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ABSTRACT 

Vineyards are typically managed uniformly over space, although known spatial 

variation exists in the performance of vines within and across vineyard blocks.  

Identifying spatial variability in crop performance at a large scale (one or a few vineyard 

blocks) is useful to vineyard managers wishing to address such variation by enacting 

separate management plans for differing areas of performance.  Zonal management and 

the institution of precision viticultural practices (i.e. use of GIS and remote sensing 

techniques to study this spatial variation) has proven profitable for a number of reasons, 

namely zonal harvesting based on zone performance. 

This dissertation implements cutting-edge, practical, and low-cost equipment and 

techniques, specifically an unmanned aerial vehicle (UAV), digital cameras, and 

Structure from Motion (SfM), to identify spatial variation in grapevine canopy vigor at a 

vineyard in the Texas Hill Country American Viticultural Area.  Three research 

objectives were addressed in this dissertation including: (1) the setup and implementation 

of a practical imaging system and processing methodology (digital cameras and a UAV) 

to produce very high spatial resolution orthophotomosaics of vineyards with visible and 

near-infrared bands, (2) observation of spatial and temporal variation in grapevine canopy 

vigor that can aid in improving vineyard management practice, and (3) development of a 

three-dimensional method for visualizing and quantifying vineyard canopy density.  

Results concluded that the low-cost tools and techniques outlined in this study provided a 

practical means by which to identify spatial variation in canopy vigor at the study 
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vineyard.  Of the three methods used to identify this variation, spectrally-based (NDVI), 

planimetrically-based (canopy extent), and three-dimensionally-derived (SfM point 

clouds), the latter two were most successful and would be recommended for future use.  

Most importantly, due to the low cost of the technology used to capture data for this 

study, the methodologies developed in this dissertation would be practical for 

implementation in other vineyards as well as in other areas of agriculture. 
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CHAPTER I 

INTRODUCTION 

Growing grapes, as with any crop, is by nature a geographically-dictated process.  

Worldwide, grapevines are grown in particular locations due to accommodating climate, 

slope, soil, and other physical site characteristics.  Even at the most local of scales, within 

one vineyard or between a few vineyards in close proximity to each other, the physical 

characteristics that affect grapevines vary spatially (i.e. moisture, temperature, soil, etc.).  

As a result, the yield and quality of the harvest are also variable.  In most cases, this 

variation remains unaddressed by viticulturists (vineyard managers) because of 

traditional homogenous crop management practices and an overall lack of awareness 

regarding this variation.  To monitor and address spatial variation in vineyard 

performance, recent viticultural research integrates GIScience-based approaches and 

methodologies through the geospatial analyses and techniques provided by GIS and, 

more importantly, remote sensing.  Remote sensing analyses have recently been shown to 

be an essential tool in monitoring and addressing vineyard crop variability by way of 

grapevine leaf canopy (Hall 2003).  At the local scale, the variation in reflectance for the 

vine leaf canopy observed with remotely sensed images directly correlates with vine 

health and eventual vine performance through grape yield and quality (Hall 2003; Proffitt 

et al. 2006). 

Background 

Geography and Viticulture: Past and Present 

As was previously mentioned, growing grapes is an inherently geographic 

process.  Thus, geographers have studied viticulture, specifically its unique location-
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determined characteristics otherwise known as terroir, for over a century (Morrison 1936; 

Weigend 1954; Peters 1984; Newman 1986).  Such studies follow the regional tradition 

of geography, looking at the amalgamation of both human and physical or environmental 

factors that go into grape-growing and in some cases making wines (de Blij, 1983); for 

example, Newman (1986) summarized and reported the aspects that go into grape-

growing and wine-making within the Finger Lakes American Viticultural Area (AVA) in 

central New York State as did Morrison (1936) in Ohio.  In a much different light, recent 

geographically-based viticultural research trends have shifted from being descriptive and 

regional to being more technical, quantitative, and increasingly site-specific (Bramley et 

al. 2003; Hall 2003; Johnson et al. 2003b; Proffitt et al. 2006).  Using geospatial tools and 

techniques, these new types of studies aim to address localized grapevine performance 

variability within a few or even a single vineyard block. 

Variability in the Vineyard 

All of the environmental factors that influence the grapevine like climate, slope, 

soil, drainage, etc. vary over space.  As a result, grapevines produce fruit that varies 

spatially in regards to its quality and quantity (Hall et al. 2002; Proffitt et al. 2006).  In 

essence, each vineyard and each vine within a vineyard faces a different set of 

circumstances (soil types, drainage, slopes, microclimate, etc.) that impacts the grapes 

produced there.  Geographic tools and techniques have provided the ability to observe 

such differentials in grapevines.  Site-specific remote sensing, for example, quantifies the 

spatial variability in the vine leaf canopy that is directly related to grape production 

quantity and quality (Hall et al. 2002, Bramley et al. 2003; Hall, 2003; Hall et al. 2003).  

Layer-based mapping systems like GIS visually enhance ground data for vineyard 
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managers, providing viticulturists snapshots of crop health across entire vineyard blocks.  

In most cases, ground data samples are interpolated to create a number of surfaces for 

proper and more thorough crop evaluation (Bramley et al. 2003; Proffitt et al. 2006).  

Grape yield, soil conductivity and salinity, juice pH, berry weight, and pruning weight 

have proven useful in vineyard spatial analyses (Bramley 2001; Dobrowski et al. 2003; 

Best et al. 2005; Proffitt et al. 2006).  Grapevine variability is twofold however, not only 

does it vary over space; it varies over time due to its annual growth cycle. 

Changes are also found in grapevines over time due to the natural perennial 

growth cycle that is observed throughout every season.  Knowledge of phenology, or the 

growth stages, of the crop is essential to properly study temporal changes in grapevine 

health. (Coombe and Dry 1988; Mullins et al. 1992; Jackson 2008; Hall et al. 2011).  

Grapevine phenological cycles, dictate the periods within a growing season that the crop 

must be sampled and monitored (Mullins et al. 1992; Dry and Coombe 2004).  For 

example, grapevines require a dormancy period wherein growth is not taking place.  This 

is why grapes are typically only located at temperate latitudes of between 30 and 50 

degrees north or south of the equator (de Blij 1983), consistent with the majority of 

deciduous plants.  In succession, after a dormancy period of several months, budding 

occurs, buds break, leaves form, grapes grow, and sugar/acid levels increase within the 

grapes changing grape color soon before the harvest.  Despite this change over time, the 

crop is still monitored, although this does provide challenges in sampling the crop.  The 

timing of such grapevine phenology is dependent upon the particular season in which the 

crop is growing.  In short, the amount of precipitation, sunlight, temperature, and many 

other factors dictate when the crop reaches each growth stage in a given season (Mullins 
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et al. 1992; Dry and Coombe 2004).  Therefore, seasonal changes in the crop are rarely 

exactly the same as the previous year or years. 

Current Research Areas 

Three recent research areas have emerged that utilize geographic tools and 

techniques to address grapevine variability in structure, locational attributes, and health: 

(1) vineyard land use or vine row delineation, (2) vineyard site location and suitability 

modeling, and (3) precision viticulture.  These three research avenues are distinct in 

purpose but are contextually and methodologically very similar.  Therefore, it is 

important to be knowledgeable of methodologies from each research area, even if the 

research only falls into one of the three categories. 

Land Use Delineation 

Vineyard land uses are particularly unique due to the fact that in most cases they 

are made up of rows of vines (vine rows) and spaces between these rows of vines (inter-

row spaces).  This is due to the trellis training system onto which vines grow.  This 

creates a discontinuous surface of vine leaf canopy and inter-row spaces of bare earth, 

grass, or a cover crop within the vineyard land areas.  A number of studies have 

expressed the difficulties of locating such land uses via remotely sensed imagery of low, 

medium, and high-spatial resolutions (Trolier et al. 1989; Wassenaar et al. 2002; Delenne 

et al. 2010).  The size of the pixels within the imagery is vital in this process (Hall et al., 

2008).  The pixels can be no bigger than the desired area of analysis (i.e. the size of the 

vine canopy, which is typically less than one meter in width).  Smaller pixels translate to 

more easily identifiable features on the ground.  Hall and Louis (2009) took this a step 

further by not only finding vineyard land areas, but also demarcating vine rows.  
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Excluding the inter-row spaces is desirable because these areas are not of interest, and by 

eliminating them, time spent processing and analyzing images is minimized.  The most 

recent methodologies in this research area have bypassed image resolution issues by 

substituting imagery with airborne lidar (light detection and ranging) datasets (Mathews 

and Jensen 2012a).  Use of similar point cloud based datasets for three-dimensional 

analyses of grapevine health has also been suggested (Mathews and Jensen 2012a). 

Site Location and Suitability Modeling 

Site location refers to what characteristics are found at actual vineyard sites.  Site 

suitability uses known vineyard characteristics from literature or from studying site 

location in the same region to predict future vineyard areas in the same region.  GIS 

provides an interface that allows the manipulation of multiple layers of information and 

the ability to create an optimal vineyard location index.  Jones et al. (2004) and Kurtural 

et al. (2006) each presented such models in Oregon and Illinois respectively.  Both used 

numerous layers of information such as slope, aspect, elevation, growing degree days, 

frost days, drainage, soil, and land use to create a suitability index specific to their area of 

interest.  The index is created with the raster model by overlaying and performing map 

algebra (addition or multiplication) on all of the previously mentioned layers to create a 

master prediction layer (Kurtural et al. 2006).  Some layers can be more heavily weighted 

so that the information in them is more influential than other layers as did Jones et al. 

(2004) with climate. The resultant master layer serves as the final index except in the case 

of excluding improper land uses and other improbable areas (Kurtural et al. 2006).  To 

take this a step further, the final index can be ground-truthed using GPS to locate actual 
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vineyard sites (Jones et al. 2004).  In general, GIS has proven to be a very useful tool in 

studying vineyard location attributes (Watkins 1997; Hellman et al. 2011). 

Precision Viticulture 

Precision viticulture is a relatively new subfield of precision agriculture that 

utilizes a number of geographic techniques and datasets to micro-manage spatial 

variation in grapevine performance (Lamb 2001; Bramley et al. 2003, Bramley et al. 

2005; Proffitt et al. 2006; Hall and Hardie 2008).  The recent boom in research and 

adoption of precision viticulture can be attributed to the advent of GPS technology as 

well as GIS software systems and the inherent spatial analysis capabilities that they 

provide.  GIS surface or layer creation permits all types of spatial data to be viewed and 

analyzed (Proffitt et al. 2006).  In addition, remote sensing analyses have been shown to 

add yet another useful tool to the precision viticulture management scheme (Lamb et al. 

2001; Hall et al. 2002; Hall 2003; Proffitt et al. 2006), usually incorporating several 

spectral bands by way of calculating vegetation indices (Dobrowski et al. 2002; Zarco-

Tejada et al. 2005) like the Normalized Difference Vegetation Index (NDVI; Rouse et al. 

1973).  Such indices are useful in estimating vegetation density (Hall et al. 2011) and 

subsequent photosynthetic capacity. 

 The precision viticulture design is based on four overlapping phases or steps: 

observation, interpretation, evaluation, and implementation (Bramley et al. 2003; Proffitt 

et al. 2006).  The observation phase represents the data collection period where soil 

sampling, grape quantity and quality sampling, and image acquisition occurs.  In the case 

of data captured at the individual grapevine scale, the interpretation step spatially 

interpolates information to output vine canopy vigor, soil, yield, and other maps for 
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evaluation.  For imagery, interpretation is done by way of transformation with vegetation 

indices like NDVI to better gauge health differentials over the image.  The evaluation 

phase assesses the spatial variability shown in all the created maps and constructs a plan 

to address it (i.e. through management zones or otherwise).  Lastly, the implementation 

of the plan is carried out to improve the crop via more or less fertilizer, improved 

irrigation, zonal harvesting, etc. (Bramley et al. 2003; Proffitt et al. 2006).  The 

implementation of the precision viticulture scheme has been shown to be profitable in a 

number of ways because it can decrease inputs (water, fertilizer, etc.) and increase or 

improve outputs like grape quantity and quality (Best et al. 2005); therefore, reducing 

costs and increasing profits (Bramley et al. 2003). 

