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PULLBACK ATTRACTORS FOR A CLASS OF SEMILINEAR
NONCLASSICAL DIFFUSION EQUATIONS WITH DELAY

HAFIDHA HARRAGA, MUSTAPHA YEBDRI

ABSTRACT. In this article, we analyze the existence of solutions for a nonclas-
sical reaction-diffusion equation with critical nonlinearity, a time-dependent
force with exponential growth and delayed force term, where the delay term
can be entrained by a function under assumptions of measurability. Using a
priori estimates we obtain the pullback D-absorbing process and the pullback
w-D-limit compactness that allow us to prove the existence of the pullback
D-attractors for the associated process to the problem.

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

The nonclassical diffusion equations occur as models in mechanics, soil mechan-
ics and heat conduction theory (see for example [I1 2] [8, Ol [T4]). In recent years,
the existence of pullback attractors has been proved for some nonclassical diffu-
sion equations, see for example [16, 19, 2T, 22 23]. Functinal partial differential
equations is the subject of intensive studies.

For the functional partial differential equation

(t, ) —Agu

5 (t,z) — Au(t,z) = b(t,u(t — p(t))(z) + g(t,x) in (7,00) x Q,

u=0 on (1,00) x 09, (1.1)
u(t+0,z) =¢0,2), TR, Hec[-r0], xe€Q,

au

without critical non-linearity, the long-time behavior, and especially the pullback
attractors has been studied in [7]. There the author studied the pullback asymptotic
behavior of solutions in the phase-spaces C([—r, 0]; H}(Q)) and C([—r,0]; H () N
H?(Q)).
In [I6], the equation without delay
0

(t,x) — EAgu(t,x) — Au(t,z) + f(u(t,z)) = g(t,z) in (1,00) x

u=0 on (1,00) x 0N (1.2)

u(t,r) =u’(z), TER, 2€Q,
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in the phase-space H{(Q) is treated. It is proved that the existence of a pull-
back attractor where the non-linearity f has a critical exponent in the interval
(0,min{{*#2,2 + £}) with N > 3. On unbounded domain, in [23], the existence
of pullback attractor to the solutions in H!(RY) of the following equation without
delay

(t,z) — A%u(t, x) — Au(t,z) + u(t,z) + f(u(t,x)) = g(¢, x)
in (7,00) x RV (1.3)

u(t,z) = u.(z), TER, xRV,

EU/

is treated, where the nonlinearity has a critical exponent p < 2 for N > 3.
In this article, we consider the functional partial differential equation

0 0
au(t, x)— Aau

with with the boundary and initial conditions

(tv :L’) - Au(ta ’JJ) +f(u(ta :ZZ)) - b(ta ut)(x) +g(t7 :I;’) in (Ta OO) xQ,

u=0 on (1,00) x 00,
u(r,z) =ul(z), TER, z€Q, (1.4)
u(t+0,2) =p(0,x), 0 € (-r,0), z €,

where Q C RY (N > 3) is a bounded domain with smooth boundary 9. The
equation without the term A%qt‘, is a classical equation with delay. Many
works have dealed with such equation, see for example [4, Bl [0, 0T} 15 17, [I8§].
It has been treated in different phase-spaces and the delay term is driven by a
function under measurability condition and the nonlinearity is given by different
assumptions. For more details on differential equations with delay we refer the
reader to [6] and [20].

It is well known that the compact Sobolev embedding can be applied to obtain
the existence of pullback D-attractor as well as the higher regularity of the solution
of the equation, e.g., although the initial conditions only belong to a weaker topo-
logical space, the solution will belong to a stronger topological space with higher
regularity. The equation contains the term A%, this involves that the solu-
tion has no higher regularity and so the compact Sobolev embedding can not be
applied to obtain the existence of a pullback D-attractor. This is similar to the
hyperbolic case.

In this article, we prove the existence of a pullback D-attractor. It is well known
that for the existence of pullback D-attractors, the key point is to find a bounded
family of pullback D-absorbing sets then the pullback w-D-limit compactness for
the process corresponding to the solution of our problem. As noticed before, be-
cause of the term A%, the pullback w-D-limit compactness for the process can
not be proved by the compact Sobolev embedding. The nonlinearity with critical
exponent makes also some barriers. To overcome these difficulties, we apply the de-
composition techniques and a method used in [I7] to satisfy the pullback w-D-limit
compactness of the process with delay. It is based on the concept of the Kuratowski
measure of noncompactness of a bounded set as well as some new estimates of the
equicontinuity of the solutions.

This article is organized as follows. In section 2 useful results on nonautonomous
dynamical systems and pullback D-attractor theory are recalled. In section 3 deals
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with the main results; we will prove the existence of the solutions using the Faedo-
Galerkin approximations; also, the uniqueness and the continuous dependence of
the solutions with respect to the initial conditions are proved. Then we prove the
existence of the pullback D-attractor.

2. PRELIMINARIES

At first, we give some notation which will be used throughout this paper. Let
Q C RN (N > 3) be a bounded domain with smooth boundary 92, the norm and
the inner product in L?(£2) are denoted by ||-|| and (-, -), respectively, and we denote
by ||[V]| and (V-, V) the norm and the inner product of H{(f2), respectively. The
norm in the Banach space Y will be denoted by ||-||y. Let ¢ be an arbitrary positive
constant, which may be different from line to line and even in the same line.

To study problem , we need some assumptions: The nonlinear function
f € CY(R,R) satisfies

flw)u > —cru® — co, (2.1)
f'(u) > —c3, f(0) =0,

|fw)] < k(L +[ul®),
uf(u) — caF(u)

e O 2 o
F
imint 2 > 0 (2.5)

where 0 < o < min{ {2,

f is not compact in this case i.e. for a bounded subset B C H}(Q), in general,
f(B) is not precompact in L(Q2) where ¢ = 2834) "and ¢y, ¢, ¢3, ¢4, k are positive
constants, A; > 0 is the first eigenvalue of —A in Q) with the homogeneous Dirichlet

condition such that Ay > max{cy, cs}, and F(u) = [’ f(s)ds. We infer from (2.4)
and (2.5) that for any § > 0 there exist positive constants cs, ¢ such that

uf(u) —cyF(u) +0u®+c5 >0, YueR, (2.6)
F(u)+6u*+c5>0, YucR. (2.7

2+ 4} (is called a critical exponent since the nonlinearity

The operator b : R x L2((—r,0); L?(Q)) — L*(Q) is a time-dependent external
force with delay; it satisfies:
(I) For all ¢ € L?((—r,0); L?(Q2)), the function R > t — b(t,¢) € L*(Q) is
measurable,
(IT) b(¢,0) =0 for all t € R;
(III) there exists Ly > 0 such that for all t € R and ¢1, ¢2 € L*((—r,0); L*(Q)),

16(t, ¢1) = b(t, @2)l| < Lolldr — ballL2((—ro0yiL2()) ; (2.8)
(IV) there exists Cj, > 0 such that for all t > 7, and all u,v € L?([t—r,t]; L3()),

t

/ 1b(s, us) — b(s, vs)||%ds < cb/ u(s) — v(s)|2ds (2.9)

T—T

Remark 2.1. From (I)-(III), for T > 7 the function R > ¢ +— b(t,¢) € L?(Q) is
measurable and belongs to L>((r,T); L?(Q2)).
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The functlon g € L _(R; L*(Q)) is an another nondelayed time-dependent ex-
ternal force, u® € HZ () is the initial condition in 7 and p € L2((—r,0); L2(Q)) is
also the initial condition in (7 — r,7), r > 0 is the length of the delay effect.

In this section, we recall some basic concepts about the pullback attractors and
some abstract results about the existence of pullback attractors. Let (Y,d) be a
complete metric space. Let us denote P(Y') the family of all nonempty subsets of
Y, and suppose D is a nonempty class of parameterized sets D= {D(t):teR} C
PY).

Definition 2.2 ([II]). A two parameter family of mappings U(t,7) : ¥ — Y,
t > 7, 7 € R, is called to be a norm-to-weak continuous process if

(1) Ur,m)z =z forallTe R,z €Y;

(2) Ut,s)U(s,")e=U(t, ")z forallt >s>7,TER, 2 €Y

3) Ult,7)xn, =~ U(t,r)xifx, —2zinY.

The following result is useful for satisfying that a process is norm-to-weak con-
tinuous.

