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MULTIPLICITY AND SYMMETRY BREAKING FOR POSITIVE
RADIAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS

MODELLING MEMS ON ANNULAR DOMAINS

PENG FENG, ZHENGFANG ZHOU

Abstract. The use of electrostatic forces to provide actuation is a method of

central importance in microelectromechanical system (MEMS) and in nano-

electromechanical systems (NEMS). Here, we study the electrostatic deflection
of an annular elastic membrane. We investigate the exact number of positive

radial solutions and non-radially symmetric bifurcation for the model

−∆u =
λ

(1− u)2
in Ω, u = 0 on ∂Ω,

where Ω = {x ∈ R2 : ε < |x| < 1}. The exact number of positive radial solu-
tions maybe 0, 1, or 2 depending on λ. It will be shown that the upper branch

of radial solutions has non-radially symmetric bifurcation at infinitely many

λN ∈ (0, λ∗). The proof of the multiplicity result relies on the characterization
of the shape of the time-map. The proof of the bifurcation result relies on a

well-known theorem due to Kielhöfer.

1. Introduction

In this paper, we shall study the multiplicity and symmetry breaking of positive
radial solutions to the equation

−∆u =
λ

(1− u)2
in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

where Ω = {x ∈ R2 : ε < |x| < 1} is an annulus in R2, λ is a positive parameter
and its meaning will become clear later in the paper.

This paper is motivated by the recent work of Pelesko, Bernstein and McCuan
[9]. In [9], they showed that asymmetric solutions exist through numerical investi-
gation. A bifurcation diagram was obtained. They conjectured that there are an
infinite number of branches of asymmetric solutions intersecting the upper radially
symmetric solution branch.

In this paper, we use shooting method and time map to show the exact multiplic-
ity of radial solutions, see for example [3, 6, 7, 8, 11, 12]. A well-known bifurcation
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Figure 1. A basic electrostatically actuated elastic membrane.
The prime coordinates indicate they have not yet been scaled.

theorem essentially due to H.Kielhöfer [4] is used to show the radial symmetry
breaking result.

We can establish the following theorems:

Theorem 1.1. There exists a λ∗ such that the problem has no positive radial
solution for λ > λ∗, one and only one radial solution for λ = λ∗ and exactly two
radial solutions for 0 < λ < λ∗.

Theorem 1.2. There exists infinitely many λk ∈ (0, λ∗) such that the upper branch
of radially symmetric solutions has a non-radially symmetric bifurcation at each λk,
k = 1, 2, . . . .

The paper is organized as follows. In section 2, we briefly describe the model
proposed in [9]. For more information on this topic, refer to [1, 2]. In section 3,
we show the existence results for small λ. In section 4, we obtain the multiplicity
results. In section 5, we study the radial symmetry breaking problem and the
conjecture in [9] is proved.

2. Formulation of the model

We model the device shown in Figure 1 which consists of an annular elastic
membrane suspended above a rigid plate. The membrane is supported along the
inner and outer boundaries. A voltage difference is applied across the device in
order to cause deflection of the membrane. In particular, the upper surface of the
membrane is held at potential V , while the ground plate is held at zero potential.

We shall notice the fact that most MEMS devices are of small aspect ratio,
d/L << 1, and use thin components, h/d << 1. Here d is the distance between
the membrane and the plate, L is the size of the plate and h is the thickness of
membrane. We derive an approximate solution. For the completeness of the paper,
we have reproduced the model following [9].

We assume the electrostatic potential satisfies Laplace’s equation everywhere
away from the membrane and the plate.

∆φ = 0. (2.1)

It also satisfies appropriate boundary conditions on the membrane.

φ = V on elastic plate,
φ = 0 on ground plate.
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We model the elastic membrane using the plate equation. In particular, the deflec-
tion u′ of the membrane satisfies

ρh
∂2u′

∂2t′
+ a

∂u′

∂t′
− µ∇2

⊥u′ + D∇4
⊥u′ = −ε0

2
|∇φ|2.