Remote Sensing of Vineyards 

As discussed in the previous section, an abundance of research has focused on 

utilizing remote sensing techniques to better study vineyards; specifically in the context 

of land use (vineyard block) delineation and precision viticulture research.  The types of 

studies that use remote sensing to look into grapevines include but are not limited to: land 

use and vine row delineation (Hall and Louis 2009; Delenne et al. 2010), disease 

detection (Zarco-Tejada et al. 2005), vine water status (Acevedo-Opazo et al. 2008), leaf 

canopy vigor assessment (Hall et al. 2002), and grape phenolics and yield prediction 

(Lamb et al. 2004; Cunha et al. 2010).  Despite the many different uses of remote sensing 

techniques in vineyard studies, commonalities are present in regards to the researchers’ 

choice of imagery utilized, how the imagery is processed and analyzed, and what outputs 

are generated.  This is discussed in further detail in the chapters that follow. 
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Research Objectives and Chapter Outline 

Following the most recent trend in viticultural research, precision viticulture, this 

study addresses the following three objectives at a study site in the Texas Hill Country 

American Viticultural Area (THCAVA) over the course of the 2012 growing season: 

(1) craft a practical imaging system (digital cameras and unmanned aerial vehicle, 

UAV) and processing methodology to produce high quality multispectral (visible 

and near-infrared [NIR]) orthophotos of a study vineyard, 

(2) use produced orthophotos, image segmentation, and NDVI to observe spatial and 

temporal variation in grapevine canopy health/vigor that can aid in improving 

vineyard management practice and eventual vine performance (i.e. yield), and 

(3) develop a new, three-dimensional method for visualizing and quantifying vineyard 

canopy density. 

Objective 1 addresses image acquisition in the field and the plethora of factors 

and considerations that impact accurately imaging and analyzing vineyard vegetation 

canopy.  This includes use of lightweight digital camera sensors mounted on a UAV to 

collect aerial imagery in four spectral bands (blue, green, red, and NIR).  This also 

includes processing the collected imagery to create spectrally standardized image mosaics 

of the study site from several sample periods during the 2012 growing season. 

Objective 2 entails the analysis of the created imagery in the first objective to 

identify spatial variation in crop health/vigor throughout the study vineyard.  This 

includes exploring correlations between orthophoto-based canopy metrics and on-ground 

measured harvest data.  Maps will be produced to visualize the spatial variation in vine 

performance at the study site. 
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Objective 3 assesses the applicability and practicality of three-dimensional 

modeling (visualization and quantification) of grapevine canopy; in particular, exploring 

whether or not leaf area index (LAI) can be estimated with such 3D data.  This objective 

utilizes the same aerial image data as collected in objective 1 to create lidar-like point 

cloud datasets using the relatively new Structure from Motion (SfM) technique to be 

discussed in-depth in the chapters that follow. 

 This dissertation is presented in chapter form in the following manner: the current 

chapter (Chapter I) presented general literature in the research area, current research 

trends, specific objectives of this research, and the study site, Chapter II addresses 

research objective 1 creating an UAV-based aerial image capturing system and data flow 

methodology to create useful aerial image products, Chapter III presents research 

objective 2 in analyzing the spatial data created in Chapter II to explore spatial variation 

in crop performance, and Chapter IV creates and utilizes a 3D-based vineyard dataset to 

predict per-vine canopy LAI and visualize vineyard canopy.  More specific literature is 

presented within each of the body chapters (II, III, and IV) to better provide specific 

context pertaining to the different topical areas that aided in crafting the methodologies 

employed.  Lastly, Chapter V provides the overarching conclusions of the entire 

dissertation as well as recommendations to viticulturists interested in using such 

methodologies. 

Study Site 

 

The THCAVA was recognized in 1991 and is located in south-central Texas west 

of Austin and north of San Antonio.  This AVA contains 22 wineries, encompasses parts 

of 22 counties, and covers an area of over 36,000 square kilometers (14,000 square 
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miles).  Two consecutive vineyard blocks managed by one winery are the focus of this 

dissertation.  The specific location of the study vineyard is not disclosed as requested by 

the property owners.  Anonymity was preferred in this case because of the competitive 

nature of the wine industry.  Permission for vineyard access and research collaboration 

was granted during the fall of 2011.  The vineyard manager and winemaker served as the 

main contacts and the on-site persons with which discussions were held throughout this 

research.  This study focused on two blocks of trellis-trained Tempranillo (Vitis vinifera) 

vines totaling 1.9 hectares (4.8 acres).  Hereafter, all data collection and analysis are 

contained within these two vineyard blocks.  Study site maps and more detailed site 

descriptions are provided in Chapters II-IV. 
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CHAPTER II 

IMAGING SYSTEM SET-UP, CALIBRATION, AND APPLICATION IN THE  

VINEYARD1 

Introduction 

Use of Compact Digital Cameras in Remote Sensing 

The low cost and high availability of compact (point-and-shoot) digital cameras 

has led to usages beyond that of recreational or professional capture of natural color 

photography (Dean et al. 2000).  Digital camera ease of operation, speed of image 

capture, efficient processing, and lightweight design lend utility to aerial image capture 

(King 1995).  Coupled with an unmanned aerial vehicle (UAV) to create an unmanned 

aerial system (UAS), digital cameras can inexpensively provide very high spatial and 

temporal resolution data for research in soils (Levin et al. 2005), tree inventory and 

biomass (Dean et al. 2000), land management (Rango et al. 2009), and agriculture (Hunt 

et al. 2008; Lebourgeois et al. 2008; Lelong et al. 2008; Ritchie et al. 2008) including 

viticulture (Smit et al. 2010; Turner et al. 2011).  See Everaerts (2008) and Watts et al. 

(2012) for informative reviews on UAV and UAS technology.  Camera system design for 

UAV-based remote sensing varies by the nature of the images to be captured; as 

evidenced by studies that alter digital cameras for their specific needs, while others 

employ cameras with off-the-shelf configurations.  With or without modification, digital 

cameras remotely record spectral information of a target of interest (Dean et al. 2000; 

Levin et al. 2005; Ritchie et al. 2008).  Levin et al. (2005) utilized an unaltered digital 

camera (UDC) to record the spectral properties of soils with three spectral bands of blue, 

                                                 
1 This chapter was accepted for publication with the title “A practical UAV remote sensing methodology to 

generate multispectral orthophotos for vineyards: Estimation of spectral reflectance using compact digital 

cameras” in the International Journal of Applied Geospatial Research (Feb. 1, 2014). 
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green, and red.  Most digital cameras, however, have the ability to sense wavelengths 

beyond the visible spectrum with minor alteration (Cheng and Rahimzadeh 2005).   

A typical digital camera has the following vital components: a sensor (either a 

charge-coupled device [CCD] or a complementary metal oxide semiconductor [CMOS]) 

made up of an array of sensor elements or sensels (each of which later become picture 

elements or pixels in the captured image), a Bayer filter (or other color filter), a lens, and 

a hot mirror.  This study focuses on the CCD sensor, which senses light and converts this 

spectral information into digital numbers (DNs), typically with 8-bit radiometric 

resolution (0-255).  The Bayer filter is responsible for splitting the incoming visible 

wavelengths into separate bands so brightness for each can be recorded (i.e., blue, green, 

and red; stored in reverse order and referred to as RGB).  The lens de-magnifies the scene 

to properly represent physical objects and their geometric relationships within a captured 

image.  The hot mirror is an internal spectral filter that limits detector sensitivity to 

visible wavelengths (i.e., the sensor will not record energy in the near-infrared [NIR] 

region).  In most cases the hot mirror wavelength cut-off is somewhere around 670-690 

nm (Dean et al. 2000; Ritchie et al. 2008), whereas most CCDs have a spectral range up 

to 900 nm (Dare 2008; Lelong et al. 2008).  Therefore, the hot mirror forces the CCD to 

sense only the desired portions of the spectrum to more easily replicate the visible light 

range for natural color photography.  For studies that require NIR sensitivity, the hot 

mirror can be removed and replaced with clear glass to allow the CCD to sense NIR 

wavelengths (Cheng and Rahimzadeh, 2005).  In the case of vegetation studies for 

instance, NIR sensitivity is important to be able to monitor differentials in crop health, 

thus the hot mirror must be replaced (Dare 2008; Ritchie et al. 2008).  System designs 
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must be creative to integrate the NIR band usually by use of two cameras.  Ritchie et al. 

(2008), for example, employed an UDC combined with an altered digital camera (ADC) 

to gather four spectral bands for analysis (UDC—blue, green, red; ADC—NIR). 

Image format is another important image acquisition consideration when using 

digital cameras as remote sensors.  Image format is important because compression of 

images alters the way DNs are computed and stored (Dean et al. 2000).  RAW and TIFF 

image formats are presumed to be better because they do not alter the image (Cheng and 

Rahimzadeh 2005; Lebourgeois et al. 2008).  RAW and TIFF images are made up of 

unprocessed, uncompressed pixel data as captured by the CCD.  The downsides to such 

measurements are increased file size and capture time (Lelong et al. 2008).  An 

alternative to RAW and TIFF formats is JPEG, which has proven adequate for scientific 

analyses (Hunt et al. 2005; Lelong et al. 2008; Levin et al. 2005).  Compared to other 

formats, JPEG offers the convenience of small file size, quick capture ability, and easier 

processing. 

Improving the Quality of Collected Images 

 Regardless of the type of sensor employed, radiometric and geometric effects 

must be addressed in the processing of aerial imagery to properly create image products 

for future analysis.  Radiometric corrections aim to remove inconsistencies produced by 

(1) atmospheric effects like scattering and/or absorption of incoming or reflected energy 

between the sensor and the surface, and (2) topographic effects that may create 

shadowing and other unequal reflectance over space within the collected images (Jensen 

2005).  Geometric corrections address internal and external errors caused by the sensor 

and aircraft (Jensen 2005).  Internal errors are predictable and therefore easier to correct 
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like distortion created by the camera lens.  External errors are flight-dependent and 

include altitude changes as well as sensor viewing geometries dictated by aircraft 

attitude.  External errors are accentuated in UAV image capture due to low flying heights 

and reduced control of in-flight motion (Lelong et al. 2008).  Low flying height also 

results in small image footprints, which requires mosaicking of images to create the 

desired ground coverage (Laliberte et al. 2011; Turner et al. 2012). 

Radiometric Corrections 

“Radiometric calibration of a sensor involves determining the relationship 

between image brightness as measured in digital image units [DNs] and actual radiance 

or reflectance of the target” (King 1995, p. 258).  This is normally completed by 

capturing known spectral targets during flight and establishing a correlative relationship 

with in situ spectroradiometer measurements (King 1995; Smith and Milton 1999).  

Conversion to spectral reflectance allows for a standardized method by which 

quantitative comparisons can be made over time with accuracy and confidence (Smith 

and Milton 1999).  One method of conversion is the empirical line method (Jensen 2005; 

Smith and Milton 1999).  This method assumes that targets of differing reflectance are 

captured by the sensor that can be compared to actual target reflectance as measured by a 

spectroradiometer.  At the very least one spectral target with very low reflectance (dark) 

and one with very high reflectance (light) should be included in the scene.  Spectral 

targets with reflectances along the spectrum between the light and dark objects are 

encouraged to be included, not forgetting that similar variation must exist in NIR 

reflectance (if NIR calibration is necessary).  The empirical line method essentially 

correlates brightness measured with the CCD to reflectance measured by a 
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spectroradiometer.  Linear regression is then used to create a slope line equation to 

predict reflectance of non-target pixels (Karpouzli and Malthus 2003; Smith and Milton 

1999).  Each band of imagery requires a different prediction equation “which attempt to 

remove both illumination and atmospheric effects” that can then be “applied to the 

remotely sensed data to produce images in units of [relative] reflectance” (Smith and 

Milton 1999, p. 2654).   

