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ESTIMATES FOR SOLUTIONS TO NONLINEAR
BOUNDARY-VALUE PROBLEMS IN CONIC DOMAINS

TAHIR S. GADJIEV, SARDAR Y. ALIEV

Abstract. We obtain sharp estimates on the solution and its derivative near
the conic points. In particular, we show that the solution satisfies |u(x)| ≤
C|x|λ where lambda is an eigenvalue of the Sturm-Liouville problem. Also
we prove that the solution has square summable weighted second generalized

derivatives.

1. Introduction and preliminaries

We consider mixed boundary-value problems in a bounded domain Ω ⊂ Rn,
n ≥ 2 for the equation

n∑
i=1

d

dxi
ai(x, u, ux) + a(x, u, ux) = 0, x ∈ Ω (1.1)

This study includes equations such as −div(k + |∇u|p−2) + µ1|u|β + u2φ(x), where
p > 1 and k ≥ 0.

The domain Ω is assumed to satisfy the isoperimetric inequalities defined in [8].
The boundary of the domain is decomposed as ∂Ω = Γ1 ∪ Γ2. Then Dirichlet
conditions are given on Γ1, and Neumann conditions on Γ2.

Our aim is to obtain sharp estimates on the solution and its derivative near the
conic points. Also to obtain estimates for |u| and |∇u(x)| which correspond to
ε = 0 in [2], but not obtained there. For the Dirichlet problem, these equations
were considered in [5]. For the Dirichlet problem with linear equations, estimates
on conical domains were considered in [6]. The mixed boundary-value problem
for linear equations on conical domains was considered in [11]. Here we study a
non-linear case.

Let us set some notation. Bd(0) is ball of radius d with the center at the point
0. Ωd

0 = Ω ∩Bd(0) is cone in Rn; i.e., for sufficiently small d

Ωd
0 = {(r, ω) : 0 < r < d, ω = (ω1, ω2, . . . , ωn−1) ∈ G},

where (r, ω) are spherical coordinates. G is a domain on a unit sphere Sn−1 with
infinitely differentiable boundary ∂G,

Γd
0 = {(r, ω) : 0 < r < d; , ω ∈ ∂G} = Γd

0,1 ∪ Γd
0,2 ⊂ ∂Ω
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is the lateral surface of the cone Ωd
0, Gρ = Ωd

0 ∩ {|x| = ρ}, 0 < ρ < d. dx =
rn−1drdω, dΩρ = ρn−1dω, dω is an element of area of the unit sphere, |∇u|2 =
(∂u

∂r )2 + 1
r2 |∇ωu|2, where |∇ωu| is projection of vector ∇u on tangent plane to the

sphere Sn−1 at the point ω,

∆u =
∂2u

∂r2
+

n− 1
n

∂u

∂r
+

1
r2

∆ωu.

Here ∆ωu is the Laplace-Beltrami operator on a unit sphere.
Denote by Wm

α,0(Ω) the space of functions having generalized derivatives up to
order m in Ω with norm

‖u‖2W m
α,0(Ω) =

∑
|k|m=0

∫
Ω

rα−2(m−k)
∣∣∣ ∂|k|u

∂xk1
1 . . . ∂xkn

n

∣∣∣2dx .

The function that are continuously differentiable in Ω and vanishing on Γ1 form a
dense subset. In particular

‖u‖2W 2
α,0(Ω) =∈Ω

(
rαu2

xx + rα−2|∇u|2 + rα−4u2
)
dx .

By W 1
2,0(Ω) we denote the subset of the Sobolev space W 1

2 (Ω) consisting of con-
tinuously differentiable functions in Ω vanishing on Γ1. (This is as dense subset of
functions).

We shall use Hardy inequalities and some of its implications. For any function
u ∈ W 1

2,0(Ω
d
0), we have∫

Ωd
0

rα−4u2dx ≤ 4
(4− n− α)2

∫
Ωd

0

rα−2u2
rdx , α < 4− n, (1.2)

which follows by integration with respect to ω ∈ G the correspondent Hardy in-
equality [4].