Here ρ is the density of the membrane, h is the thickness, µ is the tension in the
membrane, D is the flexural rigidity, and ε0 is the permittivity of free space. ∇⊥
represents the differentiation with respect to x′ and y′. The standard plate equation
has been modified in two ways. First, a damping term has been added. The
parameter a is the damping constant. Second, we have assumed a is proportional
to velocity. We shall rescale the system and rewrite in dimensionless form. We
rescale the electrostatic potential with the applied voltage, time with a damping
timescale of the system, the x′ and y′ with a characteristic length of the device,
and z′ and u′ with the size of the gap between the ground plate and the elastic
membrane. We define

u =
u′

d
, φ =

φ

V
, x =

x′

L
, y =

y′

L
, z =

z′

d
, t =

µt′

aL2
. (2.2)

In dimensionless form, we have

ε2
(

∂2φ

∂2x2
+

∂2φ

∂2y2

)
+

∂2φ

∂2z2
= 0, (2.3)

φ = 0 on the ground plate, (2.4)

φ = 1 on the membrane, (2.5)

1
α2

∂2u

∂2t
+

∂u

∂t
−∇2

⊥u + δ∇4
⊥u = −λ

[
ε2|∇⊥φ|2 + (

∂φ

∂z
)2

]
. (2.6)

Here φ is a dimensionless potential scaled with respect to voltage V , x and y are
scaled with respect to the length of the ground pate L, z is scaled with respect
to the gap size d. α = aL√

ρhµ
is the inverse of the quality factor for the system.

δ = D
L2µ measures the relative importance of tension and rigidity. ε = d

L is the
aspect ratio of the system. λ = ε0V

2L2/2Td3, where T is the tension in the
membrane and ε0 is the permittivity of free space. Note that λ is a dimensionless
number which characterizes the relative strengths of electrostatic and mechanical
forces in the system. As λ is proportional to the applied voltage, it serves as a
convenient bifurcation parameter.We assume the displacement of the membrane u
satisfies

∆u = λ
[
δ2(

∂2φ

∂2x2
+

∂2φ

∂2y2
) +

∂2φ

∂2z2

]
,

u = 0 on the boundary.

Assuming d � L, that is ε � 1. Physically, this means that the lateral dimension
of the device are large compared to the gap between the membrane and the ground
plate. For many MEMS systems this is an excellent approximation. We exploit
the small-aspect ratio by setting ε goes to zero in equation (2.3). This reduces the
electrostatic problem to

∂2φ

∂z2
= 0, (2.7)

which we may solve to find the approximate potential,

φ ≈ Az + B.
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We are primarily concerned with the field between the plates and hence apply the
boundary condition on φ which is

φ(x, y, u, t) = 1,

φ(x, y, 0, t) = 0.

Hence
φ ≈ z

u
.

Therefore, by sending ε goes to zero and use this approximate potential in equation
(2.6), we find

1
α2

∂2u

∂2t
+

∂u

∂t
−∇2

⊥u + δ∇4
⊥u = − λ

u2
. (2.8)

We shall focus on the equilibrium state deflection. For convenience, we change
variable u 7→ 1− u. The result is the following semi-linear elliptic equation for the
displacement u:

−∆u =
λ

(1− u)2
in Ω,

u = 0 on ∂Ω.

3. Existence

In this section, we shall study the following semilinear elliptic equation with
Dirichlet boundary condition.

−∆u =
λ

(u− 1)2
in Ω, (3.1)

u = 0 on ∂Ω. (3.2)

Theorem 3.1. There exists a λ∗ such that when λ > λ∗ there is no solution to
(3.1) and (3.2).

