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OSCILLATION CRITERIA FOR FIRST-ORDER NONLINEAR
NEUTRAL DELAY DIFFERENTIAL EQUATIONS

ELMETWALLY M. ELABBASY, TAHER S. HASSAN, SAMIR H. SAKER

ABSTRACT. Oscillation criteria are obtained for all solutions of first-order non-
linear neutral delay differential equations. Our results extend and improve
some results well known in the literature. Some examples are considered to
illustrate our main results.

1. INTRODUCTION

In recent years, the literature on the oscillation of neutral delay differential equa-
tions has grown very rapidly. It is a relatively new field with interesting applications
in real world life problems. In fact, neutral delay differential equations appear in
modelling of the networks containing lossless transmission lines (as in high-speed
computers where the lossless transmission lines are used to interconnect switching
circuits), in the study of vibrating masses attached to an elastic bar, as the Euler
equation in some variational problems, in the theory of automatic control and in
neuro-mechanical systems in which inertia plays an important role. See Hale [17],
Driver [8], Brayton and Willoughby [6], Popove [32], and Boe and Chang [5], and
the references cited therein. Also this is evident by the number of references in the
recent books by Ladde et al. [I4] and by Ladas [16].

We consider a general first-order nonlinear neutral delay differential equation

((t) — a()z(t —r))" + f(t,=(1(t)) = 0, (1.1)
where for t > tg
q,7 € C([to, <), RT), q(t) # 1, r € (0,00), 7(t) < ¢, tlirgloT(t) = 00, (1.2)

fe O([tmOO) X R, R), Uf(t,u) >0, (13)
;EWH“ as = 0o, (1.4)

we assume that the nonlinear function f(¢,u) in (1.1)) satisfies the following
conditions:
(H) There are a piecewise continuous function p : [tg,00) — Rt = [0,00), a
function g € C'(R,R"), and a number €y > 0 such that
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i) ¢ is nondecreasing on RT

(i) ( ) g(u), limy o g(u) = 0,

(iii) fo e ") du < oo,
(iv) IU| |f(t u) — p(t)u| < p(t)g(u) for t > to and 0 < |u| < &g,
(v) For each ¢ € C([tg,00), R) with lim;_, o ¢(t) > 0,

//f ))dt = oo, /ft—w 7(1)))dt = —oc.

As usual a solution z(t) of equation (1.1]) is said to be oscillatory if it has arbitrarily
large zeros in [tg, 00). Otherwise it is nonoscillatory and the equation is called
oscillatory if every solution of this equation is oscillatory.

When ¢(t) =0, reduces to

'(t) + f(t,2(7(1)) = 0,

which was studied by Tang and Shen [36]. They obtained some infinite integral
sufficient conditions for oscillations.
The oscillatory behavior of other neutral delay differential equations have been

investigated by many authors, see [1, 2, [3, 4, [0} [0, 12} 13, 14} 15| 16| 20 21, 22|

23| 241 25| 26], 27, 28], 29], 30}, BT}, B3}, 37 38, 39, 40] and references therein.
In recent papers Elabbasy and Saker [10], Kubiaczyk and Saker [22] obtained

an infinite integral conditions for oscillation of the linear neutral delay differential
equation

(x(t) — q(t)x(t — )" + pt)z(t — 7) = 0.
Let §(t) = max{7(t) : to < s <t} and §~1(t) = min{s > ¢y : §(s) = t}. Clearly, §
and 6! are non-decreasing and satisfy
(A) 6(t) <tand 571(t) >t
(B) 6(671(t)) =t and 6 1(5(1)) < t.
Let 67*(t) be defined on [tg, 00) by
oD@y =616 F (), k=1,2,... (1.5)

Throughout this paper, we use the sequence {p}, of functions defined by

()
pl(t) = / p(S)dS, t> to,
t

57
per) = [ pom)ds, =t k=12
t
Our main results are the following.

