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ABSTRACT

EVOLVING LEARNING NEURAL NETWORKS

by

Christopher P. Christenson, B.S.

Texas State University-San Marcos 

December 2004

SUPERVISING PROFESSOR: KHOSROW KAIKHAH

Supervised learning has long been used to modify the artificial neural network in 

order to perform classification tasks. However, the standard fully connected layered 

design is often inadequate when performing such tasks. We show that evolution can be 

used to design an artificial neural network that learns faster and more accurately. By 

evolving artificial neural networks within a dynamic environment, the artificial neural 

network is forced to use learning. This strategy combined with incremental evolution 

produces an artificial neural network that outperforms the standard fully-connected 

layered design. The resulting artificial neural network can learn to solve an entire 

domain of problems, including those of lesser complexity. Evolution alone can be used 

to create a network that solves a single task. However, real world environments are 

dynamic, and thus require the ability to adapt to changes. By improving the design of the 

artificial neural network for learning tasks, we have come one step closer to artificial life.

IX



1 INTRODUCTION

The brain controls practically every aspect of an animal’s life. Vision, speech, 

memory, motor skills, and consciousness all require the use of our network of neurons. 

Thus, it is not surprising that we have made attempts to simulate the brain’s functions 

with computers. One way which has shown promise is a structure called the Artificial 

Neural Network (ANN). With ANNs, computers can learn to recognize speech, convert 

handwritten text, and perform many other extraordinary tasks. The introduction of new 

ANN design techniques, such as evolutionary algorithms, has brought computers closer 

to simulating the brain than ever before.

In order to simulate the brain effectively, its functions must be understood fully. 

The brain works on two levels, unconsciously and consciously. The unconscious 

workings of the brain can be thought of as instinct. Instincts are behaviors that an 

organism is bom with. Conscious behaviors are those that an organism must learn 

through living. Instinctual and learned behaviors are both directly related to the 

environment in which an organism lives.

When attempting to simulate the brain’s ability to learn using ANN, standard 

design principals have many issues that have not been resolved. In order to design the

1
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many aspects of the ANN, a new mechanism must be found. This research will show that 

evolution can be used to design an ANN that learns to solve problems faster and with less 

error.

• 1.1 Evolution i

• 1.2 Evolution and Learning

• 1.3 Artificial Neural Network

• 1.4 Artificial Neural Networks and Learning

• 1.5 Evolving Artificial Neural Networks

• 1.6 Evolving ANNs to Learn

1.1 Evolution

Darwin described a mechanism that hoped to show how life forms change through 

time. This mechanism, which we know as evolution, describes how organisms gain traits 

based upon the environment in which they live. Reproduction, one of the key 

mechanisms in evolution, allows organisms to pass traits on to the next generation. Since 

the fittest organisms reproduce more, their traits become more prominent in the following 

generations. The result is organisms that are custom fit to their environment. Random 

mutation also plays a major role in altering the traits of organisms. Without mutation, 

organisms would reach a low optimal fitness without the ability to improve. Random 

new traits allow organisms to branch out into uncharted territory where their fitness may
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either improve or dimmish. Thus, evolution can be understood as an elaborate searching 

mechanism where the goal is a more custom fit solution to the current environment. The 

tools of this searching algorithm are cross-over and mutation. Cross-over combines two 

fit organisms in the hope that the traits found in both will produce a better fitness m the 

child. Random mutation allows for a broader searching landscape.

1.2 Evolution and Learning

The traits that Darwin describes are found directly in the genome. Any traits 

learned during the lifetime of the organism are not passed on. This would lead us to 

assume that learning has no effect on Darwinian evolution. However, there have been 

theories that show that learning does have a dramatic effect on evolution.

Lamarck argued that “All which has been acquired by, laid down, or changed in 

the organization of individuals in the course of their life is conserved by generation and 

transmitted to the new individuals which proceed from those which have undergone those 

changes.” [15] In other words, Lamarck believed that organisms could actually alter their 

genome during their lifetime. Baldwin, however, believed that learning affects the 

genome in a more indirect way while maintaining a process that is Darwinian. In what 

has been termed the Baldwin Effect, learning’s effect is determined by the environment

in which it occurs.
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In a dynamic environment, learning can improve evolution. While learned traits 

are not passed on to the proceeding generations m the Baldwin Effect, the ability to learn 

is. Consider the cat and its ability to alter its coat based on the temperature. This is a 

good example of the Baldwin effect in everyday life. The ability to alter its traits allows 

the cat to withstand the cold and endure the heat. Thus the cat has increased its fitness in 

an environment where the temperature changes dramatically. We hope to show that 

learning can affect evolution in dynamic environments by evolving ANNs with the ability 

to learn.

Often, environments become static after genomes have been evolved to adapt to 

them. Adapting has been known to solve many problems faster than evolution. After all, 

evolution takes generations to have any effect. However, adapting does take time, and 

when you are a kitten in the freezing cold, it doesn’t take long to die. In that perspective, 

evolution can be the faster mechanism for survival. We hope to observe this second 

aspect of the Baldwin Effect when we evolve ANN.

1.3 Artificial Neural Networks

Our goal in this research is to describe a process that creates a genome that can 

learn to graph polynomials. The vehicle we perform evolution on is the Artificial Neural 

Network (ANN). The ANN is a wonderful tool for this problem because it has been 

shown to both evolve well and graph polynomials well. [5, 23]
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The artificial neural network is a simulation of the biological neural network 

found in the brains of animals. The brain is made up of a network of interconnected 

neurons. Information, in the form of chemicals, is passed through this network of 

neurons and produces output. For instance, the cat sees a mouse scurrying by. The 

mouse image is passed from the eye through the multitude of interconnected neurons 

found m its brain, and the cat recognizes the mouse as something to harass. These 

neurons and their connections can be considered the relationship between the input and 

the output. This relationship performs very well at tasks involving pattern recognition. 

Whether the mouse was brown or white, the cat still recognized it as a mouse because of 

its many mouse-like features. Furthermore, the cat would recognize a dog as not a 

mouse, even though the dog has a tail, ears and other mouse-like features.

Since the brain is so good at pattern recognition, to simulate such tasks it would 

seem natural to have computer programs that mimic the brain’s activities rather than 

creating a procedural method. The ANN is a simulation of the brain’s makeup and 

functions. The ANN is akin to a “directed graph structure where nodes perform some 

simple computations, and each connection conveys a signal from one node to another.” 

[17] The power behind the artificial neural network, and the brain, is its ability to learn.

1.4 Artificial Neural Networks and Learning

The ANN is not simply a directed graph, each connection m the ANN does more

than just convey signals. In fact, in order for an ANN to learn, the connections must do



6

much more. In animals, there may be sections of the brain that do not change at all. For 

instance, the cat’s reaction to chase the mouse did not require any training. It could be 

said that the cat was bom to chase mice. However, there are things that the cat does have 

to leam, especially with humans around. The cat may leam that when it hears food 

pouring into its bowl, that it is time to eat. This is called Reinforcement learning. By 

running to the sound of food pouring, the cat’s brain was reinforced with the pleasure of 

eating the food. Back-Propagation learning m ANNs works much the same way. Given 

a set of inputs, there are a set of desired outputs. When an ANN’s output approaches the 

desired output, the weights on the connections are reinforced. However, if an ANN’s 

output diverges from the desired output, the weights are negatively reinforced. When the 

changes of the network’s weights are made a small step at a time, the network learns to 

correlate the input to the desired output. How do we decide the size of the step or even 

the structure of the ANN? Traditionally, the design has been a very simple layered 

system in which the architecture of the network could be easily understood. However, 

we will show that evolution is a much better approach for designing learning artificial 

neural networks.

1.5 Evolving Artificial Neural Networks

The brain is a very complex network of neurons. Some researchers state that 

there are 100 billion neurons. Each neuron may be connected to 1500 other neurons. 

This adds up to trillions of connections in the brain. [22] Researchers quickly understood 

that they could never design an artificial brain. However, a recent innovation has made it
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so that they don’t have to. By using the same mechanism that created our brains, 

researchers have been able to create extremely complex ANNs without having to design 

them at all. That innovation was the evolutionary algorithm. Now, impossibly complex 

ANNs can be created, and soon maybe even an artificial bram.

Using genetic algorithms to evolve ANN has proven useful in complex 

reinforcement learning tasks. [23] However, until recently, the evolutionary process was 

limited to modifying the existing weights of the standard fully connected layered ANN. 

While this worked in situations where the number of required hidden nodes was known, 

it was not a robust solution for all problems.

In order to create a network to solve any problem, researchers needed the ability 

to use evolutionary algorithms to alter the structure of the ANN. Difficulties in 

modifying the structure arose immediately. Evolutionary algorithms require the use of 

random mutation and meaningful cross-over. The problem arose when researchers tried 

to develop a process where two ANNs could be combined in such a way where their traits 

may be passed on to the child. Meaningful combination required very costly analysis of 

the networks. Frustrated, researchers even attempted to bypass the problems of evolving 

structure by randomly changing the number of hidden nodes after failed attempts at 

solving the task. [11] Recently, researchers from the University of Texas came up with a 

new way to evolve the structures of ANNs that has shown to be the most robust on 

benchmark reinforcement learning problems.
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NeuroEvolution of Augmenting Topologies (NEAT) has proven itself as one of 

the best algorithms for evolving structure and weights in ANNs. [23] By starting with the 

minimal structure and incrementally adding pieces, the result is a neural network that 

performs well with minimal structure and without the need for costly complexity 

analysis. Further, NEAT utilizes a genetic representation that allows ANN to cross over 

in a meaningful way. By using species to protect the ANNs that need time to optimize, 

NEAT makes sure that the possibly important structures are not lost prematurely.

1.6 Evolving ANNs to Learn

Traditionally evolutionary algorithms are used to solve a specific problem. Given 

the input and the desired output, evolutionary mechanisms are used to slowly and 

methodically drive a genome’s output towards the desired output. This serves very well 

in static situations, but when the problem changes, either slightly or severely, a new 

genome must be evolved. In nature, organisms have evolved to learn or adapt because 

starting over is not a viable option. For example, a cat may grow a thicker coat when the 

temperature drops, and later shed it when the temperature rises. Evolution did not take 

place during the months between summer and winter. Rather, evolution gave the cat the 

ability to adjust its amount of hair. This ability to adapt is essential when dealing with a 

changing environment.

Using the NEAT algorithm and an augmented form of Back-propagation, a 

population of ANNs will be evolved within a dynamic environment. Each generation
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will be evaluated on its ability to adapt to the environmental changes. After evolution, 

the resulting ANN will be able to learn to adapt to never before seen environments. 

Furthermore, it will learn to adapt faster than the traditionally designed fully connected 

ANN. This will show that the network has evolved to learn rather than simply to solve.

Evolving ANN to learn presents several possible avenues of adjustment. Back- 

propagation has many factors that are not known to be optimal for solving different 

problems. These include initial weights and learning rates. Moreover, architecture has 

many unknown factors, including number of hidden nodes and connections.

Unlike previous research, where the goal of combining genetic algorithms and 

Back-propagation was to create more optimized neural networks for a specific problems 

[29], the goal of our research is to show that a network can be created that learns to solve 

an entire domain of problems. If we ever hope to simulate the brains behavior, we must 

mimic its ability to learn and adapt to changing environments. Can evolution be used to 

design an artificial neural network that is better at learning?

i



2 EVOLUTION

James F Crow of the University of Wisconsin describes many of the different 

beliefs about evolution. The theory of evolution begins with the Pre-Darwinian views 

and proceeds to describe the many facets of evolution including Darwinian, Neo- 

Darwinian, Synthetic, Km Selection, and finally Speciation. By understanding the many 

views of evolution, we can better utilize it to design ANNs.

Before Charles Darwin presented his evolutionary mechanism in The Origin of 

Species, there was recognition of biological evolution. Jean Baptiste de Lamarck 

believed that changes that occur during the lifetime of an organism are passed onto the 

next generation. While intriguing, the Lamarckian belief of inheritance of acquired 

characteristics cannot be proved.

• 2.1 Darwinian

• 2.2 Neo-Darwinian

• 2.3 Synthetic

• 2.4 Km Selection

• 2.5 Speciation

• 2.6 Evolution and Learning

10
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• 2.7 Effects of Learning on Evolution

• 2.8 The Baldwin Effect

• 2.9 The Balance between Learning and Instinct

2.1 Darwinian

When Darwin presented his idea of natural selection, many believed it was a 

convincing theory that could be found directly in nature. Darwin’s theory stated that 

individuals best able to cope with the environmental strains were the most likely to 

survive and reproduce. The next generation would then have a larger fraction of these 

more capable individuals. The only problem with Darwin’s theory was variability. Since 

mating actually decreases the population variance, about 50% each generation, some 

mechanism for variability must be present.

2.2 Neo-Darwinian

Gregor Mendel’s work on inheritance showed that the loss of variability is only a 

tiny amount rather than half. Found within organisms are markers, called genes, that pass 

along the characteristics of the organism to the following generations. These genes retain 

their variability from generation to generation. Furthermore, the random changes 

necessary for new variations, mutation, was introduce in 1901 by Hugo DeVries. With 

Mendelian inheritance and DeVries mutation, Darwin’s theory was now viable.
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However, there are many wrinkles that needed to be ironed out. Thomas Huxley 

did not believe evolution was gradual. He believed evolution occurred in steps rather 

than a smooth curve. While most people accepted evolution as a historical fact, the 

details of the Darwinian mechanism have come into question.

2.3 Synthetic

Mathematically inclined biologists, R.A. Fisher, J B S Haldane, and Sewall 

Wright found the Neo-Darwinian theory lacking a complete description of selection. 

They showed the effects of various kinds of selection. Fisher’s Fundamental Theorem of 

Natural Selection provided a quantitative predictor that was missing in the Neo- 

Darwinian theory. Fisher failed to take into account the effects of chance except in the 

smallest populations. Wright argued that selection was not the only driving force behind 

evolution. If it were, an adapted population could never improve since it would have to 

first pass through less fit state to achieve a better fitness. It would essentially get stuck 

within a local maximum, with selection rejecting movement in all directions. By chance 

and migration, Wright thought evolution could create complexity.

2.4 Kin Selection

The Darwinian Theory also failed to take into account cooperative behavior. 

William Hamilton added cooperation and altruistic behavior to the ever evolving
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Darwinian Theory. Hamilton stated that if the cost to the altruist is less than the benefit 

to the recipient and the relationship to the altruist, then the trait will increase. Thus, 

organisms find similarities within their kin and deem it acceptable to help increase their 

fitness. Since they share many of the same genes, it is in their genes’ interest to help each 

other. Here behavior can be seen as an effect of evolution driving evolution.

2.5 Speciation

“Speciation is the absence of crossing between individuals of different 

species.”[7] When two groups are in separate species, they will go down separate 

evolutionary lines. This is beneficial because the two are no longer competing for fitness 

which promotes variation. Without speciation, selection would reach a local optimum 

due to the lack of variability.

2.6 Evolution and Learning

Evolution is a very powerful searching mechanism that alters organisms so that 

they can better cope with their environment. However, when the environment changes, it 

is necessary for the organism to adapt more quickly. Learning, a process brought forth 

by evolution, is the mechanism that allows an organism to adapt during its lifetime. The 

question as to whether learning has an effect on evolution has been raised by many 

researchers. Specifically, Mark Baldwin presented his argument about learning’s effect

)
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on evolution. [1] Many researchers have followed with a critique of Baldwin’s research, 

which is now called the Baldwin Effect.

Baldwin presents two characteristics that affect an organism’s development. First 

are its instincts, the hard-coded behaviors and characteristics passed down from the 

generations, and second are the behaviors and characteristics learned during its lifetime. 

Baldwin first poses the question as to why the organism changes during its lifetime. 

These reasons include environmental, self-promoted, and choice. When the reasons have 

been accepted, Baldwin poses the greater question. What effect do these adaptations 

have upon evolution?