Allowing isoperimetricity for the domain Ω, we consider the eigenvalue problem
∆ωu + λ(λ + n− 2)u = 0 , ω ∈ G,

u
∣∣
γ0

= 0,
∂u

∂u

∣∣
γ1

= 0,
(1.3)

where ∂G ∈ γ0∪γ1. In [1], it was shown that this problem has at least one positive
eigenvalue λ = λ(G). Then by the variational principle for all u ∈ W 1

2,0(G),∫
G

u2dω ≤ 1
λ2 + λ(n− 2)

∫
G

|∇ωu|2dω. (1.4)

Note that constants in inequalities (1.2) and (1.4) are the best possible.
When we multiply inequality (1.4) by 1/r and integrate with respect to r ∈ (0, d),

we have that for any function

u ∈ V =
{
v ∈ W 1

2 (Ω) : v(x) = 0, x ∈ Γd
0,1,

∂v

∂n
= 0, x ∈ Γd

0,2

}
,∫

Ωd
0

r−nu2dx ≤ 1
λ2 + λ(n− 2)

∫
Ωd

0

r2−n|∇u|2dx . (1.5)

For any function u ∈ V ,∫
Ωd

0

rα−4u2dx ≤
[(

2− n + α

2
)2 + λ(λ + n− 2)

]−1
∫

Ωd
0

rα−2|∇u|2dx, (1.6)
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whenever the integral in the right-hand side is finite. Here α ≤ 4 − n. To obtain
this inequality we multiply inequality (1.4) by 1/r and integrate with respect to
r ∈ (0, d). Then∫

Ωd
0

rα−4u2dx ≤ 1
λ2 + λ(n− 2)

∫
Ωd

0

rα−4|∇ωu|2dx. (1.7)

If α < 4 − n inequality (1.6) is obtained by adding (1.2) and (1.7). If α = 4 − n
inequality (1.6) coincides with (1.5).

By a generalized solution of the mixed boundary-value problem for equation
(1.1), we mean a function u(x) in W 1

2,0(Ω) such that∫
Ω

[ai(x, u, ux)ηxi
+ a(x, u, ux)η(x)]dx = 0, ∀η(x) ∈ W 1

2,0(Ω) . (1.8)

In this paper, we use the repeated index convention; this is, the summation of terms
with repeated indices.

On the coefficient we require the following conditions: The functions ai(x, u, p)
are measurable at any x ∈ Ω, u ∈ R, p ∈ Rn; differentiable with respect to pj

(j = 1, . . . , n); and satisfy

υ(|u|)ξ2 ≤ ∂ai(x, u, p)
∂pj

ξiξj ≤ µ(|u|)ξ2, ∀ξ ∈ Rn, (1.9)

∂ai(0, 0, p)
∂pj

= δj
i , i, j = 1, n, (1.10)

[ n∑
i=1

a2
i (x, u, p)

]1/2

≤ µ1(|u|)(|p|+ g(x)) , 0 ≤ g(x) ∈ Lq(Ω), (1.11)

where δj
i is the Kronecker symbol, q > n, g(0) < ∞.

The function a(x, u, p) is measurable at x ∈ Ω, u ∈ R, p ∈ Rn satisfies

|a(x, u, p)| ≤ µ2(|u|)(|p|2 + f(x)), (1.12)

where 0 ≤ f(x), f ∈ Lq/2(Ω), q > n, v(t)[µ(t), µ1(t), µ2(t)] is positive nondecreasing
function (positive non-increasing) at t ≥ 0, µ, v > 0, µ1, µ2 ≥ 0.

In [3] the boundedness and Hölder continuity of generalized solution of (1.8) was
proved under the conditions (1.9)–(1.12). Assuming that the vraimax M of |u(x)|
is known, there exists γ > 0, C0 > 0 dependent only on M,n, q, µ, µ1, µ2, v,Ω such
that

|u(x)| = |u(x)− u(0)| ≤ C0|x|γ , |x| < d.

