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ACOUSTIC SCATTERING FROM OPEN CAVITIES IN THE

TIME DOMAIN

BO CHEN, FUMING MA, YUKUN GUO

Abstract. This article concerns acoustic scattering from two-dimensional

open cavities in the time domain. A transparent boundary condition is pro-
vided to reformulate the problem as an equivalent initial boundary value prob-

lem in the interior region of the open cavity. The well-posedness, that is, the

existence, uniqueness and stability of the solution to the reduced problem,
is proved via a “Laplace domain” to time domain analysis. Moreover, time

domain boundary integral equations for the reduced problem are established.

1. Introduction

Scattering problems of acoustic waves have attracted extensive attention because
of their significance in industry and medical equipment. Roughly speaking, acoustic
scattering problems can be formulated in two scenarios: frequency domain problems
with time-harmonic or nearly time-harmonic wave fields and time domain problems
with time-dependent non-harmonic wave fields. Frequency domain problems, which
mainly deal with the Helmholtz equation, can be taken as a simplification of time
domain problems [11, 17, 28]. Analytical methods of time domain problems are in
diverse forms such as the direct analysis [27] and the analysis related to the so-
called “Laplace domain” problem given by the Fourier-Laplace transform [7, 24].
Since time domain scattering problems arise more naturally in diverse application
areas, in recent years, time domain scattering and inverse scattering problems have
attracted a lot of attention [12, 13, 14, 16].

We are mainly concerned about the scattering of acoustic waves in homogeneous
and isotropic medium. In this article, the scatterers are chosen as two-dimensional
open cavities embedded in the half-plane. The corresponding frequency domain
problems have been studied in [1, 6, 20, 21]. In recent years, the time domain
electromagnetic scattering from open cavities has been studied in [10, 18, 19, 26].
However, to the best of our knowledge, there is no rigorous mathematical analysis
of the time domain acoustic scattering from open cavities in the literature.

In comparison to the scattering problem with a bounded scatterer, the scattering
from open cavities is more challenging because of the inherent unboundedness. To
overcome this difficulty, we develop a transparent boundary condition (TBC) to

2010 Mathematics Subject Classification. 35L20, 35B35, 35A22.
Key words and phrases. Time domain acoustic scattering; open cavity;

transparent boundary condition; well-posedness; boundary integral equation.
c©2019 Texas State University.

Submitted March 8, 2019. Published December 16, 2019.

1



2 B. CHEN, F. MA, Y. GUO EJDE-2019/131

reformulate the original scattering problem with unbounded scatterers in an equiv-
alent initial boundary value problem in the interior of the open cavity. Then the
well-posedness of the solution to the reduced problem is proved via the so-called
“Laplace domain” problem given by the Fourier-Laplace transform of the time do-
main problem. Finally, the retarded potential boundary integral equation (RPBIE)
method [14] is used to solve the reduced problem and the convolution quadrature
(CQ) method is used for the calculation of the reduced problem. Detailed analysis
of the single and double layer potentials and the boundary integral equations can be
found in [2, 8, 15, 25]. Our work is inspired by the corresponding frequency domain
investigations and the related time domain analyses of the Maxwell equations and
the acoustic waves [3, 5, 24].

The outline of this article is as follows. The model scattering problem and the
relevant spaces are shown in Section 2. Then a TBC is developed to reformulate
the time domain scattering problem into a reduced initial boundary value problem
in a bounded domain in Section 3. In Section 4, the well-posedness of the reduced
problem and the equivalence of the two time domain scattering problems are proved.
In Section 5, RPBIEs for the reduced time domain problem and the CQ method
for the computation of the reduced problem are established.

2. Problem setting

2.1. Model problem. Consider the scattering of transient acoustic waves by an
open cavity embedded in the ground plane. The outer space is filled with homoge-
neous background medium. The ground plane and the lower boundary of the cavity
are assumed to be sound-soft. Adopting Cartesian coordinates (x1, x2, x3), the cav-
ity and the incident field are both assumed to be invariant with respect to x3. Thus
the three-dimensional scattering problem can be simplified to the two-dimensional
case.