2.7 Effects of Learning on Evolution

Baldwin begins by describing the effects of lifetime learning upon the life of the 

organism. “By undergoing modifications of their congenital functions or of the structures 

which they get congenitally—these creatures will live; while those which cannot, will 

not.” He then concludes that since the organisms that are able to adapt will survive, they 

will become more prominent in the following generation. Thus, the Lamarckian theory is 

unnecessary, because the child is given the ability to learn a behavior, rather than 

acquiring the learned behavior.

Baldwin’s landmark paper appeared in The American Naturalist in June of 1896. 

Not surprisingly, there have been many reviews on his theory since then. Peter Turney
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addressed the widely misunderstood Baldwin Effect. Turney states that the 

misunderstandings can be grouped into two categories. The first is the belief that the 

“Baldwin Effect is concerned with the synergy that results when there is an evolving 

population of learning individuals.” He claimed that researcher focused too much on the 

benefits from this synergy and ignore the cost. The second is the belief that the Baldwin 

effect is Lamarckian. The Baldwin Effect is not Lamarckian and, in fact, it is a better 

model of cultural evolution.

2.8 The Baldwin Effect

The Baldwin Effect states that lifetime learning can accelerate evolution. 

However, as Turney points out, it also states that learning is expensive. So, within stable 

environments evolution tends to produce instinct rather than learning. Since much of 

research done in this field focused on the benefits of learning in a dynamic environment, 

Turney’s paper hopes to bring a balance. He begins by reviewing the benefits of learning 

versus instinct.

Learning allows organisms to “explore neighboring regions of phonotype space.” 

This allows the organisms to increase its fitness to the maximum fitness in the local 

region of genotype space. Thus, evolution can reach the maximum fitness easier. 

However, since learning requires experimentation, it can be dangerous. Turney points 

out that instinctually avoiding snakes is much more advantages since one bite can end an 

organism’s life. Furthermore, if a behavior is known to be beneficial, it could be
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performed faster by instinct, since it would not spend the time required with learning. 

Thus, evolution can reach the maximum fitness faster. “Learning can accelerate 

evolution under certain circumstances, but it can also slow evolution under other 

circumstances.”[26] Turney concludes that evolution seeks to find a balance between 

instinct and learning.

2.9 The Balance between Learning and Instinct

Kim Sterelny describes the balance between instinct and learning. [24] Evolution 

utilizes learning when met with an environmental change. The Baldwin Effect is then 

described as “a process through which a trait that was once learned has become innate.” 

Thus, learning the behavior allows fitness to be improved easier, but once the trait is 

found, instinct allows the fitness to be improved sooner.



3 ARTIFICIAL NEURAL NETWORKS

Simulating the brain has been one of the greatest quests human have chosen to 

embark on. Using computers, researchers have developed techniques that mimic many of 

the brain’s mechanisms for pattern recognition and memory. “Artificial neural networks 

(ANNs) are new mathematical techniques which can be used for modeling real neural 

networks, but also for data categorization and inference tasks in any empirical 

science.” [16]

• 3.1 ANN Definition

• 3.2 ANN Background

• 3.3 ANN Design

• 3.4 ANN Design Issues

• 3.5 ANN and Learning

• 3.6 Back-Propagation Algorithm

• 3.7 ANN Design Issues with Learning ^

• 3.8 Accelerating Learning in ANNs
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3.1 ANN Definition

ANNs can be used to simulate the brain’s ability to perceive, think, remember, 

infer, and act. It can also help with data classification and inference. Malmgren defines 

an ANN as “a heterogeneous and loosely delimited set of mathematical technique that 

uses techniques that bear some similarities to the way we believe that real neural 

networks process information.” However, the ANN is much simpler than the neural 

networks in organism’s brains.

3.2 ANN Background

While true simulation of the ANN arguably began in the 1950s, its history can be 

seen as far back as in the work of Pavlov, Freud, and Descartes. Hebb and others began 

in the 1950s to formulate the ANN, but the ANN did not become powerful until the 

1980s when computers began to improve. The ANN research then split into two fields: 

simulating the brain and applying ANNs to known problems. “Because they do not 

necessarily require assumptions about population distribution, economists, 

mathematicians and statisticians are increasingly using ANNs for data analysis.” [21] 

Due to their common simulation mechanisms, researchers who simulate the brain and 

those applying ANNs to known problems borrow greatly from one another.



Understanding the brain provides insight into mechanisms for the application of ANN, 

and the advances in application allow for testing theories of the brain.

3.3 ANN Design

The current ANN is much simpler in design and function than the biological 

neural network. Malmgren describes it as a group of neurons that transform the input 

into an output. Each node passes its input to the next node through connections that have 

a weight. These connections perform the transformation through multiplication of the 

node’s output by the corresponding weight (Figure 1).
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The combination of neurons and connections vary based upon the application and 

methods used. A common version of this combination is the Feed-forward network 

without hidden layers.

Figure 2. Typical single layer feed-forward. ANN

As mentioned previously, ANNs are useful for classification problems. Classification 

problems fall into two categories: Linearly separable or Non-Linearly separable. ANNs 

without hidden layers can only be used for linearly separable problems. In order to 

achieve non-linear separation, the network must be designed with a middle layer, often 

called the hidden layer, and the neurons must enforce an activation function. The typical 

activation function used is the sigmoid function. “A sigmoid function is smooth and 

strictly monotonous function with a lower and upper bound.” [16]



m  = i
(l+ex)
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Output

Hidden

Input
Figure 4. Typical multi- layer feed-forward. ANN

Since non-linear relationships are more likely to occur than linear relationships, 

the majority of research has been focused on the multi-layered ANN. [21] The hidden 

layer only receives input and produces output internally. Thus, the hidden layer does not 

solve the problem directly. Rather, it enables non-linear solutions by creating subgroups 

that can be further classified in the output layer.

ANNs are able to learn any mathematical function by decomposing the function 

in terms of the sum the neurons. Thus, if the correct combination of neurons and 

weighted connections can be designed, ANNs can play a powerful role in function 

approximation in many fields of study.
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3.4 ANN Design Issues

Complicated systems, such as those found in medicine and economics, require 

powerful models. ANNs can be a very powerful model and has been used successfully in 

many fields of research. However, one of the biggest problems with ANNs is m the 

design. A network designed with excessive structure may not generalize well. When 

classifying data, it is important to generalize so that correct placement occurs even with 

noisy data. Moreover, if a network is too simple, it may generalize too much and 

produce incorrect classification. “The power of the net must be adapted not only to the 

expected level of noise and other random elements, but also to what we know in 

beforehand about the specific nature of the underlying process.” [16]

3.5 ANN and Learning

After the structure of the ANN has been determined, the connections’ weights 

must be set. In simple problems, such as the logical AND, the weight values can be set 

manually. In more complicated problems, a better mechanism for determining the 

weights is needed. This mechanism has been termed learning because of its use of 

reinforcement principles akin to biological learning. Experiments show that using 

learning can improve model performance above that of standard statistical methods. [28]
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The goal of learning is to determine the contribution of each neuron to the output 

of the ANN. The weights determine this contribution by amplifying or de-amphfymg the 

output of the neuron. To find the optimal set of weights, the ANN’s weights must be 

changed incrementally over many iterations. When dealing with a simple single layer 

ANN, learning is more straight-forward. At each iteration the following steps are 

performed:

1. Present the next input vector to the input neurons.

2. Obtain the output of each input neuron by multiplying its input by the 

connection’s weight.

3. Train the weights according to the following equation:

• wj (t+1) = Wj(t) + a * (d -  a) 

d is the desired output 

a is the actual output 

a is the learning rate 0.0 < a < 1.0 

t is the iteration 

w is the current weight

4. Repeat steps 1 through 3 until the error is reduced to acceptable levels

The error is simply the difference between the desired output and the actual output. A 

common error measure is the mean-squared error. It is the error computed over the entire

set of inputs and is computed as follows:
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• E = 1/n (di - <ii)2 + (¿2 -  ^2) 2 + •• + (d„ — an) 2

E is the sum-squared Error 

d is the desired output 

a is the actual output

n is the number of input/output vector pairs in the training set

When dealing with a multi-layered network, the error must be propagated over multiple 

layers. While we know what the desired output of the ANN is, there is no way of 

determining what the hidden layer’s output should be. Back-propagation allows us to 

determine the hidden layer’s error and to alter the hidden layer’s connection.

3.6 Back-propagation Algorithm

Determining the error of the output layer is a simple process of subtracting the 

actual output from the desired output. However, determining the error of the hidden 

layer(s) is more complicated. In order to determine the error for the hidden layer, we 

calculate each hidden neuron’s contribution to the overall error. This is done by 

multiplying the error of the output node by the connections between the hidden node and 

the output node. Thus, the hidden layer’s error can be approximated. This process is 

repeated for every hidden layer until the input layer is reached. Once the network’s error 

is calculated, the weights can be modified to reduce the error.
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Reducing the error of an ANN can be thought of as trying to find the bottom of 

the deepest valley on a graph with many valleys (Figure 5). In order to reduce the error, 

the weights must move downward along this curve.

In order to search for the global minimum, the gradient decent method is used. Gradient 

decent alters the weights by determining the direction of the smaller error. To determine 

the direction of the smaller error, the derivative of the activation function for that 

connection must first be calculated. By calculating the slope of the error curve and 

moving negatively down the slope, gradient decent minimizes the error.
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♦  Step» 1 : Initialize all weights with random values.

♦  Step 2: Select a pattern and attach it to the input layer (m = 0) :
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♦  Step 3: Propagate the signals through all layers:
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Step 4: Calculate the 0's of the output layer:
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♦  Step 5: Calculate the S 's for the inner layers by error backpropaaation:
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♦  Step 7: Go back to Step 2 for the next training pattern.
Figure 6: The Back-Propagation Algorithm (Suen)

The back-propagation algorithm works well on problems dealing with function 

approximation. However, one of the drawbacks of back-propagation is the amount of 

time it takes to train. This is due to the small changes in weights and the trappings of the
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local minimums. Many improvements on this algorithm have been suggested, including 

how to initially set up the structure, the initial weights and the learning rates.

3.7 ANN Design Issues with Learning

Experiments have shown that Back-propagation has an extreme sensitivity to the 

ANN’s initial weight configuration. [14] If the weights are all initialized to zero, it is 

difficult for training to break the weight’s symmetry. Furthermore, it is very difficult for 

the network to converge if the initial weights are set to very high numbers, such as 10. 

The common reasoning for this is that the derivative of the sigmoid function is close to 

zero for large weights. Therefore, the convention for setting the weights of a newly 

created network has been a uniform distribution between -0.5 and 0.5. While the reasons 

for not initializing the weights to zero or ten are known, it is not known why the 

convergence is so unstable when using weights in between these ranges. Kolen et al 

attempt to describe this sensitivity through a series of experiments.

Beginning with the very simple OR function and a 2-2-1 ANN, the researchers 

displayed the sensitivity of back-propagation to initial weights ranging from -20 to 20 in 

steps of 0.2. The results showed thirty-seven separate classes of convergence on a 

function as simple as the OR function. Clearly, back-propagation is sensitive to initial 

weights, but is it sensitive to learning rates? Kolen et al show that learning rates and 

momentum also have a drastic affect on convergence. Thus, learning algorithms must
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take into account the initial conditions; otherwise the result may vary from one 

implementation to the next.
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Figure 7: Kolen and Pollack’s Description of initial 
weights effect on convergence

3.8 Accelerating Learning in ANNs

In addition to using appropriate weights to improve back-propagation’s 

convergence time, several other techniques have been employed. Resent work on a 

hybrid algorithm of the least squares technique accelerates convergence. By using linear 

least squares, the last layer of the ANN is optimized. The advantage to using a linear 

least squares is that the dimensionality of the search space is reduced, thus reducing the



30

time it takes to optimize. The remaining layers learn through standard non-linear training 

algorithms.

In simulation, when the modified least squares is compared to the conventional 

least squares on identical initial 3-6-1 networks, the modified least squares converges 

faster. Furthermore, in simulations where sigmoid outputs perform poorly, the modified 

least squares method performs well since it does not use the activation function on the 

output layer. Therefore, by using standard methods on the hidden layers and linear least 

squares for the output layer, convergence time can be accelerated.



4 EVOLVING ARTIFICIAL NEURAL NETWORKS

Genetic Algorithms have been applied to the design of ANN in several ways. 

First, evolution of ANNs has been applied to the search for optimal set of weights. With 

a pre-established architecture, mutation and crossover are performed on the connection 

weights of the ANN. Second, evolution has been applied to the search for optimal 

architecture. In the search for optimal architecture, mutation includes either neuron 

addition from a small initial network, or neuron deletion from a large initial network. 

Third, evolution has been applied to the search for optimal learning parameters. With a 

pre-established architecture, mutation and crossover are performed on the learning 

parameters of each connection in the ANN.

Most of the research done on the evolution of ANNs has been focused on the 

search for optimal weights. Researchers shied away from evolving structure because one 

of the major genetic operators, crossover, is difficult to perform on ANNs. This is mainly 

due to the complexity of ANNs. In order to perform evolution, the crossover operator 

must be able to combine two highly performing networks in a meaningful way. Due to 

Ann’s complexity, it is difficult to say which parts made a network obtain its high 

performance. Extensive analysis of the neurons and their connection weights would have 

to be performed in order to determine which weights actually contributed to the desired

31
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outputs. Thus, until recently, evolution of ANNs was limited to weights and learning 

parameters.

It has been shown that the architecture affects the speed and accuracy of learning. 

[29] Further, evolving the structure would remove the trial and error approach widely 

used to determine the number of hidden nodes for any given problem. Finally, evolution 

of structure and weights has been shown to create networks with high performance with 

minimal structure. [23]

• 4.1 Neural Evolution of Augmenting Topologies

• 4.2 Meaningful Crossover in ANNs

• 4.3 Minimizing Architecture through Evolution

• 4.4 Protecting Slowly Maturing Genomes

• 4.5 NEAT Performance

4.1 Neural Evolution of Augmenting Topologies

Neural Evolution of Augmenting Topologies (NEAT) is Ken Stanley’s algorithm 

for evolving ANNs’ structure and weights. By beginning with a minimal structured 

network and incrementally adding neurons and connections, the result is a network that 

has close to minimal structure. This is important to the network’s ability to generalize 

well to previously unseen data. NEAT uses four genetic operators to perform evolution:
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• Mutation: Weight

• Mutation: Add neuron

• Mutation: Add connection

• Cross-over

4.2 Meaningful Crossover in ANNs

The difficulty many researchers have observed deals with the cross-over operator. 

Typical crossover operators arbitrarily combine two halves of two networks. This can 

lead to a network that performs worse than the two networks (Figure 8).

[A.B.C]
X[C,B.A]

Crossovers: [A,BA] [C.B.C]
Figure 8: Meaningless Crossover [23]

In Figure 8, the two networks have similar architecture, but in different order. Cross-over 

may produce the two networks [A,B,A] and [C,B,C]. This results in meaningless 

crossover because the two networks are missing part of the original networks, such as the
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connections associated with nodes A and C. When structure is lost due to meaningless 

crossover, evolution cannot combine two high performing networks effectively.

In order to do meaningful crossover without extensive architecture analysis, 

NEAT encodes the ANN in a very special way. The genome in NEAT is made up of 

connection genes. Each gene describes the input node, the output node, the weight of the 

connection, whether the connection is enabled, and an innovation number (Figure 9).

Figure 9: NEAT Encoding [23]

When the initial population of minimal architecture is created, each connection is 

assigned an innovation number. Thus, every individual in the initial population has 

identical innovation numbers assigned to their connections. Then, by assigning each 

newly mutated connection a new innovation number, it is possible to track a connection’s 

history. This allows NEAT to compare two networks based upon their connection’s 

innovation numbers. When the two networks cross-over, the connections with similar 

innovation numbers are passed onto the child without duplication. Connections that have
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different innovation numbers are passed on from the parent with a higher fitness. Thus, 

NEAT performs a meaningful crossover through the use of the innovation numbers and 

without the need of expensive architectural analysis (Figure 10).
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Figure 10: NEAT Cross-over (Stanley)

4.3 Minimizing Architecture through Evolution

As described in chapter 3, ANNs are very sensitive to their architecture. Too 

much complexity may lead to over-fitting and too little may lead to incorrect 

classifications. Furthermore, the amount of architecture affects the convergence time and
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accuracy. Therefore, it is important to have the minimal possible structure when 

designing ANNs.