In the case of using digital cameras as remote sensors, the empirical line method 

has proven practical and successful in a number of instances (Levin et al. 2005; Ritchie et 

al. 2008).  Levin et al. (2005) utilized repeating targets (plastic chips) of black, gray, 

white, blue, green, red, and also a known 100 percent reflectance target, whereas Ritchie 

et al. (2008) used a ColorChecker chart with 24 standardized colored squares as 

reflectance targets.  These targets were designed for small-scale calibration of digital 

camera images taken on-the-ground.  The difficulty with this method in the case of digital 

cameras for quantitative research relates to the properties of the digital camera sensor that 

are, for the most part, unknown and unpublished by the manufacturer, specifically the 

wavelength interval captured by each band.  Lelong et al. (2008) were fortunate to know 

the properties of the sensor they employed: a Canon EOS-350D with blue (420-500 nm), 

green (490-580 nm), red (570-640 nm), and NIR (720-850 nm) bands.  Levin et al. 

(2005), however, did not know this information and were therefore forced to select 

specific wavelengths that were assumed to best represent and correlate with DNs from 

each band collected by the CCD: Olympus Camedia C-920 with blue (460 nm), green 

(510 nm), and red (640 nm) bands.  Jensen et al. (2007) provided an example of a typical 
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CCD sensitivity that showed blue centered on 450 nm, green on 550 nm, and red on 650 

nm, with each band exhibiting a wavelength interval of around 80-120 nm.   

After this calibration, large-scale targets can be captured within aerial imagery 

such as tarpaulins or other specially designed spectral targets to aid in conversion to 

reflectance of field captured imagery. These targets must cover substantial area on-the-

ground depending on the spatial resolution of the imagery (Hunt et al. 2008).  With 

small-footprint UAV imagery, Laliberte et al. (2011) noted difficulty capturing targets 

within all images.  In converting UAV image DNs to reflectance using spectral targets, 

Laliberte et al. (2011) found estimates to be more accurate when the conversion was 

applied to the entire mosaic rather than to single images (prior to mosaicking). 

Prior to conversion to reflectance, correction for vignetting within each image may be 

necessary.  Aerial imagery collected by digital cameras often displays a radial pattern of 

brightness falloff near the image edges that can vary based on exposure (Kelcey and 

Lucieer 2012).  Vignetting corrections range from producing and applying anti-vignetting 

filters (Lelong et al. 2008) to the complete removal (masking) of edge pixels (De Biasio 

et al. 2010), although leaving images unaltered and not correcting for vignetting is not 

uncommon (Turner et al. 2012).  Other radiometric issues including general brightness 

differences between collected images can be addressed with color balancing and/or 

histogram equalization (Niethammer et al. 2011), although such brightness adjustment is 

not always a part of mosaicking methodologies (Rango et al. 2009; Turner et al. 2011; 

Turner et al. 2012).   
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Geometric Corrections 

 Internal geometric errors like radial and tangential distortions created by digital 

camera lenses are less predictable and stable than traditional aerial photograph sensors, 

but are still able to be estimated and corrected (Turner et al. 2012).  Kelcey and Lucieer 

(2012) for instance used the free software Agisoft Lens (Agisoft LLC, St. Petersburg, 

Russia) to calculate lens distortion coefficients and apply a correction to their UAV 

images, although the literature indicates this correction is often ignored.  Other sources of 

error such as external geometric errors are consistently present with UAV collected data 

because of the difficulty of maintaining consistent flying height, roll, pitch, and yaw 

(Lelong et al. 2008; Turner et al. 2012), which leads to image mosaics with differing 

spatial resolution and viewing angles.  Selectivity in regard to which images to include in 

the mosaic becomes important (i.e., nadir-only at or near the same flying height; Turner 

et al. 2011; Turner et al. 2012). 

 Proper georectification of UAV collected images is traditionally based on a highly 

accurate digital terrain model (DTM) of the imaged area.   UAV-based methodologies 

have benefitted from recent advances in Structure from Motion (SfM), which much like 

traditional photogrammetry utilizes image overlap from multiple perspectives of the 

collected images to identify keypoints (Snavely et al. 2008) and generate an accurate 

point cloud model of the surface (Kaminsky et al. 2009).  Once georeferenced, SfM point 

clouds can be filtered and interpolated to create highly accurate, site-specific digital 

terrain models (DTMs; Mathews and Jensen 2013) and/or digital surface models (DSMs; 

Dandois and Ellis 2010) upon which image mosaics are georectified (Turner et al. 2012).  
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Adjustment of imagery to the DTM accounts for any topographic effects at the image site 

(Baboo and Devi 2011). 

Objective 

The objective of this paper was to design a practical and inexpensive data 

collection and processing methodology to generate orthophotomosiacs with multiple 

bands each with pixel values in units of reflectance.  This was completed using only 

compact digital cameras and a small UAV, which is contrary to similar studies that utilize 

specialized, more expensive sensors and UAVs (Baluja et al. 2012; Bellvert et al. 2013; 

Primicerio et al. 2012; Turner et al. 2011).  Ultimately, the system would have the ability 

to collect very high spatial resolution aerial imagery (less than 10 cm) in four spectral 

bands (blue, green, red, and NIR), each of which could be converted to estimates of 

reflectance using the empirical line method.  To address the objective, this paper is 

presented in two parts: (1) on-ground camera testing to determine the sensitivity and 

capability of the digital camera sensors and (2) application of the camera system in the 

field to create spectrally-consistent orthophotos of a study vineyard site in the Texas Hill 

Country.  A per-band validation was implemented to gauge the quality of each of the four 

collected bands for future analyses.  A per-band validation is contrary to similar research 

that evaluates orthophoto quality using NDVI or other vegetation index values (Hunt et 

al. 2005; Primicerio et al. 2012).  This UAV and digital camera system design was aimed 

at identifying spatial heterogeneity in grapevine canopy vigor across vineyards, however,  

it could be used for a number of applications that require very high spatial resolution 

imagery with visible and NIR bands (precision agriculture and crop management, small 

area land cover change, etc.).   
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Materials and Methods 

Digital Cameras 

This study utilized two Canon PowerShot A480 compact digital cameras (Canon 

U.S.A., Inc., Lake Success, NY, USA), one UDC and one ADC.  The A480s have a 

resolution of 10 megapixels (3648 by 2736 pixels) with a 1/2.3-inch type CCD sensor 

and cost approximately $150 USD each.  The ADC was purchased with the hot mirror 

removed and replaced with clear glass as described by Cheng and Rahimzadeh (2005).  

The same model camera (A480) was utilized for both the UDC and ADC to consistently 

replicate potential geometric (focal length, megapixels) and spectral (sensor, Bayer filter) 

distortions between cameras. 

Following Levin et al. (2005) and Ritchie et al. (2008), all UDC and ADC images 

were captured on manual setting with sunlight white balance and no image adjustment.  

In addition, the UDC ISO level was fixed at 80.  The ADC ISO level was fixed at 400 

due to the speed of the UAV carrying the camera, increasing the cameras’ ability to 

effectively capture the scene.  All images were captured in JPEG format following Levin 

et al. (2005).  Although JPEG format undergoes compression which may slightly alter the 

saved data, JPEGs provide the most practical means to capture hundreds of aerial images 

while in-the-field due to its quick recording ability and smaller file size.  This is contrary 

to RAW files, which in testing needed several more seconds per image to save and were 

around three times larger in file size (JPEG: 2-5 MB, RAW: 15 MB).  The high speed 

capturing ability is necessary when using faster moving aircraft like planes to ensure 

proper image overlap. 
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Four spectral bands were captured: blue, green, red, and NIR.  Like Ritchie et al. 

(2008), both cameras were utilized to obtain these bands with the UDC capturing the 

three visible bands and the ADC capturing three NIR bands.  To block visible 

wavelengths from being sensed by the ADC, a NIR-transmitting filter was placed in front 

of the ADC lens similar to Dean et al. (2000).  This filter permitted the ADC CCD to 

only sense wavelengths 750 nm and longer.  As was discussed previously, presumably 

most digital camera sensors (CCDs) cannot sense wavelengths greater than 900 nm, 

which forced the ADC to collect three bands (still assigned as RGB) within this 750-900 

nm range.  Placing the NIR filter on the outside of the camera, instead of replacing the 

hot mirror with a NIR filter, was preferred so other spectral filters (i.e., red) could be 

implemented during future acquisitions. 

On-Ground Image Collection and Camera Calibration 

Ground-based calibration data were collected on two cloud-free days near noon: 

23-November-2011 at 11:30 AM and 27-November-2011 at 12:45 PM.  Data were 

captured at the Texas State University campus in San Marcos, Texas, USA (29°53′18′′N, 

97°56′32′′W).  On both occasions, the following datasets were collected: (1) 2-3 images 

from both cameras capturing within the field of view (FOV) a calibration panel of color 

targets, a known 100 percent Spectralon reflectance target, and two leaves for distinct 

NIR response, and (2) spectroradiometer readings of each of these objects.  The 

calibration panel of spectral targets was crafted out of black, gray, white, purple, yellow, 

blue, green, and red paint swatches affixed to foamboard (near-Lambertian surfaces as 

suggested by Smith and Milton 1999).  The swatches were collected from a local 

hardware store and exhibited a flat color finish.  Each color square was 5 cm by 5 cm.  
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Two of each color swatch were included to account for variability in spectral response.  

Calibration panel design was similar to the set-up produced by Levin et al. (2005).   

Images were taken perpendicular to the targets (nadir) at a distance of 

approximately one meter (see Figure 2.1a-b for sample images).  An ASD FieldSpec Pro 

spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) collecting a 

value for every nanometer within a spectral range of 350-1050 nm was utilized to collect 

spectral signatures of the objects immediately following image capture.  The ASD device 

consisted of a backpack unit and a fiber optic cable connected to a 25° field of view 

handheld optic (pistol-grip with integrated leveler for nadir positioning).  Measurements 

were logged with a connected laptop computer.  Throughout spectroradiometer data 

collection for on-ground and aerial-based calibration and validation, measurements were 

taken by a single operator standing on the far side of the sun to avoid casting shadows 

into the measurement area (McCoy 2005).  Data were collected as values of reflectance 

by regularly calibrating the ASD with the Spectralon reference panel.  Measurements of 

spectral targets were taken at nadir approximately 10 cm above each target aimed at the 

center of each target.  A minimum of two measurements were taken of each target and 

later averaged.  DNs were obtained for each target using ENVI 4.8 (Exelis, Inc., Boulder, 

CO, USA) to define 19 regions of interest (ROI) as shown in Figure 2.1a.  ROIs were 

drawn central to each target area to avoid adjacency effects (Dean et al. 2000; Levin et al. 

2007).  The mean DN value was taken from each ROI to represent each target.  Single 

images from each sample were used to calculate mean DN after observing minimal 

variation in DNs across images within each sample. 
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Mean DNs were then compared to spectroradiometer-measured reflectance for 

each band.  Both cameras used a Bayer filter to capture three bands of data (UDC—blue, 

green, red and ADC—NIR [called ADC-Blue], NIR [ADC-Green], NIR [ADC-Red]).  

The three NIR bands recorded DNs for energy reflected within a 750-900 nm interval.  

The optimal NIR band, to be used in future analysis, was chosen based on the linear 

relationship between DNs and spectroradiometer measurements.  The band with the 

highest R2 value was chosen as the best representation of the NIR wavelengths.  The 

optimal wavelength interval for each band was determined by testing a series of 

wavelength intervals.  Tested intervals for each band were centered on 450 nm (blue), 

550 nm (green), 650 nm (red), and 850 nm (NIR) following the typical CCD sensitivity 

illustrated by Jensen et al. (2007).  The following wavelength intervals were tested for the 

blue band from narrow to wide: 450 nm, 445-455 nm, 440-460 nm, 420-480 nm, and 

400-500 nm.  Similarly, the same intervals were used for the other bands (i.e. green: 550 

nm, 545-555 nm, 540-560 nm, etc.; red: 650 nm, 645-655 nm, etc.), except for narrow 

intervals in the NIR band (850 nm, 845-455 nm, and 840-860 nm) because the 

wavelength interval range was more confidently known.  These intervals determined the 

range at which spectral signatures captured by the spectroradiometer would be averaged 

and compared to mean ROI-specific DNs for each target.   