Theorem 1.1. Assume that (1.2), (1.4), (1.3), and (H) hold, and there exist a
bounded positive function o(t) such that

¢
1
/ B(s)ds > —, (1.6)
(t) €

and .
o ot
/ p()a(t) [exp (/ p(s)ds — Q) - 1] dt = 0, (1.7)
to 7(t) €
where B(t) = p(t)/o(t). Then every solution of oscillates.
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Theorem 1.2. Assume that (1.2)), (1.4), (1.3) and (H) hold, and that

t
litm inf/ p(s)ds > 0. (1.8)
0 ()
and suppose that there exists a positive integer n such that
/ p(t) In(e" p, () + 1)dt = oo. (1.9)
to

Then every solution of (1.1|) oscillates.
Corollary 1.3. Assume that (1.2) (1.3)), (1.4), (1.8) and (H) hold, and that

/00 p(t) {exp (/t p(s)dsBig) — 1} dt = co. (1.10)

to T(t)

Then every solution of (1.1)) oscillates.
Corollary 1.4. Assume that (1.2), (1.3), (1.4), (1.8) and (H) hold, and that

/too p(t) In (/t&_l(t) p(s)ds + 1>dt = 00.

0

Then every solution of (1.1|) oscillates.
Corollary 1.5. Assume that (1.2), (1.3), (1.4), (1.8) and (H) hold, and suppose

that there exists a positive integer n such that

/OO p(t) In(e™py, (t))dt = co.

to
Then every solution of (1.1)) oscillates.
Note that if \
lim sup/ p(s)ds > 2,
t—o0 T(t)
then by Lemma every solution of (|1.1)) oscillates. Thus, we will consider the
case .
limsup/ p(s)ds < 2.
t—o0 ‘r(t)
This implies that for some € > 0 and large ¢,

t
/ p(s)ds <2+e€.
7(t)

Thus we have
t

571t
litm inf pr.(t) < (24 ¢)" ' lim inf/ p(s)ds < (24 €)1 litm inf/ p(s)ds.
— 00 t — 00 T

t—o0o (t)

As a result, by Theorem [I.2] we have

Corollary 1.6. Assume that (1.2), (1.3)), (1.4) and (H) hold, and that there exists
a positive integer n such that

tlim inf p,,(t) > 0.

Then every solution of (1.1)) oscillates.
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The proofs of the above Theorems and also some Lemmas to be used in these
proofs will be given in the next two sections. Some examples which illustrate and
the advantage of our results will be given in section 4.

2. PRELIMINARY LEMMAS

Lemma 2.1. Assume that (1.2]), (1.4) and (1.3)) hold. Let x(t) be an eventually
positive solution of [1.1] and set

z(t) = z(t) — q(t)x(t — r). (2.1)
Then z(t) is eventually nonincreasing and positive function.

Proof. From (1.1))), (1.3), we have 2'(t) = —f(¢t,z(7(¢))) < 0 eventually. We prove
that z(t) is a positive function. If not, then there exist T > ¢y and « < 0 such that

2(t) < a for t > T. Then from (2.1f), we have z(t) < o+ q(¢)z(t — ) which implies
x(t+7r) < a+q(t+r)x(t).

Now we choose k such that t, = t* + kr > T. Then x(tg+1) < o + q(tgps1)z(tx).

Applying this inequality by induction, it gives

n

x(tn)<a[1+ > ﬂq(tn,j)] + ] ata)a(t).

i=k—+2 j=0 i=k+1
Now define ¢, and d,, by

n

i=k+2 =0 i=k+1
and let

Then

by condition (1.4). Using the above inequality,

z(t);

z(tn) < [sh + ad, — —00  as n — 0o,

and this contradicts the assumption that z(¢) > 0. Then z(¢) must be positive
function. The proof is complete. O

Note that the proof of Lemma is similar to that in [7, Lemma 1]; we state it
here for the sake of completeness.

Lemma 2.2. Assume that (1.2), (L.3), (1.4) and (H) hold. Then every non-

oscillatory solution of (1.1|) converges to zero monotonically for large t as t — oo.