Many evolution techniques start with a population of random architectures. Some 

networks may have many hidden neurons, while others may have just a few. This is done 

so that evolution may get a jump start on finding a solution by starting with some 

diversity. However, this method presents several problems. The most serious problem is 

that the final solution is not likely to be minimal. Many of the nodes and connections 

found in these random ANNs will be unnecessary to the final solution. While other 

genetic operators could be added to remove this unwanted architecture, it would be costly 

to the evolutionary process.

The NEAT algorithm creates ANNs with the minimal possible structure by 

allowing evolution to minimize the structure from the beginning. By starting with 

architectures that contain no hidden nodes and evaluating every change in architecture, 

NEAT ensures that every piece is necessary to the final solution. By minimizing the 

architecture, the search space is smaller and the final solution is more optimal. With a 

smaller search space, the evolutionary performance is dramatically improved.

4.4 Protecting Slowly Maturing Genomes

Previous researchers gave evolution a jumpstart with a diverse initial population. 

They also started with random initial populations because they had no mechanism for
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protecting newly added architecture. When an ANN’s architecture is modified, its fitness 

can be dramatically reduced because the weights have not been optimized to the new 

architecture. The maturation of the network through weight mutation may take several 

generations. However, when an ANN’s fitness is reduced, evolution weeds it out of the 

population. Since the ANN may need that modification to reach the desired solution, 

NEAT provides protection for new modifications that allows for the time necessary to 

achieve higher fitness.

Through spéciation, NEAT only allows genomes to compete with similar 

genomes. Thus, networks with new modifications are allowed time to optimize before 

competing with the entire population. NEAT analyzes each network and determines 

which species the network belongs to. By using explicit fitness sharing, similar genomes 

share their fitness. When species share their fitness, each species’ population is 

restricted, creating more species and ensuring population diversity.

4.5 Performance of NEAT

In order to determine whether NEAT could evolve necessary structure and do it 

with minimal hidden nodes, NEAT was used to solve the classical XOR problem. XOR 

is a non-linearly separable problem and would thus require hidden nodes.
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The initial generation consisted of networks with 2 inputs, 1 bias, and 1 output 

node. Each connection received an initial random valued weight (Figure 11) Fitness 

was determined by summing the difference between the desired output and the actual 

output for the 4 different possible combinations (Figure 12).

Out

1 0  \  □

O b ___ \  o  N
0

Xj *2 f(x i,x 2)

1 1 0

1 0 1

0 1 1

0 0 0

Figure 12: Non-linearly Separable Input/Output 
combinations for XOR

NEAT was able to find a structure for XOR with an average of 2.35 hidden nodes after an 

average of 32 generations. [23] This is close to the optimal solution for XOR that

requires only 1 hidden node. NEAT never failed to find a solution in 100 simulations.



Furthermore, the optimal solution was found m 22 of the 100 simulations, 

was able to solve the XOR problem with close to minimal structure.

Thus, NEAT

39



5 RELATED WORK

The use of evolution to design artificial neural networks has been well researched 

and documented. In order to understand this research and how to extend it, many papers 

were read and reviewed. The following sections are collections of reviews on the topics 

dealing with this research.

• 5.1 Baldwin Effect in Dynamic Environments

• 5.2 Displaying the Baldwin Effect in the Evolution of ANNs

• 5.3 Learning and the Evolution of ANNs

• 5.4 Evolving ANNs with a Predisposition to Learn

• 5.5 Optimizing ANNs using Evolution with Learning

5.1 Baldwin Effect in Dynamic Environments

The Baldwin Effect is widely accepted as part of the evolutionary mechanism. 

Many researchers have sought to prove it in a simulated environment. Research has 

shown that learning has an effect on the genome in simulated evolution. [13]
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Even though learned behavior is not passed directly to an organism’s offspring, learning 

organisms evolve much faster than non-leaming organisms. [13] In Hinton and 

Nowlan’s simulation, learning operated on the same variables as the genetic algorithm. 

Their simulation focused on the comparison between learning and non-leaming 

organisms by using a very simple and extreme task. The simulation was assigning the 

organisms the task of finding a specific combination of switches. The simulation was an 

extreme case because the organism’s fitness only increased if it found the exact 

combination. Therefore, non-leaming organisms’ only mechanism for change was to 

randomly change the switches through evolution. The learning organisms were allowed 

to change the switches during their lifetime. In simulation, the non-leaming organisms 

never found the correct combination and the learning organisms found the combination 

quickly depending on the number of switches. This result is not surprising because the 

simulation was built to exploit the advantages of learning and the disadvantages of non- 

leaming. By creating a simple and extreme simulation Hinton & Nowlan showed that 

learning can vastly increase the speed of evolution in certain tasks.

While French and Messinger’s simulation was similar to Hinton & Nowlan’s 

classic simulation, their simulation created a population of organisms whose genome was 

described in a string of bits. Also, the organisms were subjected to problems with 

differing degrees of difficulty. Finally, the fitness function for the organisms was not 

directly related to the organism’s ability to perform the desired task. By varying the 

difficulty level they were better able to describe the Baldwin Effect. Thus, they were 

able to demonstrate that the Baldwin Effect is contingent upon the organism’s ability to
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learn and the difficulty of the action to be learned. Furthermore, they showed that 

sexually reproducing organisms have a more pronounced Baldwin Effect than asexual 

organisms.

5.2 Displaying the Baldwin Effect in the Evolution of ANNs

While the Baldwin Effect and Lamarckism may be controversial in the biological 

context, they can be useful in simulation. The Baldwin effect is used by definition in the 

evolution of ANNs since fitness is determined after learning. “Both the Baldwin Effect 

and Lamarckism produce improvement over standard evolution” of ANNs. [10] Giraud- 

Carrier utilized the Baldwin Effect and Lamarckism in his experiments evolving ANNs. 

By determining fitness after learning and by altering the chromosomes prior to genetic 

recombination Giraud-Carrier showed that the Baldwin Effect and Lamarckism can be 

applied to ANNs with improvements to time and predictive accuracy for the problems 

considered. So, the reason the learned behavior is able to pass on through the generations 

is a balance between the benefits of being able to learn and the cost of such behavior. In 

order to observe these effects, it is necessary to create an environment in which learning 

is required.

Watson and Wiles presented further evidence of learning’s effect on evolution 

with ANNs. [27] Previous research showed genetic stagnation after correct behavior was 

achieved. The aim of their research was then to display the complete assimilation of the 

learned behavior by introducing a cost to learning. With this evidence, both of the
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significant aspects of the Baldwin Effect would be displayed. Their simulation consisted 

of organisms whose genome consisted of connection weights and learning rates within a 

single layer ANN. Again, fitness was determined after learning and the initial weights 

were passed rather than the learned weights. Mutation was only performed on the 

learning rates. After the first stage of the Baldwin Effect, in which a task is performed 

using learning, the researchers sought to display the second stage. The second stage of 

the Baldwin Effect states that after learning has provided the ability to perform a task, 

evolution will select those genomes that perform the learning quicker. After generations 

of selecting for faster learners, the behavior is eventually coded directly into the genome. 

In order to measure this transition the researchers employed two indirect methods. First, 

they observed the performance of the networks before and after learning each generation. 

When the observed performances converge, learning is no longer having an effect. 

Second, when the learning rates of the genome begin to fall, evolution has begun its 

transition into acquiring the learned behavior. Ironically, only after the entire population 

is made up of learning genomes does the cost of learning outweigh its benefits.

Previous research displaying the Baldwin Effect in ANNs focused on the weights 

alone. E. Boers, M. Borst, and I. Sprinkhuizen-Kuyper describe an algorithm that adapts 

weights and architecture. [3] Weights are adjusted through normal training methods. 

Unlike previous methods, the architectures of the networks are changed online. After a 

certain threshold of continuous sizeable weight changes, the algorithm determines that 

the structure is insufficient and adds nodes. In this way, learning can be used to change
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the weights and the structure of the ANN. Coupled with the Baldwin Effect, the result 

should be a network that can adapt to the environment faster than evolution alone

5.3 Learning and Evolution in ANNs

Other researchers feel that ANNs should evolve in simulation to biology and thus 

ignore the possibilities of Lamarckism. To determine the effects that learning can have 

on evolution, Nolfi, Elman, and Parisi restrict their research to Darwinian mechanisms. 

[18,19] Their research begins with an organism whose goal is to find and eat food in its 

environment. The organism is allowed to move through its environment in search of 

food and the organism’s fitness is a measure of the number of food pellets eaten divided 

by its number of actions. The organism makes decisions about where to move within its 

environment based upon the output of a feed forward ANN.
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Figure 13: Nolfi Elman & Parisi’s ANN
I

Nolfi, Elman, and Parisi began their research with a simulation that would 

determine if the simulated organism could evolve a behavior that would acquire lots of 

food with few actions. One hundred networks are initially assigned random weights and 

placed within an environment of food. After 20 epochs of interaction with the 

environment, genetic algorithms were performed on the networks. Since they were 

assigned random weights, some of the networks ate more food than others, thus 

improving their fitness. Twenty networks were chosen based on their amount of food 

consumption and each copied itself five times. Since the researchers performed no 

structural change to the networks, only the weights were transferred to their copies, or 

children. Mutation was performed by altering the weights of the children. Through 

mutation, crossover, and fitness selection, the networks did indeed evolve behaviors that 

solve a problem. The behavior was not taught explicitly, rather, it was the product of the
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evolutionary mechanism. Furthermore, mutation and fitness selection were both 

required. Without mutation, new strategies in the population would not have been 

possible. Likewise, without the fitness selection, the behavior would never improve.

The first simulation in their research was successful. They showed that evolution 

could be combined with ANNs to produce seemingly purposeful behavior. However, the 

behavior was the result of evolution alone, and did not require any learning during the life 

of the organism. Thus, in their next simulation they aimed to show the effects of life time 

learning on behavior after evolution. Since the researchers wanted to simulate nature as 

closely as possible, they refrained from providing any direct supervised learning. Rather, 

they allowed the networks to perform an instance of “self-supervised learning.” The 

ANN architecture was altered to allow the networks a way of predicting the next 

movement. (Figure 14) The network then used Back-propagation to change the weights 

to the motor outputs based upon the difference between the predicted sensory output and 

the actual sensory input. While the weight changes during the lifetime of the organisms 

were not passed on to their children, those organisms that performed better passed on the 

potential for such changes. This is a direct simulation of the Baldwin Effect in ANNs. 

Furthermore, the simulation with learning yielded better performances than the 

simulation without learning.
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Figure 14: Nolfi Elman & Parisi’s self-supervised ANN

Nolfi, Elman, and Parisi concluded that “the role of learning m evolution is that of 

a third evolutionary mechanism.” It is a mechanism that allows organisms to take their 

environment into account when solving problems. Reproduction is thus affected since 

learning creates more organisms with a high fitness. This should improve evolution 

because it makes the search more effective. However, as these researchers point out, the 

learned task must be positively related to the evolutionary pressures.

5.4 Evolving ANNs with a Predisposition to Learn

Nolfi, Elman, and Parisi also show that the inherited initial weights provide the 

ANN with a predisposition to learn the task they were evolved for. They show this by
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erasing the inherited initial weights and replacing them with random values. The ANNs 

were then allowed to learn the task. With random initial weights on all but the teaching 

neurons, the ANN’s performance remained constantly low throughout their life. 

Therefore, while the teaching connections were performing the same function, without 

the evolved initial weights, the network lacked the predisposition to learn. The weights 

provide a predisposition to learn by “enhancing the perceived differences within the 

current environment in order to allow learning to produce different adaptive 

changes.”! 18]

5.5 Optimizing ANNs using Evolution with Learning

Determining the proper ANN structure, initial weights and learning rates can be 

difficult, especially within unfamiliar environments. Convergence can be slow and very 

dependent on the initial weights, convergence on a global optimum is not guaranteed and 

there is no proven method for determining the size of the hidden layer. [6] Evolution has 

been shown to be a good mechanism for the global search of neural networks, but it fails 

to perform fine tuning. Researchers have combined evolution with local search 

techniques in order to improve the efficiency of .a given task and to seek out the elusive 

global optimum.

In order to use evolution to optimize a network to solve a task, Beliakov and 

Abraham employed standard evolutionary and learning techniques. [2] Evolution would 

find the region of the search space that includes the optimum and learning would
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optimize the network. The researchers began with a randomly generated population of 

ANN. This included the architecture and connection weights. The architecture was 

randomly created with one hidden layer that had a maximum of four neurons. The 

researchers restricted the network’s architecture due to the exponential increase in 

complexity with each increase in neurons. The ANNs were then trained using Back- 

propagation and other learning techniques. After the training session, each network was 

evaluated and a genetic algorithm was performed. Each learning technique applied 

different mutations. The mutations for Back-propagation included learning rates and 

momentum. After applying mutation, the offspring were produced to replace the poorly , 

performing networks of the generation. Training was performed followed by evolution 

until the optimal solution was found. The Meta-learning algorithm, as this method is 

called, performed well for finding near global minima on the error surface.

Castillo et al showed that combining Back-propagation with genetic algorithms 

can produce ANNs that “are smaller and achieve a higher level of generalization than 

other perceptron training algorithms and other evolutive algorithms.” [6] Unlike Meta- 

leaming, G-Prop has no restriction upon the size of the hidden layer. Further, G-Prop 

applies genetic algorithms to the initial weights only, and allows Back-propagation to 

train from the initial weights. The G-Prop algorithm can obtain a better solution than 

standard Back-propagation in comparable time.

The G-Prop algorithms selects ANNs based upon their classification accuracy and 

their number of hidden nodes. Thus, if two ANNs have the same classification accuracy
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the ANN with less hidden nodes would receive a higher fitness. This increases 

generalization and decreases computation time. Lamarckian principles were also 

employed by making one of the genetic operators carry over trained networks to the next 

generation. In fact, these researchers have been doing an extensive search for new 

genetic operators. While NEAT contains four genetic operators (neuron addition, 

connection addition, weight mutation, and crossover) G-prop contains six genetic 

operators (mutation, cross-over, neuron addition, neuron elimination, neuron 

substitution, and finally training).



6 EVOLVING ANNS TO LEARN

Research has shown that evolution can be used to design the artificial neural 

network. Previously, it has been used to evolve ANNs to solve a specific problem. Our 

research will show that evolution can be used to create an ANN that can adapt to solve 

any problem within the environment it was evolved in. This functionality is imperative 

for the future of artificial life, because organisms do not live in isolation. The world is 

always changing, and the ability to adapt to change will provide for more robust artificial 

life. We will show that evolution can be applied to design an artificial neural network 

that has the ability to adapt to drastic changes in its environment.

• 6.1 Designing a Better Network for Learning

• 6.2 Combining Evolution and Back-propagation

• 6.4 Altering NEAT and Back-propagations

• 6.5 Designing the Dynamic Environment

• 6.6 Evolving Learning Networks Algorithm
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6.1 Designing a Better Network for Learning

When deciding to use Back-propagation on a classification task, the first problem 

that must be addressed is the design of the ANN. Determining how many hidden nodes, 

hidden layers, initial weights, and learning rates has quantifiable effects upon the speed 

and accuracy of the Back-propagation algorithm. Attempts had been made to iteratively 

determine these values. A learning rate would be used for a certain amount of iterations, 

and then it would be altered based upon the networks convergence rate. This method of 

trial and error is too problematic and time extensive to be of real use. Ultimately, the 

researchers were searching for the optimum combination of variables. Evolutionary 

algorithms have been shown to be a promising searching mechanism for multiple 

unknowns. Thus, our research combines evolutionary algorithms and Back-propagation 

in order to design an ANN that is optimal for learning.