The incident field is chosen as the cylindrical wave emitted from a line source
parallel to the x3-axis in the half-space {(x1, x2, x3) ∈ R3 : x2 > 0}. Denote by
y3d := (y, y3) the coordinate of a source point with y := (y1, y2) ∈ R2. Consider
that a causal signal λ(t) (that is, λ(t) = 0 for t < 0) is simultaneously emitted from
all the source points on the excitation line. Then the incident field has the form
(see, e.g., [24])

ui(t, x; y) := k(t, x; y) ∗ λ(t), t ∈ R, x ∈ R2\{y},

where k ∗ λ denotes the time convolution of k and λ and

k(t, x; y) :=
H(t− c−1|x− y|)

2π
√
t2 − c−2|x− y|2

is the Green’s function of the operator c−2∂tt−∆ in the free space R×R2. In this
paper, ∆ is the Laplacian in R2, ∂t = ∂/∂t, ∂tt = ∂2/∂t2, H is the Heaviside step
function and c is the constant wave speed of the homogeneous background medium.
For the sake of simplicity, we choose c ≡ 1 throughout the rest of this paper.

For the two-dimensional scattering problem, denote by R2
+ := {(x1, x2) ∈ R2 :

x2 > 0} the upper half-plane and R2
0 := {(x1, x2) ∈ R2 : x2 = 0} the x1-axis. The

source point y is assumed to be located in the upper half-plane R2
+. For x = (x1, x2),

define xρ := (x1,−x2). Then the reflected field is

uρ(t, x; y) := −k(t, x; yρ) ∗ λ(t), t ∈ R, x ∈ R2\{yρ}.
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Figure 1. Sketch of the two dimensional scattering problem.

A geometrical illustration of the model scattering problem is shown in Figure
1. Denote by D the cavity with the boundary ∂D = Γ ∪ Λ. The ground line is
R2

0 = Γ∪Γc. The lower boundary Λ of the cavity is assumed to be C2-smooth and
R2

0 is not a tangent to Λ.
The total field u, which is divided into the incident field ui, the reflected field uρ

and the scattered field us, satisfies

utt −∆u = f in R× (D ∪ R2
+), (2.1)

u = 0 on R× (Γc ∪ Λ), (2.2)

u(0, ·) = ut(0, ·) = 0 in D ∪ R2
+, (2.3)

where the source term f satisfies supp(f) ⊂ R+ × R2
+.

2.2. Space-time Sobolev spaces. We recall some notation concerning Sobolev
spaces (refer to [9, 24] for details). Given a generic Lipschitz domain Ω ∈ Rd, we
define

(u, v)Ω :=

∫
Ω

uv, (∇u,∇v)Ω :=

∫
Ω

∇u · ∇v.

On this basis, we define

‖u‖Ω := [(u, u)Ω]
1/2

,

where u denotes the complex conjugate of u. Then the H1(Ω)-norm is defined as

‖u‖H1(Ω) :=
(
‖u‖2Ω + ‖∇u‖2Ω

)1/2
.

For c > 0, we define c := min{1, c} and

|||u|||c,Ω :=
(
‖∇u‖2Ω + c2‖u‖2Ω

)1/2
.

We define the space

H1
∆(Ω) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}

with the norm

‖u‖∆ :=
(
‖u‖2Ω + ‖∇u‖2Ω + ‖∆u‖2Ω

)1/2
.

Then we consider the trace spaces on Γ. Denote by

〈ξ, η〉Γ :=

∫
Γ

ξη dΓ
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the L2(Γ) inner product on Γ. We define

H̃1/2(Γ) := {V ∈ H1/2(Γ) : E0(V ) ∈ H1/2(R2
0)}.

where E0 is the extension operator from H1/2(Γ) to H1/2(R2
0) defined by

E0(V )(x) :=

{
V (x), x ∈ Γ,

0, x ∈ R2
0\Γ.

In fact, H̃1/2(Γ) is the dual of H−1/2(Γ) with respect to the L2(Γ)-inner product
(refer to [1, 15]). We define the spaces

H1
E(D) := {V ∈ H1(D) : V |Λ = 0 and V |Γ ∈ H̃1/2(Γ)},

H1
∆,E(D) := {V ∈ H1

∆(D) : V |Λ = 0 and V |Γ ∈ H̃1/2(Γ)},
H1

∆,E(D ∪ R2
+) := {V ∈ H1

∆(D ∪ R2
+) : V = 0 on Γc ∪ Λ}

with the norm of H1(D), H1
∆(D) and H1(D ∪ R2

+), respectively.
We denote Cσ := {ω ∈ C : Im(ω) ≥ σ > 0} and in particular C+ := {ω ∈ C :

Im(ω) > 0}. The Fourier-Laplace transform is defined by

L[f ](ω) :=

∫ ∞
−∞

eiωtf(t) dt, ω ∈ Cσ. (2.4)

Correspondingly, the inversion formula is

L−1[ϕ](t) :=
1

2π

∫ ∞+iσ

−∞+iσ

e−iωtϕ(ω) dω. (2.5)

To analyze the time domain scattering problem, we recall some notation con-
cerning space-time Sobolev spaces. For a Hilbert space X, denote by D′(X) and
S ′(X) the space of X-valued distributions and tempered distributions on the real
line, respectively. For σ ∈ R, we define

L′σ(R, X) := {f ∈ D′(X) : e−σtf ∈ S ′(X)},
L′σ(R+, X) := {f ∈ L′σ(R, X) : f(t) = 0, ∀t < 0} .

