//By iterating through all the links into the neuron
for (int Ink=0; Ink<m_vecpNeurons[cNeuron]->vecpLinksOut.size();
++1nk)
{ _
//Recursive Call
i f(Im_vecpNeurons[cNeuron]->vecpLinksOut[Ink]->bRecurrent)

DetermineHiddenError(m_vecpNeurons[cNeuron]-
>vecpLinksOut[Ink]->pOut->iNum);

//Get this link"s weight
double Weight = m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]-
>dWeight;

//Get the error from the neuron this link is coming from
double Error = m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]-
>pOut->dError;

m_vecpNeurons[cNeuron]->dError
+= m_vecpNeurons[cNeuron]-
>vecpLinksOut[Ink]->pOut->dError
* m_vecpNeurons[cNeuron]-
>vecpLinksOut[Ink]->dWeight;

if(CParams::bTanh)

{

m_vecpNeurons[cNeuron]->dError
*= (1

m_vecpNeurons[cNeuron]->dActivatedOutput

*

m_vecpNeurons[cNeuron]->dActivatedOutput);

else if(CParams::bSigmoid)

{

m_vecpNeurons[cNeuron]->dError

112

*= _5
* m_vecpNeurons[cNeuron]-
>dActivatedOutput
* (1
m_vecpNeurons[cNeuron]-
>dActivatedOutput
/) e TidyXSplits———————————————

// This is a fix to prevent neurons overlapping when they are
displayed

void TidyXSplits{vector<SNeuron*> toeurons)
//void TidyXSplits (CArray<SNeuron*> ;¢ineurons)

{

//stores the index of any neurons with identical splitY values
vector<int> SameLevelNeurons;

/7/"stores all the splitY values already checked
vector<double> DepthsChecked;

//for each neuron find all neurons of identical ySplit level
for (int n=0; n<neurons.size(); +t)

double ThisDepth = neurons[n]->dSplitY;

.//check to see if we have already adjusted the neurons at this

depth
bool bAlreadyChecked = false;

for (int i=0; i<DepthsChecked.size(; ++i)
if (DepthsChecked[i] == ThisDepth)
bAlreadyChecked = true;

break;

¥
¥

113

//add this depth to the depths checked.
DepthsChecked .push_back(ThisDepth);

//iTt this depth has not. already been adjusted
if ('bAlreadyChecked)

{

//clear this storage and add the neuron®s index we are checking
SameLevelNeurons.clear(;
SameLevelNeurons . push_back(n) ;

//find all the neurons with this splitY depth
for (int i=n+l; icneurons.size(Q; ++i)

if (neurons[i]->dSplitY == ThisDepth)

//add the index to this neuron
SameLevelNeurons push_back();

k
¥

//calculate the distance between each neuron
double slice = 1.0/(SameLevelNeurons.size(Q+1);

//separate all neurons at this level
for (i=0; i<SameLevelNeurons.size(Q ; ++i)

{

int idx = SameLevelNeurons[i];

neurons[idx]->dSplitX = (i+l) * slice;
}
}

}//"next neuron to check

/1

f7 creates a representation of the ANN on a device context

void CNeuralNet::DrawNet(HDC ¢surface, int Left, int Right, int Top,
int Bottom)

{

//the border width
const int border = 10;

//max line thickness
const iInt MaxThickness = 5;

TidyXSplits(m_vecpNeurons);
//go through the neurons and assign x/y coords

int spanX = Right - Left;
int spanyY Top - Bottom - (2*border);

for (int cNeuron=0; cNeuron<m_vecpNeurons.size();

m_vecpNeurons[cNeuron]->iPosX = Left +

spanX*m_vecpNeurons[cNeuron]->dSplitX;

m_vecpNeurons[cNeuron]->iPosY = (Top - border) -

m_vecpNeurons[cNeuron]->dSplitY);

//create some pens and brushes to draw with

HPEN GreyPen

HPEN RedPen = CreatePen(PS_SOLID, i, RGB(55, O,

HPEN GreenPen
HPEN OldPen

CreatePen(S_SOLID, i, RGB(, 200,
NULL ;

//create a solid brush

HBRUSH RedBrush
HBRUSH OldBrush

CreateSolidBrush(RGB(255, 0O, 0))
NULL;