6.2 Combining Evolution and Back-propagation

Previous research has combined evolution and Back-propagation. However, this 

research was focused on improving the speed and accuracy of evolution. [29] Zhang 

states that evolution performs well for the global search and Back-propagation performs 

well for the local search. [29] While optimizing evolution is valid, it did not address the 

fundamental purpose of learning. Learning’s fundamental purpose is to facilitate 

adaptation to a changing environment. The Baldwin Effect describes learning as
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smoothing the fitness curve so that evolution can climb it with less difficulty. This 

difficulty arises when the environment changes. Thus, without a dynamic environment,
A

learning has little purpose. This is shown in the second aspect of the Baldwin Effect m 

which the genome acquires the traits as instinct that previously had to be learned. So, in 

order to find the optimum design for an ANN to use Back-propagation, evolution must 

take place in a dynamic environment.

Forcing an ANN to solve many problems drives evolution to optimize the ANN 

for learning. A network’s fitness in a changing environment such as this is based upon 

the network’s ability to learn. After many generations, the fittest network will be able to 

adapt to any problem in its environment. The result of this process is a network that will 

even be able to learn to solve problems it has never seen before. If an evolved network 

can learn to solve a problem it did not encounter during evolution faster and more 

accurately than a traditional fully connected layered network, we will conclude that 

evolution has produced an optimal learning network.

6.3 Altering NEAT and Back-propagation

(

ANNs perform best when solving classification problems. In order to determine 

whether a network could be evolved to learn many problems, we chose the problem of 

graphing high-degree polynomials. Graphing polynomials is an interesting application 

for this research because polynomials can be easily visualized and the error calculation is 

straightforward. Furthermore, by simply changing the degree of the polynomial it is
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possible to create varying degrees of complexity. Thus, we have named our evolving 

ANNs Polysolvers.

We used the NEAT algorithm as the basis for evolving the artificial neural 

networks. However, NEAT is not equipped with any supervised learning. Therefore, we 

modified the NEAT algorithm and its genome encoding in order to incorporate Back- 

propagation learning. We began by changing the genome encoding to include learning 

rates and initial weights. NEAT did not change the weights of the networks during their 

lifetimes, thus it had no reason to include learning rates, or to make the distinction 

between weights and initial weights. Kolen demonstrates that the initial weights have an 

affect on the speed and accuracy of Back-propagation. [14] Therefore, we store the 

connections’ initial weights in the genome rather than resetting the connections to 

random initial weights. Finally, we added a learning mechanism to the lifetime of our 

evolved networks.

The Back-propagation algorithm is designed for the traditional fully-connected 

layered networks. While Back-propagation works with varying number of layers, it 

cannot handle connections that pass over layers. Such connections are extremely 

common in evolved networks (Figure 15).



Pass-over Connection

Figure 15: Standard(left) vs. Evolved ANN(right)

In order to accommodate the possibility of pass-over connections within the Back- 

propagation algorithm, error cannot be calculated by layers. If we were to calculate the 

error by layers, we would ignore the error emitted by these pass-over connections. Thus, 

we have implemented a recursive error calculation. Starting from the output node’s error, 

the hidden node’s contribution to the error is determined by recusively moving through 

all possible connections. Each node’s connections’ weight is then modified by the 

product of the node’s input, error, and learning rate.
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Figure 16: Back-propagation of error in an evolved network

In Figure 16, A’s error would be based on the sum of C’s error and B’s error. However, 

since B is not an output node, its error would be based on the sum of C’s error and D’s 

error. This modified approach for error calculation of the Back-propagation algorithm 

can accommodate any combination of nodes and connections, including the standard 

fully connected layered network. After modifying NEAT and the Back-propagation 

algorithm, we were then able to begin evolving ANNs to learn.

6.4 Designing a Dynamic Environment
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The outcome of evolution is highly dependent upon the environment and the 

fitness function. The environment for our experiments was made up of different 

polynomials of the same degree. We evolved networks to learn to graph 3rd and 4th 

degree polynomials. However, many 4th degree polynomials have similar graphs to 2nd 

degree polynomials (Figure 15).

Figure 17: 2nd Degree v.v. 4th Degree

While the polynomials in Figure 17 have very different magnitudes, their complexity is 

very similar. ANNs performance is based on the problem’s complexity rather than its 

magnitude, thus it would not be surprising to find that the training time for an ANN 

would be similar for the 2nd degree and 4th degree. Thus, in order to evolve a network
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that can learn to solve all 4th degree polynomials it is important that we create an 

environment that takes into account the full complexity of the 4th degree 

polynomial^Figure 18).

Figure 18: Appropriately Complex 4th degree polynomial

Therefore, the appropriate environment of polynomials will vary within the complex form 

of the degree. However, there are variations on the complex form (Figure 19).
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Figure 19: Various appropriate fourth degree polynomials

6.5 Evolving Learning Networks Process

In order to create an environment that forces evolution toward learning rather than 

specializing, we set each Polysolver to the task of graphing five significantly different 

complex 3rd degree polynomials. Each Polysolver was given a certain number of 

iterations to learn to graph each polynomial. After each polynomial, each Polysolver’s 

weights were reset to the initial weights that are stored in their genome. Thus, the 

Polysolver’s lifetime is made up of the entire set of polynomials. After the population of 

Polysolvers has had a chance to learn to graph each polynomial, the Polysolver’s fitness 

is calculated. NEAT was then performed on the population based upon the calculated

fitness (Figure 20).
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After the Polysolver has had a chance to graph a polynomial for a preset amount 

of iterations, the Polysolver’s network is reset to the initial weights stored in its genome. 

This is important to the evolution of a learning network because it has been shown that 

Back-propagation is sensitive to the initial weights. [14] With the weights reset after 

each polynomial, the Polysolver is able to be evaluated upon its ability to graph each 

polynomial from the same starting point. Furthermore, the initial weights are stored in 

the Polysolver’s genome and thus get passed down to the following generation. When 

fitness is evaluated based upon the network’s ability to graph from a defined starting 

point, evolution is able to optimize a network to learn to graph any polynomial. Without 

a defined starting point, learning would actually be hampered by the modified weights 

since the weights from the previous polynomial have been specialized to that polynomial. 

The Baldwin Effect further emphasizes the need to reset the weights to an initial starting 

point. The Baldwin Effect states that evolution does not pass on learned behavior, rather 

it passes on the ability to learn.
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Figure 20: Evolving Learning Neural Networks Algorithm



Having created an environment that will focus evolution towards learning; the next step 

was to create an appropriate fitness function. Our desired outcome after evolution is an 

initial ANN, including hidden nodes, connections, learning rates and initial weights. This 

initial ANN should perform two functions. It should be able to leam to graph fourth 

degree polynomials accurately and quickly. Therefore, our fitness function is based upon 

the Polysolver’s ability to perform these two functions. However, evolution works best 

when it can improve incrementally. In order to allow evolution to work incrementally, 

the Polysolver’s fitness was first determined by its summed error from each polynomial. 

If the summed error for each polynomial is reduced to an acceptable level, then the 

fitness improves based upon the speed (Figure 21 ).

While (not at the end of the Polynomial set)

If (Polysolver’s error for this Polynomial is below the error threshold) 

Fitness += Success Bonus

+ Number of Iterations

- Time to Reach the Error Threshold

Else

Fitness += Success Bonus

- Total Error

Next Polynomial

Fitness = Fitness / (#Polynomials * (Success Bonus + # Iterations)) * 100

f
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Figure 21: Evolving Polysolver’s fitness function
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Total Error is the difference between the actual output set and the desired output set of 

each polynomial. This difference is summed to determine the Polysolver’s total error. 

Fitness is then determined by the difference between the Success Bonus and the Total 

Error. Thus, if the Polysolver has low Total Error, then it will obtain a high Fitness. 

However, since we are interested in reducing error and increasing speed, Fitness is 

increased when the Total Error reaches an acceptable level. Thus, Fitness is determined 

based upon the Number of Iterations that have been completed when the Total Error 

drops below the desired Error Threshold. When the Total Error drops below the Error 

Threshold, Fitness is equal to the sum of the Success Bonus and the difference between 

the Number of Iterations and the Time to Reach the Error Threshold. Thus, fitness 

improves when the Polysolver requires less time to reach the Error Threshold. Fitness is 

then normalized be dividing Fitness by the maximum fitness possible. We do not expect 

to achieve 100% Fitness. To achieve 100% Fitness, the network would have to be able 

graph each of the polynomials immediately. This is not a plausible scenario since each 

polynomial is significantly different. Since we expect to have to allocate some time for 

learning, achieving Fitness of 70% or higher would be considered successful. With this 

error function, speed is not optimized until error is reduced to acceptable levels. 

Furthermore, a network that improves speed-and accuracy will receive a higher Fitness 

than one that improves accuracy alone.

Once Fitness is determined, evolutionary algorithms can be performed. The 

Polysolvers who achieved high Fitness are allowed to remain in the following generation.
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Furthermore, the high performing Polysolvers are allowed to crossover with other high 

performing Polysolvers. In order to create diversity and innovation, a portion of the 

population will be mutated. New nodes and connections can be added to the Polysolver’s 

genome Furthermore, the initial weights and learning rates can be mutated by either 

adding or subtracting a small floating point number. The mutation of the initial weights, 

learning rates, and structure allow evolution to search for optimal conditions for learning. 

Therefore, evolution can be used to design a network that is better suited for learning.
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7 RESULTS AND ANALYSIS

By implementing the Evolving Learning Neural Networks Algorithm for graphing 

polynomials, we will show that evolution can be used to design ANNs that are better at 

learning to graph polynomials than the standard fully connected ANNs. Through a new 

mechanism, termed Incremental Evolution, we will determine whether stepwise evolution 

can be used to design ANNs to graph very complex polynomials. Finally, we will 

analyze the ANN’s ability to learn to graph polynomials of lesser complexity than those it 

was exposed to during evolution.

• 7.1 Evolution of a 3rd Degree Polysolver

• 7.2 Incremental Evolution

• 7.3 Backwards Compatibility

7.1 Evolution of a 3 d Degree Polysolver

We evolved a Polysolver for 3rd degree polynomials. During their lifetime, 

Polysolvers learn to graph the following complex 3rd degree polynomials:

• 2.0x3 - 6.0x2 + 3.0x - 2.0
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• 3.0x3 + 4.0 x2 - 4.0x + 3.0

• 1.7x3 - 5.0x2 + l.Ox + 2.0

• -1.4x3 + 4.8x2 - 3.0x - 0.5

• -1.4x3 - 4.5x2 - 3.0x + 2.4

We were expecting to achieve a fitness of 70% in order to consider our Polysolver 

successful. Surprisingly, fitness reached a saturation level of 80% after 775 generations 

(Figure 22). The resulting network has 6 hidden nodes and 13 connections (Figure 23). 

Each connection has an evolved initial weight and learning rate.

Generation

Figure 22: Evolution of a 3rd degree Polysolver
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Figure 23: ANN Evolved for 3,d 
degree polynomials
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Figure 24: Fully-Connected ANN

The 3rd degree Polysolver is able to graph each of the five polynomials in its lifetime 

within a total error of 3 units. However, success was not only dependant upon the ability 

to graph the third degree polynomials. In order to be truly successful, the Polysolver 

would need to accurately graph the five polynomials quickly. Since speed is relative to 

the problem, we compared the speed of the Polysolver to graph the 3rd degree polynomial 

with the traditionally designed fully-connected ANN. When the evolved network and the 

fully connected network were trained to graph a 3rd degree polynomial, the evolved 

network was able to achieve acceptable error (less than 3 units) 400 iterations faster than 

the fully connected network (Figure 25).
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Evolved...—  Fully Connected

Iteration

Figure 25: Evolved Network Vs Traditional Network 
on a 3rd degree polynomial involved in evolution: 

f(x) = 3xJ + 4x2 -4x +3

Evolution was able to determine a near optimal design including hidden nodes, 

connections, initial weights, and learning rates. Clearly the evolved design is more 

accurate and faster at graphing polynomials than the traditional design. However, is it 

more versatile than the traditional design? The previous results were based on a 

polynomial that was included in evolution. Therefore, it is not surprising that the evolved 

network would be good at graphing a polynomial that it was evolved to graph. Thus, a 

further test of the evolved network would include a polynomial that it did not encounter 

during evolution.

When the evolved network is compared to the traditional network on a previously 

unseen 3rd degree polynomial, the evolved network still outperforms the traditional 

network (Figure 26). On the previously unseen polynomial the evolved network was 

able to achieve acceptable error (less than 3 units) after 14 iterations, 60 iterations faster
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than the fully-connected network. Furthermore, it achieved a more accurate classification 

with only half the total error of the fully-connected network even after 800 iterations. 

Thus, we conclude that evolution can be used to design a faster, more accurate, and more 

versatile network than traditional design techniques.

X

Figure 26: Evolved Network Vs Traditional Network 
on a 3rd degree polynomial not involved in evolution: 

f(x) = 2x3 - 6x2 + 3x - 2

7.2 Incremental Evolution

In the previous section, we described the virtues of using evolution to design a 

network for learning to graph 3rd degree polynomials. However, when the Evolving 

Learning Neural Networks Algorithm was applied to a set of 4th degree polynomials, 

evolution required many more generations to achieve marginal fitness (Figure 27). After

1200 generations, the fitness remained at 60%.
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Figure 27: Evolution of a 4th degree Poly solver 
starting from minimal structure

As previously stated, evolution performs best under conditions in which it can 

improve its fitness incrementally rather than in spurts. If a network was first evolved to 

learn to graph 3rd degree polynomials and then evolved to learn to graph 4th degree, we 

hypothesized that it would take fewer generations to achieve high fitness than it would 

take to evolve from minimal structure. Therefore, rather than evolving the 4th degree 

Polysolver from a minimal structure, we began evolution from a population of previously 

evolved 3rd degree Polysolver (Figure 28).
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Figure 28: Structure of a 4th degree Poly solver
r dincrementally evolved from 3 degree Polysolvers

Figure 29: Incremental evolution of a 4th degree 
Poly solver starting from a population of 3rd degree 

Polysolvers
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The fitness level of 80% for 3rd degree Polysolver dropped to 50% when the network 

started to graph 4th degree polynomials. This is not surprising since the Polysolver had 

evolved the structure necessary to graph 3rd degree polynomials, which is less complex. 

However, after only 60 generations, the fitness level of the Polysolver rose to above 80%. 

This is a dramatic reduction in the number of generations compared to a Polysolver 

starting from a minimal structure. Incremental evolution achieved a fitness level of over 

80% in 1000 generations, while evolution from minimal structure only achieved a fitness 

level of 66% in 1200 generations.

To further study the effects of incremental evolution, we evolved a 4th degree 

Polysolver from a population of 2nd degree Polysolvers. Again, the fitness dropped from 

85% to 25% when presented with 4th degree polynomials (Figure 30). This drop was 

more dramatic than the drop resulting from a 3rd degree Polysolver being introduced with 

4th degree polynomials. This is a direct result of the 2nd degree Polysolver’s structure. 

Since 2nd degree polynomials are less complex than 3rd degree, the 2nd degree Polysolver 

is evolved to contain less structure. However, the number of generations required to 

achieve a high performing 4th degree Polysolver is comparable for 2nd and 3rd degree 

incremental evolution. Whether evolution began from 2nd degree or 3rd degree, the 

number of generations required to evolve a 4th degree Polysolver was approximately 

1000 generations. This is due to the fact that a 2nd degree Polysolver takes less 

generations (approximately 500) than the 3rd degree Polysolver (approximately 900), and 

therefore has more generations to evolve to the 4th degree. <



73

Polysolver starting from a population of 2nd degree 
Polysolvers

To complete our analysis of incremental evolution, we evolved a 4th degree 

Polysolver incrementally starting with 2nd to 3rd degree (Figure 31). As expected, there 

was a drop of fitness from the 2nd degree to the 3rd degree and again from the 3rd degree 

to the 4th degree (Figure 32). The result of incremental evolution through 2nd and 3rd 

degree was a high performing 4th degree Polysolver in approximately 200 less 

generations than the incremental evolution starting from either 2nd or 3rd degree. 