For σ ∈ R and p ∈ R, define the space

Hp
σ(R, X) :=

{
f ∈ L′σ(R, X) :

∫ ∞+iσ

−∞+iσ

|ω|2p‖L[f ](ω)‖2X dω <∞
}

with the norm

‖f‖Hpσ(R,X) :=
(∫ ∞+iσ

−∞+iσ

|ω|2p‖L[f ](ω)‖2X dω
)1/2

. (2.6)

Taking into consideration the causality, we define the space

Hp
σ(R+, X) :=

{
f ∈ Hp

σ(R, X) : f(t) = 0, ∀t < 0
}

with the norm of Hp
σ(R, X).
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3. Reduced problem

In this section, a TBC is proposed to get an equivalent initial boundary problem
of (2.1)–(2.3) in the bounded domain D. Since the source points are separated
from the unbounded scatterer, the scattered field us := u − ui − uρ satisfies the
homogeneous wave equation [24]

ustt −∆us = 0 in R× R2
+. (3.1)

We define u0 := u|R×R2
0
. Note that ui + uρ = 0 on R× R2

0. Then

us = u0 on R× R2
0. (3.2)

For the corresponding frequency domain problem, the Fourier transform with re-
spect to x1 is employed to get the differential equations of x2 (refer to [1]). However,
since an additional variable t is involved for time domain problems, an additional in-
tegral transform is needed for the analysis. After careful consideration, we find the
Fourier-Laplace transform to be effective and befitting the well-posedness analysis.

3.1. TBC in the “Laplace domain”. Formally, taking the Fourier-Laplace trans-
form of (3.1) and (3.2) with respect to t yields

∆Us(ω, ·) + ω2Us(ω, ·) = 0 in R2
+, (3.3)

Us(ω, ·) = U0(ω, ·) on R2
0, (3.4)

where ω ∈ C+, Us and U0 are respectively the Fourier-Laplace transform of us and
u0 with respect to t.

Furthermore, taking the Fourier transform of (3.3) and (3.4) with respect to x1

yields (
∂2
x2

+ (ω2 − ξ2
1)
)
Fx1

[Us](ω, ξ1, x2) = 0, x2 > 0, (3.5)

Fx1
[Us](ω, ξ1, x2) = Fx1

[U0](ω, ξ1, x2), x2 = 0. (3.6)

The causality of the time domain problem implies the finite energy of the acoustic
wave at each time (refer to [24]). Then ω ∈ C+ and the finite energy imply

Fx1
[Us] = eiω

√
1−ξ2

1/ω
2x2Fx1

[U0].

Here
√
a is the principle square root of a ∈ C, that is, Re(

√
a) ≥ 0. For ω ∈ C+,

set ω = η + iσ, σ > 0. Note that

η Im
(
1− ξ2

1

ω2

)
=

2ξ2
1η

2σ

(η2 + σ2)2
≥ 0.

Moreover, the definition of the principle square root implies

Im
(
1− ξ2

1

ω2

)
Im
(

(

√
1− ξ2

1

ω2

)
≥ 0.

Thus

Re
(

iω

√
1− ξ2

1

ω2

)
= −σRe

(√
1− ξ2

1

ω2

)
− η Im

(√
1− ξ2

1

ω2

)
≤ 0.

The inverse Fourier transform gives

Us(ω, x1, x2) =
1

2π

∫
R

eiξ1x1eiω
√

1−ξ2
1/ω

2x2Fx1 [U0](ω, ξ1, 0) dξ1.
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Then we have
∂Us

∂ν

∣∣∣
x2=0

= T FU0, (3.7)

where the operator T F is defined by

(T FV )(ω, x1, x2) :=
iω

2π

∫
R

eiξ1x1

√
1− ξ2

1/ω
2Fx1 [E0(V )](ω, ξ1, 0) dξ1.