Proof. Let λ1 be the lowest eigenvalue of

−∆u = λu in Ω, (3.3)

u = 0 on ∂Ω, (3.4)

with u1 the corresponding eigenfunction which can be chosen strictly positive on
Ω. Multiplying (3.1) by u1 and integrating yields∫

Ω

−u∆u1 = λ

∫
Ω

u1

(1− u)2
.

Or equivalently,

λ1

∫
Ω

uu1 = λ

∫
Ω

u1

(1− u)2
.

Since 1
(1−u)2 ≥

27
4 u for 0 ≤ u < 1, we have

λ1

∫
Ω

uu1 = λ

∫
Ω

u1

(1− u)2
≥ 27λ

4

∫
Ω

u1u.

Hence, λ ≤ λ1
27 . This completes the proof. �

Next we shall obtain the existence result for small λ. We have the following
theorem.
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Theorem 3.2. There exists a solution to (3.1) and (3.2) for some small λ.

To prove this theorem, we should apply the method of upper and lower solution.
We have the following definition.

Definition 3.3. A function ū ∈ C2(Ω) is called an uppersolution of (3.1) and (3.2)
if it satisfies the inequalities

−∆u ≥ λ

(u− 1)2
on Ω

u ≥ 0 on ∂Ω.

Similarly, u is called a lower solution if it satisfies all the reversed inequalities.

The following two lemmas provide us with a proper choice of lower and upper
solutions.

Lemma 3.4. Any constant c < 0 is a lower solution.

Lemma 3.5. ū = 1
3v1 is an upper solution when λ ≤ 4

27α1m. Here α1 and v1 is
the first eigenvalue and eigenfunction for the problem

−∆v = αv in Ω′, (3.5)

v = 0 on ∂Ω′, (3.6)

where Ω′ is a proper domain with smooth boundary which contains Ω and has been
chosen such that m ≤ v1 ≤ 1 on Ω and m > 1/2.

Proof. It is sufficient to show that

−∆ū ≥ λ

(1− ū)2
in Ω.

In fact,

−∆ū = −1
3
∆v1 =

1
3
α1v1 ≥

1
3
α1m ≥ λ

3
· 27

4
≥ λ

(1− 1/3v1)2
=

λ

(1− ū)2
.

This completes the proof. �

The existence result follows from the above two Lemmas.

4. Multiplicity

In this section we are concerned with the multiplicity of positive radial solutions.
A radial solution u = u(r) of (3.1) and (3.2) satisfies the following equations

u′′(r) +
1
r
u′(r) +

λ

(1− u)2
= 0, r ∈ (ε, 1), u(ε) = u(1) = 0.

Let s = − ln r, w(s) = u(r), then w(s) satisfies

w′′ + λe−2s 1
(1− w)2

= 0 in (0,− ln ε),

w(0) = w(− ln ε) = 0.

Henceforth, we shall consider the following initial value problem

u′′(r) + λe−2r 1
(1− u(r))2

= 0 in (0,− ln ε),

u(0) = 0 and u′(0) = p.
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Let u(·) = u(·, p, λ) be the solution and define

R(p, λ) = min{R > 0 : u(R, p, λ) = 0}.

We shall prove in the next lemma that R(p, λ) is well defined for all p.
By the boundary condition, u has exactly one critical point, at which it takes

the maximum value. We shall denote this critical point by τ(p, λ). Hence

u′(r) > 0 for r ∈ (0, τ(p, λ)) and u′(r) < 0 for r ∈ (τ(p, λ), R(p, λ)).

Also note that

u(r) = pr + λ

∫ r

0

(s− r)e−2s 1
(1− u(s))2

ds.

To prove our multiplicity result, we need to establish several useful lemmas.

Lemma 4.1. R(p, λ) is well defined.

Proof. First we claim that it is indeed well defined for sufficiently large p and suf-
ficiently small p. Suppose otherwise that limr→+∞ u′(r) = 0. Multiplying equation
(4.5) by u′ and integrating yields∫ r

0

u′′(s)u′(s)ds = −λ

∫ r

0

e−2s

(1− u(s))2
u′(s)ds.