Proposition 2.3 ([11]). Let Y, Z be two Banach spaces and Y*,Z* be their dual
spaces. Assume that'Y is dense in Z, the injection i : Y — Z is continuous and its
adjoint i* : Z* — Y* is dense, and {U(t,7)} is a continuous or weak continuous
process on Z. Then {U(t,T)} is norm-to-weak continuous on Y if and only if for
t>71, 7€R, U(t,7) maps a compact set of Y to a bounded set of Y.

Definition 2.4 ([12]). A family of bounded sets B = {B(t) : t € R} € D is called
pullback D-absorbing for the process {U(t,7)} if for any t € R and for any D € D,
there exists 79(¢, D) < t such that

U(t,7)D(r) C B(t) for all 7 < 1o(t, D).

Definition 2.5 ([I2]). A process {U(¢,7)} is called pullback w-D-limit compact if
for all ¢ > 0 and D € D, there exists 19(t, D) < t such that

K(Ursr, Ult,T)D(7)) <2,

where K is the Kuratowski measure of noncompactness of B € P(Y'). This measure
is defined as

K(B) =inf{d > 0 : B has a finite open cover of sets of diameter less than ¢,
and has the following properties.

Lemma 2.6 ([12]). Let B, By, By be bounded subsets of Y. Then
) K(B) =0 <= K(N(B,¢)) < 2¢ <= B is compact;

2) K(Bo + B1) < K(Bo) + K(B1);

3) K(By) < K(B1) whenever By C By;

4) K(By U B1) <max{K(Bo), K(B1)};

5) K(B) = K(B);

6) if B is a ball of radius € then KK(B) < 2e.

Definition 2.7 ([12]). A family A = {A(t) : t € R} C P(Y) is said to be a pullback
D-attractor for {U(t, 1)} if

(1) A(t) is compact for all ¢ € R;

(2) A is invariant; i.c., U(t, 7)A(T) = A(t), for all t > T;

(1
(
(
(
(
(
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(3) A is pullback D-attracting ; i.e.,
lim dist(U(t,7)D(7),A(t)) =0,

for all D € D and all ¢ € R;
(4) If{C(t) : t € R} is another family of closed attracting sets then A(t) C C(¢),
for all t € R.

Theorem 2.8 ([12]). Let {U(t,7)} be a norm-to-weak continuous process such
that {U(t,7)} is pullback w-D-limit compact. If there exists a family of pullback
D-absorbing sets B = {B(t) : t € R} € D for the process {U(t,T)}, then there exists
a pullback D-attractor {A(t) : t € R} such that

A(t) = w(B,t) = Ny<tUr< U (L, 7)B(7) .

3. EXISTENCE OF PULLBACK D-ATTRACTORS

3.1. Existence and uniqueness of weak solutions. First, we define the concept
of weak solution.

Definition 3.1. A function u € L*((r — r,T); L*(Q)) is called a weak solution of
(1.4) if for all T' > 7 we have

we O T HY®) and O € L2((r,T); HY(9)).
with u(t) = ¢(t—7) for t € [T —r,7], and for all test functions v € C([r, T]; H}(Q))
such that v(T") = 0, it satisfies

/j—(u,v')+/TT/QVZT;VU+/TT/QVqu+/TT/Qf(u)v

:/TT<b(t,ut),v>+/TT/QgU+<UO’U(T)>-

Next we have the existence and uniqueness of solutions which are obtained by
the usual Faedo-Galerkin approximation and a compactness method.

Theorem 3.2. For any 7 € R, T > 7, u® € H}(Q), ¢ € L*((—r,0); L*(Q)) and
if there exist positive constants n,n' < 1/2 such that \y > ¢1 + TH'T" + %’, then
problem (1.4) has a unique weak solution u on (7,T).

Proof. Let {ex}r>1, be the complete basis of H}(Q)NH?(£) given by the orthonor-
mal eigenfunctions of —A in L?(£2). We consider

(3.1)

u™(t) =Y m(ter, meN
k=1

which is the approximate solution of Faedo-Galerkin of order m; that is,

dum aum m my m
— ~ A AU+ Prf(u™) = Prb(t,uf") + Prg

um(T) = Pmuo = UO ie. Pmum(T) — uo in H(} (Q) (32)
u™ (7 +0) = Pnp(0) = (0) V0 € (—1,0)

for all k € N, where v (t) = (u™(t),er) denote the Fourier coefficients such
that v, € C'((7,T);R) N L*(( = 7,T),R) , 7 ,,(t) is absolutely continuous, and
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Pou(t) = >0 (u, ex)ey is the orthogonal projection of u € L*(2) or u € H} ()
in H,, = span{ey,... ,en}.

It is well-known that the above finite-dimensional delayed system is well-posed
at least locally (see for example [6 Theorem 2.1, p. 14]). Indeed; for fixed m, the
system defines a linear system of differential equations on R™. Then we can
apply differential equations theory for local existence and uniqueness of solutions
to the system (3.2)), i.e. for initial conditions (¢,v™ (7)) in L%((—r,0); R™) x R™,
there exist ¢,,, > 0 and a unique solution of V() = (Y1m(®t) - Ymm ()T with
v™ € L*((t — r,7); R™) such that v™|;_, ) = ¢ and v™(7) = a, and v"[};4, | €
CL([,t,]; R™). Hence, the solution of is defined on the interval [r,t,,] with
T < t,, <T. The a priori estimates for the Faedo-Galerkin approximate solutions
that we obtain will show that ¢,, = T.

Claim 3.3. {u™} is bounded in L°°((1,T); Hi(Q)).
Multiplying ) by u™ and integrating over 2, we obtain
GO + 17 OF) + 190 OF + [ fam)r = [ oy +gm).
2 dt Q

Using (2.1) and the Cauchy inequality, we obtain

3™ @ + 9™ (0)) + [Vum O ~ e ()] ~ el
< L ott,u)2 + O + S eI + L @)
2n 2 2n’ 2
As
Mlll? < [Val?, (3.3)
then
L @17 + 190 @) + @A — 260 = )l (1)

1 . 1
< EHb(t’ut )Z + Wllg(lt)II2 + 2|0

Integrating this estimate over [7,t], t < T, we find that

[u™ O + [Vu™ (O + (2A1 = 2¢1 =0 — o /Ilu ()]*

< s + [Vl + 5 [P+ [ loGoas
+ |t — 7).
Therefore, by using (2.9)), we obtain

t
[ @ + [Tu™ (0] + @\ — 2¢1 — 0 — 1) / ™ (s) [2ds
m 2 m 2 Cb T m 2
< P+ [T ()2 + L [ (s 2ds
77 T—T
C t . 1 t
+2 / w9 ds + / lg(s)12ds + e2l(t — 7).
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So, one has

C t
o OIF + [Fum O + (20 =20 ==/ = ) [ un ()P
m m G T m
<l + [9am @+ [ e )Pas (3.4

1 t
+ = [ o) Pds +algle = 7).

Hence, when 2)\; —2c; —n—n' — < >0 and g € L (R; L*(9)), one gets
IVu™ @) < ™ (D)1 + [[Vu™(0)]]* + —> G H@Hm (~0):22())
1 (3.5)
+ W”glli?([r,t];LQ(Q)) + 02|Q|(t —7).
By this estimate, for all T' > 7, we arrive at
{u™} is bounded in L ((7,T); Hy(Q)) (3.6)

Then we deduce that the local solution 4™ can be extended to the interval [r, T].
Claim 3.4. {%um} is bounded in L?((1,T); H(Q)).

Multiplying (3.2) by 24" and integrating over 2, we have

||%u””b<t>||2+||v0Z <>H2+2dtnw OF+ [ 1%

= ) ) T+ 9
As 5
d u
— | F(u) = e
& [ Fw= [ rwg.
(3.7) becomes
d m 2 i m 2 }i m 2 m
15 OF + 19 G @F + 5 2 (190 @1 + 2 [ Fm)
ou™ 8u
—/Qb(t,ut) 5 + 9%
Using the Young inequality, we ﬁnd
IV 5" OF + 5 5 IVam O +2 | F@m) < 3o )| + 5o
dt 2 dt o = g IP g I

Integrating over [r,t], t < T we obtain

/ tHV%um(s)nzdw%(HW(@H?H / F(umu,x)))
< (v +2 [ Fanen) + [ tsarias
YIRS
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By (2.9), we have
[ v g @+ 5 (19 @ +2 [ P e.a)
< SUve @42 [ P+ G [ R+ [ o) Pl

< s (1vum @) + 2/QF<um(T, o)) + % /Tt [u™ ()P ds

Cy [T 1
L A O R 7 Ry

From this estimate and (3.4), we deduce that, for all ' > 7,
{%um} is bounded in L*((7,T); Hy(2)) . (3.8)
Lemma 3.5 ([16, Lemma 3.1]). If {u™} is bounded in L>=((r,T), Hi(S2)), then
{f(w™)} is bounded in L((7,T); L1(£2)), (3.9)
where ¢ = (2N +4)/(aN).