The relationship between spectroradiometer-measured reflectance and camera 

recorded DNs was modeled using linear regression (R2) and root mean square error 

(RMSE).  This was completed for both samples to account for any variability that may 

exist with the digital camera and spectroradiometer measurements over time.  For each 

band, the wavelength interval with the best combination of R2 (high) and RMSE (low) for 
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both samples was selected as the most representative wavelength interval.  These 

wavelength intervals were then used with in situ spectroradiometer measurements to 

convert aerial image DNs to reflectance using the empirical line method. 

Application of UAV-Based Image System to the Study Vineyard and Generation of  

Analysis-Ready Image Products 

Study Site and Data Collection 

The vineyard study site is located in the Texas Hill Country American Viticultural 

Area near Fredericksburg, Texas, USA (120 km west of Austin).  This study focused 

image collection on two contiguous vineyard blocks consisting of 38 vine rows each with 

up to 95 vertical trellis-trained 4-6 year-old Tempranillo (Vitis vinifera) vines covering 

approximately 1.9 ha (4.8 acres).  Figure 2.2 shows the vineyard layout with the study 

vines outlined in red.  The study blocks are separated with a dotted red line.  The eastern 

block is older than the western block and provides desirable variation in canopy size and 

reflectance characteristics.  At the time of data collection, the area beneath the vine 

canopies consisted of bare soil, while the inter-row space was covered in grass.  The 

vineyard has a gentle slope from its highest point in the northwest corner to the lowest 

point in the southeast corner. 

Aerial images of the study vineyard were captured using the previously discussed 

digital cameras mounted (at separate times) on a Hawkeye UAV 

(www.ElectricFlights.com, Kingsland, TX, USA; see Figure 2.3a-b).  The Hawkeye is a 

lithium battery-powered kitewing plane with a 1.5 m wingspan, single rear-facing 

propeller, and single nadir-facing camera mount.  The Hawkeye was flown both 

autonomously with pre-programmed autopilot and manually.  Ardupilot 

(code.google.com/p/ardupilot/) was used to allow for autopilot capability.  This Arduino-
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based, open-source hardware and software combination based its flight path on pre-

programmed, ordered waypoints (X, Y, and Z coordinates).  When autopilot was 

switched on, Ardupilot controlled the UAV autonomously using the on-board GPS and 

the waypoint locations.  When flown on autopilot, the Hawkeye is prone to becoming 

stagnant in gusty winds, particularly when flying into the wind.  Manual flight control, 

therefore, was initiated during wind gusts to avoid unnecessary reduction in ground 

covered and battery power loss.  Takeoff and landing were also manually controlled.  To 

launch the UAV, the Hawkeye was thrown forward at shoulder height with the propeller 

running and manual control initiated.  After gaining altitude under manual control, 

autopilot was enabled with a switch on the remote control.  The autopilot was pre-

programmed to follow the flight path provided in Figure 2.2.  Flight paths were orientated 

north-to-south to keep the UAV flying directly into or with the winds, serving to steady 

the aircraft and capture higher quality images.  Otherwise, the UAV was likely to sway 

and decrease the cameras ability to capture nadir images.  Upon completion of aerial data 

collection manual flight control was reinitiated, the altitude of the UAV was gradually 

decreased, the UAV was guided to touchdown in the landing area and retrieved. 

Prior to image capture, several spectral targets were placed along the northeastern 

edge of the vineyard to aid the empirical line method transformation.  Six flat, colored 

foamboard spectral targets sized 0.75 m by 0.5 m (black, white, grey, blue, green, red) 

were placed on flat ground spaced about 2 m apart near the takeoff/landing area (see 

Figure 2.2).  The targets were large enough to ensure that many pure pixels would 

represent each target within the captured images that could then be averaged and 

compared to measured reflectance.  Other targets were placed in the field to help 
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georeference the collected imagery.  Five total ground control points (GCPs) were 

positioned following Mathews and Jensen (2013).  Locations of the GCPs are shown with 

X’s in Figure 2.2 at the corners and eastern edge of the study vineyard.  The 0.6 m by 0.6 

m GCP targets were crafted out of durable foamboard and painted with flat hues of red, 

and small concentric black and white circles at the center, similar to Aber et al. (2010).  

These highly visible targets were easy to find in aerial images and served to provide 

additional spectral targets to aid in SfM keypoint matching as well as conversion of DNs 

to reflectance.  GCPs were located using a Trimble GeoXH GPS with an external Zephyr 

antenna that averaged 200 separate positions for each location (X,Y: NAD83 UTM Zone 

14N; and Z: NADV88).  Acquisition of GPS positions was limited to a maximum 

position dilution of precision (PDOP) of three.  Following GPS data collection, 

differential correction was completed using the Trimble GPS Analyst Extension in 

ArcGIS (ESRI, Redlands, CA, USA).   

UAV-based aerial images were captured under clear skies on 16-May-2012 at 

approximately 11:00 AM to minimize shadowing between the vine rows.  At this time of 

the growing season the vines were flowering, which has served as a useful time to gauge 

relative vine health and eventual production (Hall et al. 2011).  Images were captured at a 

flying height of approximately 125 m and before noon due to lower wind speeds at that 

time (around 15 kph).  Images were captured within two 15 minute time periods 

coinciding with the life of each lithium battery.  Upon landing, the UAV battery and 

cameras were switched to continue capturing data.  Images were automatically captured 

every second throughout flight using the Canon Hackers Development Kit (CHDK; 
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chdk.wikia.com) intervalometer script preinstalled on the camera SD cards.  During aerial 

image collection, camera settings remained the same as were used for on-ground testing.   

Immediately following image capture, spectroradiometer data were collected at 

the vineyard site with the ASD FieldSpec Pro.  A minimum of two measurements of each 

of the spectral targets, including the red portion of each GCP, were collected and 

averaged.  A stratified sample of vine measurements was implemented for every fifth row 

starting with the first row (easternmost) and ending at row 30.  Within rows, every tenth 

vine was sampled starting from the northern end of the vine rows (alternating starting 

vines from first to fifth vine; i.e. row 1-vine 1; row 1-vine 10; row 5-vine 5; row 5-vine 

15; etc.).  Vine canopy reflectance was sampled by aiming the spectroradiometer pistol-

grip fiber optic sensor at a level nadir direction approximately 0.5 m above the vine 

canopy directly above the vine trunk.  At this height above the canopy, the spot or target 

size of the ASD optic was around 0.23 m in diameter similar to vine canopy 

measurements taken by Rodríguez-Pérez et al. (2007).  The sensor was then moved 

slightly to cover more vine canopy area and account for variation in spectral response.  

Multiple measurements were also captured to account for variation due to wind and 

potential canopy movement (McCoy 2005).  Two to four observations of each vine 

canopy were taken and averaged.  The same procedure was used to sample each vine.  All 

samples were taken with the ASD spectroradiometer by the same operator standing on 

the far side of the canopy (in relation to the sun) to not cast shadows into the vine canopy 

being sampled.  In total, the spectral signatures of 61 vine canopies were collected.  The 

sampled vine locations (vine trunks) were located using the previously discussed GPS 
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unit and processing method with the number of averaged positions reduced from 200 to 

30. 

Data Processing 

The data processing workflow from UAV image capture to export of the final 

orthophotos is provided with Figure 2.4.  The same processing chain was completed 

separately for both the RGB and NIR images.  After capturing aerial images of the 

vineyard site, a cursory manual image filtering was employed to remove any non-nadir 

images and other poor quality (blurry) images caused by aircraft motion.  This image 

subset was used throughout the rest of the processing.  Image histogram equalization was 

applied to the image subset to account for any brightness differences between individual 

images using ERDAS ImageEqualizer (Intergraph Corp., Madison, AL, USA).  

ImageEqualizer collects image statistics for all of the images and applies a normalization 

procedure prior to exporting new, radiometrically-adjusted images.  Without such 

spectral adjustment, spatial heterogeneity in surface reflectance was visually apparent in 

the output mosaics (see Figure 2.5).  Figure 2.5a displays increased brightness in the 

central-western portions of the study vineyard.  Brightness variation is also apparent in 

the NIR imagery (Figure 2.5c) in the southernmost parts of the study vineyard.  

Histogram equalization served to correct such image-to-image brightness variation 

(Figure 2.5b,d).  This normalization also served to minimize the effect of vignetting by 

brightening pixels near image edges. 

Following image normalization, images were aligned using Agisoft PhotoScan 

(Agisoft LLC, St. Petersburg, Russia).  PhotoScan provides a SfM-based automatic 

image alignment procedure that creates point clouds with arbitrary coordinates.  Input 
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images are corrected for internal geometric distortions in PhotoScan by automatic import 

of digital camera EXIF data on lens and focal characteristics (applies lens distortion 

coefficients).  Across the input images, point clouds for RGB and NIR images were 

created.  Following point cloud creation, manual editing was necessary to remove 

obvious outlier points or noise (usually well above or below the ground surface).  SfM 

point clouds typically include noise that necessitates removal (Dandois and Ellis 2013; 

Mathews and Jensen 2013).   

Following noise removal, the point clouds were georeferenced within PhotoScan 

by manual identification of the GCP targets within images and by inputting their 

respective UTM coordinates.  PhotoScan then transformed and optimized the point cloud 

with arbitrary coordinates to real-world UTM coordinates (X,Y,Z).  Within PhotoScan, 

geometry was then built to both (1) create the underlying DTM surface onto which 

orthophotos were rectified/generated, and (2) determine the spatial resolution (pixel size 

as well as pixel array layout and image coverage) of the output orthophoto by analyzing 

the input images.  In PhotoScan, the DTM surface was derived by creating a mesh from a 

simplified/filtered version of the point cloud (like a TIN).  The spatial resolution of the 

orthophotos was determined by the lowest altitude image within the image set.  This 

image exhibited the highest spatial resolution that all of the other images were upsampled 

to. 

At this stage, preliminary RGB and NIR orthophotos were exported from 

PhotoScan, which include all input images blended (mean DNs at edge overlap).  Figure 

2.4 specifies further manual editing at this point, specifically trial and error image 

masking or removal of undesirable areas within images (i.e., vignetting corners if still 
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present, areas of distortion).  This was necessary because the geometry of vineyards and 

similar row crops provide a difficult surface to automatically create orthophoto mosaics 

from due to the canopy being elevated above the ground surface on a trellis system.  This 

elevated canopy combined with the wide FOV of the digital cameras created areas of 

high distortion within images.  In images captured with an area array like a CCD, 

distortion naturally occurs in the pixels away from the principal point.  This is further 

accentuated in UAV imagery due to low flying height and variability in aircraft attitude.  

Figure 2.6 shows a more traditional example of aerial image capture of vineyards where 

in this case one image captured the entire vineyard within its FOV (black camera at or 

above 250 m flying height).  In this case, all of the vine rows would look to be near-

planimetrically correct because they fall with a “usable” field of view (UFOV) showed 

with dark lines extending from the FOV to the ground surface (Figure 2.6), without the 

appearance of “leaning” vine rows away from the principal point.  In the case of UAV-

captured images at an altitude of 125 m (ideal locations shown with black cameras in 

Figure 2.6), these areas of distortion within images are increased due to the UFOV 

shrinking with reduction in altitude.  In this example, instead of the whole vineyard being 

successfully imaged, only five rows of vines are accurately represented (multiple images 

needed with mosaic).  This is further complicated by the more realistic picture of UAV 

camera geometry (gray cameras in Figure 2.6) where flying height is inconsistent and not 

every image is perfectly nadir-facing.  A significant amount of manual masking (within 

PhotoScan) of unusable areas of images (outside the UFOV) within both the RGB and 

NIR image sets was necessary.  In some extreme cases, entire images were completely 

excluded from production of the final orthophoto. 



  

  

30 

 The final orthophotos (two mosaics) were exported from PhotoScan following the 

trial/error masking process: a RGB mosaic from the UDC images and a NIR mosaic from 

the ADC images.  The ADC-Blue and ADC-Red bands were dropped from the NIR 

orthophoto since ADC-Green was determined to best gauge NIR.  All three NIR bands 

were kept in the earlier stages of processing to aid SfM image alignment, which was 

more successful with the additional pixel information provided by multiple bands.  