For continuous functions vraimax is the same as the max over the domain on which
the function is defined.

2. Main results

Theorem 2.1. Let u(x) be a generalized solution of (1.8). Assume (1.9)–(1.12)
and that for any k > 0 there exists d0 > 0 such that for p ∈ Rn, |x| + |u| < d0,
0 ≤ h(x) ∈ Lq, and q > n we have( n∑

i=1

[ai(x, u, p)− ai(0, 0, p)]2
)1/2

≤ K|p|+ h(x) . (2.1)
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Also assume that g(x) ∈ W 0
α−2(Ω), h(x) ∈ W 0

α−2,0(Ω), f(x) ∈ W 0
α,0(Ω), α ≤ 4− n,

and
λ > 2− (n + α)/2 . (2.2)

Then∫
Ω

rα−2|∇u|2dx ≤ C(1 + ‖g‖W 0
α−2(Ω) + ‖f‖q/2,Ω + ‖h‖W 0

α−2,0(Ω) + ‖f‖2W 0
α,0(Ω)),

(2.3)
where C is constant depending on M,v, µ1, µ2, µ, α, n, λ, q,meas Ω,meas G.

Proof. For any δ ∈ (0, d) if r is the radius vector of the point x ∈ Ω then rδ =
|r − δl| 6= 0, for all x ∈ Ω, where for the fixed point z ∈ Sn−1\G and unit radius
vector l =

−→
0z = (l1, . . . , ln), the vector δl does not belong to Ωd

0. Therefore, the
function η(x) = rα−2

δ u(x) is admissible in identity (1.8). We obtain∫
Ω

rα−2
δ ai(x, u, ux)uxi

dx +
∫

Ω

rα−2
δ u(x)a(x, u, ux)dx

+
∫

Ω

(α− 2)u(x)rα−4
δ ai(x, u, ux)(xi − δli)dx = 0.

(2.4)

Since ai(x, u, p) = pj

∫ 1

0
∂ai(x,u,τp)

∂(τpj)
dτ + ai(x, u, 0), by (1.10) we have

ai(0, 0, p) = pi + a0
i , a0

i ≡ ai(0, 0, 0), i = 1, n

ai(x, u, p)pi = |p|2 + a0
i pi + [ai(x, u, p)− ai(0, 0, p)]pi.

(2.5)

Taking this into account, choosing some small number d and dividing the domain
Ω into two subdomains Ωd

0 and Ω\Ωd
0 we estimate the obtained integrals in each of

subdomains separately. Then we apply inequality (1.6), use estimates from [7] and
the fact that u(x) is Hölder continuous. Finally, using conditions of the theorem
passing to the limit as δ → +0 we obtain the required estimate. �

Remark. Let n = 2, 0 ∈ ∂Ω be a corner point, G = (0, ω0), ω0 is size of the angle
in the neighbourhood of 0, Ωd

0 = (0, d) × (0, ω0). In this case eigenvalues problem
(1.3) has the form

u′′ + λ2u = 0, u = u(ω), ω ∈ G,

u(ω)
∣∣∣
ω=0

= 0,
∂u

∂n

∣∣∣
ω=ω0

= 0 .
(2.6)

Here, the least positive eigenvalue of this problem is λ = π/(2ω0) and condition
(2.2) takes the form

π

ω0
> 2− α, α ≤ 2.

Before, estimating |u(x)|, we prove the following lemma.