By (3.6, (3.8), (3.9), hypothesis (IV) and remark (2.1]), we can extract a subse-

quence (relabeled the same) such that

u™ —u  weakly* in L>((1,T); H} (Q)), (3.10)
Au™ — Au  weakly in L*((1,T); H(Q)), (3.11)
a;—: - % weakly in L2((,T); Hy (), (3.12)
A(a(;‘ij) — A(%) weakly in L2((7,T); H (), (3.13)
f(u™) =o' weakly in LI((,T); LY(Q)), (3.14)
b(.,u™) — b(.,u.) strongly in L*((r,T); L*(Q)). (3.15)

By (3.10), we have that u™ — u weakly in L?((r,T); L?(Q)) (L*°((r,T); Hi(Q)) C
L%*((1,T); L*())), and by (3.12)), we have ag—: — %—’t‘ weakly in L2((r,T); L*(Q))
(L2((7,T); H () € L2((7,T); L3(£2))). So, we can extract a subsequence u of u™
that satisfies

u™ — u strongly in L2((1,T); L*(Q)). Thus u™ — u a.e [1,T] x Q. (3.16)
By (3.16) and the fact that f is continuous, we deduce that f(u™) — f(u) a.e

[7,T] x Q, So, from (3.14]) and [I3, Lemma 1.3, p. 12] we can identify ¢’ with f(u).
Now, we have to prove that u(7) = u°. Recall that (3.1)),

/TT—(u,U'>—|—/TT/QV(?;;VU—|—/TT/QV1LVU+/TT/Qf(u)U

:/TT<b(t,ut),v>+/TT/ng+<u(7),v(7)>. (3.17)
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In a similar way, from the Faedo-Galerkin approximations, we have

/TT_ //V—VH/ /Vumvwr//f

T (3.18)
= [Cowun o+ [ [ oorarmnae.
Using the fact that u™(7) — u® in H{(€2) and (3.10)-(3.15) we find that
T
/ //V Vv—i—/ /Vqu+/ /f
T (3.19)

:/T b(t, uy), //gv+uv)

Since v(7) is arbitrarily, comparing and (3.19) we deduce that u(7) = u°.
To prove that u € C([r,T]; Hg (Q)), we put w™ = u™ — u then we have

%wm — A%wm —Aw™ + f(u™) — f(u) = b(t, ui) — b(t,ue) .
Multiplying this equation by w™ and integrating over {2, we obtain

d m 2 m 2 m 2 m m
2 ™ @O + V™ @)]7) + 2 V™ @)l +2/Q(f(u ) = f(u)w

- 2/(b(t,u:ﬂ) b)) (W — ).
Q

By , (2.8) and Young’s inequality, we obtain

d m m m

2w O + V™ @)]%) + 2[[ V™ @)

< (2e3 + Ly)[[w™ (O + Lollw 1 22— r0p:r2(0)) -
Hence, by (3.3)), one gets

d 2 2 2 0 2

o U™ @O + (V™ (@)7) < 2esllw™ (®)l] +Lb/ [[w™ (t + 0)|]°d6

0
IV <>|\2+2Lb/ Jw™ (¢ + 0)2d0

-T

203 + Lb

Integrating over [r,t], we obtain

o™ (O + [Vw™ @) = w™ (D) + [Vw™ (7)]?

25 + L
< 03+ b/ V™ H2+Lb// |w™ (s + 0)||>dods

2 L

< C3+ b/ IVw™ HQ—I—Lb/ / lw™ (s)|[2dsdo

2c +L

<2l [ygur s tar [ furs)ids + ur [ o) Pas.

Taking § > max {%, Lbr}, we obtain

lo™ O + V™ @) < o™ (1) + [ Vw™ (7))
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wlor [ wmePds + [ AT O + fum o)Pas

Applying the Gronwall lemma to this estimate, we obtain
[w™ @) + [[Vw™ (@t
0 (3.20)
< (@I + Ve @) + Lur [ w7+ 0)d0) e
-
Since u™(7) — u® and u™ (7 + 6) — p(0), the estimate (3.20) shows that u™ — u
uniformly in C([r, T]; H}(Q)).

By concatenation of solutions, it is clear that we obtain at least one global weak
solution to (1.4]) defined on (7, +00).

Finally, we prove the uniqueness and continuous dependence of the solution on
the data. To do this, we consider u', u? two solutions of (1.4]) with the same initial
conditions u® and ¢. Let w = u! — w2, and similarly as in the proof of (3.20)), we
have

[w(®)]I* + [[Vw(®)||?

0 3.21
< (I + V)P + 2L [ o +6)[ds)e =) 20

and this completes the proof of the theorem because w(r) = 0, and w(r+6) =0. O
3.2. Pullback D-attractors. Invoking Theorem [3.2] we will apply the above re-

sults in the phase space X := H}(Q2) x L?((—r,0); L?()), which is a Hilbert space
with the norm

0
1, )% = [Vul|? + / o (8)]2d6,

—-Tr
with a pair (u%, ) of X. First, we give the following consequence the theorem of
the existence and uniqueness.

Proposition 3.6. We consider g € L% _(R; L*(Q)), b: R x L*((—r,0); L*(Q)) —

loc
L2(Q) with the hypotheses (I)-(IV) and f € C*(R;R) satisfying [2.1)-([2.5). Then
the family of mappings U(t,7) : X — X,

(", 0) — Ut 7)(u’, ) = (ult),ur), (3.22)
with (t,7) € R? and u the weak solution to , defines a continuous process.
Next, we need to consider the Hilbert space
X1 = Hy(Q) x L*((~r,0); Hy (),
with the norm

0
WDl = IVl + [ [Vo(6)]do.

We remark that when ¢t — 7 > r, U(t,7) maps X to X;. To prove a pullback
-absorbing set for the process U(t, ), we need the following lemma.

Lemma 3.7. Assume that f satisfies (2.3), [2.6) and [2.7). For all u,v € L*((T —
r,t); L?(Q)), b and g satisfy

t t
/ e I[b(s, us) — b(s, vs) |2ds < cb/ e lu(s) — v(s)|[2ds, (3.23)

T
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and

t
/ e”|lg(s)||?ds < 0o, VtER,

11

(3.24)

where 0 < o < § < min{QC4, 20 } Then for all t for which t > 7+ r and all

221 +1

9 ) € X, we have the estimates

(w”
t

2N
IVu@)? < e{e D)@, T +14 e / 7 lg(s) s }
t
/ |V u(s)|Pds
t—r
t

2N
< eu e T (0, )3 + e e ) / e lg(s)|ds}

— 00

where p = 4(8' — o — %) > 0.

Proof. Multiplying (1.4 . ) by u + “ and integrating over {2, we obtain

1d ou
M(IIU( )Z + 2/ Vu(t)|? )+Hdt u(®)[” + [ Vu®)]* + /f )t 55)

a 2
IV u(o)]

ou ou
z/Qb(t,ut)(u—i— a)‘f’/ (U“ra)

By (2.6)), the Cauchy-Schwarz and Young inequalities, one gets

;jtm OFF +2AuOI +2 [ F@o) +[1Va®]+ e | P

< [Ib(t, u)* + g1 + (1 + ) [ut)]* + el -

By (3.3)), we obtain

d 2(1 + 6)

< 20[b(t, ue) 12 + 2[lg ()1 + 2¢51€ -
We can choose § small enough such that

2(1 + 4)
@-=5

! : 2)\1 :
where ¢’ < min{2c4, 35717} So, we can write

MIVu@)* > 6" (Ju(®)? + 20 Vu®)[?),

1)+ 8 (t) < 2 g(®)|I* + 2lb(t, we) | + 2¢5]9

where
() = [lu@®)]? + 2 Vu(®) | + 2/QF(U(t)) :
Multiplying (3.28]) by e® such that 0 < ¢ < ¢’, we obtain

d
e”! = (t) + e (1) < 27 ([lg)1” + [Ib(t, w)|* + es[0)

(3.25)

(3.26)

%(I\U(t)llz+2||VU(t)H2+2/QF(U(t)))+(2* N )IIVU(t)||2+204/QF(U)

(3.27)

(3.28)

(3.29)