Hence
1
2
u′(r)2 − 1

2
p2 = λ− λ

e−2r

1− u(r)
− 2λ

∫ r

0

e−2s

1− u(s)
ds.

Let h(r) =
∫ r

0
e−2s

1−u(s)ds, then we have

λh′(r) + 2λh(r)− 1
2
p2 +

1
2
u′(r)2 − λ = 0.

Notice that when r is sufficiently large,

h(r) =
∫ r

0

e−2s

1− u(s)
ds

= − 1
λ

∫ r

0

u′′(s)(1− u(s))ds

=
1
λ

[
− (1− u)u′ + p−

∫ r

0

u′2(s)ds
]

≤ p

λ
.

Hence for sufficiently large r,

λh′(r) = −2λh(r) +
1
2
p2 − 1

2
u′(r)2 + λ

≥ −2p +
1
2
p2 − 1

2
u′(r)2 + λ

≥ c > 0

for some constant c and p sufficiently large or small. Therefore,

e−2r

1− u(r)
≥ c

λ
> 0



EJDE-2005/146 MULTIPLICITY AND SYMMETRY BREAKING 7

for sufficiently large r. It follows that, limr→+∞ u(r) = 1 for p sufficiently large or
small. Applying L’Hopital’s rule we have

lim
r→+∞

h′(r) = lim
r→+∞

e−2r

1− u(r)

= lim
r→+∞

2e−2r

u′(r)

= lim
r→+∞

−4e−2r

u′′(r)

= lim
r→+∞

4e−2r

e−2r

λ(1−u)2

= lim
r→+∞

4(1− u(r)) = 0.

This is a contradiction to the previous conclusion that h′(r) ≥ c
λ > 0. Hence

R(p, λ) is well defined for p sufficiently large and small. By continuous dependence
on parameters, R(p, λ) is well defined for all p. This completes the proof. �

Lemma 4.2.
lim

p→0+
R(p, λ) = lim

p→0+
τ(p, λ) = 0.

Proof. Suppose otherwise, there exists a λ > 0, ε > 0 and a sequence pk → 0+ such
that

Rk ≡ R(pk, λ) ≥ ε.

Since

u(r, pk) = pkr + λ

∫ r

0

(s− r)e−2s 1(
1− u(s)

)2 ds

≤ pkr + λ

∫ r

0

(s− r)e−2sds

= pkr + λ
[
− 1

2
e−2s(s− r)|r0 +

∫ r

0

1
2
e−2sds

]
= pkr + λ

[
− r

2
− e−2r

4
+

1
4

]
< pkr − λr2

4
,

thus Rk < 4pk

λ . Hence,

pkRk = −λ

∫ Rk

0

(s−Rk)e−2s 1
(1− u(s))2

ds

≥ λ

∫ ε

0

(ε− s)e−2sds > 0.

This is a contradiction. Hence limp→0+ R(p, λ) = 0. It follows that limp→0+ τ(p, λ) =
0. This completes the proof. �

Lemma 4.3.
lim

p→+∞
R(p, λ) = lim

p→+∞
τ(p, λ) = 0.
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Proof. Suppose limp→∞ τ(p, λ) 6= 0, then there exists a τ0 > 0 and a sequence
pk → +∞ with uk(r) ≡ u(r, pk, λ) > 0 and u′k(r) > 0 in (0, τ0).
Let τ̄ = τ0/2, we claim

lim sup
k→+∞

uk(τ̄) = 1.

Otherwise, there exists ε > 0 such that 0 < uk(τ̄) ≤ 1− ε. It follows that

uk(τ̄) = pk τ̄ + λ

∫ τ̄

0

(r − τ̄)e−2r 1
(1− uk(r))2

dr

≥ pk τ̄ +
λ

ε2

∫ τ̄

0

(r − τ̄)e−2rdr

which is impossible since pk → +∞. Hence choosing a subsequence if necessary, we
may assume

lim
k→+∞

uk(τ̄) = 1.