Incremental evolution achieved high performance in less generations because it was able 

to evolve a Polysolver for a less complex polynomial first and then build upon that 

structure. Since it is easier for evolution to find a high performing ANN to graph 2nd 

degree polynomials, it was able to evolve a high performing Polysolver more quickly. 

Then, it was able to utilize the evolved structure, learning rates, and initial weights to
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learn to graph 3rd degree polynomials. Since 3rd degree polynomials are less complex 

than 4th degree polynomials, the transition from 2nd to 3rd degree took less generations. 

Finally, evolving a Polysolver from 3rd to 4th degree was a less complex transition than 

2nd to 4th (Figure 31).

Figure 31: Structure of a 4th degree Poly solver 
incrementally evolved from 2nd and 3rd degree 

Polysolvers
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Figure 32: Incremental Evolution of a 4th degree 
Poly solver starting from 2nd to 3rd degree Poly solvers

Incremental evolution is clearly a major improvement in terms of the number of 

generations required to achieve high fitness. It allows for the evolution of more complex 

classification tasks by first evolving for less difficult tasks. The evolved 4th degree 

Polysolver was able to graph a 4th degree polynomial 1000 iterations faster than the fully 

connected network and did so with less error (Figure 33). We conclude that incremental 

evolution can be used to design a faster, more accurate, and more versatile network than 

traditional design techniques even on very complex tasks.
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Figure 33: Evolved Network vs Traditional Network 
on a 4th degree polynomial not involved in evolution 

f(x) = -2x 4 + x 3 + 3x2 + x - 1

7.3 Backwards Compatibility

We have shown that evolution can be used to evolve ANNs that are better at 

learning to graph polynomials. To extend this research, we were interested in the 

capacity of the ANN that has been evolved for learning. For instance, could it learn to 

graph polynomials of different degrees? Our hypothesis is that an evolved network 

would have the structure necessary to learn problems of lesser complexity but not 

problems of greater complexity. Thus, a network evolved to solve a 4th degree 

polynomial will be able to learn to graph a 3rd degree polynomial but not a 5th degree 

polynomial.
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As expected, the 3rd degree Polysolver was able to graph 2nd degree polynomials 

with very little error. Furthermore, it was able to graph the 2nd degree polynomial faster 

and more accurately than a fully connected network (Figure 34). However, the 3rd degree 

Polysolver was not able to graph a 4th degree polynomial as accurately as the fully- 

connected network (Figure 35). We believe this is the case because evolution only adds 

enough structure necessary to graph 3rd degree polynomials. With more structure, the 

time required to optimize the weights increases due to the increased number of weights. 

Thus, evolution does not select networks with more structure due to their lack of speed.

Evolved------- Fully Connected

Iteration

Figure 34: 3rd degree Polysolver vs Traditional 
Network on a 2nd degree polynomial 

f(x) = 1.5x2 - 5x + 2
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Figure 35: 3rd degree Polysolver vs Traditional 
Network on a 4th degree polynomial: 

f(x) = 1.7x4 + .3x3 - 4x2 - Ax

Furthermore, we expect an even better backwards compatibility when analyzing 

the incrementally evolved 4th degree Polysolver since it has experienced 3rd degree 

polynomials previously. As expected, the incrementally evolved 4th degree Polysolver 

was able to graph the 2nd and 3rd degree polynomials faster and more accurately than the 

fully-connected network (Figures 36 and 37). Moreover, the 4th degree Polysolver was 

not able to accurately graph a 5th degree polynomial (Figure 38). Again, this is due to 

evolution’s selection of only the minimal necessary structure.
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Figure 36: 4th degree Polysolver v.s' Traditional 
Network on a 3rd degree polynomial: 

f(x) = 2x3 - 6x2 + 3x • 2

Figure 37: 4th degree Polysolver vs Traditional 
Network on a 2nd degree polynomial: 

f(x) = 1.5x2 - 5x + 2
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Figure 38: 4th degree Polysolver vs Traditional 
Network on a 5th degree polynomial: 

f(x) = - l .lx 5 + 1.7x4 + 4.1x3-  4.2x2 - 1.4X + .6



8 CONCLUSION AND FUTURE WORK

There are many difficulties associated with designing artificial neural networks to 

use Back-propagation. Determining the number of hidden nodes, and even hidden layers 

has lead to many ad-hoc algorithms that deal with complexity analysis or simply trial and 

error. The goal of this research was to find a method for designing a network that could 

be used on many different learning tasks. This method would have to be able to 

determine the number of hidden nodes, initial weights, and the learning rates. 

Furthermore, the desired method would create a network that could be applied to any 

problem within the desired domain.

The Evolving Learning Networks Algorithm used in this research applied 

evolution to ANNs that use Back-propagation in a dynamic environment. By setting the 

fitness function based on the networks ability to solve an array of problems from the 

desired domain, the networks were forced to use learning. The ability to learn was then 

optimized by setting the fitness function to increase as the learning time decreased.

x.l_

When this method was applied with Incremental Evolution to 4 degree 

polynomials, evolution designed a network that could learn to graph any 4th degree 

polynomial, even those it had not experienced during evolution. To measure evolution’s

81
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ability to design networks that learn, the best performing network was compared to the 

traditionally designed fully connected layered network. The evolved design 

outperformed the traditional design in speed and accuracy. Furthermore, the network 

evolved on an environment of 4th degree polynomials outperformed the standard design 

on 3rd and 2nd degree polynomials as well. This shows that these networks are evolved to 

learn complex tasks rather than specializing on a specific task. We expect that these 

results will generalize towards further degrees of complexity. Thus, the best method of 

creating a Polysolver to graph any polynomial would be to start with 2nd degree and 

incrementally evolve the subsequent degrees. The ability to learn complex tasks while 

retaining the ability to learn less complex tasks should improve artificial neural network’s 

contribution to the field of artificial life.

Future work could include an analysis of the structures and values that evolution 

finds for other supervised learning tasks. This could include problems that require many 

input and output nodes, or problems with small or large training sets. With analysis on 

these many different tasks, it may be possible to define what makes a network better at 

learning on a case by case basis. From that knowledge, we could create a procedure for 

designing ANNs depending on the number of input and output nodes, the task’s 

approximate complexity, and the training set.

While the Back-propagation algorithm is very powerful when using supervised 

learning, there are many applications where the desired output is not known. Such 

unsupervised learning tasks typically use the Hebbian learning algorithm. Networks that
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use Hebbian learning have many of the same design issues as networks that use Back- 

propagation. Since Hebbian learning more closely simulates the mechanisms for learning 

used in the brain, research into evolving ANNs for unsupervised learning would be a very 

exciting addition to the field of artificial life. With the new knowledge of evolution’s 

ability to design a better supervised learning network, it probably could also be used to 

design an unsupervised learning network as well.



APPENDIX

#include "CController.h 
#include <stdlib.h> 
#include <ctime>

/ /
// initilaize the PolySolvers, their brains and the GA facto
/ /

CController::CController(HWND hwndMain,
int cxClient, 
int cyClient):

m_NumPolySolvers(CParams::iPopSize),

m_hwndMain(hwndMain), 

m_iGenerations(0),

m_bFastRender(false) , 

m_bRenderFCWeights(false)

m_hwnd!nfo(NULL),

m_cxClient(cxClient), 
m_cyClient(cyClient),

TurnOffRenderWeights() ;
RenderFCWeightsToggle() ;

CParams::iCurrentTick = 0;

m_CurrentPolynomial = 0;
if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedGenome.CreateFromFile(CParams:rcFileName);

//create the network
CNeuralNet* net = m_EvolvedGenome.CreatePhenotype()

//insert the brain
m_EvolvedSolver.InsertNewBrain(net);
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m_EvolvedSolver.Born(); 
m_EvolvedSolver.EraseMemory();

}
if(CParams:rbStatic)
{

/ /  c r c a  t o  t h e  ru 11 y  co n n ec tc -d  g e n o ty p c : 
m_FullyConnectedGenome = CGenome( -1,

CParams::iNumlnputs,

CParams::iNumHiddens,

CParams::iNumOutputs);

//set the depth
m_FullyConnectedGenome.SetDepth(3);

//create the network
CNeuralNet* net = m_FullyConnectedGenome.CreatePhenotype()

//insert the brain
m_FullyConnectedSolver.InsertNewBrain(net); 
m_FullyConnectedSolver.Born(); 
m_FullyConnectedSolver.EraseMemory();

}

if(CParams::bEvolving)
{

//leu s create the Pol/Solvers
for (int i=0; i<m_NumPolySolvers; ++i)
{

m_vecPolySolvers.push__back(CPolySolver());

}

//create the gencti^pes
m_pPop = new Cga( CParams::iPopSrze,

CParams::iNumlnputs, 
CParams::iNumOutputs)

//create the phenotypes
vector<CNeuralNet*> pBrains = m pPop->CreatePhenotypes();

//assten the phenotypes
for (i^O; i<m_NumPolySolvers; i++)
{

m_vecPolySolvers[i].InsertNewBrain(pBrains[i]); 
m_vecPolySolvers[i].Born(); 
m_vecPolySolvers[i].EraseMemory();

}
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//and the vector o£ PoLySoivers mich writ hoLd trie best 
p errorni ng ? o 1 y S o 1 v e r s

for (i=0; i<CParams::iNumBestPolySolvers; ++i)
{

m_vecBestPolySolvers.push_back(CPolySolver()); 
m_vecBestPolySolvers[i] .InsertNewBrain(pBrains [i]) ; 
m_vecBestPolySolvers[i].Born(); 
m_vecBestPolySolvers[i].EraseMemory();

}
}

//create a pen for 
m_BluePen 
m_RedPen =
m_GreenPen =
m_GreyPenDotted = 
m_RedPenDotted =

the graph d"':awi ng
CreatePen (PS,_SOLID, 1, RGB (o, 0, 255))
CreatePen (PS,_SOLID, 1 , RGB (255, 0, 0) )
CreatePen (PS._SOLID, 1 , RGB (0, 255, 0) )
CreatePen (PS._DOT, 1, RGB(100, 100, 100
CreatePen (PS._DOT, 1, RGB(2 00, 0, 0)i ) ;

m_01dPen = NULL;

//and the brushes
m_BlueBrush = CreateSolidBrush(RGB(0,0,244)); 
m_RedBrush = CreateSolidBrush(RGB(150,0,0));

destructor

CController::-CController()
{

i f (CParams::bEvolving)
{

if (m__pPop)
{

delete m. pPop;
}

}

DeleteObject(m_BluePen); 
DeleteObject(m_RedPen) ; 
DeleteObject(m_GreenPen); 
DeleteObj ect (m__OldPen) ; 
DeleteObject(m_GreyPenDotted); 
DeleteObject(m_RedPenDotted); 
DeleteObject(m_BlueBrush); 
DeleteObject(m_RedBrush);

initial ire
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/ > Setup Lnc polynomials
/ /

void CController::Initialize()
{

//solutoon stores the x -> y mapping 
SInputOutput solution;
//solutionVector stores all the x -> y mappings 
vector<SInputOutput> solutionVector; 
double i;
string polynomial;

if(CParams:rbFirstDegree)
{

polynomial = "First Degree";
for(int numPolys = 0; numPolys < 5; numPolys++)
{

double a = 5 *RandomClamped'i() ; 
double b = 5*RandomClamped() ;

for(i = -10; i <= 10; i++)
{

solution.input = i; 
solution.output = b*i + a; 
solutionVector.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector, 
polynomial));

solutionVector.clear() ;
CParams::iNumPolynomials++;

}
}

if(CParams::bSecondDegree)
{

polynomial = "Second Degree";
double arrayA[5] = { 0.5, 0.5, 0.5, -0.5, -1.0);
double arrayB[5] = { -4.0, 4.0, 0.0, 2.5, -4.0};
double arrayC[5] = { 2.0, 2.0, 0.0, 1.0, 1.0};

for(int numPolys =' 0; numPolys < 5; numPolys++)
{

double a = arrayA[numPolys] ; 
double b = arrayB[numPolys] ; 
double c = arrayC[numPolys];

for(i = -10; i <= 10; i++)
{

solution.input = i;
solution.output = a*i*i + b*i + c;
if(solution.output > 10 I I solution.output < -

{

}
continue;



}
solutionVector.push_back(solution);

m_vecPolynomials .push_back (CPolynomial (solutionVector, 
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials + +;

}
}

if(CParams::bThirdDegree)
{

polynomial = "Third Degree";
double arrayA[5] = { 3.0, 3.0, 1.7, -1.4, -1.4);
double arrayB[5] = { 4.0, 4.0, -5.0, 4.8, -4.5);
double arrayC[5] = (-4.0, -4.0, 1.0, -3.0, -3.0);
double arrayD[5] = (-3.0, 3.0, 2.0, -0.5, 2.4);

for(int numPolys 
{

double a = 
double b = 
double c = 
double d =

= 0; numPolys < 5; numPolys++)

arrayA[numPolys]; 
arrayB[numPolys]; 
arrayC[numPolys]; 
arrayD[numPolys];

for(i = -5; i <= 5; i+=.25)J
{

solution.input = i;
solution.output = a*i*i*i + b*i*i + c*i + d; 
if(solution.output > 10 |] solution.output <

{
continue;

}
solutionVectpr.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector, 
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials++;

}
}

if(CParams::bFourthDegree)
{

polynomial = "Fourth Degree";
double arrayA[5] = { 1.7, 3.0, 1.0, -2.0, -2.0}
double arrayB[5] = { 0.3, 3.0, -0.6, -0.5, 0.8}
double arrayC[5] = (-4.0, -5.0, -3.5, 5.0, 5.0}
double arrayD[5] = (-0.4, -1.0, -1.1, -1.0, -0.9}
double arrayE[5] = { 0.0, 4.0, 3.5, 0.0, -1.4}

for(int numPolys = 0; numPolys < 5; numPolys++)
{

double a = arrayA[numPolys]; 
double b = arrayB[numPolys];
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double c = arrayC[numPolys]; 
double d = arrayD[numPolys]; 
double e = arrayE[numPolys];

for(i = -5; i <= 5; i+=.25)
{

solution.input = i;
; solution.output = a*i*i*i*i + b*i*i*i + c*i*i + 

if(solution.output > 10 | j solution.output < - 

{
continue ;

}
solutionVector.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector, 
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials++;

}
}
if(CParams::bFifthDegree)
{

polynomial = "Fifth Degree";

for(int numPolys 
{

double a = 
double b = 
double c = 
double d = 
double e = 
double f =

= 0; numPolys < 5; numPolys++)

5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();
5*RandomClamped();

+ d*(i*i*i) 

10)

for(i = -5; i <= 5; i+=.5)
{

solution.input = i;
solution.output = (f*(i*i*i*i*i) + e*(i*i*i*i) 

+ c*i*i + b*i + a);
if(solution.output > 10 || solution.output < - 

{
continue;

}
solutionVector.push_back(solution);

}

m_vecPolynomials.push_back(CPolynomial(solutionVector, 
polynomial));

solutionVector.clear();
CParams: :iNumPolynomials++;

}

}
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This is the main workhorse. The entire simulation is controlled 
from here.

bool CController::Update()
{

if( m_CurrentPolynomial < m_vecPolynomials.size())
{

//run the sweepers through NUM__TICKS amount of cycles. 
During this loop each

//sweepers NN is constantly updated with the appropriate 
informat i on f r ora i t s

//surroundings. The output from the NN is obtained and the 
sweeper is moved.

if(CParams::iCurrentTick++ < CParams::iNumTicks)
{

if(CParams::bFromFile && !CParams::bEvolving)
{

//update the NN of the evolved solver

m_EvolvedSolver.Update(m_vecPolynomials[m_CurrentPolynomial], 
m_CurrentPolynomial);

}
if(CParams::bEvolving)
{

//update the NNs of this genereation 
for (int i = 0; i < m_NumPolySolvers; ++i)
{