(3.30)
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whereupon
d o o o
(€7 (0) < (0 =) N (@) + 27 (lg@)I* + bt w)I* + ¢5]92) -
Integrating this last estimate over [r,t], we find that
7 (t)

t
<) o= 8)e [ et (s)ds

T

t t t
—|—2€7"t/ €US||g(S)||2dS+2€7Ut/ e"s||b(s,us)H2ds—|—2€7"tc(5|ﬂ|/ e’?ds

t t

Se_gu—r)%(T)Jr(g—(s’)e“’t/ 608’71(8)d8+26_0t/ e”|lg(s)|*ds

t
—|—26_‘7t/ €75 1b(s, ws) |2ds + 20~ cs| Qo1 (1 — =71

¢
<e (1) + (0 — 5/)67(”/ e”%y1(s)ds

T

¢ t
+2e7 / e”*|lg(s)||ds + 2¢~°"* / e [b(s, us)|*ds +2e = e5|Qlo

Therefore, using (3.23) and (II), one has
¢
Y1 (t) < e_o(t_T)’h(T) + (o _6/)6—015/ €751 (s)ds

t t
+2e*ﬂ/ e”|\g(s)||2ds+2cbe*”/ e”*|lu(s)|[*ds + 2¢5|Ql0 ™"

T
t

<) o= e [ ersds
t

+ QCbe_”(t_T)/ lu(s)||*ds + QC’be_"t/ e ||lu(s)||*ds

T—1 T

T

t
+ze—0t/ e7 g (s) [2ds + 2c5] )0

We use [2.7] in to obtain o
(1) 2 [lu@®)]? + 2| Vu(®)||* = 28]|u(t)||* - 2¢5/9
> (1—20)[Ju(t)||* + 2| Vu(t)[|* — 2¢5]9]
> %HVu(t)HQ. (3.32)
On the other hand,
(1) = [lu()|? + 2| Vu(r)||? + 2/QF(u(T)) : (3.33)

By (2.3), we have

k
F(u) <k — ot
[ rw < [+ =5 [
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Using the Holder inequality and the fact that a +1 < 2 , one has

/ Flu) < kv/9( / )2 ¢ S / ] #22
Q Q Oé+1 Q
C 2N
< N-—-2
< /Tl + — Hunmﬁ

@)
By the embedding of H}(Q) in L% (Q), and the fact that 1 < N 2, we have
[ P < iV + ann s
Q o+ 1
< ex VIRl Vul 2 4 V)
c 2N
< (eATHVQ + —— N-2
< (AT + =) Va2
2N
< || Vul[ 7=, (3.34)
where ¢ is a positive constant. Using this inequality in (3.33)), we obtain
aN_
T(7 ) < Jlu()|1? + 2 Vu(r)|* + ¢ Vu(r)||¥== .
Using (3.3) and 2 < N 2, one finds that
() < Of + 2 [Va@)IP + ¢ Vu(n) [ ¥ < | Vu(r) | ¥ (3.:35)

We substitute (3.32)) and (3.35]) in , one gets

1 T
5 IVu®)? < e[ Va(r)[| 52 + 2047 / lus)|*ds

¢
o= e [ () + 20Tus) P +2 [ Futs))ds
T Q
t t
+ 277" / e”*|lg(s)||>ds + 2Cye 7" / 7% |lu(s)||*ds + 2¢5|Qo !

So, by (3.3),

IVu®)]? < e[ Vu(r) | ¥ +4Che 70 T)/ lu(s)|*ds

+2(0 - §')e / e (Ju(s)|? + 2] Vu(s) 2 + 2 / Fu(s)))ds

t 4C t
a7 [ eyl + ke / T Vuls)|ds + desilo !

Then, for 6’ — o — Cb > 0 and the fact that 2 <

C t
IVu(@)? +4(5 — o - Tj’)e—af/ ¢ || Vu(s)||2ds

N 2, we have

e O Valn) [ ¥ + e ol B gy aqm

¢
+ 467(”/ e ||lg(s)||?ds + 4cs|Qo !

< L omolt=1) (0 7 ¥z
<ce (V]| el 22 (00 2202)))



14 H. HARRAGA, M. YEBDRI EJDE-2016/07

t
t1eet [ e gs)|Pas)
By using (3.24]), we have
Cy

t
Va2 +4(5 — o - Tl)e_ot/ €7 | Vu(s) |2ds

2N

—o(t—T1 2N -
< eI VU 1 el o 2a) (3.36)

t
e / &7 lg(s)]%ds} .

— 00

Whereupon, for all ¢ > 7, we obtain (3.25)), and

¢
ue*"t/ % || Vu(s)||*ds
i (3.37)

t

2N
<cfe I T+ 1+ [ elgolas)

— 00

where p = 4((5’ -0 — %) > 0. Furthermore, for 7 <t — r, we have

t t t
/ e”s||Vu(s)||2d82/ e”s||Vu(s)H2dSZe”(t_T)/ HVu(s)H2ds7

t—r t—r

as [t —r,t] C [7,t]. Hence, (3.37) becomes

t
pe [ Ivuls)|as
t—r
2N t
<cfe I IET + 14 [ elgo)as)

Therefore, for all ¢ > 7 + r, we obtain (3.26)), and this completes the proof. O
Let R be the set of all functions p : R — (0, 400) such that
. lim e"’tplgif2 (t)=0.
By D we denote the class of all families D = {D(t) : t € R} C P(X) such that
D(t) € Bx(0, p(t)), for some p € R, where Bx (0, p(t)) denotes the closed ball in

X centered at 0 with radius p(t). Let
¢

o) =c(1+e [ elg|as).

and R(t) > 0, R'(t) > 0, where

R2(t) = (1+pu~'e)pu(t),

N

R2(t) = cpi” 7 () + cpr(t) + cllgl 2 r—ra.2 ) -
Lemma 3.8 (Pullback D-absorbing set). Under the assumptions of Lemma
the family B given by
do
B(t) = {0, 6) € X1 : [(0°,6)[x, < RO, |52 lia(roprzen < R}, (338)

is pullback D-absorbing for the process U(.,.) defined by (3.22)) .
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Proof. First, we observe that for all ¢t € R,

B(t) c {(°,¢) € X : [|(v°, ¢)[Ix < R(t)}, (3.39)
with
lim TRYE () =0,
and so B € D.

Now, we prove that U(t,7)D(r) C B(¢), for all 7 < 75. To do this, we proceed
in two steps.
Step 1. This step concerns the asymptotic estimate using R(t) for t € R, fixed. It
may be proved as follows. By definition, we have

t
U)W )%, = [IVu@®)]? +/t [Vu(s)|[*ds. (3.40)
From (3.26)), for any ¢t —r > 7, we have

2N

t
/“HVMﬁwﬁécMﬁf““P”Wﬁwﬂ&”
t—r

, (3.41)

+u*f%u+a“/’e”wwm%@,

— 00

for any (u",¢) € X. We substitute this inequality and (3.25) in (3.40)); by the
definition of p;(t), we obtain

2N

U)W, @)%, < ce D@ @)X 7 (L4 te™) + (L u e )pu(t)
< o W, @) I3 (L ) + RA(D)
for all t — r > 7 and all (u’, p) € X. Hence
U)W’ o)k, < R(t), (3.42)

oT

as e’7 — 0 when 7 — —o0.

Step 2. This step concerns the asymptotic estimate using R'(¢). We assume that
t — 2r > 7. Multiplying (1.4) by % and integrating over €2, we obtain
d 5 1d 9 1 5 1 9
—u(t —-— t 2| F < —||b(t —lg(®)||” -
15O + 55 IV +2 [ F) < 3wl + o

Integrating over [t — r,t], we find

[ i as + 3 (19wl +2 [ F)

< %(||Vu(t—r)||2+2/QF(u(t—r))) (3.43)
5 [ o@Pds g [ ibteu)lPds.

From (II), (IV), and (3.3)), one has

t t t
/“mwwwws@/ wwwwsaxjﬂnwmww
t—r t t—2r

—2r
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By this estimate and (3.43]),
tod 2 1 2
t l75uls)liPds < 5 ([Vu(t = r)lI° +2 F(u(t —)))

I OA
w2 [ toas+ DO [ jvugs)iPas.
t—r t—27r

By (3.34) and the fact that 2 <

N 2, we have

¢
d
/t |55 u(s)%ds < (||Vu(t —1)|2 + 2¢| Vu(t — 7))
1/t Cb)\
3 [ tatsipas+ B [ e
t—r t—2r
2N _ 2
< | Vult = )%= +ellglliz(e—r.:0200)
¢
+ c/ | Vu(s)||*ds . (3.44)
t—2r
Now, we estimate ||Vu(t — 7)||2. Replacing ¢ by t —r in (3.25)), we obtain

2N_
IVu(t —)|? < el @)lIX

t—r
+ c(l + e7ot=T) / e?) | g(s — r)||2ds) .