We define

G(ω, ·) :=
∂(U i(ω, ·) + Uρ(ω, ·))

∂ν
on Γ,

where U i and Uρ are respectively the Fourier-Laplace transform of ui and uρ with
respect to t. Then we have the boundary condition

∂U(ω, ·)
∂ν

= T F (ω, ·)U(ω, ·) +G(ω, ·) on Γ,

which is a TBC in the so-called “Laplace domain”.

3.2. TBC in the time domain. Then the inverse Fourier-Laplace transform is
needed to formulate a TBC in the time domain. Note that there are restrictions
to use the strong inversion formula (2.5). Consider the inverse Fourier-Laplace
transform of F (ω), Im(ω) = σ > 0. Assume that F (ω) satisfies

|F (ω)| ≤ CF (σ)|ω|µ, (3.8)

in which µ ∈ R and CF : R+ → R+ is a non-increasing function such that

CF (σ) ≤ M

σι
, ∀σ ∈ (0, 1),

where ι and M are positive constants.
Again, we set ω = η + iσ. For µ < −1, the inverse Fourier-Laplace transform is

defined as

f(t) = L−1[F ](t) :=
1

2π

∫ ∞+iσ

−∞+iσ

e−iωtF (ω)dω =
1

2π

∫ ∞
−∞

eσte−iηtF (η + iσ)dη.

Let

χ =
σ2

σ2 + η2
.

Assumption (3.8) implies that f(t) is well defined for t ∈ R and

|f(t)| ≤ 1

2π
CF (σ)σ1+µeσtB

(1

2
,−µ+ 1

2

)
,

where B is the Euler beta function,

B(x, y) =

∫ 1

0

χx−1(1− χ)y−1 dχ.

A contour integration argument implies that f(t) is independent of σ > 0. Taking
the limit σ →∞ implies that f(t) = 0, ∀t < 0. Moreover, set σ = t−1 for t > 1, we
have the estimation

|f(t)| ≤Mtι−(µ+1)B

(
1

2
,−µ+ 1

2

)
.

Then f(t) is a causal function with polynomial growth. Obviously we have f(t) ∈
L′σ(R+, X).
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For µ ≥ −1, we denote F (ω) = (−iω)mFm(ω) with the integer m > µ+ 1. Then

|Fm(ω)| ≤ CF (σ)|ω|µ−m

with µ−m < −1. Then there exists a causal function fm(t) with polynomial growth

such that fm(t) = L−1[Fm](t). On account of L[f
(m)
m ](ω) = (−iω)mL[fm](ω), the

inverse Fourier-Laplace transform of F (ω) is f(t) = f
(m)
m (t). Then we also have

f(t) ∈ L′σ(R+, X) for this case. For more details, see the analysis of Lubich [23]
and Sayas [24].

Based on the above analysis, there is always an inverse Fourier-Laplace transform
of F (ω) with or without the strong inversion formula (2.5). For simplification,
assume that the strong inversion formula can be used throughout this paper. Back
to time domain, we can get the following definition of the boundary operator and
the TBC.

Definition 3.1. The boundary operator T : L′σ(R, H̃1/2(Γ)) → L′σ(R, H−1/2(Γ))
is defined as

T v :=
1

4π2

∫ ∞+iσ

−∞+iσ

∫ ∞
−∞

e−iωt+iξ1x1 iω
√

1− ξ2
1/ω

2L ◦ Fx1 [E0(v)](ω, ξ1, 0) dξ1dω.

Definition 3.2. The transparent boundary condition (TBC) of the time domain
scattering problem (2.1)–(2.3) is defined as

∂u

∂ν

∣∣∣
Γ

= T u+ g.

where T is the boundary operator and

g :=
∂(ui + uρ)

∂ν

∣∣∣
x2=0

= 2
∂ui

∂ν

∣∣∣
x2=0

on R× Γ.

Then we have a new time domain scattering problem: Find u such that

utt −∆u = 0 in R×D, (3.9)

u = 0 on R× Λ, (3.10)

∂u

∂ν
= T u+ g on R× Γ, (3.11)

u(0, ·) = ut(0, ·) = 0 in D. (3.12)

4. Well-posedness

This section concerns the well-posedness of problem (3.9)–(3.12), and the equiv-
alence between the scattering problems (2.1)–(2.3) and (3.9)–(3.12). The corre-
sponding generalized equations are also considered here.