Lemma 2.2. Let u(x) be a generalized solution of (1.1) and let conditions (1.9)–
(1.12) be satisfied. Then for any function

v(x) ∈ V = {v ∈ W 1
2 (Ωρ

0) : v(x) = 0, x ∈ Γρ
0,1;

∂v

∂n
= 0, x ∈ Γρ

0,2}

and almost all ρ ∈ (0, d) the following equality holds∫
Ωρ

0

[ai(x, u, ux)vxi + a(x, u, ux)v(x)]dx =
∫

Gρ

ai(x, u, ux)v(x) cos(r, xi)dGρ (2.7)
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To prove it we substitute η(x) = v(x)(χρ)h(x), for v ∈ W 1
2,0(Ω) into the integral

identity (1.8), where χρ(x) is characteristic function of the set Ωρ
0 and (χρ)h is

its Sobolev averaging. Such η is admissible by virtue of Theorem 2.1. Passing to
the limit as h → 0 we obtain (2.7). Passage to the limit is justified by the use of
properties of mean functions [9, theorem 3.10, p.113] and Theorem 2.1.

Theorem 2.3. Let u(x) be a generalized solution of (1.1). Assume conditions
(1.9)–(1.12) and that( n∑

i=1

[ai(x, u, p)− ai(0, 0, p)]2
)1/2

≤ δ(|x|)|p|+ h(x), (2.8)

for any x ∈ Ωd
0, u ∈ R, p ∈ Rn, where δ(r) is a nondecreasing positive function

satisfying the Diny condition
∫ d

0
δ(r)

r dr < ∞. In addition we assume that

ai(x, u, p)pi ≥ v0|p|2 − µ3|u|β − u2ϕ(x);

a(x, u, p)u ≤ µ0|p|2 + µ3|u|β + u2ϕ(x),
(2.9)

where 2n/(n − 2) > β > 2, 0 ≤ ϕ(x) ∈ Lq/2(Ω), q > n, v0 > 0, µ0, µ3 ≥ 0;
g(x) ∈ W 0

2−n(Ω), h(x) ∈ W 0
2−n,0(Ω), f(x) ∈ W 0

4−n,0(Ω), and

ρ2

∫
G

g2(ρ, ω)dω + ρ2

∫
G

h2(ρ, ω)dω +
∫

Ωρ
0

r4−nf2(x)dx ≤ kρs,

with s > 2λ(G), 0 < ρ < d. Then

|u(x)| ≤ C|x|λ(G) , (2.10)

where λ(G) is the least positive eigenvalue of (1.3) and the constant C depends only
on the known quantities of the problem.

Proof. Substitute v(x) = r2−nu(x) in identity (2.7). Such a function is admissible
by virtue of (1.5) and Theorem 2.1. Taking into account (2.5) and estimating
integrals with multipliers a0

i and expression u ux0 we obtain∫
Ωρ

0

r2−n|∇u|2dx

≤ n− 2
2

∫
G

u2dω

+
∫

Ωρ
0

[ai(x, u, ux)− ai(0, 0, ux)]|
[
r2−n|uxi

|+ (2− n)r−n|xi||u(x)|
]
dx

+
∫

Ωρ
0

r2−n|u| |a(x, u, ux)|dx

+ ρ

∫
G

|u(x)|[ai(x, u, ux)− ai(0, 0, ux)]| cos(r, xi)|r=ρdω

+ C9ρ
−ε‖g‖W 0

2−n(Ω) + ρ2−ε

∫
G

g2(ρ, ω)dω + ρ

∫
G

uuρdω

Denoting v(ρ) =
∫ ρ

0
dr

∫
G

(ru2
r + 1

r |∇ωu|2)dω and estimating integrals in the right-
hand side by means of inequalities (1.4), (1.5), Cauchy inequality with ε > 0, and
Hölder property of u(x), we obtain

v(ρ) ≤ cρ 2λ , 0 < ρ < d (2.11)
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where constant C depends on M,d, v, µ1, µ2, µ, n, λ, q,meas G, meas Ω, ‖g‖q,Ω,

‖h‖W 0
2−n,0(Ω), ‖g‖W 0

2−n(Ω), ‖f‖W 0
4−n,0(Ω), ‖f‖q/2,Ω,

∫ d

0

δ(r)
r

dr, k, s

Consider the function

z(x′) = ρ−λ(G)u(ρx′), 0 < ρ < d (2.12)

in layer Q′ = {x′ : 1/2 < |x′| < 1}, u ≡ 0 out of Ω, and use inequalities from [7,
ch.2, inequality (2.22)]. Taking into account estimate (2.11), we obtain∫