—0oQ

Because t — r <t and e°” > 1, we have

2N

IVt = II? < e et w0, o)) 2
t

rereltr et [ egts)|Pds)

— 00

2N _ )
< ee” e (W0, )X T + e pa(t)

Hence
2N ¢ 0 2N g
IVu(t =)l ¥ < (e e W, @)X + e h))
Slnce ~—3 > 1, using a convexity argument,
2N <N2N22) Nes

IVt — )| = < ce” W, ) E 7 + ol 2 (1). (3.45)

Using ([3.26)), and taking 2r in place of r, we have
t 2N
/ IVu(s)|?ds < ce D) (%, @)lIX 7 +epr(t) (3.46)
t—2r

for any t — 2r > 7. From ([3.44)-(3.46) we conclude that for all t — 2r > 7 and all
(u’,p) € X,

t d 2 t— 2N22 t 0 =
o T N-2 —o(t—T1 -
[ Iuts)Pds < o #3700, )| 7 o e () 7
t—r

N
+epp 7 (t) +epi(t) + C”gHQL?([t—r,t];L?(Q)) .
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Hence, for all t — 2r > 7 and for any (u°, ¢) € X, we have

t
d
== u(s)|*ds
/t—v" ds
aN2

2N
< ce 7|0, )| X7 + e T (W0, )| P + RA(1),
so we obtain .
d
/ 1-Lus)2ds < R2 (1), (3.47)
t—r dS

as ¢°” — 0 when 7 — —oo. Then, it is clear to see from (3.42)), (3.47) and the
definition of D that the family B given by (3.38) is pullback D-absorbing for the
process U(.,.). O

In what follows, we need the following result.

Proposition 3.9. Let {U(t,7)} be a process on X, and let {B(t) : t € R} be a
pullback D-absorbing set of {U(t,7)}. Suppose that for each t € R, any B € D and
any € > 0, there exist 7o = 7o(t, B,&) <t and § > 0 such that
(1) for all T <71y and (u(t),us) € U(t,7)B(7), |P(u(t), us)| x, is bounded;
(2) for all T < 719 and (u(t),us) € U(t,7)B(7), [|(I — P)(u(t),us)||x, <é&;
(3) for all T < 719, us € U(t,7)B(7) and all |l € R with || <, we have
12 (T = w) || L2 ((—r0):22(0)) <€
where Tyuy is the translation (Tyug)(0) = u(t +0+1) with 0 € (—r,0) and P
is the canonical projector on the finite dimensional subspace V;, of H(Q)
and L*(), and I is the identity. Then {U(t,7)} is pullback w-D-limit
compact in X with respect to each t € R.
Proof. (i) First, we prove that {U(¢,7)} is pullback w-D-limit compact in X;. Note
that by (2) in the Lemma one has

K( Ursr, Ut 7)B(0) < K(P(Urer, U T)B() )

+K ((1 — P)(Uy<n Ut T)B(T))) .

Assumption (1) gives that {P U;<., U(t,7)B(7)} is contained in a ball of finite
radius. So by (3) in Lemma [2.6] we obtain

(3.48)

IC(P( Ur<n, U(t,T)B(T))) < K(B(0,20)), (3.49)
and by (6) in Lemma [2.6] we obtain
K(B(0,e0)) < 2¢g. (3.50)
Thus, by and it follows that
IC(P(UTSTO )) (3.51)
On the other hand, assumption (2) and property (6) in Lemmaﬁ give
IC((I - P)(UTSTO U(t, T)B(T))) < 2. (3.52)

Therefore, by (3.48)), (3.51) and (3.52)) we deduce that

/c( Ur<n, U(t,T)B(T)) <o,
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where ¢’ := g¢ + ¢, and this shows that {U(¢,7)} is pullback D-w-limit compact
in Xy, i.e.; for all 7 < 75, any sequences 7" — —oo and (u®", ") € B(r™"), the
sequence {(u™ (t),u? )} = {U(t, 7)) (u®"", ")} is relatively compact in X;.

(ii) Second, we will check the equicontinuity property of u; in L2((—r,0); L3(£)).
To this end, we need to use the LP-version of Arzela-Ascoli theorem (see [3, theorem
IV.25, p.72)).

Assumption (2) gives

(1 = P)uellp2((—ro0):m1(02)) <E- (3.53)
Since Hg(Q2) — L?(Q) with continuous injection, we have
(1 = P)ue||2((—r0)r2(0)) < esll(I = Plutl| L2 ((—r0):12 () -
So by this estimate and (3.53)), one has
H(I — P)Ut||L2((_7-’O);L2(Q)) <é s (3.54)
where ¢’ := ¢ze. From (3.54) and assumption (3), we deduce that for all 7 < 7,
uy € U(t,7)B(7) and all [ € Rt with | < §, we have
1 Thus — w2 ((—r0):2(0))
< | P(Tyur = u) || 22 ((=r0y:z2(0)) + 1T = P)(Trur — ue) || 22 ((=r0):22(0)) < €”5
with €’ := e + ¢’ and this is the desired equicontinuity.

From (i), we deduce that {ul } is relatively compact in L2((—r,0); HL(Q)), and
(i) gives that {u}’} is relatively compact in L2((—r,0); L2(Q)). Therefore, we
conclude that {U(¢,7)} is pullback w-D-limit compact in X, which completes the
proof. O

Theorem 3.10. The process {U(t,7)} corresponding to (1.4) has a pullback D-
attractor A = {A(t) : t e R} in X.

Proof. From Lemma[3.8] {U(t,7)} has a family of Pullback D-absorbing sets in X.
By Theorem it remains to show that {U(¢,7)} is Pullback w-D-limit compact.
To this end, we need to check conditions (1)-(3) in Proposition To this aim,
we decompose f as

f=rfo+h,
where fo, f1 € C1(R, R) satisfy

fo(w)u > —cr1u® — ¢z, (3.55)

fo(u) > —ecs, (3.56)
|fo(u)| < B(L+ [u]®), (3.57)
|f1(u)] < B(L A+ [ul®). (3.58)

The delayed forcing term b is decomposed as
b=bo+bi,
where by, by : R x L2((—r,0); L3(Q)) — L?() satisfy
(a) bo(t,0) =0 for all t € R;
(b) there exists Cj, > 0 such that for all t > 7 and all u,v € L?([r—r,t]; L*(Q)),
¢

/ 1bo (s, 1s) — bo(s, vs)|2ds < cbo/ lu(s) — v(s)|2ds;  (3.59)

T—T
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(¢) b1(t,0) =0 for all ¢ € R;
(d) there exists Cp, > 0 such that for all t > 7 and all u,v € L?([t—7,t]; L>(Q)),

t t
/ €7 1By (s, ) — b (s, v0) | 2ds < C, / e llu(s) — v(s)|Pds,  (3.60)

T
Let A1, A2, ... be the eigenvalues of —A in H} () and w1, ws, ... the corresponding
eigenfunctions. Then we have 0 < A1 < Ay < ... < A\, — 400 as n — +o0.

Then {wi,ws,...} form an orthogonal basis in L*(Q) and H}(Q). Let V,, =
span{wi,wa, ..., w,}, P be the canonical projector on V,, and I be the identity.
Then we decompose U (t,7)(u’, ¢) = (u(t),u;) as
u(t) = Pu(t) + (I — P)u(t) = v(t) + w(t),
and
ut:Put—i—(I—P)ut:vt—l—wt.