For the time domain scattering problem (2.1)–(2.3), we study the set of solutions
u ∈ L′σ(R+, H

1
∆,E(D ∪ R2

+)) such that

ü−∆u = f in R× (D ∪ R2
+), (4.1)

where ü is the generalized second order derivative of u with respect to t.
Similarly, for (3.9)–(3.12), we study the set of solutions u ∈ L′σ(R+, H

1
∆,E(D))

such that

ü−4u = 0 in R×D, (4.2)

∂u

∂ν
= T u+ g on R× Γ. (4.3)
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Let u ∈ L′σ(R+, H
1
∆,E(D)) be a solution of problem (4.2)–(4.3). The Fourier-

Laplace transform implies that U(ω, ·) ∈ H1
∆,E(D) satisfies

4U(ω, ·) + ω2U(ω, ·) = 0 in D, (4.4)

∂U(ω, ·)
∂ν

= T FU(ω, ·) +G(ω, ·) on Γ. (4.5)

Firstly, we give the following property of the operator T F .

Lemma 4.1. Let ω ∈ C. The operator T F : H̃1/2(Γ)→ H−1/2(Γ) satisfies

Im
(
ω〈T FV (ω, ·), V (ω, ·)〉Γ

)
≥ 0.

Proof. For V (ω, ·) ∈ C∞0 (Γ), we have

〈T FV (ω, ·), V (ω, ·)〉Γ

=
iω

2π

∫
R

√
1− ξ2

1/ω
2Fx1

[E0(V (ω, ·))]
∫

Γ

eiξ1x1V (ω, ·)dsxdξ1

=
iω

2π

∫
R

√
1− ξ2

1/ω
2Fx1

[E0(V (ω, ·))]
∫
R

e−iξ1x1E0(V (ω, ·))dx1dξ1

=
iω

2π

∫
R

√
1− ξ2

1/ω
2 |Fx1

[E0(V (ω, ·))]|2 dξ1.

Note that V (ω, ·) ∈ C∞0 (Γ) is dense in H̃1/2(Γ). Therefore, for V (ω, ·) ∈ H̃1/2(Γ),
we also have

〈T FV (ω, ·), V (ω, ·)〉Γ =
iω

2π

∫
R

√
1− ξ2

1/ω
2 |Fx1 [E0(V (ω, ·))]|2 dξ1.

Thus

Im
(
ω〈T FV (ω, ·), V (ω, ·)〉Γ

)
= Re

( |ω|2
2π

∫
R

√
1− ξ2

1/ω
2|Fx1 [E0(V (ω, ·))]|2dξ1

)
≥0.

This completes the proof. �

Moreover, we need the following property of the norms given by [24]. Let ω ∈ C
and Im(ω) = σ > 0. The norms ||| · ||||ω|,D and ‖ · ‖H1(D) satisfy

σ‖V ‖H1(D) ≤ |‖|V |‖||ω|,D ≤
|ω|
σ
‖V ‖H1(D). (4.6)

Then we give the following theorem about the well-posedness of problem (4.4)–(4.5).

Proposition 4.2. Let ω ∈ C, Im(ω) = σ > 0 and G(ω, ·) ∈ H−1/2(Γ). There
exists a unique solution U(ω, ·) ∈ H1

∆,E(D) of problem (4.4)–(4.5). Moreover, there
exists a constant Cσ,D depending only on σ and D such that

‖U(ω, ·)‖H1
∆,E(D) ≤ Cσ,D|ω|2‖G(ω, ·)‖H−1/2(Γ).

Proof. Consider the variational form associate with problem (4.4)–(4.5). U(ω, ·) ∈
H1
E(D) solves (4.4)–(4.5) if and only if

A
(
U(ω, ·), V (ω, ·)

)
:=
(
∇U(ω, ·),∇V (ω, ·)

)
D
− ω2

(
U(ω, ·), V (ω, ·)

)
D
− 〈T F (ω)U(ω, ·), V (ω, ·)〉Γ



EJDE-2019/131 ACOUSTIC SCATTERING FROM OPEN CAVITIES 9

= 〈G(ω, ·), V (ω, ·)〉Γ, ∀V (ω, ·) ∈ H1
E(D).

It follows from Lemma 4.1 and (4.6) that

Im
(
−ωA

(
U(ω, ·), U(ω, ·)

))
= Im

(
− ω

(
∇U(ω, ·),∇U(ω, ·)

)
D

+ ωω2
(
U(ω, ·), U(ω, ·)

)
D

+ ω〈T F (ω)U(ω, ·), U(ω, ·)〉Γ
)

≥ σ‖∇U(ω, ·)‖2D + σ|ω|2‖U(ω, ·)‖2D
= σ|‖|U(ω, ·)|‖|2|ω|,D.