OldPen = (HPEN) SelectObject(surface, RedPen);
OldBrush = (HBRUSH)SelectObject(surface,
GetStockObject(HOLLOW_BRUSH));

/"/"radius of neurons
int radNeuron = spanX/60;
int radLink = radNeuron * 1.5;

//now we have an X,Y pos for every neuron we can get on with the
//drawing. First step through each neuron in the network and draw

//the 1links
for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cN

{

//grab this neurons position as the start position of each

//connection
int StartX = m_vecpNeurons[cNeuron]->iPosX;
int StartY = m_vecpNeurons[cNeuron]->iPosY;

++cNeuron)

(spany *

CreatePen(®S_SOLID, i, RGB(200, 200, 200)

0);
0);

euron)

//is this a bias neuron? If so, draw the link iIn green

bool bBias = false;

if (ra_vecpNeurons[cNeuron]->NeuronType == bias)

{

bBias = true;

¥

//now iterate through each outgoing link to grab the end points

114

for (int cLnk=0; cLnk<m_vecpNeurons[cNeuron]->vecpLinksOut.size(Q;
++ cLnk)

int EndX

>iPosX;

int EndY = m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->pOut-

>iPosY;

//if link is forward draw a straight line

m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->pOut-

115
i F((Im_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->bRecurrent) &&
1bBias)

int thickness = (int)(fabs(m_vecpNeurons[cNeuron]-
>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);
HPEN Pen;

//create a yellow pen for inhibitory weights
if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)

Pen = CreatePen(PS_SOLID, thickness, RGB(240, 230, 170));

//grey for excitory
else
{ _
Pen = CreatePen(PS_SOLID, thickness, RGB(200, 200, 200));

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);

DeleteObject(Pen);

}

else 1T((Im_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]-
>pRecurrent) && bBias)

SelectObject(surface, GreenPen);
//draw the link

MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

¥

//recurrent link draw iIn red
else

if ((StartX == EndX) && (StartY == EndY))

{

int thickness = (int) (Fabs(m_vecpNeurons[cNeuron]-
>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);
HPEN Pen;

//blue for inhibitory

116

if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)

Pen = CreatePen(PS_SOLID, thickness, RGB(0,0,255));

}

//red for excitory
else

{
Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));

}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//we have a recursive link to the same neuron draw7 an ellipse
int x = m_vecpNeurons[cNeuron]->iPosX ;

int y = m_vecpNeurons[cNeuron]->iPosY - (1.5 * radNeuron);
Ellipse(surface, x-radLink, y-radLink, x+radLink, y+radLink);

SelectObject(surface, tempPen);

DeleteObject(Pen);

else

int thickness = (int)(fabs(m_vecpNeurons[cNeuron]-
>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);
HPEN Pen;

//blue for inhibitory
if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)

Pen = CreatePen(PS_SOLID, thickness, RGB(0,0,255));
>

/*/"red for excitory
else

Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));
HPEN tempPen = (HPEN)SelectObject(surface, Pen);
//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);

DeleteObject(Pen);

117

ki
¥

//now draw?7 the neurons and their IDs
SelectObject(surface, RedBrush);
SelectObject(surface, GetStockObject(BLACK_PEN));

for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)

{

m_vecpNeurons[cNeuron]->iPosX;
m_vecpNeurons[cNeuron]->iPosY;

//display the neuron
Ellipse(surface, x-radNeuron, y-radNeuron, x+radNeuron,
y+radNeuron);

//cleanup
SelectObject(surface, OldPen);
SelectObject(surface, OldBrush);

DeleteObject(RedPen);
DeleteObject(GreyPen);
DeleteObject(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObject(OldBrush);

118

#include "polysolvers.h"

CPolySolver: :CPolySolveroid)

{

SEvaluation starter ;

starter.m_bSuccessful =Tfalse;
starter m_dTotalError =0;
starter.m_iSuccessfulTime =0;

for(int 1 = O0; 1 < CParams:;iNumPolynomials; i++)
Evaluations.push_back(starter);
m_dFitness = 0O;

CPolySolver: :-CPolySolver(void)

{
}

void CPolySolver::Born(
for(int 1 = 0; i1 < Evaludtions.size(); i++)
Evaluations[i] .m_bSuccessful = false;

Evaluations[i].m_dTotalError 0;
Evaluations[i].m_iSuccessfulTime = O;