Here v and w solve the following problems:

0 0
prihe A&v — Av+ fo(v) = bo(t,ve)
v(r,z) = Pu°
v(T +0,2) = Pp(0), 0 € (—r,0)
and
0 0
P AEW —Aw + f(u) = fo(v) = b(t, ue) — bo(t,ve) +g

w(r,z) = (I — P)u’
w(t +0,2) = (I — P)pd), 6¢€(-r0)

First, we establish that for all 7 < 79, (u(t),u;) € U(t,7)B(7) and satisfies
I1P(u(t),ut)]|x, < H+oo. To do this, we multiply (3.61)) by v and integrating over
Q; to obtain

L@ + 1900 + 21T +2 /Q folwyw =2 /Q bo(t,v0)v
By and the Cauchy inequality one obtains
LI + 19001 + 21T
< 2 Ju(t) |+ 2eal0] + —[lo(t,w0) | + <4l o®)
< (2er + RO + 20190 + ot v

Integrating from 7 to ¢, for 7 < ¢t < T, we have

o @I + [IVu®)1* + 2/ IVu(s)||*ds

< (I + Vo)1 + (2e1 + €4)/ lv(s)|*ds
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1t )
—1—8— 160 (s, vs)||°ds + 2¢2|Q(t — 7).
4 Jr
Using (3.59) and (a), one has
t
lo()]1% + [Vo(®)]* + 2/ [Vu(s)|ds
t
< lo(@)I? + IVo()I? + (2¢1 + E4)/ [o(s)][*ds
C t
f’/ lv(s)||?ds + 2¢2]Q| (t — 7)

< (I + Vo) + (2e1 + 64)/ lv(s)|[*ds

+ G
&4

T C t
[ tpds + 2 [ juolPs + 2eaj0e - o).
T—1 4 Jr
So, one has
t
o+ [Tu(@I? +2 [ [Vels)|Pas
2 2, Cu [T 2
< @I + Vo) P+ 2 [ o) Pds

+ (2¢1 +e4 + s)||2ds + 2¢o|Q(t — 7).

By (3.3)), one obtains
t
@11 + Vo) + 2/ Vo (s)||*ds

€4

Cpy, [T
< @I+ Ve + 22 [ o) Pds

261 +54+
+—

N /||Vv VI2ds + 2¢o|Q(t — 7).

Thus, one finds that
9 9 261 +€4 54 9
[o@II" + [[Vo®)]I” + (2 - IIVU )|I*ds
Cy
< Jo(@)II* + [[Vo(n)|? + ?40 / ||v(8)||2d8 +26|Qf(t — 7).

201+84+% . .
By the Theorem 3.2, we have n; := 2 — )\7154 > 0. So the previous estimate

gives

IVo@)|? < o)1 + [IVu(n)]I* + % /T [v(s)||Pds + 2¢2|QU(T — 1), (3.63)
4 Jr—r
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and
t
/ IVo(s)|2ds

o (3.64)
<o P + Vo2 + 22 [ Ja)las + 2ai0ir - )}
Therefore, for ¢t — r > 7, with([t — r,¢] C [r,t]), we have
t t
| Iveeias < [ vus) s
t—r T
_ Cy, [T 3.65
<o (o) + 9ol + 22 [ P G
T 20 OIT — 7).
We add ([3.63)) and (3.65)) to obtain

IVo()]? + / IVo(s) [2ds

t—r
- Co, (7 3.66
< @n @I + Vo + 22 [ us)ds + 2ai0(r - 7)) GO
= M?.
Hence, one obtains
1P (u(t), ue)l|x, < M,
which means that the condition (1) in Proposition holds true.
Now, taking the inner product in L?(2) of (3.62)) with w, we obtain
d
(O + [IVe@®)?) + 2[Ve®)]* + 2/ (f (u) = fo(v))w
@ (3.67)

= Q/Q(b(t,ut) — by (t,ve))w + 2 ng.

Since fo(v) = f(v) — f1(v) and bo(t,vy) = b(t,vy) — b1(t, vy), we obtain
i(||w(t)||2+ ||Vw(t)||2)+2||Vw(t)||2+2/ [ (u) = f(v)]|w] +2/ | f1(v)[w]
dt Q Q
<2 [ bitou) bt ol +2 | [baton)lul+2 [ Jol .

By (2.2), we have

[ () = £ =) = —eallu— ol (368)
Thus, by and the Cauchy inequality, (3.67) leads to
d
@(HW(t)H2 + [Vw@®)]?) + 2[[Vw(t)]®
< (2c3 + &1 42+ e5)||w(t)|? (3.69)

1 1 1
+ 2/ |fr(0)] |w] + = 1b(t, ur) = b(t, v) |2 + — |1 (&, 0) [IP + —llg(®)]|? -
Q €1 €5 €2



22 H. HARRAGA, M. YEBDRI EJDE-2016/07

By (3.58) and the Holder inequality,
/ OINE k/<1+|v|a>\w|
Q Q
N+2 N-—2
<kl [ )T ([ u#s) T
Q Q

2N\ 2N
<c( [+ w)) ol 42, -
Q

Since o < min{4{+2,2+ 4}, one has am < 55 for all N > 3. Then

N+42

JRECIE Sc(/ﬂ<l+c\v\%>) Tl g2, g

N+

2N _
<c(lol+elol ™5 ) wl
LN=2(Q)

N

2N .
L N-2 (Q)

As above, one gets

2N N+2
N-2 2 2N
1@ ol < 903 + ol 2l g,

Nt2
N-—-2
o1+ ”“”L%m))”“’ e
By the embedding of Hi () in L%(Q)7 we have
N2 N2
/Q [fr()] w] < (1 + ¢l Vol ¥=2)[[Vwl] < ¢l + [V ¥=2) [V

By (3.66)), we obtain

N+2
| 1n@llel < e+ ¥)90] < vl

N+2

as [|Vo|| 72

< M5 , and
€3
/ (i)l < 5+ *llVU)( P < et S lIVe)®,
via the Cauchy inequality. By the above estimate and ([3.69)), one obtains
d
L) + 19 (0)]?) + 2 - 25) [ Vu(d)?
1
< (2e3 +e1+ e +es)[w(t)]® + —l1b(t, ue) = 02, ve)|I®
1
1 2, 1 2
+ b (& )7+ —[lg@)" +c.
€5 [Sp]
Using (3.3)), one has

%(Hw(t)l\2 +IVw(®)?) + (2 - &) [Vw(t)|?

< 2c3 +¢e1 +e2+¢5
S N

1
+—llg®)I* +c.
€2

1 1
IVw(®)|? + allb(t,w) = b(t,v,)|” + gllbl(t, ve)|)?
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For A1 > c3, e3 < 1, and €1, €9, €5 small enough, we have

2
2oy C3+€1>\+€2+65 > 0.
1

So one gets

_ 2c3 + €1+ e+ €5
A1

2w @2 + [V @]?) + @ =

= V()

1 1 1
< It ur) = b(t,ve) |12+ =161 (8, ve) |2+ —[lg (@)1 +c.
€1 €5 €2

Similarly as in (3.27)), we can choose the positive constant §' < min{2cy, #Ajrl}
such that

2c3 +¢e1+ex+¢
F (V@) +w®]) < (2- e - =220 ) [Vu()].

In fact,
d / 1 2 1 2 1 2
Y0 +0y(2) < —1b(t ue) = b(t, ve) " + —llba (2, vo) |° + Ml + ¢,
€1 €5 €2

where y(t) = ||[Vw(#)||* + ||w(¢)||*. Multiplying this last inequality by e, such that
o < ¥, to find that

d
ot ! ot
—yl(t ) t
7t Syl0) + 0y (1)
1 1 1
< e —[b(t, up) — b(t, ve) |2 + 7 — b (t o) |F + —e”! g ()] + ce”" .
€1 €5 g2
On the other hand, we have

Sy (D) = 0y ) + e Lt

1 1
< (o —8")e"y(t) + eatgllb(t» ug) = b(t, ve)|* + eatgllbl(lz ve)|?