Then the unique solvability of (4.4)–(4.5) in H1
E(D) follows from a Lax-Milgram

argument. Moreover, it follows from the trace theorem and (4.6) that

|‖|U(ω, ·)|‖|2|ω|,D ≤
1

σ
Im
(
−ω〈G(ω, ·), U(ω, ·)〉Γ

)
≤|ω|
σ
‖G(ω, ·)‖H−1/2(Γ)‖U(ω, ·)‖H̃1/2(Γ)

≤CD
|ω|
σ
‖G(ω, ·)‖H−1/2(Γ)‖U(ω, ·)‖H1

E(D)

≤CD
|ω|
σσ
‖G(ω, ·)‖H−1/2(Γ)|‖|U(ω, ·)|‖||ω|,D,

where CD is a constant depending only on D. Thus

|‖|U(ω, ·)|‖|2|ω|,D ≤ CD
|ω|
σσ
‖G(ω, ·)‖H−1/2(Γ).

Then (4.6) implies

‖U(ω, ·)‖2H1
E(D) ≤ CD

|ω|
σσ2
‖G(ω, ·)‖H−1/2(Γ).

We have proved that there exists a unique solution U(ω, ·) ∈ H1
E(D) of problem

(4.4)–(4.5). Then (4.4) implies ∆U(ω, ·) = −ω2U(ω, ·) ∈ H1
E(D) ⊂ L2(D). Thus

U(ω, ·) ∈ H1
∆,E(D), which means there exists a unique solution U(ω, ·) ∈ H1

∆,E(D)

of (4.4)–(4.5). Moreover, the definition of the norm |‖| · |‖|c,ω implies

‖∆U(ω, ·)‖D =‖ω2U(ω, ·)‖D ≤ |ω|2‖U(ω, ·)‖D
≤|ω||‖|U(ω, ·)|‖||ω|,D

≤CD
|ω|2

σσ
‖G(ω, ·)‖H−1/2(Γ).

Then we have

‖U(ω, ·)‖2H1
∆,E(D) =‖U(ω, ·)‖2H1

E(D) + ‖∆U(ω, ·)‖2D

≤C2
D

|ω|2

σ2σ2

( 1

σ2
+ |ω|2

)
‖G(ω, ·)‖2H−1/2(Γ)

≤2C2
D

|ω|4

σ2σ6
‖G(ω, ·)‖2H−1/2(Γ).

Thus
‖U(ω, ·)‖H1

∆,E(D) ≤ Cσ,D|ω|2‖G(ω, ·)‖H−1/2(Γ),
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where Cσ,D =
√

2CD/(σσ
3). This completes the proof. �

Consider the time domain scattering problem (4.2)–(4.3). We need the following
lemma for the time domain analysis.

Lemma 4.3 ([23]). Let p, r ∈ R, ω ∈ C and Im(ω) > σ0 > 0. Let F (ω) ∈
B(X,Y ) be a bounded operator between the Hilbert spaces X and Y . Define f(t) :=
L−1[F (ω)](t) and Ftg :=

∫∞
−∞ f(t)g(· − t)dt, and assume that

‖F (ω)‖B(X,Y ) ≤ C|ω|r, Im(ω) > σ0.

Then, for σ > σ0, Ft is a bounded operator from Hp+r
σ (R+, X) to Hp

σ(R+, Y ).

Then we have the following results in the time domain.

Theorem 4.4. Let σ > σ0 > 0, p ∈ R and g ∈ Hp+2
σ (R+, H

−1/2(Γ)). Then there
exists a unique solution u ∈ Hp

σ(R+, H
1
∆,E(D)) of the scattering problem (4.2)–

(4.3). Moreover, there exists a constant C ′σ0,D
depending only on σ0 and D such

that
‖u‖Hpσ(R+,H1

∆,E(D)) ≤ C ′σ0,D‖g‖Hp+2
σ0

(R+,H−1/2(Γ)).

Proof. For Im(ω) > σ0 > 0, it follows from Proposition 4.2 that there exists a
unique solution U(ω, ·) ∈ H1

∆,E(D) of problem (4.4)–(4.5) and

‖U(ω, ·)‖H1
∆,E(D) ≤ Cσ0,D|ω|2‖G(ω, ·)‖H−1/2(Γ),

where Cσ0,D = 2CD/(σ0σ0
3), and CD is the same constants in the proof of Proposi-

tion 4.2. Denote by F (ω, ·) ∈ B(H−1/2(Γ), H1
E(D)) the solution operator of (4.4)–

(4.5) such that U(ω, ·) = F (ω, ·)G(ω, ·). Then

‖F (ω, ·)‖B(H−1/2(Γ),H1
∆,E(D)) ≤ Cσ0,D|ω|2, Im(ω, ·) > σ0.