Proof. Suppose that x(t) is a non-oscillatory solution of equation (I.1)) which we
shall assume to be eventually positive [If z(¢) is eventually negative the proof is
similar]. From Lemma we have z(t) is eventually non-increasing and positive
function.
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Choose a t; > to such that z(¢) > 0, 2(¢) > 0 for t > ¢;. It follows from equations
(1.1)-(1.3) and (H) that there exists t2 > ¢; such that 7(t) > t; and 2/(¢t) < 0 for
t > t5. Hence the following limits exist and

lim z(¢) > lim z(t) =a > 0.
t—o0 t—o0

If @ > 0, then from (|1.1)) we have

dﬂ—d%)=—A ﬂtﬂﬂ@Dw-

It follows from assumption (H)(v) that lim; o 2(t) = —oo, which contradicts that
z(t) being positive function, then o = 0, from (1.2)), we have lim; . (¢t) = 0. The
proof of Lemma [2.2]is complete. O

Lemma 2.3. Assume that (1.2), (1.4) and (H) hold. If z(t) is a non-
oscillatory solution of (1.1), then there exist A > 0, e > 0 and T € (0,00) such

that fort > T,
t

1
(1) < Aexp ( = / p(s)ds) +e, (2.2)
T

Proof. We shall assume z(t) to be eventually positive [If z(t) is eventually negative
the proof is similar]. By Lemma there exists t; > 0 such that

0<z(t) <z(r(t) <e fort>t.
From (H), we find that for ¢ > ¢;

[t x(m(1) = p(O)[1 — g(2(7(8))]2((t)),

and lim;_, o 2(t) = 0. By assumption (H), there exists T > ¢; such that for t > T,

Flta(r(0) 2 Sp()a(r(t) = Zp(E)e()

and it follows from (1.1)) that for ¢ > T,

(1) — a)alt )Y + gp(t)r(t) < 0,2'(1) + Tp(H)=(1) <0,

where z(t) = z(t) — q(¢)x(t — ). This yields, for t > T,

z(t) < Aexp [— ;/tp(s)ds],

|am3Am4—§Lp@@ym,
where A = z(T) — ¢(T)x(T — ). d

Lemma 2.4. Assume that (1.2, (1.4) and (H) hold. If equation (1.1))) has a

nonoscillatory solution, then

¢
/ p(s)ds <2 and pp(t) <28, k=1,2,... (2.3)
(1)

eventually.
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Proof. Suppose that z(t) is a nonoscillatory solution of equation (1.1) which we
shall assume to be eventually positive [if x(t) is eventually negative the proof is
similar]. By Lemma there exists T' > 0 such that

z(r(t)) > z(t) >0 fort>T,

(x(t) — q(t)x(t — ) + %p(t)w(T(t)) <0,

20 + %p(t)z(T(t)) <0 fort>T. (2.4)

Integrating both sides from 7(¢) to t yields

(1) — 2(+ (1)) + ;/r;)p(s)z(T(s))ds <0 fort>T.

By the decreasing nature of z(t) for large ¢ and the increasing nature of 7(t), there
exists T7 > T such that

2(t) — 2(r(8) + %;,«(T(t)) /(t) p(s)ds <0 fort > T,

Then, f 0P s)ds < 2.
Also, mtegratmg both sides of equation (2.4)) from ¢ to 6~1(¢) yields
(6-1(1)) /5 (7(s))ds <0 for t > T.

By the decreasing nature of z(t) for large ¢t and the increasing nature of 7(t), there
exists T7 > T such that

sH(t)
A7) -0+ 5( [ ) (60N <0 for e
or e
A6 (8) — 2(t) + 5(/t p(s)ds)=(t) <O for 1> Ty,

Then, we have

§Th(t)
;moz/ p(s)ds < 2.
t

By iteration we deduce, from this, that py(#) < 2* which shows that (2.3)) holds for
t > T1. The proof of Lemma is complete. O

Lemma 2.5. Assume that (L.2)), (1.3), (L8), (L4) and (H) hold. If x(t) is a
z(T t))

nonoscillatory solution of equatwn ), th ) is well defined for large t

and is bounded.

Proof. Suppose that z(t) is a nonoscillatory solution of equation (1.1)) which we
shall assume to be eventually positive [if x(t) is eventually negative the proof is
similar]. By the same argument as in the proof of Lemma there exists T' > 0,
such that

z(7(t) > z(t) >0 fort>T,

(x(t) — q(t)x(t — 0))" + %p(t)x(T(t)) <0,
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2'(t) + %p(t)Z(T(t)) <0 fort>T.