//f - EraseMemory(Q ----—-—---——---—--—-

/1

void CPolySolver::EraseMemory()

//removeWeights
for(int link = 0; link < m pitsBrain->ltsLinks(Q).size(); link++t)

if(CParams: :bReinitializeWeights)
if(CParams: :bMutatelnitialWeights)

{
m_pltsBrain->ltsLinksQ[link]->dWeight =
m_pltsBrain->ltsLinksQ[link]->dInitialWeight;

else

{

if(CParams: :bRandomWeights)

{

m_pltsBrain->ltsLinksQ[link]->dWeight
RandomClampedQ;

else if(CParams::bTestingWeights)

{

119

m_pltsBrain->ItsLinksQ[link]->dWeight

1;

}

else

{ _ _ _ _

m_pltsBrain->ItsLinksQ[link]->dWeight =

1

¥

}
m_pltsBrain->l1tsLinksQ[link]->dMomentum = O;

;/— Update
// First we take sensor readings and feed these into the
p?lysolverjs brain..
J

{, The inputs are:

// The readings from the values associated with the current polynomial

/1

bool CPolySolver::Update(CPolynomial ¢¢currentPolynomial, int
&polynomial Index)

// if(Evaluations[polynomiallndex].m__bSuccessful == true)
// return true ;

Evaluations[polynomiallndex] .m_dTotalError = O;
m_pltsBrain->ClearltsOutput(Q;

//input sensors into net
for (int index=0; index <
currentPolynomial .m_veclnputOutputPairs.size(); ++index)
//update the brain
m_pltsBrain->Update(urrentPolynomial, index);

//Train the Network
if(CParams::bTrainable)

{
¥

//determine error after training
m_pltsBrain->ClearltsOutput(Q;
for (index=0; index <

currentPolynomial .m_veclnputOutputPairs.size(; ++index)

m_pltsBrain->Train(currentPolynomial, index, index);

//update the brain

m_pltsBrain->Update(currentPolynomial, index);

Evaluations[polynomiallndex].m_dTotalError += m_pltsBrain-
>0utputError(urrentPolynomial, index);

}

Evaluations[polynomiallIndex] .m_dErrorPerlnput =
Evaluations[polynomiallndex].m_dTotalError /
currentPolynomial .m_veclnputOutputPairs.size(Q;

//determine if it was successful
if(CParams: :bTrainable)

i fEvaluations[polynomiallndex] .m_dTotalError < 3 &&
Evaluations[polynomial Index].m_bSuccessful == false)

Evaluations[polynomialIndex].m_bSuccessful = true;

Evaluations[polynomial Index].m_iSuccessfulTime =
CParams::iCurrentTick;

¥
¥

return true;

ky

//creates a list of random indecies
vector<int> CPolySolver::Randomizelndex(int size)

{

vector<int> Sortedlndex;
vector<int> Randomindex;
for(int 1 = 0; 1 < size; I+t)

SortedIndex . push_back();
while(ortedIndex.size(Q > 0)

{

int Index = RandInt(0, Sortedlndex.size (-1) ;

Randomindex ._push_back(SortedlIndex[Index]);

for(int j = Index; J < SortedIndex.size(Q - 1; j++)
SortedIndex[j] = SortedIlndex[j + 1];

¥

SortedIndex.pop_backQ;

return Randomindex;

void CPolySolver::EndOfRunCalculations(

for(int polynomiallndex = 0; polynomiallndex <
Evaluations.size(); polynomiallndex++)

if(Evaluations[polynomial Index],m_bSuccessful == true)

m dFitness += 100

120

121

Evaluations [polynomialIndex] .m_dTotalError

+ CParams : : iNumTicks

Evaluations{polynomialIndex].m_iSuccessfulTime;
}
else
{
m_dFitness += (100 -
Evaluations [polynomialIndex] .m_dTotalError) ;
’ }
}
m_dMaxFitness =
CParams: : iNumTicks) ;
m_dFitness

Evaluations.size()* {100 +

1

{({m_dFitness / m_dMaxFitness) * 100;
}

REFERENCES

[1] Baldwin, Mark J (1896). A new Factor in Evolution. Adaptive Individuals in
Evolving Populations: Models and Algorithms. Addison-Wesley, Reading, MA.

[2] Beliakov, Gleb and Abraham, Ajith. Global Optimization of Neural Networks Using
a Deterministic Hybrid Approach. Deakin University. Clayton, Melbourne,
Australia.