//update the NN and position

m_vecPolySolvers[i].Update(m_vecPolynomials[m_CurrentPolynomial], 
m_CurrentPolynomial);

}

//update the NNs of the last generations best-
performers

for (i=0; i<m_vecBestPolySolvers.size(); ++i)
{

//update the NN and position

m_vecBestPolySolvers[i].Update(m_vecPolynomials[m_CurrentPolynomi 
al], m_CurrentPolynomial);

}
}
if(CParams:rbStatic)
{

//update the NN of the fully connected solver

m_FullyConnectedSolver.Update(m_vecPolynomials[m_CurrentPolynomia 
1] , m_CurrentPolynomial) ;

}
/ / c 1 e a r i n f o w i n d o w
InvalidateRect(m_hwndlnfo, NULL, TRUE);
UpdateWindow(m_hwndlnfo);
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}
else
{

if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedSolver.EraseMemory();
}
if(CParams::bEvolving)
C

for (int polysolver=0;
polysolver<m_vecPolySolvers.size(); ++polysolver)

{

m_vecPolySolvers[polysolver].EraseMemory();
}
for ( polysolver=0;

polysolver<m_vecBestPolySolvers.size(); ++polysolver)
{

m_vecBestPolySolvers[polysolver].EraseMemory();
}

}
if(CParams::bStatic)
{

m_FullyConnectedSolver.EraseMemory();
}

/ / nout. Po 1 ynomJ a 1 
m_CurrentPolynomial++ ;
//reset cycles
CParams::iCurrentTick = 0;

}
}

//We have completed another generation so now we need to run the 
GA

if( m__CurrentPolynomial >= m_vecPolynomials.size())
{

//add to each PolySolvers! fitness scores.
//then reset their weights 
if(CParams::bEvolving)
{

for (int polysolver=0;
polysolver<m_vecPolySolvers.size(); ++polysolver)

{

m_vecPolySolvers[polysolver].EndOfRunCalculations();
} ^
//Output the species information 
m__pPop->OutputPerGeneration () ;

//Evaluate the generation
//Sat up the spaeies Fcr genetic algorithms 
m pPop->Evaluate(GetFitnessScores());

' //perform an eooch and gsab the new brains
vector<CNeuralNet*> pBrains = m_pPop->Epoch();
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/ / I n s e r t :  f:l'ic:̂  n ew  b r a i n s  i n t o  t h e  P o l . v i o  ■ -vs 
/  / R e  s  e v. t 1: e  i r f  i t: r i e  o : ■
for (int i=0; i<m_NumPolySolvers; + + i)
{

ra_vecPolySolvers[i].InsertNewBrain(pBrains[i]);

m_vecPolySolvers[i].Born(); 
m_vecPolySolvers[i].EraseMemory(); 
m_vecPolySolvers[i].ResetFitness();

}

//Grab the NNs of the best performers from the last
generation

//Put them into our record of the best PolySolvers 
vector<CNeuralNet*> pBestBrains - m_pPop- 

>GetBestPhenotypesFromLastGeneration();
for (i = 0; i<m_vecBestPolySolvers.size(); ++i)
{

m_vecBestPolySolvers[i].InsertNewBrain(pBestBrains[i]);
m_vecBestPolySolvers[i].Born(); 
m_vecBestPolySolvers[i].EraseMemory();

}
if(CParams::bStatic)
{

//Add to the fully connected1s fitness score

m_FullyConnectedSolver.EndOfRunCalculations();
/*
//Output the fully connected PolySolver1s fitness 
ofstream fout;
fout.open("fitness.dat”, ios::app}; 
fout «  CParams::iCurrentTick << endl; 
fout.close(};

//reset the fully connected PolySolver’s brain 
m_Fu11yConnec t edSo1ver.Born() ;

//crea te the fully connected genotype
m_FullyConnectedGenome = CGenome( -1,

CParams::iNumlnputs,

CParams::iNumHiddens,

CParams::iNumOutputs);

/ / s e t t h e d e p t h
m_FullyConnectedGenome.SetDepth(3);
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/  /  c r  e a  t  e  c hie n e  t w o r  k  
CNeuralNet* net =

m_FullyConnectedGenome.CreatePhenotype();

m_FullyConnectedSolver.InsertNewBrain(net); 
m_FullyConnectedSolver.Born(); 
m_FullyConnectedSolver.EraseMemory();

}

if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedSolver.EndOfRunCalculations(); 

m_EvolvedGenome.CreateFromFile(CParams::cFileName);

/  / c r e a. t e t h e n e t w o r k.
CNeuralNet* net = m_EvolvedGenome.CreatePhenotype();

/ / i n s e r t t h e b r ¿a i n
m_EvolvedSolver.InsertNewBrain(net); 
m_EvolvedSolver.Born(); 
m_EvolvedSolver.EraseMemory(); 
m_EvolvedSolver.ResetFitness();

}
//increment the generation counter 
++m_iGenerations;
//reset the polynomial 
m_CurrentPolynomial = 0;
/ / r e s e t c. y c 1 e s
CParams::iCurrentTick = 0;
/ / c I ear i n f o wi.ndow
InvalidateRect(m_hwndInfo, NULL, TRUE);
UpdateWindow(m_hwndInfo);

}
if(CParams: :bEvolving)
{

if(m pPop->BestCurrentFitness() > CParams::iTargetFitness) 
return false;

else
return true;

}
}

//-----------------------------------  RenderNetworks ------------------

// Renders the best four phenotypes from the previous generation 
//............... -..-....... -.........................................

void CController: :RenderNetworks(HDC &surface)
{

//Draw the network of the best 4 genomes.
/ / F i r s> f. g e t t he d i men s; i. o n s o f the i n f o w i n dow 
RECT rect;
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GetClientRect(m_hwndlnfo, &rect) ;

int cxlnfo = rect.right;
int cylnfo = rect.bottom;

string s;
s = "Best Solvers";
TextOut(surface, 150, 5, s.c_str(), s.size());

/ / now a raw the t oest netwoxxs
if(CParams::bFromFile && !CParams::bEvolving)
{

m_EvolvedSolver.DrawNet(surface, 0, cxInfo/2, cyInfo/2, 0);
}
if(CParams::bEvolving)
{

m_vecBestPolySolvers[0].DrawNet(surface, 0, cxInfo/2,
cylnfo/2, 0);

m_vecBestPolySolvers[1].DrawNet(surface, cxInfo/2, cxlnfo, 
cylnfo/2, 0);

m_vecBestPolySolvers[2].DrawNet(surface, 0, cxInfo/2, 
cylnfo, cyInfo/2);

}
if(CParams::bStatic)
{

ra_FullyConnectedSolver.DrawNet(surface, cxInfo/2, cxlnfo, 
cylnfo, cyInfo/2);

}
}

// Renders the best four phenotypes from the previous generation 
/ /---------------------------------------------------------------------

void CController:;RenderFCWeights(HDC &surface)
{

//Draw the network of the best 4 genomes.
//First get the dimensions of the info window 
RECT rect;
GetClientRect(m_hwndInfo, &rect);

int cxlnfo = rect.right;
int cylnfo = rect.bottom;

string s;
s = "Connections Weight Init Weight Learning

Rate";
TextOut(surface, 10, 5, s.c_str(), s.size()); 

s = "From To";
TextOut(surface, 10, 35, s.c_str(), s.size()); 

int y = 50;
for(int i = 0; i < m_FullyConnectedSolver.ItsBrain()- 

>ItsLinks().size(); i++)
{
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s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]- 
>pIn->iNeuronID)

+ " ->
+ ftos (m__FullyConnectedSolver. ItsBrain {) ~

>ItsLinks()[i]->pOut->iNeuronID);
TextOut(surface, 20, y, s.c_str () , s.sizeO);

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]-
>dWeight);

TextOut (surf ace, 110, y, s.c_str(), s.sizeO);

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]- 
>dInitialWeight);

TextOut (surface, 190, y, s.c_str(), s.sizeO );

s = ftos(m_FullyConnectedSolver.ItsBrain()->ItsLinks()[i]- 
>dLearningRate);

TextOut (surface, 3 00, y, s.c_str(), s.sizeO);

y += 20;
}

y += 20;
s = "Neuron Output";
TextOut (surface, 15, y, s.c_str(), s.sizeO); 
y += 15;
for(i =0; i < m_FullyConnectedSolver.ItsBrain()- 

>ItsNeurons().size(); i++)
{

s = ftos(m_FullyConnectedSolver.ItsBrain()- 
>ItsNeurons()[i]->iNum)ii _ H

+ ftos(m_FullyConnectedSolver.ItsBrain()- 
>ItsNeurons()[i]->dOutput);

TextOut (surface, 35, y, s.c_str(), s.sizeO);

y += 20;
}

}
/ /----------------------------------- PenderNet'works--------------

/ /
// Renders the best fou“̂ phenotypes rrorri the previous generation 
/ /-------------------------------- ---------------------------------

void CController::RenderWeights(HDC ¿surface)
{

//Draw the network or the best £ genoires.
//First get the dinensions of the info window 
RECT rect;
GetClientRect(m_hwndInfo, ¿rect);
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int cxlnfo = rect.right; 
int cylnfo = rect.bottom; 
int i = 0 ; 
int y = 0 ; 
string s;
s = "Connections Weight Init Weight Learning

Rate";
TextOut(surface, 10, 5, s.c_str(), s.sizef)); 

s = "From To";
TextOut(surface, 10, 35, s.c_str(), s.size()); 

y = 50;
for(i =0; i < m_vecBestPolySolvers[0].ItsBrain()- 

>ItsLinks().size(); i++)
{

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]- 
>pIn->iNeuronID)

+ " ->
+ ftos(m_vecBestPolySolvers[0].ItsBrain()- 

>ItsLinks()[i]->pOut->iNeuronID);
TextOut(surface, 20, y, s.c_str(), s.sizef));

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]-
>dWeight);

TextOut (surface, 110, y, s.c_str () , s.sizeO);

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]- 
>dInitialWeight);

TextOut (surface, 190, y, s.c_str(), s.sizeO);

s = ftos(m_vecBestPolySolvers[0].ItsBrain()->ItsLinks()[i]- 
>dLearningRate) ;

TextOut (surface, 3 00, y, s.c_str () , s.sizeO);

y += 20;
}

y += 20;
s = "Neuron ^ Output";
TextOut(surface, 15, y, s.c_str(), s.sizef));
Y += 15;
for(i =0; i < m_vecBestPolySolvers[0].ItsBrain()- 

>ItsNeurons().size(); i++)
{

s = ftos(m_vecBestPolySolvers[0].ItsBrain()- 
>ItsNeurons{)[i]->iNum)

+ "
+ f tos (m__vecBestPolySolvers [ 0 ] . ItsBrain ( ) - 

>ItsNeurons()[i]->dOutput);

TextOut (surface, 35, y, s.c_str(), s.sizeO);

y += 20;
}
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Output Network. " ;
15, y, s.c.str(), s.size{)};

vecBes tPo 1 ySo 1 vers [ 0 ] . 11sBrain ( ) - 
+ )

_CurrentPolynomial] .m_vecInput.OutputPairs [i] . inp

ftos(m_vec Polynomi a1s[m.CurrentPolynomial] .m_vecInputOutputPairs[i] .out
put)

+ ftos(m_vecBestPolySolvers[0].ItsBrain()-
>ItsOutput()[i]);

TextOut(surface, 35, y, s.c_str(), s.size()); 

y += 20;

/ * y + = À 0 ;

TextOut(surface, 
y += 15;
for(i = 0 ; i < m_ 

>11 s Output ( ) .size() ; i + 
{

ftos(m_vec Po1ynomi a1s [m 
ut)

*/

}

/ ///------------------------------------------------------

void CController::Render(HDC ¿surface)
{

//do not render if running at accelerated speed 
if (!m_bFastRender)
{

string s = "Generation: " + itos(m_iGenerations);
TextOut(surface, 5, 0, s.c_str(), s.sizeO);

s = "Time left: 
CParams: :iCurrentTick) ;

TextOut(surface,

+ itos(CParams: :iNumTicks 

5, 20, s.c_str(), s.sizeO ) ;

s = "Evolved";
TextOut(surface, 70, 80, s.c_str(), s.sizeO);

s = "Fully Connected";
TextOut(surface, 250, 80, s.c_str(), s.sizeO);

//select in the blue pen
m_OldPen = (HPEN)SelectObject(surface, m_BluePen);

if(CParams::iCurrentTick > 0)
{

//render the axis 
RenderAxis(surface);
//render the polynomia1s 
RenderPolynomial(surface);
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if(CParams::bFromFile && !CParams::bEvolving)
{

//render the best PolySolver from the previous
generation

RenderPolySolvers(surface, m_EvolvedSolver, 1);
}
if (CParams: :bEvolving)
{

//render the best PolySolver from the previous
generation

RenderPolySolvers(surface, 
m_vecBestPolySolvers[0], 1);

}
if(CParams:rbStatic)
{

//Render the fully connected solver 
RenderPolySolvers(surface, 

m_FullyConnectedSolver, 3);
}

}

}//end i f

else
{

if(CParams::bEvolving)
{

PlotStats(surface);

RECT sr;
sr.top = m_cyClient-50; 
sr.bottom = m_cyClient; 
sr.left = 0; 
sr.right = m_cxClient;

//render the species chart 
m pPop->RenderSpecies!nfo(surface, sr);

}

}

}
//-----------------------------------Render A x i s ------------
/ /
// Renders the four Axis

void CController : : RenderAxis (HDC ¿¿surface)
{

TextOut(surface, 150, 5,
m_vecPolynomials[m_CurrentPolynomial].m_sPolynomial.c_str(), 
m_vecPolynomials[m_CurrentPolynomial].m_sPolynomial.size());

int StartX; 
int StartY; 
int EndX; 
int EndY;
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//create some pens and brushes to draw with
HPEN GreyPen = CreatePen(PS_SOLID, 1, RGB(200, 200, 200)); 
HPEN RedPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0)); 
HPEN GreenPen = CreatePen(PS_SOLID, 1, RGB(0, 200, 0));
HPEN OldPen = NULL ;

/ / c r e a t e a s o 1 i d b r u s h
HBRUSH RedBrush = CreateSolidBrush(RGB(255, 0, 0) ) ;
HBRUSH OldBrush = NULL;

OldPen = (HPEN) SelectObject(surface, RedPen);
OldBrush = (HBRUSH)SelectObject(surface,

GetStockObject(HOLLOW_BRUSH));

SelectObject(surface, GreenPen);

//render the evolved network's axis
StartX = CParams:: InfoWindowWidth / 4 - 100,
StartY = CParams:: InfoWindowHeight / 2 ;
EndX = CParams:: InfoWindowWidth / 4 + 100,
EndY = CParams:: InfoWindowHeight / 2;

//draw the y Axis
MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY);

StartX = CParams: : InfoWindowWidth / 4;
StartY = CParams ::InfoWindowHeight / 2 - 90;
EndX = CParams ::InfoWindowWidth / 4;
EndY = CParams ::InfoWindowHeight / 2 + 90;

//draw the x Axis
MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY);

//render the fully connected network’s axis
StartX = CParams:: InfoWindowWidth / 4 * 3 - 9 0
StartY = CParams:: InfoWindowHeight / 2;
EndX = CParams:: InfoWindowWidth / 4 * 3 + 90
EndY = CParams:: InfoWindowHeight / 2;

//draw the y Axis
MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY);

StartX = CParams: : InfoWindowWidth / 4 * 3;
StartY = CParams:: InfoWindowHeight / 2 - 90
EndX = CParams:: InfoWindowWidth / 4 * 3;
EndY = CParams: : InfoWindowHeight / 2 + 90

//draw the x Axis
MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY);
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//cleanup
SelectObject(surface, OldPen);
SelectObject(surface, OldBrush);

DeleteObject(RedPen);
DeleteObject(GreyPen);
DeleteObject(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObject(OldBrush);

}
//--------------------------------- Rende r S o 1 u t. i on

/ /
// Renders the actual output of the polynomial

void CController: :RenderPolynomial(HDC ¿surface)
{

double StartX; 
double StartY; 
double EndX; 
double EndY;