The rest of the proof is similar to in [28, Lemma 5], and thus it is omitted. O

3. PROOFS OF THEOREMS

Proof of Theorem Assume that (1.1) has a nonoscillatory solution x(t)
which will be assumed to be eventually positive (if 2(t) is eventually negative the
proof is similar). By Lemma there exists t; > tg such that

0<z(t) <z(rt(t)) <eo, glx(r(t)) <1, t>1, (3.1)
where gq is given by assumption (H). From and (H), we have
ft2(r (1)) = p()[L — gla(r()))a(r(t), =t (3-2)
Set
w(t) = a(t)zz((tT)(t)) for t > t;.
From Lemmas and w(t) > o(t) for t > t;. From and (3.2, we have
Z((:)) + BBl - gla(r()] <0, t=>t. (3.3)

Let to > t; be such that 7(t) > t; for ¢t > to. Integrating both sides of (3.3) from
7(t) to t, we obtain

w(t) > o(t) exp (
By (L.6), for t > to, we have

¢ ¢ t*
/ p(s)ds = / p(s)ds > / p(s)ds > e, (3.5)
5(t) () ()
where t* € [to, t] with 7(¢*) = §(¢). From (L.6) and (3.4)), we find that for ¢ > tq,

t

" B(s)w(s)[1 - g(fﬂ(T(S)))}dS), t >ty (3-4)

w(t) > a(t)exp  BONA) — o0)ds + asy

X exp (/rt p(s)ds — @) exp exp ( - /t B(s)w(s)g(z(r(s)))ds)

(t) 7(t)
' o(t)
o)

> o(t) (6 /(s(t) B(s)(w(s) —a(t))ds + U(t)> P (/r(t)

t

X exp ( — /:t) B(s)w(s)g(;v(T(s)))ds).

Let v(t) = w(t) — a(t ) for ¢t > ¢;. Then v(t) > 0 for ¢t > ¢;, and so for ¢ > ¢,

—e B(s
5(t
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that is, for t > to,

B(t)uv(t) — B(t)e . B(s)v(s)ds

t t
> B(1)(c / B(s)o(s)ds +o(1)) [o(t)exp ( / p(s)ds — @) (3.6)
5(t) 7(t) ¢
t
X exp ( - ( )B(s)w(s)g(x(7‘(s)))ds> — 1].
T(t
By Lemmas there exist T' > t3, A > 0, € > 0 and M > 0 such that for
t>T,

7(t)
x(7(t)) < Aexp ( - %/T p(s)ds) +e, (3.7
JCEED 35)
w(t) <o(t)M, o(t) <. (3.9)

Let

at) = ;/Ttp(s)ds, t>T.

Clearly, (|1.6) implies that a(t) — oo as t — co. For ¢t > to, set

t t

D(t) = p(t) (e B(s)v(s)ds + U(t)) exp (/ p(s)ds — @|Big)

5(t) 7(t)
t (3.10)
X {1 —exp ( -/ B(s)w(s)g(x(r(s)))ds)]
T(t
One can easily see that
0<1l—e“<c forc>0. (3.11)
It follows from ([3.10)) that for t > ¢,
t t
t
D(t) < p(t) (e/ B(s)v(s)ds + U(t)) exp (/ p(s)ds — %)
5(t) 7(t)
. (3.12)

X o B(s)w(s)g(z(7(s)))ds.

Therefore,

t t t

D(t)
< p(t) (e |y Bl (s)s + o(t)) exp ( / mp@ds) [, BEk(e)g(alr(s)ds.
Let T* > T be such that 7(7(t)) > T for t > T* and a(7T*) > 2 +InA. Set

My = e?nM|[2e(M — 1) +n] and A; = eA. Noting that
e 5: : B(s)v(s)ds+o(t) <2e(M —1)+n fort>T.
t
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from (3.7)—(3.9), (3.12), and assumption (H), we obtain N > T*,