Average DNs of spectral targets were collected from all four bands avoiding target edge 

pixels.  Mean DNs were compared to measured reflectance to create linear regression 

models to transform each band’s pixels from DNs (0-255) to percent reflectance (0-100).  

All six spectral targets were intended to be included in creation of all slope line equations 

as suggested by Smith and Milton (1999), but this was only completed for the NIR band.   

For the visible bands, two dark objects (black target; GCP red target for the blue and 

green bands, blue target for red band) and one light object (white target) were used due 

an observed tendency of the visible bands to over- and underestimate brightness of color 

targets.  The non-black dark targets were chosen based on having at or near the same 

recorded brightness as the black target.  Regression equations were created for each band 

and applied to every pixel in that band using the raster calculator in ArcGIS. 

Output Validation 

 Using the output mosaics and spectroradiometer measurements, each output band 

was validated to compare measured reflectance to estimated reflectance.  Validation ROIs 

were obtained for each vine location using 0.48 m diameter buffers of the GPS-located 

vine trunks.  More narrow and broad buffers were tested (no buffer, 0.12 m, 0.24 m, and 

1 m), but were considered less representative of the canopy size and spectroradiometer 
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FOV (multiple measurements over the canopy).  This 0.48 m buffer size was near the 

extent of the canopy width for most vines, although smaller canopies and canopies with 

sizable gaps bring in the possibility of spectral contamination from underlying soil.  All 

pixels with centroids within the 0.48 m buffers were averaged and compared to 

spectroradiometer-measured reflectance.  In addition to vine samples, reflectance values 

from on-ground spectral targets not included in the DN to reflectance conversion were 

also compared (including GCP targets and other color targets like blue, green, and red).  

Linear regression was used to compare each band’s estimated and measured reflectances 

and determine the suitable bands for future analyses. 

Results 

On-Ground Image Collection and Camera Calibration 

Results from the wavelength interval analysis for the visible bands are provided in 

Table 2.1.  The wavelength intervals determined to best represent the sensor for each 

band are displayed in bold.  The blue band accounted for a significant amount of 

variation, especially within narrow wavelength intervals.  The 440-460 nm interval was 

selected as the best fit between samples with R2 and RMSE values of 0.937 and 8.250 for 

sample 1 and 0.923 and 9.628 for sample 2.  Although, the interval of 445-455 nm and 

single wavelength of 450 nm had slightly higher R2 values, these were considered to be 

less robust due to greater variation between samples 1 and 2.  The green band DNs 

exhibited a strong relationship with spectroradiometer measurements contained with a 

relatively wide interval of 500-600 nm, yielding R2 and RMSE values of 0.973 and 6.057 

for sample 1 and 0.965 and 7.242 for sample 2.  The red band R2 values were the most 

consistent among the different wavelength intervals, with R2 of 0.974 and 0.960.  The 
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620-680 nm range was chosen based on the combination of high R2 and low RMSE.  

Overall, the blue band was slightly less successful in correlating DNs with measured 

reflectance (R2 less than 0.94) when compared to the green and red bands (both with R2 

greater than 0.96). 

The ADC provided three NIR bands, of which the green band (regardless of 

wavelength interval) consistently provided DNs that highly correlate with measured 

reflectance (Table 2.2).  The ADC-Green band was therefore used as the NIR band 

throughout this paper (hereafter referred to as just ‘NIR’).  Within this band, the widest 

wavelength interval had the highest R2 values accounting for greater than 98% of the 

variation in measured reflectance of both samples.  RMSE values for this wavelength 

interval also were desirably low (3.587 and 4.220). 

Using the selected wavelength intervals, the per-band relationships between DNs 

and reflectance are provided in Figure 2.7(a-d).  In each case, all of the 19 ROIs are 

plotted twice (once for each sample).  For each band there was a noticeable offset 

between the origin and where the fit lines intersect the X-axes.  This was present with all 

bands.  For each band the dark object (black spectral target) registered mean DNs greater 

than zero, meaning that the digital cameras measured the dark objects as being more 

reflective than expected when compared to the spectroradiometer measured reflectance.  

The low RMSE and high correlation for the NIR band are graphically demonstrated with 

observations falling close to, or on the fit line.  However, this is not the case with the 

visible bands, where less variability in spectroradiometer values was accounted for by the 

regression models.  Additionally, the spectral signatures of several of the calibration 

panel targets are shown in Figure 2.8 (the first blue, green, red, leaf, white, and black 
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targets).  The spectral sensitivities of the UDC and ADC are provided, within which the 

selected wavelength intervals for each band are displayed.  

Application of UAV-Based Image System to the Study Vineyard and Generation of  

Analysis-Ready Image Products 

Orthophoto Generation and Per-Band Reflectance Conversion 

Of the 150 total RGB images collected, 59 were selected as high-quality and nadir 

or near-nadir facing, which were used in model creation.  In total, 25 of these images 

were used to export the final orthophoto mosaic.  As for NIR, 45 of the 191 images 

captured were used to create the NIR model.  Of this subset, only 13 images were needed 

to create the NIR orthophoto.  Fewer images were needed for NIR because the NIR flight 

yielded higher quality images overall, mostly attributed to more consistent, slightly 

higher flying height (due to reduced winds during the NIR flight).  This resulted in the 

NIR orthophoto having a lower spatial resolution.  Both orthophoto mosaics yielded 

spatial resolutions of less than 4 cm.  The RGB images had a resolution of 2.59 cm, and 

the NIR image had a resolution of 3.45 cm.  Orthophotos were converted from DNs to 

reflectance using the equations for each band provided in Table 2.3.  The light and dark 

targets used for the empirical line conversion yielded R2 of 0.98 or greater for all bands 

(all models p <= 0.085).  Each band of the converted, final orthophotos of the study 

vineyard is shown in Figure 2.9(a-h).   

Per-Band Validation 

The validation results including R2, RMSE, scatterplots with trend lines and 1:1 

lines are provided in Figure 2.10(a-d).  For each band, the vine values are clustered, 

whereas the spectral target points are scattered due to their distinctness.  Overall, the red 

(Figure 2.10c) and NIR (Figure 2.10d) bands exhibited the highest validation R2 values of 
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0.78 and 0.57 respectively.  Viewing the distribution of all points around the 1:1 line is 

representative of the relationship between measured and estimated.  The NIR band in 

particular appears more robust than the other bands due to the tight clustering around the 

provided 1:1 relationship line.  The vine values for the red (Figure 2.10c) band however 

are variable, shown along the bottom of the graph increasing the RMSE value for this 

band.  This over- and sometimes underestimation of reflectance was also observed in the 

other visible bands of blue (Figure 2.10a) and green (Figure 2.10b).  The blue and green 

bands yielded R2 values of 0.35 and 0.02 respectively.  More importantly though, the 

green vine samples are clustered similarly to the red and are even more variable.  Vine 

reflectance was overestimated by the green band more so than the red.  Vine values for 

the blue band were often underestimated with values at, near, or less zero.  Some values 

ended up slightly negative following conversion, leaving the remaining samples off the 

graph.  The over- and underestimation of reflectance in the visible bands, particularly the 

blue and green bands, also occurred with the spectral targets (outliers shown in the upper-

left and lower-right portions of Figures 2.10a and 2.10b).   

Discussion 

Validation Results 

The estimated reflectance results were weaker than desired for the visible bands, 

particularly with blue and green, where blue resulted in extremely low values and green 

resulted in extremely high, variable values.  Shorter wavelengths are typically more 

difficult to measure due to atmospheric scattering, which may have played a slight role.  

At such a low flying height though, these effects should have been minimal.  Similar to 

the other visible bands, the modeled red band did not account for much of the variability 
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in the validation data.  The red band, however, exhibited the best fit of the visible bands 

due to its accurate estimations of spectral target reflectance unlike the blue and green 

bands (see Figure 2.10a-d; spectral target reflectance values are found on or very near the 

fit line).  The tendency of the visible band models to over- and underestimate brightness 

(DNs and subsequent reflectance) might be attributed to the CCD and Bayer filter’s 

susceptibility to accentuate color as it is measured.  Hunt et al. (2005) discussed similar 

findings where, in the majority of images captured, mean DNs of non-light (object) 

spectral targets were greater than values of 250.  The sensors used in this study were 

designed for and marketed to a recreational audience that limits the amount of 

customization possible.  Even using the custom settings outlined in the Materials and 

Methods section, digital cameras still automate much of the data collection process.  The 

JPEG file format may have also contributed to this error even though similar studies 

insist otherwise (Lebourgeois et al. 2008).   

In terms of future qualitative analyses, the produced orthophotos are highly 

accurate representations of the study vineyard that are very useful for surveillance 

mapping.  As for quantitative analyses, the weak validation R2 values for all bands does 

not support future work without a substantial amount of error.  In cases where such error 

can be tolerated (which is very likely due to the vastly reduced cost of UAV-based image 

collection), the red and NIR bands could be employed due to their higher R2 values.  Of 

all bands, NIR appeared graphically (Figure 2.10d) to best estimate vine reflectance 

(clustered around the fit line) without the high variability that the visible bands exhibited 

(low RMSE).  Similarly, Jensen et al. (2007) noted that digital camera-collected NIR 

information played the most significant role in predicting grain yields.  Statistically 
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though, validation results for the red band accounted for the most variation in measured 

reflectance.  Overall, poor results may relate to the general difficulty of establishing a 

statistical relationship between ground-measured spectra and aerial imagery due to spatial 

and spectral resolution differences between the spectroradiometer and the digital 

cameras.  This difficulty was discussed by Lelong et al. (2008) and led to relative 

analyses (within each image set and not image set to image set) with DNs instead of 

conversion to reflectance.  In addition, due to its very heterogeneous nature with leaves of 

varying angles and sizes, canopy gaps, trellis hardware (wire and posts), and other 

background noise/spectral contamination (bare soil and grass), vine canopy is a very 

difficult surface to model in terms of reflectance.  Due to this, using vine canopy as a 

validation is an especially challenging endeavor.  Additionally, unknown sensor 

capabilities, which were estimated in this study (wavelength intervals), might have 

contributed error. 

Practicality of Provided Methodology and Future Work 

The proposed data workflow provides a practical and very inexpensive means by 

which to collect very high spatial resolution orthophotos.  Processing time and effort, 

though, remains lengthy, specifically the effort needed to mask the input images to 

generate high quality image products.  Future research would benefit from increased 

automation within the proposed data workflow in an effort to reduce overall time needed 

to produce image products (spectrally-consistent or not).  Also, in creating 

orthophotomosaics with and without image histogram equalization, it was found that 

image alignment was less successful with images that were adjusted, necessitating more 

manual effort to remove noise within the point clouds.  This is due to the slightly adjusted 
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DNs that, when changed within all images, can reduce image-to-image matching.  It 

would therefore be useful to create a methodology that could improve SfM results of 

spectrally-adjusted images.  UAV image processing software is rapidly becoming more 

sophisticated though, which may soon provide the ability to match images and then adjust 

spectral properties within a single application. 

Of the more successful bands of red and NIR, the NIR band was less likely to 

over- or underestimate spectral reflectance.  This might be due to the ADC only being 

able to sense a narrow portion of the spectrum, which minimizes the degree to which the 

Bayer filter and CCD affect the DNs of the captured scene.  In this way, future work may 

wish to use a spectral filter with the UDC (or ADC) to collect single bands within the 

visible range.  For example, a green filter (blocking blue and red light) would force the 

sensor to collect less spectral information overall, which may increase accuracy of green 

information collected within three (RGB) bands.  How the Bayer filter and CCD might 

record this spectral data is unknown.  Future work may wish to create a time series of 

orthophotos to gain a fuller sense of the usefulness of digital camera-based spectral 

reflectance estimations. 