1
+ —eg(t)]|* + e
€2

Integrating from 7 to ¢, we obtain
t

y(t) < e Cy(r) + (o — e / €75 y(s)ds

T

1 ¢ 1 ¢
+ —e*"t/ e”?||b(s, us) — b(s,vs)||2ds + —e*”t/ e"s||b1(s,vs)||2ds
€1 T €5 T

1 t t
+—e_"t/ e”s||g(s)||2ds+ce_”t/ e’?ds
€2 T T
¢

< e Uy(r) 4+ (o — §')e / e”*y(s)ds

T

1 K 1 !
+ —e_"t/ e”*||b(s, us) — b(s,v,)||*ds + —e_"t/ % ||b1 (s, vs)||Pds
€1 r €5 e

1 t
+ fe*ﬁ/ e®|lg(s)||?ds + c(1 — e~
&9 e
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We use (3.23)), (3.60) and (c) to get

t
y(t) < e_o(t_T)y(T) + (U _6/)6—at/ easy(s)ds

t t
L Gopot / e lu(s) — v(s)|2ds + Loemot / e lu(s) | 2ds

e
€1 €5

1 t
et [ lg(o) s+ et - o)
E2 T

¢
<e o My(r) + (0 — (5’)6_0t/ e ®y(s)ds

T

C T o} t
+E—"e*0t/ % |w(s)|?ds + —2 *”t/ e”* |lw(s)||?ds
1 T—1 T

—e
€1

C T C t
+ﬁefﬁ/ %% ||v(s)|Pds + =2 *“/ e”*||v(s)||2ds

e
€5 €5

1 t
+;670t/ e |lg(s)||?ds + c.
2 T

Since
t

t T
/ el (s)|?ds < & / Jeo(s)|Pds + / e luo(s)|Pds,

T—7 T

t T t
/ e*|lu(s)|Pds < e / lo(s)[[2ds + / lo(s)12ds
by (3.3) and (3.64)), one obtains
t

y(t) < e~ Dy(r) + (0 — )e / e y(s)ds

T

- t
+ Seen [t Pas+ et [ e vugs)ds
1 T—T T

€11

T t
4 oo gmate—n) / lo(s)|Pds + St / V0 (s)|%ds
T—7 55)‘1 T

€5

1 ¢
bt [ e g)ls + e
[SP) T
t
<e o y(r) + (o — 5,)67075/ e”®y(s)ds

T

o i Ch t
- —e_g(t_T)/ [[w(s)[*ds + B_Ut/ e”*||Vw(s)||*ds
€1 e €11 T

C T 1 ¢
4 o gmott-m) / lo(s)2ds + —e~° / e*|lg(s)|[%ds + ¢
€5 T—1 €2 T

Cbo
€4

Cbo -1 2 2
s { eI + 9P +

/ [o(s)|[2ds + 2¢5|Q(T — 7)} .

ro_ st~ Cy ;
For p/ :=9¢" -0 El/\1>0,onehas

t
Ve[ + [w@) + we [ e |Vuls)Pds
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o Cy [T Ch, [T
ge@mMmWHmwu§/|mw%+§/|WWm

Chy, _ Cp, [T
o oI + 9l + 22 [ o(s) Pds + 2cal8i(r - 7))
E5AL €4 Jr—r
1 t
+ E—efgt/ e lg(s)||?ds + ¢, (3.70)
2 T
whereupon

IVw (@) + ()]
—o(t—7) 2 2 Ch T 2 Cbo T 2
< eIVl + o)+ 22 [ w(s)Pds+ =2 [ Jlo(s)|*ds)
1 Jr—r € Jr—r
Ch,
85)\1

1 t
—&——e_”t/ e”s||g(s)H2ds—|—c,

+

o (I + Vel + 2 [ joolPds + 2ai0r - 7))

€2
(3.71)
and
t
u’e_”t/ e”*||Vw(s)||*ds
—o(t—r Cy [T Ch [T
< TP+ @l + 2 [ e+ 2 [ o) Pas)
Co, Co, [T
g oI + VoI + 22 [ () Pds + 20T~ 7))
E5A1 €4 Jr—r

1 t
+—a“/e“M@Ww+a
&2 T

(3.72)
For t —r > 7, we have

t t t
/ e"s||Vw(s)||2d82/ e”||w(s)||2dszef’<t*r>/ IV a(s)|2ds
T t—r

t—r

So, by this inequality, (3.72]) becomes

[ V()]s

-Tr

-1 _—o(t—7—1r Ob T
< (PP + o)+ 2 [ )P

Co, [T 2 1 G, 2
"% or 3.73
+?5 Tirllv(S)ll d5)+ SV {IIU(T)II (3.73)
C
T [Vl + 2
€4

l;i“$2@+a@nuT-ﬂ}

/—1

t
_’_lu’?e—a(t—r)/ GUSHQ(S)HZdS—f—C@aT.
2 T
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We add (3.71) and (3.73)), and we use (3.24)) to obtain
t
IVuF+ [ V(o)
t
< V()2 + [w@)]? + / |Vu(s)|2ds
t—r
—o(l—T C T
< (e (V)P + o)l + 2 [ Ju)lPds
€1 Jr—r
Co, [T un Cbo
+ 2 [ u)lds) + I foge) P

€5

(3.74)

O T
HIve@l? + 22 ||v<s>|\2ds +20|00(T - 1)}

1 t
FCe [ el Pds + e j e,
2 —00
Then, (3.74) shows that for all e > 0, 7 < 79 and all (u(t),us) € U(¢,7)B(7), one
has
(T = P)(ult), us) %, <€
Finally, by considering the ordinary functional differential system (3.61]), we have

1AV < X[ V0l* < AT [lv]?, (3.75)
as
Vo> = (Av,v) = (Z VWi A wuz v, W) w;) Z)\i(v,wi>2,
i=1 j=1 i=1
and

|Av||? = (Av, Av)

m m
:<E vw,)\wz,g (v, wi) A jw;)
i=1 7j=1

m m
Z (v, w;) S Z vw,

Now, we check the equicontmulty property of the solutions {v(-)} in the space
L2([t — r,t]; L?(2)). Then, for any t; € [t — r,t], any [ € RT with [ < § and for
[t1,81 +1] C [t — 7 t], we have

[Tro(t) — o)l = llo(ty +1) = v(t2) ]|

1
dv(ty + s
< [ 128Dy
0 1

1 1
d
§/ ||A—v(t1+s)\|ds+/ |Av(ty + s)|ds
0 dtq 0

(3.76)

1 1
4 / o) llds + / Ibo(t1 + 5, vy 1) s
0 0

and so

lo(ty +1) —v(t1) H2 / ||A—v(t1 + ) |ds+/ |Av(t1 + s)||ds
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1 1 9
4 [ 1@lds+ [ ot + 5,v,0)]ds)
0 0
Consequently,

[ty +1) = v(t2)|?

< 2(/01 ||Ad%v(t1 +8)llds + /O1 |1 Av(ts + s)||ds>2
w2 [ Ltolas + [ otis + 5,0 10)1as)
1 1
§4</0 ||Ad%v(t1 +3)||d5)2+4(/0 \\Av(t1+s)\|ds)2
wa( [ ooas)” ([ 1ot + v lts)’

By Holder inequality,
ot +1) —v(t:)|?

1 1
< 41/ ||Aiv(t1 + 5)||%ds + 41/ |Av(ty + s)||*ds
0 dty 0
1 1
AL [ o) Pds 41 [ ot + 5,0 s
0 0
1 d 1 1
< 41(/ |A——wv(t; + 5)||*ds +/ |Av(ty + s)||>ds +/ | fo(v)||?ds
0 dty 0 0

1
+/ |60 (t1 + vat1+s)\|2d3> ;
0

which after integration over [t — r,t] leads to

t
/ oty + 1) — o(t2)|2dts
t—r
t 1 d 1
§4l/ (/ ||A—v(t1+s)||2ds+/ 1Av(ts + s)||%ds
t—r 0 dtl 0

1 1
+ [ 1@IPds+ [ oot + 50l ds)de
0 0

1 t 1 t
d
< 4l( |A—v(t1 + s)||dt1ds + |Av(ty + s)||*dt1ds
0 Jt—r dty 0 Jt—r

1 t 1 t
[ ] Uidnds s [ o +s v Pnds). (61)
0 t—r 0 t—r

Next we will estimate the five terms on the right-hand side of the equation.

By (3.75), we have

t t
/ | Av(ts + 9|2t < )\m/ IVo(ts + 5)|2dt:
t t

—r -

From ((3.25)), one has

t 2N t
/ Vot + 9)]Pdts < e, )| 37 / emoltts=n) gy,
t—r

t—r
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t t1+s ,
te / (14 et / e lg(s")|[?ds") iy
t—r

— 00

2N
< §||(U0,§0)||)](V72 (efa(t7r+sf7—) . efa(tJrsz)) +oer

t
+ g(efa(tfvdrs) . efa(tJrs)) / e Hg(S/)||2dS/

c 0 J\?J—V2 —o(t—r+s—71)
< St o) IF e

t
+ Eefo'(tfr%»s) / 6crs' ||g(s’)||2ds’ +oer. (378)

o —0o0

Integrating over [0, 1], we obtain

/ / |Vo(ty + s)||2dtids
t—r

< ;II(U 7<P)||§§72€_U(t_r_7)(1 —e ) (3.79)

t
+ éeﬂ(t*”a fe*d)/ e?%|lg(s)||>ds + crl.