//create some pens and brushes to draw with
HPEN RedPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));
SelectObject(surface, RedPen);

for (int point=0;
point<m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs.size( 
)-1 ; ++point)

{
StartX = CParams: : InfoWindowWidth / 4 

+
m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point].inpu 
t

* 25;
StartY = CParams::InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point].outp 
ut

* 10;

EndX = CParams: : InfoWindowWidth / 4 
+

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].in 
put

* 25;
EndY = CParams: : InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].ou 
tput

* 10;

//draw the link
MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY);
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}
for (point=0;

point<m__vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs.size( 
)-1; ++point)

{
StartX = CParams: : InfoWindowWidth / 4 * 3 

+
m_vecPolynomials[m_CurrentPolynomial].m_veclnput0utputPairs[point].inpu 
t

* 25;
StartY = CParams: : InfoWindowWidth / 2

m_vecPolynomials[m__CurrentPolynomial].m_vecInputOutputPairs[point].outp 
ut

* 10;

EndX = CParams: : InfoWindowWidth / 4 * 3 
+

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].in 
put

* 25;
EndY = CParams: : InfoWindowWidth / 2

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].ou 
tput

* 10;

//draw the 1i nk
MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY);

DeleteObject(RedPen);
}

/ /
/'/ Renders the best phenotype from the previous generation 
/ /------------------------------------------------------------------------

void CController::RenderPolySolvers(HDC &surface, CPolySolver 
PolySolver, int Multiplier)
{

double StartX; 
double StartY; 
double EndX; 
double EndY;

//create some pens and brushes to draw with
HPEN BluePen = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
SelectObject(surface, BluePen);

for (int point=0;
point<m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs.size( 
)-1; ++point)

{
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StartX = CParams::InfoWindowWidth / 4 * Multiplier 
+

m_vecPolynomials[m_CurrentPolynomial].m_vec!nputOutputPairs[point].inpu
t

StartY =

>ItsOutput()[point]

* 25;
CParams::InfoWindowWidth / 2

- PolySolver.ItsBrain()-

* 10;

EndX = CParams::InfoWindowWidth / 4 * Multiplier 
+

m_vecPolynomials[m_CurrentPolynomial].m_vecInputOutputPairs[point+1].in 
put

* 25;

EndY = CParams::InfoWindowWidth / 2
- PolySolver.ItsBrain()-

>ItsOutput()[point+1]
* 10;

//draw the link
MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY);

}

//cleanup
DeleteObject(BluePen);

}

// Given a surface to draw on this function displays some simple stats 
//------------------------------------------------------------------------

void CController::PlotStats(HDC surface)
{

string s;

s = "Best Fitness so far: " + ftos(m pPop->BestEverFitness());
TextOut(surface, 5, 5, s.c_str(), s.size());

s = "Previous Generation Fitness: " + ftos(m_pPop-
>BestCurrentFitness());

TextOut(surface, 5, 25, s.c_str(), s.size());

s = "Generation: " + itos(m_iGenerations);
TextOut(surface, 5, 45, s.c_str(), s.size());

s

}

Num Species: " + itos(m_pPop->NumSpecies());
TextOut(surface, 5, 65, s.c_str(), s.size());

/ /--- GetFitnessScore s
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/ /
// returns a std:¡vector containing the genomes fitness

vector<double> CController::GetFitnessScores()const
{
vector<double> scores;

for (int i=0; i<m_vecPolySolvers.size(); ++i)
{

scores.push_back(m_vecPolySolvers[i].Fitness());
}
return scores;

scores



104

#include "phenotype.h

#include <math.h> 
#include <stdlib.h>

...... S i gmo i d f unc t i on -

double Sigmoid(double netinput, double response)
{

return ( 1 / ( 1 + exp(-netinput / response)));
}

void CNeuralNet: :BinaryConversion(int realNumber)
{

int remainder;

if(realNumber <= 1)
{

m_RecursiveVar = 7-m_RecursiveVar; 
m_iBinaryNumber[m_RecursiveVar] = realNumber;
m_RecursiveVar++; 
return;

}
m_RecursiveVar++; 
remainder = realNumber%2;
BinaryConversion(realNumber >> 1); 

m_iBinaryNumber[m_RecursiveVar] = remainder ;
m_Recurs iveVar+ + ;

}

int CNeuralNet::RealNegativeConversion()
{

int digit = 7;
while(m_iBinaryNumber[digit] == 0)
{

m_iBinaryNumber[digit] = 1;
digit--;

}
m__iBinaryNumber [digit ] = 0;

for(int i = 0; i < 8; i++)
{

m_iBinaryNumber [ i ] = ! m__iBinaryNumber [ i ] ;
}

int realOutput = 0;
for(digit = 0; digit < 8; digit++)
{

double NeuronOutput = m_iBinaryNumber[7-digit]; 
NeuronOutput *= pow(2, digit); 
realOutput += NeuronOutput;

}
return -realOutput;
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}
int CNeuralNet: :RealConversion()
{

int realOutput = 0;
for(int digit = 0; digit < 8; digit++)
{

double NeuronOutput = m_iBinaryNumber[7-digit]; 
NeuronOutput *= pow(2, digit); 
realOutput += NeuronOutput;

}
return realOutput;

}
void CNeuralNet::TwosCompliment()
{

for(int i = 0; i < 8; i + +)
{

m_iBinaryNumber[i] = !m_iBinaryNumber[i];
}
i = 7 ;
while(m_iBinaryNumber[i] == 1)
{

m_iBinaryNumber[i] = 0; 
i- - ;

}
m_iBinaryNumber[i] = 1;

}
//-------------------------------- ctor------------------
/ i

CNeuralNet::CNeuralNet()
{
}
CNeuralNet::CNeuralNet(vector<SNeuron*> neurons,

vector<SLink*> links,
int depth)

{
m_vecpNeurons = neurons; 
m_vecpLinks = links; 
m_iDepth = depth;

/ /
/ /

CNeuralNet::CNeuralNet(const CNeuralNet &Brain)
{

m_vecpNeurons = Brain.m_vecpNeurons; 
m_vecpLinks = Brain.m_vecpLinks; 
m_iDepth = Brain.m_iDepth;

}
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/ / dtor

CNeuralNet::-CNeuralNet()
{

//delete any live neurons 
for (int i=0; i< m_vecpNeurons.size() 
{

if (m_vecpNeurons[i])
{

delete m_vecpNeurons[i]; 

m_vecpNeurons[i] = NULL;
}

}
}

++i)

// takes a list of doubles as inputs into the network then steps 
through
// the neurons calculating each neurons next output.
/ /
// finally returns a std:¡vector of doubles as the output from the 
net.
//------------------------------------------------------------------

void CNeuralNet::Update(CPolynomial kcurrentPolynomial, int &index)
{

//Cleanup from previous update
for (int n=0; n<ra_vecpNeurons.size(); ++n)

{
m_vecpNeurons[n]->dOutput = 0; 
m_vecpNeurons[n]->dActivatedOutput = 0; 
m_vecpNeurons[n]->dError = 0; 
m_vecpNeurons[n]->iNum = n;

>

//this is an index into the current neuron 
int currentlnputNeuron = 0;

/'/'Set the outputs of the ’input' neurons to be equal 
//to the values passed into the function
while (m__vecpNeurons[currentlnputNeuron]->NeuronType == input)
{

m_vecpNeurons[currentlnputNeuron]->dActivatedOutput

currentPolynomial.m_vecInputOutputPairs[index].input; 
++currentInputNeuron;

}

//Set the output of the bias to 1
m_vecpNeurons[currentlnputNeuron]->dActivatedOutput = 1;
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//Find the first output neuron 
int cNeuron = 0;
while (m_vecpNeurons[cNeuron]->NeuronType != output)
{

cNeuron++;
}

//Determine the output for each 'output' neuron 
while (m_vecpNeurons[cNeuron]->NeuronType == output)
{

DetermineOutput(cNeuron) ;

/ / add to our ou touts
m_vecdOutputs.push_back(m_vecpNeurons[cNeuron]->dOutput);

//View the Output &test
double testOutput = m_vecpNeurons[cNeuron]- 

>dActivatedOutput;

//next neuron
//test for the end of the outputs 
if(++cNeuron >= m_vecpNeurons.size()) 

break;
}

}

//-----------------------------------Determine Output-----------------

// Recursive function that starts with the output node and recursively 
calls
// nodes down the network until the input nodes are reached

void CNeuralNet::DetermineOutput(int &cNeuron)
{

//Base Case:
//Stop when we hit the input layer 
if(m_vecpNeurons[cNeuron]->NeuronType == input

|| m_vecpNeurons[cNeuron]->NeuronType == bias) 
return;

//Sum this neuron's inputs
//By iterating through all the links into the neuron
for (int lnk=0; lnk<m_vecpNeurons[cNeuron]->vecpLinksIn.size();

++lnk)
{

//Recursive Call
if(!m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->bRecurrent)
{

DetermineOutput(m_vecpNeurons[cNeuron]- 
>vecpLinksIn[Ink]->pIn->iNum);

}

./'/Get this 1 ink’ s weight
double Weight = m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]-

>dWeight;
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//Get the output from the neuron this link is coming from 
double Neuronlnput = m_vecpNeurons[cNeuron]- 

>vecpLinksIn[Ink]->pIn->dActivatedOutput;

//Determine the output of this neuron
m_vecpNeurons[cNeuron]->dOutput += Weight * Neuronlnput;

}

//Put the output of each neuron through the Activation Function 
i f(CParams: :bTanh)
{

m_vecpNeurons[cNeuron]->dActivatedOutput

tanh(m__vecpNeurons[cNeuron]->dOutput);
}
else if(CParams::bSigmoid)
{

m_vecpNeurons[cNeuron]->dActivatedOutput

.5 * m_vecpNeurons[cNeuron]->dOutput));
}
else
{

m_vecpNeurons[cNeuron]->dActivatedOutput

m_vecpNeurons[cNeuron]->dOutput;
}

1 / (1 + exp(-

}

/ /---------------------------------- Determine Output--------------------

/( Recursive function that starts with the output node and recursively 
call s
.// nodes down the network until the input nodes are reached 
/ /------------------------------------------------------------------------

double CNeuralNet::OutputError(CPolynomial ¿currentPolynomial, int 
¿index)
{

double dError;

//determine absolute error
dError = currentPolynomial.m_vecInputOutputPairs[index].output - 

m_vecdOutputs[index];

//magnitude does not have direction 
if(dError < 0)
{

dError = -dError;
}

return dError;

}
/ / Train
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void CNeuralNet::Train(CPolynomial &currentPolynomial, int 
&DesiredIndex, int &ActualIndex)
{

//Cleanup the previous training 
m_vecdDesiredOutput.clear(); 
int CurrentDesiredOutput = 0; 
int CurrentOutputNeuron = 0;

m_vecdDesiredOutput.push_back(currentPolynomial.m_vecInputOutputP 
airs[Desiredlndex].output);

//this finds the index to the first output neuron
while(m_vecpNeurons[CurrentOutputNeuron]->NeuronType != output)
{

CurrentOutputNeuron++;
}

double desiredOutput =
m_vecdDesiredOutput[CurrentDesiredOutput] ;

double neuronOutput =
m_vecpNeurons[CurrentOutputNeuron]->dOutput;

double activatedOutput = m_vecpNeurons[CurrentOutputNeuron]- 
>dActivatedOutput;

double testError = desiredOutput - activatedOutput;

////////////////////////// ERROR CALCULATIONS 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / /

//determine the error for the output neurons
while(m_vecpNeurons[CurrentOutputNeuron]->NeuronType == output)
{

if(CParams::bTanh)
{

m_vecpNeurons[CurrentOutputNeuron]->dError
= (

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput
)

* ( 1

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
★

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
) ;

}
else if(CParams::bSigmoid)
{

m_vecpNeurons[CurrentOutputNeuron]->dError
= (

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput
)

* .5
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m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
* ( 1

m_vecpNeurons[CurrentOutputNeuron]->dActivatedOutput
) ;

}
else
{

m_vecpNeurons[CurrentOutputNeuron]->dError
= (

m_vecdDesiredOutput[CurrentDesiredOutput]

m_vecpNeurons[CurrentOutputNeuron]->dOutput
) ;

}
testError = m_vecpNeurons[CurrentOutputNeuron]->dError; 
if(++CurrentOutputNeuron >= m_vecpNeurons.size()) 

break;
CurrentDesiredOutput++;

}

int firstNeuron = 0; 

DetermineHiddenError(firstNeuron);

//////////////////////////WEIGHT 
CHANGES//////////// / / // / ///// / /// / /

int cNeuron = m_vecpNeurons.size() 
int lastlnputNeuron = 0;

1;

//this finds the index to the last input neuron 
//inc1udes the bias
while(m_vecpNeurons[lastlnputNeuron]->NeuronType == input )
{

++lastlnputNeuron;
}
//step backwards through the network a neuron at a. time 
//changing the weights of the incoming connections 
//stop when we hit the inputs 
while (cNeuron > lastlnputNeuron)
{

for (int lnk=0; lnk<m_vecpNeurons[cNeuron]- 
>vecpLinksIn.size(); ++lnk)

{
testError = m_vecpNeurons[cNeuron]->dError;
activatedOutput = m_vecpNeurons[cNeuron]- 

>vecpLinksIn[Ink]->pIn->dActivatedOutput;
neuronOutput = m_vecpNeurons[cNeuron]-

>vecpLinksIn[Ink]->pln->d0utput;

double WeightChange = m_vecpNeurons[cNeuron]-
>vecpLinksIn[Ink]->pIn->dActivatedOutput

*

m_vecpNeurons[cNeuron]->dError
★

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dLearningRate;
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m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dWeight
+ =

WeightChange
+

(m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dMomentum
★

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dLearningRate);

m_vecpNeurons[cNeuron]->vecpLinksIn[Ink]->dMomentum =
WeightChange;

}
cNeuron--;

}
}
//-----------------------------Determine Hidden Error-------------------

// Recursive function that starts with the Input node and recursively 
calls
// nodes up the network until the output nodes are reached 
/ /-----------------------------------------------------------------------

void CNeuralNet::DetermineHiddenError(int &cNeuron)
{

//Stop when we hit the output layer 
if(m_vecpNeurons[cNeuron]->NeuronType == output) 

return;

//Sum this neuron's inputs
//By iterating through all the links into the neuron
for (int lnk=0; lnk<m_vecpNeurons[cNeuron]->vecpLinksOut.size();

++lnk)
{

//Recursive Call
if(!m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]->bRecurrent)
{

DetermineHiddenError(m_vecpNeurons[cNeuron]- 
>vecpLinksOut[Ink]->pOut->iNum);

}

//Get this link's weight
double Weight = m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]-

>dWeight;

//Get the error from the neuron this link is coming from 
double Error = m_vecpNeurons[cNeuron]->vecpLinksOut[Ink]- 

>pOut->dError;

m_vecpNeurons[cNeuron]->dError
+= m_vecpNeurons[cNeuron]-

>vecpLinksOut[Ink]->pOut->dError
* m_vecpNeurons[cNeuron]-

>vecpLinksOut[Ink]->dWeight;
}
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if(CParams::bTanh)
{

m_vecpNeurons[cNeuron]->dError

m_vecpNeurons[cNeuron]->dActivatedOutput
*

m_vecpNeurons[cNeuron]->dActivatedOutput);
}
else if(CParams::bSigmoid)
{

m_vecpNeurons[cNeuron]->dError
*= . 5
* m_vecpNeurons[cNeuron]-

>dActivatedOutput
* ( 1

m_vecpNeurons[cNeuron]-
>dActivatedOutput

*= ( 1

/ /------------------------------Ti dyXSplits---------------------

// This is a fix to prevent neurons overlapping when they are 
displayed
/ / ---------------------------------------------------------------------------------------------

void TidyXSplits(vector<SNeuron*> toeurons)
//void TidyXSplits (C Ar r ay < SNeu r on * > ¿¿neurons)
{
//stores the index of any neurons with identical splitY values 
vector<int> SameLevelNeurons;