Using Proposition 4.2 and Lemma 4.3, an inverse Fourier-Laplace argument implies
that u = f ∗ g ∈ Hp

σ(R+, H
1
E(D)) is the unique solution of the scattering problem

(4.2)–(4.3), in which f and g are the inverse Fourier-Laplace transform of F (ω, ·)
and G(ω, ·), respectively. Moreover, Lemma 4.3 implies

‖u‖Hpσ(R+,H1
∆,E(D)) ≤ C ′σ0,D‖g‖Hp+2

σ0
(R+,H−1/2(Γ)).

where C ′σ0,D
is a constant depending only on σ0 and D. �

Next we provide a proposition for the equivalence between the time domain
scattering problems (4.1) and (4.2)–(4.3).

Proposition 4.5. Let σ > 0, p ∈ R and g ∈ Hp+2
σ (R+, H

−1/2(Γ)). If u1 ∈
Hp
σ(R+, H

1
∆,E(D ∪ R2

+)) is the solution of the scattering problem (4.1) and u2 ∈
Hp
σ(R+, H

1
∆,E(D)) is the solution of the scattering problem (4.2)–(4.3). Then

u1 = u2 in R×D.

Proof. If u1 ∈ Hp
σ(R+, H

1
∆,E(D∪R2

+)) is the solution of (4.1), combining supp(f) ⊂
R+×R2

+ with the analysis of the TBC (4.3), we obtain that u1|R×D ∈ Hp
σ(R+, H

1
∆,E(D))

is the solution of (4.2)–(4.3).
Using Theorem 4.4, the unique solvability of the scattering problem (4.2)–(4.3)

implies
u1 = u2 in R×D.

The proof is complete. �
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5. Boundary integral equations

In this section, we will show the process for solving the time domain scattering
problem (3.9)–(3.12) and the CQ method to turn the calculation of the time domain
problem into that of the corresponding frequency domain problems.

The retarded single layer potential on ∂D is defined as (see [9])

(SL∂Dφ)(t, x) :=

∫
∂D

∫ t

0

k(t− τ, |x− y|)φ(y, τ) dτdsy, t ∈ R, x ∈ R2\∂D.

The retarded double layer potential on ∂D is

(DL∂Dφ)(t, x) :=

∫
∂D

∫ t

0

∂k(t− τ, |x− y|)
∂ν(y)

φ(y, τ) dτdsy, t ∈ R, x ∈ R2\∂D,

where ∂k/∂ν(y) is the normal derivative of k on ∂D with respect to y. Also of
importance are the single and double layer operators on ∂D, which are defined as

(S∂Dφ)(t, x) :=

∫
∂D

∫ t

0

k(t− τ, |x− y|)φ(y, τ) dτdsy, t ∈ R, x ∈ ∂D

and

(K∂Dφ)(t, x) :=

∫
∂D

∫ t

0

∂k(t− τ, |x− y|)
∂ν(y)

φ(y, τ) dτdsy, t ∈ R, x ∈ ∂D,

respectively.
Denote by γ−u and γ+u the restriction of u to ∂D from the interior and exterior,

and by ∂−ν u and ∂+
ν u the normal derivatives on ∂D from the interior and exterior,

respectively. The jumps are defined as

[[u]] := γ−u− γ+u, [[∂νu]] := ∂−ν u− ∂+
ν u.

The Kirchhoff’s formula [24] for the solution of the wave equation is

u = SL∂D[[∂νu]]−DL∂D[[u]] in R×D. (5.1)

On the boundary ∂D, we have

1

2
u = S∂D[[∂νu]]−K∂D[[u]] on R× ∂D.

We are concerned with the time domain scattering problem in the bounded domain
D. Assume that u ≡ 0 in R× (R2\D). Then

[[∂νu]] = ∂−ν u, [[u]] = γ−u on R× ∂D.
For the sake of simplicity, we write ∂νu = ∂−ν u, u = γ−u on ∂D. Then we have the
following RPBIEs for the scattering problem (3.9)–(3.12):

1

2
u = SΓ(T u+ g)−KΓu+ SΛ∂νu on R× Γ, (5.2)

0 = SΓ(T u+ g)−KΓu+ SΛ∂νu on R× Λ. (5.3)

We can get u|R×Γ and ∂νu|R×Λ by solving (5.2)–(5.3). Then ∂νu|R×Γ is given by
(3.11) and u|R×D is given by the Kirchhoff’s formula (5.1).