N
D(t)dt
Test

N t 1 T(t)
<M / p(t)/ p(s)g (A exp (5/ p(s)ds) + 5) dsdt
Tast 7(t) T

=M, /N p(t) /t p(s) Aexp - /Tp Ydp + = /T:S)p(u)du) +6) dsdt

Tast 7(t)

< M, /N p(t) /t p(s)g (Ale’a(s)—Fs) ds dt

Tast

Oé(t)
= 2M1/ / g(Are™ +¢e)dudt
“st a('r(t))

1 t
— oM, / (1) / g(Are " + o) dudt, B(t) = / p(s)ds
Tast a(t)—B(t) 2/;

N |

a(N) v
< 4M1/ p(t)/ g(Are " +e)dudv
a(T*) v—1

a(N)
< 4M, / g(Are™" +¢)du

(T~)-1
ln(Alef(ﬂN)-‘rE)fl e U
= 4M1/ gle™™)— du
In(Ajel=a(T*) 4e)—1 e % —¢
Ot(N) —Uu
< 4M1/ gle™)— du
0 e~v —¢
oo
< 4M1/ gle™")du < 0.
0
and
/ D(t)dt < oo. (3.13)
T

Substituting (3.10) into (3.6)), for ¢ > t5, we obtain

B(t)v(t) — eB(t) /5;) B(s)v(s)ds
> p(t) (e /(s(t) B(s)v(s)ds + a(t)) [exp (/t p(s)ds — @> - 1} — D(t),

(1) €
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Integrating both sides from T to N > 7=(T*), we have

/N B(t)v(t)dt—e/N By [ Bls)ols)dsdt

Test Test 4(t)

3.14
N t O'(t) N ( )
> p(t)o(t) [exp ( p(s)ds — —) - 1} dt — D(t)dt.
Test 7(t) e Test
By interchanging the order of integrations and by (3.5]), we have
N t 5(N) )
e/ B(¥) B(s)v(s)dsdt > e/ B(t)v(t)/ B(s)dsdt
Tast (1) * t (3 15)
3(N) '
> / B(t)u(t)d.
From this and (3.14]), it follows that
N N t N
t
B(t)v(t)dt > / p(t)o(t)] exp ( / p(s)ds — @) “Jar— [ D
5(N) Tast 7(t) € Tast
(3.16)
By (B3) and (39),

N N N
/ B(t)u(t)dt < (M — 1)/ p(t)dt < (M — 1)/ p(t)dt < 2(M — 1),
3(N) 5(N) r
and so by ,
N t N
20M —1) > / p(t)o(t) [exp (/ p(s)ds — @) - 1] dt — D(t)dt.

Tast 7(t) Tast
This implies that

t 00

2M — 1) > /OO p(t)a(t) [exp (/ p(s)ds — @) - 1] dt— | D@t

* 7(t) T*
which together with yields
/OQ p(t)o(t) {exp (/z )p(s)ds - ?) - 1] dt < oo.
* T(t
This contradicts and so the proof is complete.
Proof of Theorem Assume that has a nonoscillatory solution ()

which will be assumed to be eventually positive (if z(t) is eventually negative the
proof is similar). By Lemma and assumption (H), there exists t§ > ¢ such that

0<z(t) <z((t) <z(r(t)) < o, g(m(T(t))) <1, t>tg, (3.17)
where ¢q is given by assumption (H). (| and (H) yield that for ¢ > ¢§,
[t a(7(t)) = p(t )[ g(a(7(1)))]x(7(2)) (3.18)
> p(t)[1 = g(z(r(1))))=(5(2)), '

and it follows from (|1.1)) that

20 *
AR I O)) T (3.19)
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By Lemmas Q1125 there exist T > t3, A > 0, ¢ > 0 and M > 0 such that for
t>T,

1 7
x(7(t)) SAeXp(— §/T p(s)ds) + ¢, (3.20)
[ osos< [ peds<z <2 k=12, G2
(1) (t)
2(6(1) _ z(r(t))
S g SM (3.22)