ρ/2<|x|<ρ

|u|qdx ≤ Cρn+qλ, 2 ≤ q ≤ 2n/(n− 2), n > 2. (2.13)

Then taking into consideration results from [7, ch.4, theorem 7.6], by the assumption
of this theorem, we obtain

|u(x)| ≤ M2ρ
λ(G) (2.14)

where x ∈ Ωd
0 ∩ {ρ/2 < |x| < ρ < d} and M2 is a constant depending on the known

quantities. Taking that |x| = 2ρ/3 we obtain the required estimate (2.10) and the
proof is complete. �

Theorem 2.4. Let u(x) be a generalized solution of (1.1) and assumptions of
theorem 2.1 be satisfied. Assume that for x ∈ Ω and u, p ∈ Rn the functions
ai(x, u, p), i = 1, n and a(x, u, p) be differentiable with respect to their arguments
and the following inequalities hold:

ai(x, u, p)pi ≥ v0|p|2 − ϕ0(x)[ n∑
i=1

(∣∣∂ai

∂u

∣∣2 +
∣∣ ∂a

∂xi

∣∣2)]1/2

+
( n∑

i,j=1

∣∣ ∂ai

∂xj

∣∣2)1/2

≤ µ4(|u|)(|p|+ ϕ1(x))

(∣∣∂a

∂u

∣∣2 +
n∑

i=1

∣∣ ∂a

∂xi

∣∣2)1/2

≤ µ5(|u|)
(
|p|2 + ϕ2(x)

)
,

(2.15)

where ϕi(x), i = 0, 1, 2 are nonnegative functions. Also assume that ϕ0(x), ϕ2(x) ∈
Lq/2(Ω), ϕ1(x) ∈ Lq(Ω), q > n. Then u(x) ∈ W 2

α,0(Ω) and

‖u‖2W 2
α,0(Ω)

≤ c1(1 + ‖f‖q,Ω + ‖f‖q/2,Ω + ‖ϕ0‖q/2,Ω + ‖ϕ2‖q/2,Ω + ‖ϕ1‖q,Ω

+ ‖h‖2W 2
α−2,0(Ω) + ‖g‖2W 0

α−2(Ω) + ‖f‖2W 0
α,0(Ω)

+ c2

{∫
Ω

r(α+h)q/4−n[ϕq/2
0 (x) + ϕq

1(x) + ϕ
q/2
2 (x) + fq/2(x) + gq(x)]

}4/q

,

where α ≤ 4 − n. Provided that the last integral is finite, the constat c1, c2 > 0
depends on the known parameters.

To proof this theorem we considered a sequence of domains Ωk,ρ, which are
intersections of Ωd

0 and some layers. Making some transformations and using an
estimate from [7] and summing all the obtained inequalities over k = 1, 2, . . . . Using
Theorem 2.1 we obtain the following corollary.

Corollary 2.5. Let the conditions of Theorem 2.4, except for (2.2), be fulfilled.
Then generalized solution u(x) of problem (1.1) is in W 2(Ω), for the following
cases:
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(1) n ≥ 4;
(2) n = 2 and 0 < ω0 < π

2 ;
(3) n = 3 and G ⊂ G0 = {ω = (θ;ϕ) : 0 < |θ| < ω0 < π, 0 < ϕ < 2π}, where

ω0 is solution of equation p1/2(cos ω0) = 0 for Legendre functions.

Proof. (1) According to theorem 2.4 u(x) ∈ W 2
4−n,0(Ω). Condition (2.2) is trivial

if α = 4− n because λ = λ(G) > 0. Now the statement follows from inequality∫
Ωd

0

u2
xxdx ≤ dn−4

∫
Ωd

0

r4−nu2
xxdx ≤ const.