[3] Boers, EJ .W. and Sprinkhuized-Kuyper, 1.G (1995). Evolving Artificial Neural
Networks using the “Baldwin Effect” Artificial Neural Nets and Genetic
Algorithms. 333-336. New York, NY

[4] Branke, Jurgen. Evolutionary Algorithms for Neural Network Design and Training.
Unversity of Karlsruhe. Karlsruhe, Germany.

[5] Caruana, R., Lawrence, S., and Giles, L. (2000). Overfitting in Neural Nets:
Backpropagation, Conjugate Gradient, and Early Stopping. In Neural
Information Processing Systems. Denver, CO.

[6] Castillo, P.A., Gonz alez, J. Merelo, J.J., Rivas, V., Romero, G., and Prieto, A.
(1998). G-Prop: Global Optimization of Multilayer Perceptrons using GAs.
Submitted to Neurocomputing,.

[7] Crow, James F. (2003). Evolution: Views. Encyclopedia of the Human Genome.
Macmillan Publishers Ltd, Nature Publishing Group.

[8] de Jong, Edwin and Pollack, Jordan. Utilizing Bias to Evolve Recurrent Neural
Networks. Brandeis University. Waltham, MA.

[9] French, Robert and Messinger, Adam. Genes, Phenes and the Baldwin Effect:
Leaﬁing and Evolution in a Simulated Population. Willamette University.

Salem, OR.

122

123

[10] Grraud-Carrier, Christophe. Unifying Learning with Evolution Through Baldwinian
Evolution and Lamarckism: A Case Study. University of Bristol. Bristol, UK.

[11] Gomez, D E., and Miikkulainen, R. (1999). Solving Solving non-Markovian control
tasks with neuroevolution. In Dean, T., editor, Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, pages 1356-1361,
Morgan Kaufmann, San Franciscb, CA.

[12] Gomez, D.E., and Muikkulainen, R. (1997). Incremental evolution of complex
general behavior. Adaptice Behavior, 5:317-342.

[13] Hinton, Geoffrey E., Nowlan, Steven J. How Learning Can Guide Evolution.
Complex Systems, 1, 495-502. ,

[14] Kolen, John and Pollack, Jordan. Back Propagation is Sensitive to Initial
Conditions. Ohio State University Columbus, Ohio.

[15] Lamarck, J.B. (1815). “Zoological Philosophy: An Exposition with Regard to the
Natural History of Animals”, 1984, Uni\{ersity of Chicago Press, Chicago, IL.

[16] Malmgren, Helge (2000). Artificial Neural Networks in Medicine and Biology.
Department of philosophy, Goteborg University.

[17] Mehrotra, K., Mohan, C. K., and Ranka, S. (2000). Elements of Artificial Neural
Networks. The MIT Press. Cambridge, Massachu§etts.

[18] Nolfi, Stefano and Parisi, Domenico. Learning to adapt to changing environments in
evolving neural networks. Institute of Psychology. Rome, Italy.

[19] Nolfi, Stefano, Elman, Jeffrey, Parisi, Domenico. Learining and Evolution in Neural
Networks. University of California. La Jolla, CA.

[20] Radi, Amr and Poli, Riccardo. Evolutionary Discovery of Learning Rules for
Feedforward Neural Networks with Step Activation Function. University of
Birmingham. Birmingham, UK.

[21] Shachmurove, Yochanan. Applying Artificial Neural Networks to Business,
Economics and Finance. University of Pennsylvania, Philidelphia, PA.

[22] Shore, R. (1997). Rethinking the Brain: New Insights into Early Development. New
York, NY: Families and Work Institute, pp. 16-17.

VITA
Christopher Patrick Christenson was born in Lake Jackson, Texas, on February
20, 1980, the son of Christopher Paul Christenson and Patricia Jo Christenson. After
receiving his degree of Bachelor of Science from Texas Lutheran University, Seguin,
Texas, in 2002, he entered Texas State University-San Marcos. In August of 2002, he
entered the Graduate College of Texas State University-San Marcos. During his study,

he was employed as a computer lab worker and as an adjunct facuity.

Permanent Address: 1381 Old Colony Rd.

Seguin, Texas 78155

This thesis was typed by Christopher Patrick Christenson.