— 00
By (3.75)) and -, we have

/ / [Av(ts + 5)[|2dtrds < A ||( ,w)ll” Eemoltmr=n) (1 _ =)
e (3.80)

+ Am—e (1 e_”l)/ 75 g(s)||*ds + Amerl — 0asl — 0.
—o0
From (a) and ([3.59)), we obtain
t t
| ottt sl < o, [ ol + ) Pt
t—r t—2r
Using (3.3)), one has
t t
[ ottt s Pt < Con [ 9t 4 0) P
t—r t—2r
By (3.25)), one gets
t
[ oot + 5.0 )l
t—r
vt
<A [ et
t—2r
t t tits
+Cb0)\flc/t , dty +Cbo)\flc/t , e*"(““)/ e ||g(s")||?ds’ dt;
2N
< CbOA;1£|‘(UO7 @)“§—2 (efo(t72r+sf7') _ e*O’(f*FS*T))
o

t
20,7 Ler o G AT S (e 072rt0) o4 / e llg(s")1Pds’

— c 70’ r+Ss—T
SC'bo)ql;H( #P)HN "3 mot=2rts—)
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¢
+ 2Cp, \] Fer + Cb(,)\flge_”(t_zﬂrs) / e ||g(s")||?ds’ .

— 00

Integrating over [0, 1], we obtain

1 t
L[ ot + svoiiands
0 Jt—r

an_ ol
< Cbo)\fl g ”(uo’ (p)”;(v—z / e—a(t—2r+s—7—)d8
0

29

(3.81)

1 t 1
+Cb0Af1§/0 e*U(t*QT“)/ e”/Hg(s’)Hst'ds—i—2Cb0)\flcr/0 ds

-1 € 0 % —o(t—2r—7) —ol
< O Sl 9)lix e (1—e"")
t
+ Cbo)\l_l%efa(tfzr)(l - 6701)/ e ||g(s’)H2d5' + QC’bO)\l_lcrl
g — 00

—0 asl—0.

Now, it is clear from (3.57)) that
o) < [ K1+ ol .

By (3.3) and the fact that 2« < %, one has

o) < [ 26201+ oo
< 2K2|Q + 2k ||v(ty + 5)||*
< 2K2|Q + 2K AT [Vt + 5)[[ 72 .
By (3:25), we have
4N

2N
IVo(t + )7 < {ee )0, ) 32

ti+s 2N
+e(l4emoh) /

—0o0

Similarly, one obtains

AN
—2

Vot + s)||¥

2N

2N\ 255
< 2857 (oot w0, ) 77 )

2N 2N t1+s , 2N
+ 282Nz (1+e*0<f1+5>/ e’* ||g(s')||2ds')

— 00

< 2N=2¢N-2 e_U(tl'f‘S—T)% H(u07 @)H.(X%f + 22151V_+; C%

2N 44 2N _ (t + ) 2N tl+s ’ 7 2 / 1\?82
+ 2 N-2¢N-2g 71773 N""(/ e’ lg(s")ll d5> :

Hence by (3.83)) and ([3.84)), one obtains
t
| ooy
t—r

e"lg(s")|2ds) }

(3.82)

(3.83)

(3.84)
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t t
< 2K7|Q Ldty + 2k% iy Vo(t, + s)|| V-2 dt
t ! t

2 N+2 2N (245)?

< Qkfﬂ)\l 1o V25 i 2<_e—a(t+s 7) 285 +e—a(t—r-&-s—‘r)%)H(uo’(p)HX

n 2£ﬂA;12%ng;§2 (c-otrt) R _ omoltte) 3y
g

N

t
(/ e Ng(s)|| ds) - +2/€2|Q|7‘—|—2N 7 N |2 AL

— o0

2 N+2 2N

< Zk;—ﬂAleN*cN*Qe_g(t_r—ks_ﬂ%H( %, I b

X

2N ! ;! N2 9.0 Noz
([ e g2
—0o0

+ 2k%|Q|r + 2 N3 cﬁkzﬂ)\flr,

N+2 2N (t ’I‘+S)

k2
+ 2—;M1 lox=2¢nv-2¢77

which integrated from 0 to [ gives
/ / I folw) Patyds
2N 2 1 .
< 2E 128 o8 0, ) et
0

kz 1 N+2 2N t ’ 2 I\?§2 1 t 2N
+2—fA] 2Wcm(/ e Jlg(s") ds’) / e ot HINTs s
o 0

— 00

1
+/ (2K2|Qfr + 277 e X2 K2 AT ) .ds
0

Then, we find

/ / o) P

<2 iaria¥ e ,so>||§<%>2e-““—"-ﬂf?$(1—e—“ﬁ%

ol

k? Lo
+ 27/1,\1 ONTE N (/ e7s ||g(s')||2ds’) e (t=1) % (1 —e
— o0

+2K2|Qrl + 2577 R ATl — 0 asl— 0.
(3.85)
It remains to estimate fo ft . ||Adt1 v(ty + s)||?dtids. To this end, we take the
inner product in L?(Q) of (3.61) with Aaitlv, we find

IIV*v(tl +5)[I* + HAfv(tl £ 9)2 4 2 Au(ty + )]

2 dty
/fo *U-i-/bo(t1+8,vt1+s)(—A§”)~
1

/ folv)B v / S0 VoV .

(3.86)

‘We have
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By (3.56)), it follows that
/ folv v < 03/ |Vv\|V—v| < C3||Vv||HV v||
Using the Young 1nequahty7 one has
/ folv 71) <4 5 |Vu(t + )| + f||Vditlv(t1 FoIE. (387)
By (3.87) and , one finds
IV ot + s)H2 Aot + 9+ gt [Avles + )|
< DIVt + )17 + 31V ot + P + [ ot 5,00) (A ).
2 2" dty Q oty

Which via the Cauchy inequality gives

1
IIV*v(tl +s)lI” + IIAfv(tl +s)|P+ 5 I\Av(tl +35)|

2 dty
c? d
< iIIVv(tl +5)[* + *vav(tl +5)]* + ﬂllbo(tl +5,05,15) |7
*IIA*v(h +5)]%.
So, one has

d
IA—=v(ts + 5)]*

dty
d
<= 2 a 2 2
< SIV ot + ) + 80l +5)] +2dt 1801 +9)]
2
C
< S0t + 9 + - Ibots + 5,00 + 2 Aot + 5) P

Therefore, one gets

c2 1
(1- *)Ilﬁfv(tl +s)|? < 53||Vv(t1 +s)| + —||bo(t1 + 8, 0049)|%

For v; small enough, we have vy := 1 — % > 0. So we can write
1A d (ti + )] < s [Vo(ts + )] + ! [[bo(t1 + )12
— s —||Vv s — S,V 45)||° -
dtl ! - 21/2 ! 21/1V2 011 ot
Which integrated over [t — r, ] leads to

t d
/ ”Adt v(ty + 8)||dty

2 t t

c 1
3 ||V’U(t1 + S)||2dt1 + N ||b0(t1 + S,Ut1+s>||2dt1 ;

S 2
2vy Ji—r 2y Sy

integrating the above inequality over [0, ], one obtains

1 t d
/ / Aoty + ) Pdnds
t—r

< / / [Vo(t; + 5)]|? dtlds+ / / lbo(t1 + 8,v¢,4s)||Pdt1ds .
21/2 t—r vive t—r
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By (3.79) and (3.82), it follows that

// ||A—vt1+s)||2dt1ds
t T

7a(t r—r) 1— —ol
< 2 L, o)l § (1-e)
t 2
C3 C _o(t—r —ol os 2 C3
B et )/_Ooe las) 2ds + 5-cri
o O S )| F e I (1 e
21/11/2 ° 0'2 X

1 -1C —o(t—2r —0o ! os 1 _
+T11/20b0/\11§6 (t—2 )(1—6 l)/ e ||9(3)H2d3+ECbo)\1 Lopl .

Thus, we obtain
/ / ||A—v t) + )| 2dtrds
t T
C
< <2V22 _— cbow ) S, PIE “’“‘T‘”fl‘e”l’ (3.59)
+ (2652 21110 Coo AL ' M)éeig(tﬂ)(l B e*”l) /;oo e”s||g(5)||2d5
+2,lm+m%1 erl =0 asl—0.

Comprehensively, from (3.77)), (3.80), (3.82), (3-85) and (3.88)), we have

t
/ o(ts + 1) — v(t)|2dtr — 0 as i — 0,
t—r

which implies the needed equicontinuity. This shows that the condition (3) in
Proposition holds, and thus the process on X is pullback w-D-limit compact.
Then from Lemma [3.8 and Theorem 2.8 we conclude the existence of a pullback
D-attractor which completes the proof. O
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