Note that uk satisfies

u′′(r) +
λe−2r

uk(1− uk)2
u(r) = 0 textin(τ̄ , τ0).

Let

Mk = inf{ 1
uk(1− uk)2

: r ∈ (τ̄ , τ0)},

then
lim

k→+∞
Mk = ∞.

Note that λe−2r ≥ λe−2τ0 in (τ̄ , τ0). Let vk solves

v′′(r) + λe−2τ0Mkv(r) = 0 textin(τ̄ , τ0).

It follows that vk has at least two zeros in (τ̄ , τ0) when k is sufficiently large.
By Sturm Comparison Principle, uk has at least one zero in (τ̄ , τ0). But this is
impossible. Hence

lim
p→+∞

τ(p, λ) = 0.

Finally, we prove limp→+∞R(p, λ) = 0. Otherwise, there exists a point r0 > 0 and
a sequence pk → +∞ with

uk(r) > 0 and u′k(r) ≤ 0 textin(τk, r0)

where uk ≡ u(r, pk, λ) and τk ≡ τ(pk, λ). Let r̄ = r0
2 , in view of previous lemma

that limp→+∞ τ(p, λ) = 0, we may assume r̄ > τk for any k. We claim that

lim sup
k→+∞

uk(r̄) < 1.

Otherwise, by Sturm Comparison Principle again, uk has zeros in (τk, r̄) when k is
sufficiently large which is impossible since τk → 0 as k → +∞.
Note that

u′k(r) = −
∫ r

τk

λe−2s

(1− uk(s))2
ds,

and (
1
2
u′2 +

λe−2r

1− u(r)

)′
= − 2λe−2r

1− u(r)
. (4.1)
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Integrate equation (4.1) on (τk, r̄), we have

1
2
u′k(r̄)2 = − λe−2r̄

1− uk(r̄)
+ λ

e−2τk

1− uk(τk)
−

∫ r̄

τk

2λe−2s

1− uk(s)
ds.

On the other hand, we have

1
2
u′k(r)2 +

∫ r̄

τk

2λe−2s

1− uk(s)
ds ≤ 1

2
u′k(r)2 +

∫ r̄

τk

2λe−2s

(1− uk(s))2
ds

≤ 1
2
u′k(r̄)2 + 2|u′k(r̄)|.

Hence

− λe−2r̄

1− uk(r̄)
+ λ

e−2τk

1− uk(τk)
≤ 1

2
u′k(r̄)2 + 2|u′k(r̄)|. (4.2)

Integrating equation (4.1) on (0, τk), we have

λe−2τk

1− uk(τk)
+

∫ τk

0

2λe−2s

1− uk(s)
ds =

1
2
p2

k + λ.

Therefore,
λe−2τk

1− uk(τk)
≥ 1

2
(
1
2
p2

k + λ). (4.3)

Combining inequalities (4.2) and (4.3), we have u′k(r̄) → −∞. Thus for r > r̄, we
have

uk(r0) < uk(r̄) + u′k(r̄)(r0 − r̄) → −∞,

a contradiction to uk(r0) > 0. This completes the proof. �

Lemma 4.4. Define R̃ = R̃(λ) = sup{R(p, λ), p > 0}. Then R̃(λ) is strictly
decreasing.

Proof. Let 0 < λ1 < λ2 and u2 is a solution at λ2 on (0, R̃(λ2)). Let v(s) = cu2(r)
with r = s/c where c is some constant greater but close to 1. It’s easy to see
v(0) = 0 and v(R̃(λ2) + ε1) = 0 for ε1 = (c− 1)R̃(λ2). We note that

v′′ + λ1
e−2s

(1− v(s))2
=

1
c
u′′2(r) + λ1

e−2s

(1− cu2(r))2

= −1
c

(
λ2

e−2r

(1− u2(r))2
− λ1

e−2s

(1− cu2(r))2

)
≤ 0

when c is sufficient close to 1. Hence v is a lower solution for

v′′(r) + λ1
e−2r

(1− v)2
= 0,

v(0) = 0, v(R̃(λ2) + ε1) = 0.