Let ty, = 6 %(T), k =1,2,... Clearly t;, — oo as k — o0o. Set A(t) = —2'(t)/z(t),

for t > T. Then
§(t i
20) :exp/ A(s)ds, t>ty,
s

2(t) 0
and from (3.19)), for ¢t > t1, we have
¢ z(4(t
A0 = p0esp [ Asds — pglatr(0) 2. (3.23)
5(t) 2(t)
It follows from ([3.20)—(3.23)) that for ¢ > ¢,
At)
> p(t) exp /t A(s)ds — Mp(t)g(A exp ( - 1/T(t)p(s)ds) + s)
5(t) 2 Jr (3.24)
K 1
> p(t) exp/ A(s)ds — Mp(t)g<A1 exp ( - = /Ttp(s)ds) + 5),
5(t) 2
where A; = eA. By the inequality e¢ > ec for ¢ > 0, we have for ¢ > 1,
t 1t
A(t) > ep(t)/ A(s)ds — Mp(t)g(A1 exp ( - f/ p(s)ds) + E). (3.25)
5(t) 2 )7
Set
1t
at) = f/ p(s)ds, t>T, (3.26)
2 Jr
and
Xo(t) = \t), t>T,
¢ 3.27
Ak(t) Zp(t)/ Ae—1(8)ds, t>tg, k=1,2,...,n, ( )
5(6)
and

Gy (t) =0, t>T,
¢ (3.28)
G (t) =ep(t) )Gk—1<5)d5 +Mp(t)g(Ar exp(—a(t)) +e),
5t
fort > tg, k=1,2,...,n. Clearly (1.8 implies that «(t) is nondecreasing on [T’, c0)
and a(t) — oo as t — co. By iteration we deduce from (3.25) that

At) > efAp(t) — Gr(t), t>ty, k=1,2,...n—1, (3.29)
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and so by (3.24),

t

A(t) > p(t) exp (enf1 /5 ;) /\n_l(s)ds> exp(— /5 . Gn_l(s)d5> —Gi(t), (3.30)

for t > t,,. From (3.28)), one can easily obtain

t

Grai(t) — Gu(t) = ep(t) /5 [G8(6) ~ s (o)l

(3.31)

for t > tr11, k=1,2,...,n—1. By (3.21)), (3.26)) and (3.28]), for ¢ > t5, we have

t t
Gi(s)ds = M [ p(s)g(Ar exp(—a(s)) +€)ds
o(t) o(t)
a(t)

=2M g(Are™ +¢€)du (3.32)
a(8()
a(t)
<2M g(Are™" + €)du.
a(t)—1
Thus, from (3.31)), we get
t a(t)
[(Ga(t) — Ga(t) = ep(t) [ Gu(s)ds < 2eMp(t) / g(Ave 4 &)du, > 1,
6(t) a(t)—1
t
Gslt) = Ga(t) = ptt) [ [Ga(s) (o)
()
t a(s)
< 262Mp(t)/ p(s)/ g(Aje ™ 4 ¢)duds
o(t) a(s)—1
a(t) v
= 4e*Mp(t) / g(Are™" +¢)dudv
a(é(t)) Jv—1
a(t) v
< 4e*Mp(t) / g(Are " +¢)dudv
a(t)—1 Jv—1
a(t)
< 462Mp(t)/ g(Are ™ +e)du, t>ts.
a(t)—2
By induction, one can prove in general that for k =2,3,...,n—1,
alt)
Gr(t) — G () < (26)5=1(k — 2)1Mp(t) / g(Ave 4 &)du, > ty,
a(t)—(k=1)
and so
n—1
Gna(t) = Y _[Gr(t) = Gr1(t)]
k=1
. o (3.33)
< Gy (t) + Mp(t) S (26)F 1 (k — 2)! / g(Are™ + 2)du,
k=2 a(t)—(k—1)
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for t > t,—1. By (3.21)), (3.22) and (3.27)), we obtain

() = p(t) /5 As)ds = p(t) In [20);

) z(t)
<pt)InM, t>t,
t t
Xa(t) = p(t) A1(s)ds < p(t)In M p(s)ds (3.34)
5(t) 5(t)

§2p(t)lnM, tZtQa

)\n—l(t) < 2n72p(t) In Ma t Z tp_1.
For t > t,, set
t t

D(t) =p(t)exp (e"_l /5(t) )\n,l(s)ds> [1 — exp ( —

From (3.11), (3.21), (3-32), (3.33) and (3.34), we have

Gn,l(s)dsﬂ +Ga(t).