(2) Suppose α = 0 in Theorem 2.4 then condition (2.1) is trivial. If n = 2 the
statement follows from the remark.
(3) Condition (2.2) becomes λ(G) > 1/2. Let Ω0 ⊂ S2 be a domain in which the
eigenvalue problem (1.3) is solvable for λ(G) = 1/2 and ∂Ω0 = ∂1Ω0 ∪ ∂2Ω0:

∆ωu + (1/2)(1 + 1/2)u = 0, ω ∈ Ω0

u
∣∣∣
∂1Ω0

= 0,
∂u

∂u

∣∣∣
∂2Ω0

= 0
(2.16)

The condition λ > 1/2 implies Ω ⊂ Ω0; see [3]. We are seeking of solution problem
(2.16) of the form u = v(θ). Then for v(θ) we obtain

1
sin θ

d

dθ

(
sin θ

dv

dθ

)
+

1
2
(
1 +

1
2
)
v = 0, 0 < |θ| < ω0,

v(−ω0) = 0
∂v

∂n
(ω0) = 0 .

(2.17)

The solution to this equation is a Legendre function of the first genus v(θ) =
p1/2(cos θ), which has exactly one zero in the interval 0 < θ < π which we denote
by ω0 (see [7]). Therefore, the corollary is proved. �

Theorem 2.6. Let u(x) be a generalized solution of (1.1). Let functions ai(x, u, p),
a(x, u, p) be differentiable with respect to their arguments and conditions (1.9)–
(1.12), (2.15) with q = ∞ be satisfied. Under the assumptions in Theorem 2.3,

|∇u(x)| ≤ c|x|λ(G)−1 (2.18)

where λ(G) is the least positive eigenvalue of (1.3), and constant c depends only on
the known quantities.

Proof. As in the proof of Theorem 2.3 consider function z(x′) = ρ−λ(G)u(ρx′),
0 < ρ < d in the layer Q′ = {x′ : 1/2 < |x′| < 1} assuming that u ≡ 0 outside of Ω.
Under our conditions, the theorem from [4] on boundedness of modulus of gradient
of solution inside of domain and near smooth pieces of boundary is valid:

vrai max Q′ |∇′z| ≤ M3 (2.19)

where M3 > 0 depends on v, v0, µ, µ1, µ2 vrai maxQ′ |z(x′)|. Then for the function
u(x) we obtain

|∇u(x)| ≤ M1ρ
λ(G)−1 , x ∈ Ωd

0 ∩ {ρ : 2 < |x| < ρ < d}. (2.20)

Taking |x| = 2ρ/3, we obtain the required estimate. �
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March 18, 2005. Addendum

In response to the editor’s request, we want to add a reference that should have
been included in the original bibliography.

[13] Borsuk, M. V.; Behavior of generalized solutions of the Dirichlet problem for
second-order quasilinear elliptic equations of divergence type near a conical
point. (Russian) Sibirsk. Mat. Zh. 31 (1990), no. 6, 25–38; translation in
Siberian Math. J. 31 (1990), no. 6, 891–904 (1991)

Also we want to compare this reference with our article. The two articles have the
same structure and visual appearance. Both articles follow the ideas presented by
Condratyev [6], and have the same components: Weight inequalities, investigation
of a corresponding spectral problem, and study of Holder continuity of solutions.

However, these two articles are different: [13] studies a Dirichlet boundary prob-
lem, while our article studies a mixed boundary problem.

1. The weight inequalities (1.4)-(1.7) require isoperimetric conditions on the
domain, which are not needed for the Dirichlet problem.

2. The study of the spectrum for problem (1.3) in our article follows the method
in [1]. In the Dirichlet case, the study follows the work by Mikhlen (see [13]).
The mixed boundary problem has smallest eigenvalue λ/(2ω0) and critical point
π/(2ω0), while the Dirichlet problem has smallest eigenvalue λ/ω0 and critical point
π/ω0.
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3. The study of Holder continuity of solutions for the mixed problem follows
ideas in [3]. Meanwhile for the Dirichlet problem, the study follows ideas in [7].
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