Hence R̃(λ1) ≥ R̃(λ2) + ε1. Hence R̃(λ) is strictly decreasing. This completes the
proof. �

Lemma 4.5. limλ→0+ R̃(λ) = +∞, limλ→+∞ R̃(λ) = 0.
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Proof. Suppose limλ→0+ R̃(λ) 6= +∞, then there exists a number R∗ > 0 and a
sequence λk → 0+ with limk→+∞ R̃(λk) = limk→+∞ R̃(λk, pk) = R∗. Let us write
uk(r) = u(r, λk, pk), then

0 = uk(R∗)

= pkR∗ + λk

∫ R∗

0

(s−R∗)e−2s 1
(1− uk(s))2

ds

≥ pkR∗ +
λk

ε2

∫ R∗

0

(s−R∗)e−2sds.

Hence pk → 0+ or R∗ = 0. But this contradicts the fact that limp→0+ R(p, λ) = 0
and R(λ) is strictly decreasing. Similarly we may prove the second statement. This
completes the proof. �

Finally for any given λ, we study the shape of R(p). Notice that R(p) is deter-
mined by the implicit equation

u(R(p), p) = 0. (4.4)

Differentiating equation (4.4) with respect to p we get the following equations for
the derivatives of R:

ur(R(p), p)R′(p) + up(R(p), p) = 0, (4.5)

urr(R(p), p)R′(p)2 + 2urp(R(p), p)R′(p)

+ur(R(p), p)R′′(p) + upp(R(p), p) = 0.
(4.6)

If we write h(r, p) = up(r, p), z(r, p) = upp(r, p) and v(r, p) = ur(r, p), then we can
rewrite (4.5) as

v(R(p), p)R′(p) + h(R(p), p) = 0. (4.7)
Also notice that when R′(p) = 0, from equation (4.6) we have

v(R(p), p)R′′(p) + z(R(p), p) = 0 (4.8)

We have the following important Lemma.

Lemma 4.6. For a given λ, if R′(p) = 0, then R′′(p) < 0.

Proof. Note that h(r, p) satisfies the following initial value problem

h′′ +
2λe−2r

(1− u)3
h(r, p) = 0, (4.9)

h(0, p) = 0, h′(0, p) = 1. (4.10)

If R′(p) = 0, then equation (4.5) gives us h(R(p), p) = 0.
We claim that h(r, p) > 0 on (0, R(p)). Otherwise let h(ξ(p), p) = 0 and h > 0

on (0, ξ(p)). Note that v satisfies the following

v′′ +
2λe−2r

(1− u)3
v − 2λe−2r

(1− u)2
= 0, (4.11)

v(0, p) = p, v′(0, p) = −λ. (4.12)

Recall that v(τ(p), p) = 0. If ξ(p) ≥ τ(p), then v < 0 on (ξ(p), R(p)). By Sturm
Comparison Theorem, v should have a zero on (ξ(p), R(p)) since h(R(p), p) = 0.
This is impossible.
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If ξ(p) < τ(p), then v < 0 on (τ(p), R(p)). Since 0 = v(τ(p), p) > h(τ(p), p),
by Sturm Second Comparison Theorem, v > h on (τ(p), R(p)) which is impossible
since h has to cross over v and reaches zero at R(p).

Next we claim z(R(p), p) < 0. Note that

z′′ +
2λe−2r

(1− u)3
z +

6λe−2r

(1− u)4
h2 = 0,

z(0, p) = 0, z′(0, p) = 0.