We recall the CQ method (refer to [4, 22]) for the time discretization of the
RPBIEs (5.2)–(5.3). The time discretization is implemented in [0, T ]. The terminal
time T is chosen such that the energy of the scattered data inside the interested
domain is negligible when t > T . We have the discretization

tj = jκ, j = 0, 1, . . . , N, κ = T/N.
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To solve an integral equation with convolution structure such as

SΓu = h, on R× Γ,

the CQ method leads to the decoupled problems [4]

SFΓ ûl(ωl, x) = ĥl(ωl, x), x ∈ Γ, l = 0, 1, . . . , N,

where SFΓ is the Fourier-Laplace transform of the operator SΓ, ûl(·) and ĥl are,
respectively, the discrete Fourier transform of uj(·) := u(tj , ·) and hj := h(tj) with
respect to j, ωl ∈ C are constants depending on the time discretization. We choose

ωl =
i

2κ
(ξ2
l − 4ξl + 3),

where

ξl = γe
−i 2πl

NT , l = 0, . . . , NT − 1.

In this paper, we suggest to use the same strategy as that in [4] for choosing the
stability parameter γ.

Note that

T v =
1

2π

∫
R

eiξ1x1L−1
[
iω
√

1− ξ2
1/ω

2L ◦ Fx1
[E0(v)](ω, ξ1, 0)

]
dξ1

=
1

2π

∫
R

eiξ1x1L−1
[
iω
√

1− ξ2
1/ω

2
]
∗ Fx1 [E0(v)](t, ξ1, 0)dξ1

and

g = 2
∂ui

∂ν
= 2∂νk(t, |x− z|) ∗ λ(t), x ∈ R2

0,

where z := (z1, z2) is the source point. Then we obtain

SΓT v =
1

2π

∫
Γ

∫
R

eiξ1x1k(t, |x−y|)∗L−1
[
iω
√

1− ξ2
1/ω

2
]
∗Fx1

[E0(v)](t, ξ1, 0)dξ1dsy

and

SΓg = 2

∫
Γ

k(t, |x− y|) ∗ ∂νk(t, |y − z|) ∗ λ(t)dsy.

To solve the integral equations (5.2)–(5.3), the CQ method leads to the decoupled
problems

1

2
ûl(ωl, ·) = SFΓ {T F ûl +GF λ̂l}(ωl, ·)−KF

Γ ûl(ωl, ·) + SFΛ ∂ν ûl(ωl, ·) on Γ, (5.4)

0 = SFΓ {T F ûl +GF λ̂l}(ωl, ·)−KF
Γ ûl(ωl, ·) + SFΛ ∂ν ûl(ωl, ·) on Λ, (5.5)

where l = 0, 1, . . . , N , ûl(·) and λ̂l(·) are, respectively, the discrete Fourier transform
of uj(·) := u(tj , ·) and λj := λ(tj) with respect to j. The operators are

(SFΓ ϕ)(ω, x) =
i

4

∫
Γ

H
(1)
0 (ω|x− y|)ϕ(ω, y)dsy,

(KF
Γ ϕ)(ω, x) =

i

4

∫
Γ

∂ν(y)H
(1)
0 (ω|x− y|)ϕ(ω, y)dsy,

(T Fϕ)(ω, x) =
iω

2π

∫
R

eiξ1x1

√
1− ξ2

1/ω
2Fx1(ϕ)(ω, ξ1, x2)dξ1,

(GFϕ)(ω, x) = − iω

2
H

(1)
1 (ω|x− z|)x2 − z2

|x− z|
ϕ(ω),

where H
(1)
n is the Hankel function of the first kind of order n.
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Finally, we just need to solve the Helmholtz problems (5.4)–(5.5) instead of the
time domain scattering problem (5.2)–(5.3).

Conclusion

We have analyzed the time domain acoustic scattering from open cavities. A
transparent boundary condition has been developed to get an equivalent initial
boundary value problem. The well-posedness of the reduced problem has been
proved. Moreover, retarded potential boundary integral equations (RPBIEs) have
been established to solve the reduced problem.

Our future work will include the analysis of the existence and uniqueness of
the solutions for the RPBIEs and the iteration method for the inverse scattering
problem.
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