5(t)

t

D(t) < p(t) exp (en—l /5 :t) An,l(s)ds) Gro1(s)ds + G1(t)

()

t
< Gr(t) +pl(t)exp (272" I M : )p(s)ds)
t

. _
s) + Mp( (2e)F =k — 2/
X/&(t){ p ;e

a(s)—(k-1)

a(s)
g(Are " + 5)du} ds

a(t)
< G1(t) + 2Mp(t) exp((2¢)" ' In M)/ g(Are™" +€)du
a(t)—1

+ Mp(t) exp((2¢)" " In M)

n—1 a(s)
X Z(2e)k_1(k - 2)!/ p(s / g(Are " +e)duds
k=2 o(t) a(s)—(k— 1)

n—1 a(t)
< Gy(t) + Myip(t Z (2¢) k= I !/ g(Are ™ +e)du, t>ty,,
h—1 a(t)—k

(3.35)
where M; = 2M exp((2¢)"'In M). Let T* > t,, be such that a(T*) > n + In A;.
It follows from ({3.35) and (H) that

D(t)dt
T*
n—1 o] a(t)
< [7 @+ ¢S (2e) (k- 1)!/ p(t)/ g(Are™) dudt
T* b1 * a(t)—k
n—1
<2M/ g(Are™™)du + 2M, Z(Ze k 1 / / g(A1e™")du dv
T*) =1 a(T*) Ju—k
n—1
<2M/ g(Aje” )du—l—QMlz (2e)*~ 1k'/ g(Are™")du
) — a(T*)—(k+1)



14 E. M. ELABBASY, T. S. HASSAN, S. H. SAKER EJDE-2005/134

00 oo n—1 o]
D(t)dt < QM/ gle™")du + 2M; Z(Qe)k_lk‘!/ g(e™)du < oo.
T 0 1 0
Since

t
p(t) exp (6”71

/\n_1(s)ds) exp ( — /5;) Gn_l(s)ds) —G1(t)

t

5(t)

= p(t) exp (e"il )\n_l(s)ds> —D(t), t>ty,

()
it follows from (3.30]) that

A = plt)exp ([

5(t)

t

)\n_l(s)ds> —D(t), t>t,. (3.36)

One can easily show that ye” > z + In(y + 1) for v > 0, and so for ¢t > ¢,
t

Pa(DA®) = p(H)e " (" pa(t)) exp (! /5 An-1(s)ds) = pa()D(1)

(®)
t
> p(t)/ An—1(s)ds + el_"p(t) ln(e"_lpn(t) +1) — p(t)D(2),
(1)
that is, for t > t,,

Pa(OA(E) — p(2) /5 a6 = O pa0) +1) = pa(DD(0) (337

For N > 6—"(T™*), we have

/ O / Y /5 M (s) dsdt

Test Tast (t)
. (3.38)

N
> el‘"/ p(t) 1n(e”‘1pn(t)+1)dt—/ Pn(t)D(#)dt.

Test *

Let 61(t) = 6(t), 6*T1(t) = §(6%(t)), k = 1,2,...,n. Then by interchanging the
order of integration, we have

/N p(t) /; An—1(8)dsdt > /6(N) An—1(t) /tél(t)p(s) dsdt

Tast (t) T+
5(N
/ (
.
52(
[
2

)

p(t)p1

N)
An72

52(N)
/ p(t)p

(N)
A(t)p

t
t

An—2(s) ds dt
(t)

)
§TH(t)

) / p()py(s) ds dt

(

v
ﬂ

t
(

t) /5 An—3(s)dsdt

™ ®

5n

\%

o (1)dt.
T*
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From this and (3.38]), we have

N

N N
[ paor@ar= e [ pwmetpuw) 4 e~ [ paoD(o, (339)
)

n(N) * Tast
which together with ([3.21)) yields

N N N
2"/ )\(t)dtZel_"/ p(t) In(e" 'p, (¢) + 1)dt — 2" D(t)dt,
6" (N) Tast Tast
or
n N N
In 2(O"(N)) > 2—"e1—"/ p(t)In(e" 'p,(t) + 1)dt — [ D(t)dt.  (3.40)
z(N) Tast T+
In view of (1.9) and (3), we have
- z(6"(N))
= o0. 41
Ny, X (341)
On the other hand, implies that
n 1 2 n
PO (N) _ 2(0UN) 2PN )

#(N)a(N) Tz(fH(N) w(on
This contradicts (3.41f) and completes the proof.
4. EXAMPLES

In this section we introduce some examples to illustrate our main results.