(4.13)

We claim z is negative in some neighborhood of 0. Otherwise by observing equation
(4.13), we have z′′ < 0. It follows that z′ < 0 in the neighborhood of 0 since
z′(0, p) = 0. This contradicts the assumption.

Next we claim z < 0 in (0, R(p)]. Otherwise, let z(r1, p) = 0 with z < 0 in
(0, r1). Comparing equation (4.9) and equation (4.13), it follows that h must have
a zero in (0, r1) which contradicts our previous statement. Hence z(R(p), p) < 0
and it follows from (4.8) that R′′(p) < 0. �

p

R(
λ,

p)

λ>λ*

 

λ=λ* 

λ<λ* 0 1 ||u||
∞

λ

Figure 2. Time map diagram and bifurcation diagram

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. In view of the above lemmas, we may obtain the timemap
diagram as shown in Figure 2. From which we can easily conclude the theorem.
In fact, for any given ε > 0, ∃ λ∗ such that R̃(λ∗) = − ln ε and there is a unique
p such that R(λ∗, p) = − ln ε, thus there exists a unique radial solution at λ = λ∗.
For λ < λ∗, we can find p1, p2 such that R(λ, p1) = R(λ, p2) = − ln ε. The problem
has two radial solutions in this case. For λ > λ∗, since R̃(λ) < − ln ε, there is no
radial solution. This result is shown in Figure 2. �

5. Symmetry breaking

In previous section, we studied the multiplicity of radial solutions. Our purpose
in this section is to study how radial symmetry can be broken, that is, to describe
the bifurcation of these radial solutions into non-radial solutions. The bifurcation
problem has been studied by many authors, see [6, 7, 8, 11].
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We shall consider two real Banach Spaces, U ⊂ V , as well as a nonlinear abstract
operator

F : R× U → V

of the form
F (λ, u) = L(λ)u + R(λ, u)

and the associated nonlinear abstract equation

F (λ, u) = 0

where the following assumptions are assumed to be satisfied:
• There exists λ0 ∈ R and a, b ∈ R, a < λ0 < b, such that L(λ) is a linear

operator from U to V for all λ ∈ (a, b). Moreover, exists r ≥ 2 such that
the map λ → L(λ) is of class Cr and L(λ0) is a Fredholm operator of index
zero.

• R is an operator of class Cr such that R(λ, 0) = 0 and DuR(λ, 0) = 0 for
each λ ∈ (a, b).

Definition 5.1. (λ0, 0) is a bifurcation point from the curve of (λ, 0) if there exists
a sequence (λn, un) ∈ (a, b)× (U \ {0}) such that limn→infty(λn, un) = (λ0, 0) and
F (λn, un) = 0.

Definition 5.2. λ0 is a nonlinear eigenvalue of L(λ) if (λ0, 0) is a bifurcation point
from the curve (λ, 0) and R(λ, u) satisfies the second assumption.

On other word, λ0 is a nonlinear eigenvalue of L(λ) if the fact that bifurcation
occurs is exclusively based on the linear part.

Definition 5.3. We call zero a simple eigenvalue of L(λ0) if N [L(λ0)]⊕R[L(λ0)] =
V .

Definition 5.4. Define λ0 as an eigenvalue of the pair (L0, L1) if zero is an eigen-
value of L0 − λ0L1.

Let a(λ) denote the classical eigenvalue of the family L(λ) perturbed from the
zero eigenvalue of L(λ0). If zero is a simple eigenvalue of L(λ0), then a′(λ0) 6= 0
if and only if zero is a simple eigenvalue of the pair (L0, L1). As we recall Cran-
dall’s theorem which states that if zero is a simple eigenvalue of the pair (L0, L1),
then (λ0, 0) is a bifurcation point. In other word, (λ0, 0) is a bifurcation point
if a′(λ0) 6= 0. This condition is usually referred to as “transversality condition”
or “nondegeneracy condition”. We shall remove this condition by the following
theorem essentially due to Kielhöfer.