/'/'stores all the splitY values already checked 
vector<double> DepthsChecked;

//for each neuron find all neurons of identical ySplit level 
for (int n=0; n<neurons.size(); ++n)
{
double ThisDepth = neurons[n]->dSplitY;

.//check to see if we have already adjusted the neurons at this 
depth

bool bAlreadyChecked = false;

for (int i=0; i<DepthsChecked.size(); ++i)
{
if (DepthsChecked[i] == ThisDepth)
{
bAlreadyChecked = true; 

break;
}

}
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//add this depth to the depths checked.
DepthsChecked.push_back(ThisDepth);

//if this depth has not. already been adjusted 
if (!bAlreadyChecked)
{
//clear this storage and add the neuron's index we are checking 
SameLevelNeurons.clear() ;
SameLevelNeurons.push_back(n) ;

//find all the neurons with this splitY depth 
for (int i=n+l; icneurons.size(); ++i)
{
if (neurons[i]->dSplitY == ThisDepth)
{

//add the index to this neuron 
SameLevelNeurons.push_back(i);

}
}

//calculate the distance between each neuron 
double slice = 1.0/(SameLevelNeurons.size()+1);

//separate all neurons at this level 
for (i = 0; i<SameLevelNeurons.size() ; + + i) 
{
int idx = SameLevelNeurons[i]; 

neurons[idx]->dSplitX = (i+1) * slice;
}

}

} / /'next neuron to check

//------------------------------ DrawNet -----------------------------

/ /
// creates a representation of the ANN on a device context
/ /
/ / ---------------------------------------------------------------------------------------------------

void CNeuralNet::DrawNet(HDC ¿surface, int Left, int Right, int Top, 
int Bottom)
{
//the border width 
const int border = 10;

//max line thickness 
const int MaxThickness = 5;

TidyXSplits(m_vecpNeurons);

//go through the neurons and assign x/y coords
int spanX = Right - Left;
int spanY = Top - Bottom - (2*border);
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for (int cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)
{
m_vecpNeurons[cNeuron]->iPosX = Left + 

spanX*m_vecpNeurons[cNeuron]->dSplitX;
m_vecpNeurons[cNeuron]->iPosY = (Top - border) - (spanY * 

m_vecpNeurons[cNeuron]->dSplitY);
}

//create s ome pens and brushes to draw with
HPEN GreyPen = CreatePen(PS_S0LID, i, RGB(200, 200 , 200)
HPEN RedPen = CreatePen(PS_S0LID, i, RGB(255, 0, 0) ) ;
HPEN GreenPen = CreatePen(PS_S0LID, i, RGB(0, 200, 0) ) ;
HPEN OldPen = NULL;

//c rea te a s olid brus h
HBRUSH RedBrush = CreateSolidBrush(RGB(255, 0, 0)); 
HBRUSH OldBrush = NULL;

OldPen = (HPEN) SelectObject(surface, RedPen); 
OldBrush = (HBRUSH)SelectObject(surface, 

GetStockObject(HOLLOW_BRUSH));

/'/'radius of neurons
int radNeuron = spanX/60;
int radLink = radNeuron * 1.5;

//now we have an X,Y pos for every neuron we can get on with the 
//drawing. First step through each neuron in the network and draw 
//the 1inks
for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)
{

//grab this neurons position as the start position of each 
//connection
int StartX = m_vecpNeurons[cNeuron]->iPosX; 
int StartY = m_vecpNeurons[cNeuron]->iPosY;

//is this a bias neuron? If so, draw the link in green 
bool bBias = false;

if (ra_vecpNeurons[cNeuron]->NeuronType == bias)
{
bBias = true;

}

//now iterate through each outgoing link to grab the end points 
for (int cLnk=0; cLnk<m_vecpNeurons[cNeuron]->vecpLinksOut.size(); 

+ + cLnk)
{
int EndX = m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->pOut- 

>iPosX;
int EndY = m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->pOut- 

>iPosY;

//if link is forward draw a straight line
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if( (!m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->bRecurrent) &&
IbBias)

{
int thickness = (int)(fabs(m_vecpNeurons[cNeuron]- 

>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);

HPEN Pen;

//create a yellow pen for inhibitory weights
if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)
{
Pen = CreatePen(PS_SOLID, thickness, RGB(240, 230, 170));

}

//grey for excitory 
else 
{
Pen = CreatePen(PS_SOLID, thickness, RGB(200, 200, 200));

}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);

DeleteObject(Pen);
}

else if( (!m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]- 
>bRecurrent) && bBias)

{
SelectObject(surface, GreenPen);

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

}

//recurrent link draw in red 
else 
{
if ((StartX == EndX) && (StartY == EndY))
{

int thickness = (int)(fabs(m_vecpNeurons[cNeuron]- 
>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);

HPEN Pen;

//blue for inhibitory
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if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)
{
Pen = CreatePen(PS_SOLID, thickness, RGB(0,0,255));

}

//red f o r exc i to r y 
else 
{
Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));

}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//we have a recursive link to the same neuron draw7 an ellipse 
int x = m_vecpNeurons[cNeuron]->iPosX ;
int y = m_vecpNeurons[cNeuron]->iPosY - (1.5 * radNeuron); 

Ellipse(surface, x-radLink, y-radLink, x+radLink, y+radLink); 

SelectObject(surface, tempPen);

DeleteObject(Pen);

else
{
int thickness = (int)(fabs(m_vecpNeurons[cNeuron]- 

>vecpLinksOut[cLnk]->dWeight));

Clamp(thickness, 0, MaxThickness);

HPEN Pen;

//blue for inhibitory
if (m_vecpNeurons[cNeuron]->vecpLinksOut[cLnk]->dWeight <= 0)
{
Pen = CreatePen(PS_SOLID, thickness, RGB(0,0,255));

>

/'/'red for excitory 
else 
{
Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));

}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);

DeleteObject(Pen);
}

}
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}
}

//now draw7 the neurons and their IDs 
SelectObject(surface, RedBrush);
SelectObject(surface, GetStockObject(BLACK_PEN));

for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)
{
int x = m_vecpNeurons[cNeuron]->iPosX; 
int y = m_vecpNeurons[cNeuron]->iPosY;

//display the neuron
Ellipse(surface, x-radNeuron, y-radNeuron, x+radNeuron, 

y+radNeuron);
}

//cleanup
SelectObject(surface, OldPen);
SelectObject(surface, OldBrush);

DeleteObject(RedPen);
DeleteObject(GreyPen);
DeleteObject(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObject(OldBrush);
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#include "polysolvers.h"

CPolySolver::CPolySolver(void)
{

SEvaluation starter ;
starter.m_bSuccessful = false;
starter.m_dTotalError = 0;
starter.m_iSuccessfulTime = 0;
for(int i = 0; i < CParams: ;iNumPolynomials; i + +)
{

Evaluations.push_back(starter);
}
m_dFitness = 0;

}
CPolySolver::-CPolySolver(void)
{

}

void CPolySolver::Born()
{

for(int i = 0; i < Evaluâtions.size(); i++)
{

Evaluations[i].m_bSuccessful = false;
Evaluations[i].m_dTotalError = 0;
Evaluations[i].m_iSuccessfulTime = 0;

}
}
//-------------------------  EraseMemory() -------------------

/ /
i l ------------------------------------------------------------------------------------------------------

void CPolySolver::EraseMemory()
{

//removeWeights
for(int link = 0; link < m pitsBrain->ItsLinks().size(); link++)
{

if(CParams: :bReinitializeWeights)
{

if(CParams: :bMutatelnitialWeights)
{

m_pItsBrain->ItsLinks()[link]->dWeight = 
m_pItsBrain->ItsLinks()[link]->dInitialWeight;

}
else
{

if(CParams::bRandomWeights)
{

m_p!tsBrain->ItsLinks()[link]->dWeight =
RandomClamped();

}
else if(CParams: :bTestingWeights)
{



1;

119

m_pltsBrain->ItsLinks()[link]->dWeight =

.1;

}
/ / --

}
else
{

m_pItsBrain->ItsLinks()[link]->dWeight =

}
}

}
m_pltsBrain->ItsLinks()[link]->dMomentum = 0;

Update{)

// First we take sensor readings and feed these into the 
po lyso 1 ver 1 s brain..
j /
/i The inputs are:
/ /
// The readings from the values associated with the current polynomial
/ /
/ /--------------------------------------------------------------------

bool CPolySolver::Update(CPolynomial ¿¿currentPolynomial, int 
&polynomialIndex)
{
// if(Evaluations[polynomiallndex].m__bSuccessful == true)
// return true ;

Evaluations[polynomiallndex].m_dTotalError = 0; 
m_pItsBrain->ClearItsOutput();

//input sensors into net 
for (int index=0; index <

currentPolynomial.m_vecInputOutputPairs.size(); ++index)
{

//update the brain
m_pItsBrain->Update(currentPolynomial, index);

//Train the Network 
if(CParams::bTrainable)
{

m_pItsBrain->Train(currentPolynomial, index, index);
}

}
//det e rmine error after tra ining 
m_pItsBrain->ClearItsOutput(); 
for ( index=0; index <

currentPolynomial.m_vecInputOutputPairs.size() ; + + index)
{

//update the brain
m_pItsBrain->Update(currentPolynomial, index);
Evaluations[polynomiallndex].m_dTotalError += m_pItsBrain- 

>OutputError(currentPolynomial, index);
}
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Evaluations[polynomiallndex].m_dErrorPerInput =
Evaluations[polynomiallndex].m_dTotalError / 
currentPolynomial.m_vecInputOutputPairs.size();

//determine if it was successful 
if(CParams::bTrainable)
{

if(Evaluations[polynomiallndex].m_dTotalError < 3 && 
Evaluations[polynomiallndex].m_bSuccessful == false)

{
Evaluations[polynomiallndex].m_bSuccessful = true;

Evaluations[polynomiallndex].m_iSuccessfulTime = 
CParams: :iCurrentTick;

}
}

return true;
}

//creates a list of random indecies
vector<int> CPolySolver: : RandomizeIndex(int size)
{

vector<int> Sortedlndex; 
vector<int> Randomindex; 
for(int i = 0; i < size; i++)
{

Sortedlndex.push_back(i);
}
while(Sortedlndex.size() > 0)
{

int Index = Randlnt(0, Sortedlndex.size ()-1) ;
Randomindex.push_back(Sortedlndex[Index]);
for(int j = Index; j < Sortedlndex.size() - 1; j++)
{

Sortedlndex[j] = Sortedlndex[j + 1];
}
Sortedlndex.pop_back();

}
return Randomindex;

}
//-------------------------- SndOfRunCalculations() ---------------

/ /
/ / ------------------ :-----------------------------------------------------------------------------

void CPolySolver::EndOfRunCalculations()
{

for(int polynomiallndex = 0; polynomiallndex <
Evaluations.size(); polynomialIndex++)

{
if(Evaluations[polynomiallndex],m_bSuccessful == true)
{

m dFitness += 100
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Evaluations[polynomiallndex].m_dTotalError
+ CParams: :iNumTicks

Evaluations[polynomiallndex].m_iSuccessfulTime;
}
else
{

m_dFitness += (100 -
Evaluations [polynomiallndex] .m__dTotalError ) ;

}

}
m_dMaxFitness = Evaluations.size()*(100 +

CParams: :iNumTicks);
m_dFitness = (m_dFitness / m_dMaxFitness) * 100;



REFERENCES

[1] Baldwin, Mark J (1896). A new Factor in Evolution. Adaptive Individuals in

Evolving Populations: Models and Algorithms. Addison-Wesley, Reading, MA.

[2] Beliakov, Gleb and Abraham, Ajith. Global Optimization of Neural Networks Using

a Deterministic Hybrid Approach. Deakin University. Clayton, Melbourne, 

Australia.

[3] Boers, E.J.W. and Spnnkhuized-Kuyper, I.G (1995). Evolving Artificial Neural

Networks using the “Baldwin Effect” Artificial Neural Nets and Genetic 

Algorithms. 333-336. New York, NY

[4] Branke, Jurgen. Evolutionary Algorithms for Neural Network Design and Training.

Unversity of Karlsruhe. Karlsruhe, Germany.

[5] Caruana, R., Lawrence, S., and Giles, L. (2000). Overfitting in Neural Nets:

Backpropagation, Conjugate Gradient, and Early Stopping., In Neural 

Information Processing Systems. Denver, CO.

[6] Castillo, P.A., Gonz'alez, J. Merelo, J.J., Rivas, V., Romero, G., and Prieto, A.

(1998). G-Prop: Global Optimization of Multilayer Perceptrons using GAs. 

Submitted to Neurocomputing,.

[7] Crow, James F. (2003). Evolution: Views. Encyclopedia of the Human Genome.

Macmillan Publishers Ltd, Nature Publishing Group.

[8] de Jong, Edwin and Pollack, Jordan. Utilizing Bias to Evolve Recurrent Neural

Networks. Brandeis University. Waltham, MA.

[9] French, Robert and Messinger, Adam. Genes, Phenes and the Baldwin Effect:

Learning and Evolution in a Simulated Population. Willamette University.

Salem, OR.

122



123

[10] Giraud-Carrier, Christophe. Unifying Learning with Evolution Through Baldwinian

Evolution and Lamarckism: A Case Study. University of Bristol. Bristol, UK.

[11] Gomez, D E., and Miikkulainen, R. (1999). Solving Solving non-Markovian control

tasks with neuroevolution. In Dean, T., editor, Proceedings of the Sixteenth 

International Joint Conference on Artificial Intelligence, pages 1356-1361, 

Morgan Kaufmann, San Francisco, CA.

[12] Gomez, D.E., and Miikkulainen, R. (1997). Incremental evolution of complex

general behavior. Adaptice Behavior, 5:317-342.

[13] Hinton, Geoffrey E., Nowlan, Steven J. How Learning Can Guide Evolution.

Complex Systems, 1, 495-502.

[14] Kolen, John and Pollack, Jordan. Back Propagation is Sensitive to Initial

Conditions. Ohio State University Columbus, Ohio.

[15] Lamarck, J.B. (1815). “Zoological Philosophy: An Exposition with Regard to the

Natural History of Animals”, 1984, University of Chicago Press, Chicago, IL.

[16] Malmgren, Helge (2000). Artificial Neural Networks in Medicine and Biology.

Department of philosophy, Goteborg University.

[17] Mehrotra, K., Mohan, C. K., and Ranka, S. (2000). Elements of Artificial Neural

Networks. The MIT Press. Cambridge, Massachusetts.

[18] Nolfi, Stefano and Parisi, Domenico. Learning to adapt to changing environments in

evolving neural networks. Institute of Psychology. Rome, Italy.

[19] Nolfi, Stefano, Elman, Jeffrey, Parisi, Domenico. Learining and Evolution in Neural

Networks. University of California. La Jolla, CA.

[20] Radi, Amr and Poli, Riccardo. Evolutionary Discovery of Learning Rules for

Feedforward Neural Networks with Step Activation Function. University of 

Birmingham. Birmingham, UK.

[21] Shachmurove, Yochanan. Applying Artificial Neural Networks to Business,

Economics and Finance. University of Pennsylvania, Philidelphia, PA.

[22] Shore, R. (1997). Rethinking the Brain: New Insights into Early Development. New

York, NY: Families and Work Institute, pp. 16-17.



VITA

Christopher Patrick Christenson was bom in Lake Jackson, Texas, on Febmary 

20, 1980, the son of Christopher Paul Christenson and Patricia Jo Christenson. After 

receiving his degree of Bachelor of Science from Texas Lutheran University, Seguin, 

Texas, in 2002, he entered Texas State Umversity-San Marcos. In August of 2002, he 

entered the Graduate College of Texas State University-San Marcos. During his study, 

he was employed as a computer lab worker and as an adjunct faculty.

Permanent Address: 1381 Old Colony Rd.

Seguin, Texas 78155

This thesis was typed by Christopher Patrick Christenson.