Example 4.1. Consider the neutral delay differential equation

(a(t) - (g Ysint)a(t — m) + fta(r(t) =0, t>3. (4.1)
For f(t,u) = p(¢) f(u), with
fult+ P ), w0,

ﬂw—{a I (42)

1, lul > 1,
glu) =< (1+ In? lu)~t, 0<ul <1, (4.3)

0, u =0,

p(t) = et 11n2 + ﬁ’ 7(t) = %7 (4.4)

with [;° p(t)dt = oo. It is easily seen that condition (H) holds. We check that the

conditions (1.8) and (|1.10)) in Corollary hold. In fact, for ¢ > 3,
t t
1 1 1 In2 1
ds = ds=~-—-In|l——=|>=
J, pes= [ Loty * gl = ¢ -l - gl = ¢

t esln2  slns

lim inf;_, o ftt/2 p(s)ds = 1/e, and
¢

/;op(t)[exp [/tt p(s)ds — é] —1]dt > /3<>op(t)[/t p(s)ds — é]dt

/2 /2

1 1 In2
> — / —1In[l1 - e Jdt = oo,
eln2 J; ¢ Int
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because

<1 In2
/ —dt =00 and lim (Int)In[l — n—] =—1In2.
5 tlnt Int

t—oo n

By Theorem [1.1| every solution of (4.1)) oscillates.

Example 4.2. Consider the neutral delay differential equation

(z(t) — (g + sint)z(t — g))' + f(t,z(r(t))) =0, t>3, (4.5)
For
=3 T =% < AS L Jhw =),

where f(u) and g(u) are defined by (£.2) and (4.3) and with [;* p(t)dt = co, and
¢ ¢
1
/ p(s)ds:/ éds:é(lnt—lnz)zéln)\<f
£/ t/x S A e

It is easily seen that condition (H) holds. We check that the conditions (1.6) and
(1.10) in Theorem hold. In fact, for ¢ > 3,

¢ ¢
lim inf/ p(s)ds = lim inf/ éds =d(lnt — ln%) =6lnA>0
¢ ¢

t—o0 /)\ t—o0 /)\ S

and

/300P(t)[exp(/t;A p(s)ds) — 1])dt > /:o p(t)(/t/tA p(s)ds)dt

oo 2
>/ 0 in)\dt:(San)\(oo):oo
3

By Corollary every solution of oscillates.
Example 4.3. Consider the neutral delay differential equation

(x(t) — (g +sint)z(t —m) + flt,x(r(t) =0, t>3, (4.6)
where

(t)=t—1 and f(t,u) = [exp3(sint — 1) + |ul]/u.

Let p(t) = exp(sint) — 0.1 and g(u) = e?|u|*/3. Tt is easy to see that assumption
(H) holds. Clearly

t
1
liminf/ p(s)ds < —,
t—o0 —1 e

t4+1

/000 p(t) In (/:H p(s)ds + l)dt > /000 exp(sint — 1) In (/t exp(sin s)ds) dt

By Jensen’s inequality,

e} t+1 [e%e) t+1
/ p(t) In (/ p(s)ds + 1)dt > / exp(sint — 1)/ sin sds dt
0 t 0 ¢

~ 2sin27!

e 1
= — / exp(sint) sin(t + =)dt.
(& 0 2
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On the other hand, it is easy to see that fot exp(sin s) cos s ds is bounded and

2
/ exp(sint)sintdt > 0.
0

Thus

/000 p(t) In </tt+lp(s)ds + l)dt = o0.

By Corollary every solution of ([4.6]) oscillates.
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