 In keeping with the practical nature of this research, band-to-band registration 

between cameras was not performed.  Band-to-band registration between two cameras is 

impractical in many UAV applications because UAV (planes, quadcopters, blimps) 

payloads are extremely low (less than 400 g in many cases where one digital camera 

weighs around 150-200 g with batteries), therefore necessitating separate flights with 

each camera.  Even if the UAV has the payload capacity to carry two cameras, further 

problems can arise: mounting the cameras very near each other proves difficult with 
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many do-it-yourself UAVs and capturing images simultaneously without a servo and the 

additional weight of the servo (with motor) further complicates system creation.  If 

desired at a later time, bands can always be co-registered by way of resampling the 

rasters to a lower spatial resolution. 

As for vineyard-specific future work, analysis of the generated image products is 

needed to further assess the usefulness of the data to viticulturists.  Due to band-to-band 

registration being disregarded, future analysis with the red and NIR bands would likely 

need to take an object-oriented approach or resample the imagery to a coarser spatial 

resolution to properly register the bands to one another.   

Conclusion 

This study used two Canon PowerShot A480 digital cameras (UDC and ADC) to 

collect UAV aerial imagery within four spectral bands of blue, green, red, and NIR at a 

vineyard site in central Texas.  A data workflow methodology was proposed to address 

radiometric and geometric corrections within the collected images, which using SfM 

image processing exports very high spatial resolution orthophotomosaics.  The empirical 

line method was employed to transform DNs collected by the camera system to values of 

reflectance.  Through a validation procedure it was found that the red and NIR bands 

were the most accurate at estimating reflectance (although with a significant amount of 

error), and therefore are better suited for future analyses.  The blue and green bands were 

less accurate and were highly prone to over- and underestimate reflectance.   
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Table 2.1. Spectral calibration test results for UDC (visible bands). 

 

UDC-Blue 

Interval (nm) 
Sample 1 

(R2; RMSE) 

Sample 2 

(R2; RMSE) 

450 0.941; 8.028 0.925; 9.52 

445-455 0.940; 8.083 0.927; 9.386 

440-460 0.937; 8.250 0.923; 9.628 

420-480 0.923; 9.111 0.906; 10.514 

400-500 0.909; 9.436 0.894; 10.710 

UDC-Green 

Interval (nm) 
Sample 1 

(R2; RMSE) 

Sample 2 

(R2; RMSE) 

550 0.940; 9.730 0.958; 8.383 

545-555 0.940; 9.691 0.958; 8.367 

540-560 0.943; 9.482 0.959; 8.307 

520-580 0.958; 7.986 0.963; 7.735 

500-600 0.973; 6.057 0.965; 7.242 

UDC-Red 

Interval (nm) 
Sample 1 

(R2; RMSE) 

Sample 2 

(R2; RMSE) 

650 0.973; 6.683 0.963; 7.998 

645-655 0.973; 6.681 0.963; 8.029 

640-660 0.973; 6.710 0.961; 8.126 

620-680 0.974; 6.547 0.960; 8.189 

600-700 0.973; 6.478 0.958; 8.331 
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Table 2.2. Spectral calibration test results for ADC (NIR bands). 

 

ADC-Blue 

Interval (nm) 
Sample 1 

(R2; RMSE) 

Sample 2 

(R2; RMSE) 

840-860 0.939; 8.853 0.923; 10.010 

820-880 0.937; 8.991 0.921; 10.125 

800-900 0.933; 9.250 0.917; 10.344 

ADC-Green 

Interval (nm) 
Sample 1 

(R2; RMSE) 

Sample 2 

(R2; RMSE) 

840-860 0.988; 3.903 0.984; 4.526 

820-880 0.988; 3.903 0.984; 4.526 

800-900 0.990; 3.587 0.986; 4.220 

ADC-Red 

Interval (nm) 
Sample 1 

(R2; RMSE) 

Sample 2 

(R2; RMSE) 

840-860 0.946; 8.352 0.929; 9.600 

820-880 0.946; 8.361 0.929; 9.600 

800-900 0.945; 8.406 0.929; 9.625 

 

 

Table 2.3. Derived reflectance conversion equations for each band. 

 

Band Conversion Equation R2 RMSE Spectral Targets Used 

Blue Reflectance = (0.7076 * DN) - 71.149 0.999 2.753 White, Black, Red GCP 

Green Reflectance = (0.6016 * DN) - 48.385 0.982 10.158 White, Black, Red GCP 

Red Reflectance = (0.6162 * DN) - 55.824 0.991 6.631 White, Black, Blue 

NIR Reflectance = (0.5124 * DN) - 11.675 0.992 3.420 All 
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(a) (b) 

  
 

Figure 2.1. Sample images of spectral targets captured with the UDC (a) and the ADC (b) 

with the regions of interest (ROIs) shown (a) in different colors. 

 

 

 
 

Figure 2.2. The study vineyard blocks with UAV flight path. 
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(a) (b) 

  
 

Figure 2.3. The kitewing UAV (a) with mounted digital camera (b) and other hardware. 

 

 

 
 

Figure 2.4. Data workflow from UAV image capture to final orthophoto generation. 
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(a) (b) (c) (d) 

    
 

Figure 2.5. Comparison of image mosaics (RGB: a, b; NIR: c, d) with (b, d) and without 

(a, c) image histogram equalization. 

 

 

 
 

Figure 2.6. High- vs. low-altitude aerial image capture of vineyard canopy (ideal in black 

and realistic in gray). 
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(a) (b) 

  

(c) (d) 

  

Figure 2.7. Relationships between spectroradiometer measured reflectance (Y-axis) and 

digital camera measured brightness (X-axis) of spectral targets within blue (a), green (b), 

red (c), and NIR (d) bands. 
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Figure 2.8. Spectral signatures of selected targets from sample 1 with camera spectral 

ranges and optimal band wavelength intervals. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
 

Figure 2.9. Generated orthophoto bands of blue (a,e), green (b,f), red (c,g), and NIR (d,h) 

at the whole-vineyard (a-d) and partial-vineyard (e-h) scales. 
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(a) (b) 

  

(c) (d) 

  
 

Figure 2.10. Validation results comparing measured (Y-axis) and estimated (X-axis) 

reflectance of vines and spectral targets within each band. 
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CHAPTER III 

AN ANALYSIS OF VINEYARD CANOPY HEALTH THROUGHOUT A  

GROWING SEASON2 

Introduction 

Until recently, vineyard managers have had a limited ability to quickly and 

inexpensively map and monitor leaf area within their vineyards (Johnson et al. 2003b).  

Remotely sensed imagery and image processing techniques now provide such capabilities 

(Hall et al. 2002; Dobrowski et al. 2003).  Aerial and/or satellite-based vineyard imaging 

and mapping, oftentimes using red and near-infrared (NIR) spectral bands to calculate the 

Normalized Difference Vegetation Index (NDVI; Rouse et al. 1973), has proven 

invaluable to viticulturists interested in evaluating spatial variation in canopy vigor and 

subsequent crop performance (Bramley et al. 2003; Hall et al. 2003).  Identifying spatial 

variability of canopy vigor is particularly useful to vineyard managers who want to apply 

site-specific treatments to problem areas instead of implementing a uniform management 

practice throughout a vineyard.  Equipped with the knowledge of differing areas of 

performance within the vineyard, viticulturists can implement separate management 

schemes (Proffitt et al. 2006), which can lead to the mitigation of the deleterious effect of 

within vineyard spatial variability of vineyard performance and/or selective or staged 

harvesting (Johnson et al. 2001; Bramley et al. 2003).  Such adoption of precision 

viticulture, which is the optimization of vineyard performance by way of spatial data 

collection, analysis, and informed decision-making (Bramley and Proffitt 1999), has 

proven lucrative because it can help to reduce inputs (water usage, fertilizer, etc.) and 

                                                 
2 Upon completion of this dissertation, this chapter was under peer review with GIScience & Remote 

Sensing with the title “Object-based spatiotemporal analysis of vine canopy vigor using an inexpensive 

UAV remote sensing system” (Submitted: Feb. 6, 2014). 
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increase crop value through better yield/quality attributes (Bramley et al. 2003; Proffitt et 

al. 2006). 

Hall et al. (2011) described grapevine canopy vigor as being comprised of two 

main elements: (1) canopy area or size, and (2) canopy density.  Canopy area is the extent 

of the canopy, which in remote sensing usually translates to planimetric area when vine 

and non-vine pixels are separated by way of NDVI thresholding (Hall and Louis, 2001) 

or object-based image segmentation (Smit et al. 2010; Hall and Wilson 2013).  Canopy 

density relates to the thickness of the canopy, its structure, and overall photosynthetic 

capacity.  NDVI has been used in several studies to provide quick and accurate estimates 

of vine canopy density (Hall et al. 2002; Johnson et al. 2003b; Hall et al. 2011).  Other 

methods of gauging canopy density include destructive (plucking and measuring area of 

leaves) or non-destructive (using an electronic ceptometer, hemispherical photographs, or 

otherwise) estimation of leaf area index (LAI; proportion of one-sided leaf surface area to 

ground surface area).  Ground-based LAI data collection though is time-consuming when 

compared to NDVI image analysis (Johnson 2003).  The usefulness of assessing canopy 

vigor (area and density) relates to its relationship with eventual grapevine performance.  

Highly vigorous vines are likely to be higher yielding vines (Petrie et al. 2000; Hall et al. 

2002; Proffitt et al. 2006), which has been confirmed with NDVI-based analyses (Hall 

2003; Johnson et al. 2003b).  Spatial variability in fruit quality attributes, such as color 

and phenolic content, which can influence final price paid for a crop, can be estimated 

similarly (Lamb et al. 2004). 

Acquiring images for vineyard analysis requires spectral, radiometric, spatial, and 

temporal considerations (for a full review of these considerations see Hall et al. 2002).  In 



  

  

50 

regards to timing of image acquisition, vineyard images are, at minimum, acquired during 

the veraison phenological phase of the crop cycle in which leaf surface area is at its 

maximum (Hall 2003; Proffitt et al. 2006).  In addition, leaf area observed at veraison is 

most predictive of the eventual harvest that follows (Hall et al. 2011; Hall and Wilson 

2013).  This timing also provides vineyard managers enough time to make beneficial 

adjustments to the crop leading up to the harvest (Proffitt et al. 2006). For comparative 

studies within a single growing season or over a number of seasons, the post-budburst, 

post-flowering, harvest, and other inter-phases can also be imaged (Acevedo-Opazo et al. 

2008; Hall et al. 2011).  Imaging prior to flowering though (i.e. at budburst or post-

budburst), can result in minimal spectral difference between grapevine canopy and inter-

row space when a between row cover crop, which senesces later in the season, has similar 

spectral qualities (Hall et al. 2008).  The timing of phenological phases and therefore the 

timing of image acquisition varies by the conditions of the particular growing season, the 

geographic location of the grapevines, and the specific cultivar being grown (Mullins et 

al. 1992; Creasy and Creasy 2009).  Image acquisition at more than one stage of the 

growing season provides a comprehensive view of the spatial variation of vine canopy 

vigor over time (Hall et al. 2011). 

In addition to temporal resolution of collected imagery, spatial considerations are 

also very important when studying vineyards because accurate assessment of vine canopy 

vigor can only be certain when whole pixels fit within the canopy (0.10-0.25 m; Hall et 

al. 2002).  Very high spatial resolution imagery (0.25 m or less) provides the ability to 

explore canopy vigor at a per-vine scale (Hall and Louis 2008; Johnson et al. 2003a).  

This translates to every single vine within a vineyard being assessed and assigned a vigor 
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value.  Based on these values, management zones can be created by grouping vines that 

are spatially clustered and have similar vigor values (Bramley et al. 2003).  Zonal 

management can be implemented by treating these zones differently based on their 

specific vigor status (Johnson et al. 2001; Proffitt et al. 2006).   

Recent advances in low-altitude, very high spatial resolution remote sensing can 

be attributed to increasing use of unmanned aerial vehicle (UAV) technology (Everaerts 

2008), which has been adopted in viticultural research (Johnson et al. 2003a; Baluja et al. 