Theorem 5.5. Assume U ⊂ V and zero is a simple eigenvalue of L(λ0). Then λ0

is a nonlinear eigenvalue of L(λ) if and only if a(λ) changes sign as λ crosses λ0.

With the aid of this result, we now study the symmetry breaking problem. We
shall consider the linearized problem about a given radial solution u

∆w +
2λ

(1− u)3
w = 0.

We may write w in the spherical harmonic decomposition form:

w =
∞∑

N=0

aN (r)ΦN (θ),
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and aN satisfies the equation:

a′′N +
1
r
a′N +

( 2λ

(1− u)3
− N2

r2

)
aN = 0

together with the boundary conditions aN (1) = 0 = aN (ε).
If the above equation admits a nonzero solution aN 6= 0 for some N ≥ 1, then

radial symmetry breaks. We consider the eigenvalue problem

a′′N +
1
r
a′N +

( 2λ

(1− u)3
− N2

r2

)
aN = −µN,kaN .

In the context of our previous setting, we shall let U = C2
0 (ε, 1) and V = C(ε, 1).

We have the following lemma.

Lemma 5.6. If u is a radial solution on the upper branch, then for arbitrary
positive integer N , µN,1(λ) < 0 for λ sufficiently close to zero.

Proof. The eigenvalue µN,1(λ) can be characterized as

µN,1 = inf
φ∈C2

0 ([ε,1])

{∫ 1

ε
r(φ′2 − 2λ

(1−u)3 φ2 + N2r−2φ2)dr∫ 1

ε
rφ2dr

}
.

If u is a positive radial solution, then∫
Ω

| 5 u|2 = λ

∫
Ω

u

(1− u)2
.

Since u is a solution on the upper branch, ||u||∞ → 1 as λ → 0+. Notice that for
arbitrary p > 0, there exists α > 0 such that

2u

1− u
≥ p for u ≥ 1− α.

We write

Q(u) =
∫ 1

ε

r
(
u′2 − 2λ

(1− u)3
u2 +

N2

r2
u2

)
.

Hence

2πQ(u) = λ

∫ 1

ε

( 1
(1− u)2

− 2u

(1− u)3
)
u + N2

∫ 1

ε

u2

r2

=
∫ 1

ε

| 5 u|2 − λ

∫ 1

ε

2u

(1− u)
· 1
(1− u)2

u + N2

∫ 1

ε

u2

r2

≤ (1− p)
∫ 1

ε

| 5 u|2 +
N2

ε2

∫ 1

ε

u2 − λ

∫
u≤1−α

2u

(1− u)
· 1
(1− u)2

u

≤
(
1− p +

N2

ε2ν1

) ∫ 1

ε

| 5 u|2 −M

for some constant M > 0 which is independent of λ. Hence for any given N > 0,
µN,1(λ) < 0 for λ sufficiently close to zero since p > 0 can always be chosen to be
sufficiently large. This completes the proof. �

Remark 5.7. It’s easy to see that if u is an upper branch solution, then( ∫
Ω

| 5 u|2
)1/2

≥
√

2πε

1− ε
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as λ → 0. In fact,

u(r) =
∫ r

ε

u′(s)ds ≤ (1− ε)1/2
( ∫ 1

ε

(u′(s))2ds
)1/2

≤ (1− ε)1/2 1√
2πε

( ∫
Ω

| 5 u|2
)1/2

We now prove the symmetry breaking result.

Proof of Theorem 1.2. Since µ0,1(λ∗) = 0, it follows that µN,1(λ∗) > 0 for N ≥ 1.
By Lemma 5.6, for any N ≥ 1 there exists λN ∈ (0, λ∗) such that µN,1(λN ) = 0 and
µ(λ) changes sign as λ crosses λN . Hence by Theorem 5.5, there is a bifurcation at
λN where the radial symmetry breaks. The proof is completed. �
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