2012; Primicerio et al. 2012; Bellvert et al. 2013; Mathews and Jensen 2013).  UAVs, 

also referred to as unmanned aerial systems (UASs), equipped with a single (or multiple) 

sensor(s) serve as low-cost platforms for aerial image capture.  UAVs provide additional 

flexibility due to greater ease in making repeat image acquisitions.  Processing of UAV 

aerial imagery has benefitted from advances in computer vision, namely Structure from 

Motion (SfM; Snavely 2008; Snavely et al. 2008).  Similar to traditional 

photogrammetric method, SfM inputs multiple overlapping UAV-captured images to 

recreate environments with three-dimensional point clouds similar to lidar datasets 

(Kaminsky et al. 2009; Fonstad et al. 2013; Mathews and Jensen 2013).  Following 

conversion from arbitrary XYZ coordinates to projected geographic coordinates, SfM 

datasets have been employed in digital terrain modeling (Fonstad et al. 2013) and in turn 

used to generate high-quality orthophotomosiacs (Turner et al. 2012; Mathews 2014). 

As for spectral resolution, most vineyard studies use NDVI to assess canopy 

vigor; requiring remote sensors to collect at least red and NIR bands (although blue and 

green are also usually collected).  With UAV image collection where aircraft payloads 

are very low, sensors must remain lightweight.  Digital cameras have been used 
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extensively for UAV image capture due to their durability, compactness, low-cost and 

lightweight nature (Lebourgeois et al. 2008; Ritchie et al. 2008).  Other, more expensive 

sensors are prevalent in UAV image capture like the multispectral Tetracam (Turner et al. 

2011; Kelcey and Lucieer 2012; Primicerio et al. 2012).  Surprisingly though, NIR image 

capture is possible with a digital camera, although it must be altered to do so.  The digital 

camera sensor, normally a charge-coupled device (CCD) or complementary metal oxide 

semiconductor (CMOS), typically has a spectral range of up to 900 nm (Cheng and 

Rahimzadeh 2005; Lelong et al. 2008; Ritchie et al. 2008).  Ability to sense wavelengths 

to this extent, however, is limited by an internal hot mirror (spectral filter) that allows the 

CCD or CMOS to only sense wavelengths in the visible range (400-700 nm) for natural 

color photography.  Following hot mirror removal, NIR band imagery can be collected 

from a UAV platform (Ritchie et al. 2008; Mathews 2014), adding significant value to 

images acquired for vegetation analysis. 

The objective of this study was to observe spatial variability in vine canopy vigor 

(area and density) within a single growing season both practically and inexpensively 

using a UAV.  Use of such low-cost equipment for image collection is contrary to many 

studies that employ specialized sensors and/or hire aircraft to capture aerial imagery.  The 

intention with this approach was to make such an analysis easily replicable for 

researchers and practitioners alike.  This paper sought to determine, with this UAV-

collected imagery, optimal methods of data processing (incorporating object-based image 

segmentation) and analysis to identify differentials in canopy vigor.   This includes 

exploring correlations between eventual vine performance (harvest variables including 



  

  

53 

number of clusters, cluster size, and yield) and estimated canopy vigor (area and density) 

as well as delineation of practical management zones for the vineyard manager.   

Methods 

Study Vineyard 

 This study focused on two contiguous vineyard blocks (see Figure 3.1) uniformly 

managed by a single winery located near Fredericksburg, Texas, USA.  The study 

vineyard is located in the Texas Hill Country American Viticultural Area (AVA), one of 

the largest AVAs in the USA, covering an area of approximately 36,000 square 

kilometers in central Texas (west of Austin and north of San Antonio).  The study 

vineyard blocks, separated with a dashed line in Figure 3.1, include a total of 38 rows of 

north-to-south oriented, drip-irrigated, vertical trellis-trained Tempranillo (Vitis vinifera) 

vines containing 65 to 95 vines per-row.  The vineyard is situated on a slight incline with 

its highest point in the northwest corner and its lowest point in the southeast corner.  The 

vineyard geometry is consistent with 2.75 m of spacing between vine rows (inter-row 

space) and 1.8 m between vines within rows.  Vine canopy throughout the vineyard was 

minimally pruned, a pruning technique that enables a relatively large canopy area, 

appropriate to this particular cultivar and climate.  In total, both study blocks cover an 

area of approximately 1.9 ha.  These two contiguous blocks were chosen because they 

were the same varietal and managed together with the same uniform scheme.  For this 

study, the two blocks were not delineated throughout because of this high degree of 

similarity and uniform management.  Inclusion of both blocks and a larger vineyard area 

overall was preferred to include more variability to give more confidence in planned 

statistical analyses. 
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Data Collection  

UAV Image Collection 

All collected datasets were captured at the study vineyard during the 2012 

growing season.  Similar to Hall et al. (2008; 2011), vineyard images were acquired on 

three different dates during the grapevine phenological cycle: post-flowering (16-May), 

veraison (6-July), and harvest (1-August).  For each acquisition date, images were 

captured under clear skies near solar noon to minimize the effect of shadowing between 

the vine rows (Johnson and Scholasch 2005; Zarco-Tejada et al. 2005).  Images were 

captured using a Hawkeye UAV platform (www.ElectricFlights.com, Kingsland, TX, 

USA) and two digital cameras.  The Hawkeye is a battery-powered (electric) kitewing 

plane with a single propeller and a payload of around 400 grams.  The Hawkeye used in 

this study had autopilot functionality (Ardupilot; code.google.com/p/ardupilot/) that, 

when enabled automatically, navigated to pre-programmed waypoints (X,Y,Z) using an 

on-board GPS.  The UAV was flown both manually and autonomously depending on 

wind conditions on the day of flight.  In low winds (<20 kph), the autopilot was used 

exclusively (not including takeoff and landing).  In high winds (>20 kph), the Hawkeye 

was susceptible to becoming stagnant when flying into the wind, which unnecessarily 

depleted battery power.  In these cases, manual control was initiated to keep the UAV 

moving on its flight path.  Flight paths were oriented north-to-south to fly into (south) 

and with (north) the wind for added stability.  UAV takeoff and landing was always 

completed under manual remote control and occurred in the staging area near the 

northeast corner of the study vineyard (see the rectangular area highlighted in Figure 3.1).  
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During flight, the UAV was flown at a height of approximately 125 m above the ground 

surface.   

Two Canon PowerShot A480 digital cameras (Canon U.S.A. Inc., Lake Success, 

NY, USA) with 10-megapixel resolution were used to capture blue, green, red, and NIR 

image bands.  One camera was left unaltered (unaltered digital camera—UDC) and 

captured the three visible bands of blue, green and red (stored as RGB).  Wavelength 

intervals of visible bands were not published by Canon and therefore were estimated by 

Mathews (2014) using spectroradiometer measurements and linear regression: 440-460 

nm for blue, 500-600 nm for green, and 620-680 nm for red.  The other camera was 

altered (altered digital camera—ADC) to capture NIR image data.  NIR capability was 

enabled by removing the internal hot mirror and replacing it with clear glass (Cheng and 

Rahimzadeh 2005).  An external NIR-only filter was placed over the ADC lens to restrict 

the ADC CCD to only sense NIR wavelengths from 750 nm to the extent of CCD spectral 

sensitivity at around 900 nm (Lelong et al. 2008).  In the case of the ADC, three NIR 

bands were collected within this range.  Both cameras, regardless of spectral range, stored 

images in JPEG format in three bands (RGB).  JPEG format was preferred due its quick 

capturing nature and smaller file size (Levin et al. 2005).  All images were captured with 

both digital cameras set to manual setting with sunlight white balance and no image 

adjustment (Levin et al. 2005; Ritchie et al. 2008).  ISO levels were manually set to 80 

for the UDC and increased to 400 for the ADC due to relatively lower radiance in NIR.  

ISO settings for both cameras were determined appropriate based on the speed of the 

UAV and ability of the digital cameras to capture sufficient light without image blur.   
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Cameras were mounted near the front of the UAV in a nadir-facing direction.  

Images were captured in-flight using the Canon Hackers Development Kit (CHDK; 

wikia.chdk.com) intervalometer script preinstalled on the SD cards of both cameras.  The 

script automatically captured images every second during flight.  Image capture was 

initiated manually just prior to UAV launch and continued until manual deactivation 

immediately following landing.  Only one camera was mounted on the UAV at a time 

due to payload restrictions.  Due to this, two flights were flown on each image acquisition 

date.  For the first flight the UAV was launched, captured RGB images with the UDC for 

the entire 15 minute flight, and landed.  Upon landing, the UDC was replaced with the 

ADC and the UAV lithium battery was also replaced.  The UAV was then re-launched 

and began another 15 minute flight to capture NIR images.  For more details on the 

methodology used to capture vineyard images, including more detailed UAV and digital 

camera specifications, see Mathews (2014). 

Other Field Measurements 

Other datasets collected on-site besides UAV images included GPS data, 

spectroradiometer measurements, and harvest variables of number of clusters, cluster 

size, and yield.  Figure 3.2 shows the data collection effort in its entirety with the 

accompanying collection date.  For each image date, both GPS and spectroradiometer 

data were collected.  Spectroradiometer data were captured immediately following UAV-

based image collection.  Prior to image collection, several spectral targets were placed 

near the northeastern edge of the vineyard (within the UAV staging area—see Figure 3.1) 

to aid in transforming image digital numbers (DNs) to units of reflectance using the 

empirical line method.  In total, six flat, colored (black, white, grey, blue, green, and red) 
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foamboard spectral targets sized 0.75 m by 0.5 m (placed in line, each about 2 m apart) 

were captured within UAV imagery.  Spectroradiometer measurements of each of these 

targets were taken using a backpack-mounted ASD FieldSpec Pro (Analytical Spectral 

Devices, Inc., Boulder, CO, USA) with fiber optic cable and pistol-grip sensor.  

Measurements were captured by holding the sensor out away from the body and pointing 

it at the center of each target in a level, nadir direction about 0.7 m above the target.  

Measurements were taken standing on the far side of the target in relation to the sun to 

avoid casting a shadow onto the target (McCoy 2005).  A minimum of two spectral 

readings were captured and averaged for each target to account for any variability in 

spectral response. 

Ground control point (GCP) targets were placed in the field prior to capturing 

each image set.  The GCP targets were made of sturdy foamboard, painted flat red with 

concentric white and black circles at the center, and sized 0.6 m by 0.6 m (similar to Aber 

et al. 2010).  Five GCPs were placed around the vineyard to aid in georeferencing the 

captured images.  Figure 3.1 denotes the locations of the GCP targets as X’s.  Each GCP 

location was logged using a Trimble GeoXH GPS with an external Zephyr antenna.  For 

each location, 200 separate positions were averaged (X,Y: NAD83 UTM Zone 14N; and 

Z: NADV88).  In all cases, GPS data collection was limited to a maximum position 

dilution of precision (PDOP) of three.  Following the collection of GPS data, differential 

correction was performed using the Trimble GPS Analyst Extension in ArcGIS (ESRI, 

Redlands, CA, USA). 

The remaining data were collected around the time of the harvest. These per-vine 

performance variables include the number of clusters, cluster size, and yield (kg).  All 
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three of these variables were collected using the same stratified sampling procedure 

resulting in the same vines being sampled.  The sample consisted of every fifth vine row, 

alternating the starting vine within each sampled row and sampling every tenth vine 

within rows (i.e. row 1-vine 1, row 1-vine 10, etc.; row 5-vine 5; row 5-vine 15; etc.).  

Additional samples were taken for rows 1, 10, 20, and 30 for vines 11, 21, 31, etc. to add 

more samples to the dataset and to include several adjacent sample vines.  This adjacency 

was considered important due to the use of very high spatial resolution imagery where 

vines were easily recognizable from one another.  Row numbering began from the 

easternmost row, while vine numbering began with the northernmost vine in each row.  

Sampling ended with vine row 35.  The vine trunks of the sampled vines were GPS-

located using the previously discussed GPS unit and processing with the exception that 

the number of averaged positions was reduced to 30 from 200.  The sampled vines are 

shown in Figure 3.1 as black dots.  All of these locations represent vines sampled for 

number of clusters and cluster size; whereas those with a white outline are those that 

were also sampled for yield (fewer total vines were available to be sampled at harvest). 

The number of clusters and cluster size for each sampled vine was logged on the 

harvest image date (1 August) following spectroradiometer and GPS data collection.   In 

total, 97 vines were sampled for these two variables.  For each vine, the number of 

clusters was counted by hand and recorded.  Following cluster count, an ordinal 

assessment of cluster size was recorded for each vine.  A single value (small, medium, or 

large) denoting cluster size was recorded for each vine based on a broad assessment of 

the size of all the clusters produced by a particular vine.  Consistency was maintained by 

repeatedly using an object for size comparison (a digital camera).  On-ground 
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photographs of sampled vines were also collected to confirm recorded cluster sizes upon 

returning from the field.  Yield per vine (in kilograms) was measured on location the 

morning of harvest (6 August).  Harvest occurred five days after the harvest image 

acquisition date.  For each sample vine, clusters were removed, placed in a container, and 

weighed (subtracting the known container weight).  In total, yield data for 42 vines were 

recorded. 

Data Processing 

Following data collection at post-flowering, veraison, and harvest, data were 

processed following the workflow provided in Figure 3.2.  For each image acquisition 

(post-flowering, veraison, and harvest), vineyard orthophotos were produced using the 

methodology outlined in Mathews (2014).  This procedure accounted for radiometric and 

geometric errors within the collected UAV images and output single, corrected 

orthophotomosaics covering the entire study site (six in total).  A cursory manual filtering 

of each set of images (RGB and NIR sets for each date) was necessary to remove non-

nadir viewing images and any blurry images based on UAV movement (see Table 3.1 for 

image counts).  Treating each narrowed set of images separately, image histogram 

equalization was applied to account for any brightness discrepancies from image-to-

image using the ERDAS ImageEqualizer (Intergraph Corp., Madison, AL, USA).  Each 

image set was then processed and aligned with SfM algorithms provided by Agisoft 

PhotoScan (Agisoft LLC, St. Petersburg, Russia).  With each image set, PhotoScan 

automatically overlapped images and built three-dimensional point cloud models.  GCPs 

were manually identified within images in PhotoScan and given their GPS measured 

coordinates.  PhotoScan then automatically transformed the point cloud model from 



  

  

60 

arbitrary three-dimensional space to known geographic coordinates.  The georeferenced 

point clouds provided a site-specific digital terrain model (DTM) for each image set for 

proper geometric correction.  Orthophotos were then created by mosaicking images 

following a manual masking process to ensure full vineyard coverage, confirm 

planimetric accuracy by excluding areas of distortion within images, and remove any 

remaining vignetting around image corners (Mathews 2014). 

Due to separate flights being undertaken for the UDC and ADC, simple band-to-

band registration of visible and NIR imagery, where the spectral integrity of the 

originally obtained individual pixels is preserved, was not possible.  This was avoided to 

keep intact the very high spatial resolution desired with the UAV-based methodology.  

Therefore, UDC (RGB) and ADC (NIR) images throughout this study were treated and 

processed separately.  Simple NDVI images (overlapped pixels) could not be calculated.  

NDVI values were calculated based on extracting median red and NIR values from whole 

vine objects (discussed further in paragraphs that follow).   

Spatial resolution was known following export of each orthophoto.  On average, 

the spatial resolution of all orthophotos was 25 mm.  Specific orthophotos yielded 

differing spatial resolutions as provided in Table 3.1 based on variation in flying height.  

The number of images collected per-flight (all images) is shown in Table 3.1 as well as 

the number of high quality nadir images, and number of images used to export the 

orthophoto (images used).  High variability in the amount of images collected and used 

relates to flying conditions on the acquisition date where high winds resulted in less 

flying time and less images overall as well as less high quality nadir images due to UAV 

instability.   
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Pixel values for each orthophoto were transformed from DNs (0-255) to units of 

reflectance (0-100) using the empirical line method (Smith and Milton 1999).  DNs of 

spectral target pixels (mean values of central pixels to avoid adjacency effects after Levin 

et al. 2005) were collected and compared to field measured reflectance.  For each band of 

all orthophotos, linear regression was used to create predictive equations (see Table 3.1) 

to change DNs to reflectance values.  Orthophotos in units of reflectance (0-100) were 

created using the raster calculator in ArcGIS.  In assessing the radiometric quality of the 

produced blue and green bands for post-flowering, Mathews (2014) determined these 

bands were unfit for further quantitative analysis due to excessive over- and under-

estimation of brightness.  This was due to a poor relationship between field measured 

reflectance and estimated (empirical line method) orthophoto reflectance.  This is evident 

in Table 3.1 where conversion R2 values for these bands are lower than the red and NIR 

bands, and RMSE values are higher.  Mathews (2014) also reported that of the three 

collected NIR bands, the ADC-Green band (NIR) best correlated with spectroradiometer 

measurements.  Due to this, the ADC-Blue and ADC-Red bands were dropped from 

further analysis (not shown in Table 3.1).  The UDC-Red (red) and ADC-Green (NIR) 

bands were utilized to calculate NDVI. 

After production of orthophotos (following Figure 3.2), image segmentation was 

performed using the open source software Monteverdi 2 (Orfeo Toolbox—OTB, French 

Centre National d’Études Spatiales, Paris, France).  The mean-shift image segmentation 

algorithm was used for each orthophoto using the same parameters: a spatial radius of 5 

(pixels) and a range radius of 10 (pixel values).  Three-band RGB and single-band NIR 

orthophotos were input for post-flowering, veraison, and harvest.  Three-bands (RGB) 
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were included in segmentation to provide additional spectral information to aid the 

algorithm in identifying and separating segments.  Segmentation results were exported to 

vector format.  As Figure 3.2 shows, vine-only segments were then selected to create vine 

canopy-only polygons.  This was completed by spatially selecting vine canopy segments 

using known vineyard geometry, specifically vine rows that intersect canopy segments.  

Vine locations and vineyard geometry were estimated based on the GPS-collected sample 

vine locations and using the known ground distance between vines and vine rows.  In this 

way, all vine locations throughout the vineyard were established in ArcGIS.  Vine row 

vector files were created from vine locations.  Following selection of vine-only segments, 

further manual touch-ups were performed to remove obvious non-vine segments.  The 

vine-only segments were dissolved to create single polygons representing vine canopy.  

An image segmentation example for a portion of the vineyard is shown with Figure 3.3.   

The output image segments (grey, solid lines in Figure 3.3) contain vine canopy 

as well as other features, including shadows and bare soil along the vine row.  The vine 

canopy-only segments are outlined with a thick solid black line.  These were split for 

each vine using extraction zones similar to Hall et al. (2011).  Vine trunk locations are 

shown as well as extraction zones (1.8 m by 1.8 m dashed squares around the vine 

trunks).  Extraction zones were used to cut the vine canopy polygons into per-vine pieces 

or objects.  These per-vine objects were then used to calculate area and extract spectral 

data for each vine.  Extraction zone sizes were based on the known vine-to-vine distance 

and field observation (no vine canopy came close to exceeding the extent of the 1.8 m 

allotted extraction width).   
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Per-vine objects (polygons) were attributed to every vine within the vineyard.  

Canopy area in square meters was calculated for all vines six times total (twice, RGB and 

NIR, for each phenological phase).  Mean canopy areas were also calculated for each 

phenological phase (mean of RGB and NIR canopy area) and for the entire season (mean 

of all canopy areas).  GRASS GIS 6.4.3 (grass.osgeo.org) was used, specifically the 

v.rast.stats function, to collect spectral statistics and attach spectral values to each vine 

(see Figure 3.2).  This tool examined all pixels within each per-vine object and calculated 

mean and median values of red and NIR reflectance.  After examination of extracted 

spectral values, median values were deemed more representative of per-vine objects than 

mean values due to some per-vine objects including outlier values (extremely high or low 

reflectances due to inclusion of soil or shadow within canopy segments).  Due to this, 

median spectral values were used throughout the study.  NDVI was calculated for all 

vines using median reflectance values as shown in Equation 3.1. 

NDVImedian = (NIRmedian - Redmedian) / (NIRmedian + Redmedian)       (3.1) 

Data Analysis 

 Two end products were created to explore spatial variation in canopy vigor (both 

for planimetrically-based canopy area and spectrally-based canopy density): maps and 

correlation coefficients between canopy vigor and harvest variables.  Using every vine 

location with planimetric area and NDVI values (3436 total vines), ordinary kriging was 

implemented to create surface maps of canopy vigor—area and density respectively 

(Proffitt et al. 2006).  These were created for each of the phenological stages as well as 

for the entire season based on a mean value of all three stages.    
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 Correlation analysis was performed to compare canopy area and canopy density 

values to field-measured harvest variables.  Correlations were calculated for each of the 

phenological stages as well as for the season average.  Further, for each phenological 

stage, separate values were explored (i.e. post-flowering RGB canopy area, NIR-canopy 

area, and average canopy area; harvest red reflectance, harvest NIR reflectance, harvest 

NDVI; etc.) to identify the variables that most highly correlate with harvest variables.  

Pearson’s correlation coefficients were calculated for all variables except for cluster size, 

which was at the ordinal scale.  In these instances, the Spearman’s rank correlation 

coefficient was reported.   

A vine performance index (VPI) was calculated based on the canopy vigor 

variables that exhibited the highest correlation coefficients when compared to number of 

clusters, cluster size, and yield.  Since average canopy area and average NIRmedian were 

most correlated with these harvest variables, the VPI was calculated as a product of the 

two (Equation 3.2).  A VPI value was calculated for all vine locations within the study 

vineyard except for those known to not have vines (dead/missing plants) based on not 

having per-vine object polygons.  The VPI results were presented with a per-vine map to 

explore spatial variation in vine performance for the entire 2012 growing season. 

VPI = Season Average Canopy Area (sq m) * Season Average NIRmedian  (3.2) 

Using VPI values, similar vines were grouped to create management zones for 

future growing seasons since the underlying physical/environmental properties that cause 

patterns of spatial variation in performance remain consistent from season-to-season 

(Bramley and Hamilton 2004).  The grouping analysis function was used in ArcGIS to 

cluster all vines into 25 groups, which was then manually collapsed into 11 zones.  The 
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grouping analysis spatial statistic utilized each vine’s VPI value and spatial location (k 

nearest neighbors where k is a specified number of neighbors to be evaluated; k = 5) to 

analyze spatial patterns and output groups of similar performance.  The exported groups 

were visually assessed and used to manually digitize management zone polygons.  The 

grouping results were not used directly because the grouping analysis did not account for 

practicality of adoption of the groups or management zones.  Following this logic, vines 

were grouped to take advantage of existing vineyard geometry where substantial portions 

of rows were assigned the same zones rather than having one or two vines within a row 

grouped with different zones.  

Results 

Canopy Area 

 Canopy area maps as estimated from planimetric extent are provided in Figure 

3.4.  These maps represent the average canopy area (RGB and NIR) for each of the 

phenological periods (Figure 3.4a-c) as well as the season average (Figured 3.4d).  The 

spatial pattern of canopy area remains consistent over the growing season with smaller 

extent canopies located in the central-west portion of the vineyard.  Vine canopies of 

greater extents are consistently located in the northern and eastern areas of the vineyard.  

In general, the post-flowering phenological phase exhibited the greatest overall canopy 

density, especially in the dense areas already mentioned.  As the season progressed 

following post-flowering, canopy extent for the most part either remained the same size 

or shrank. 

Correlation results for canopy area and harvest variables are provided in Table 

3.2.  Correlations are provided for each phenological phase within which RGB-based, 
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NIR-based, and average canopy areas are shown.  The highest correlation coefficients 

within each part of the table are highlighted with bold type, the highest correlation 

coefficient of the three phenological phases is underlined, and the highest correlation 

coefficient overall is highlighted in gray.  All correlation coefficients for canopy area and 

harvest variables were statistically significant (p <= 0.01).  For the relationships between 

number of clusters per vine and canopy area, mean canopy area demonstrated the 

strongest correlations for all phenological periods.  Within the growing season, mean 

canopy area for post-flowering most strongly correlated with number of clusters (0.492), 

although harvest canopy area was very similar (0.488).  In this case, veraison canopy area 

was the least correlated with number of clusters produced per-vine.  The season average 

yielded the highest correlation coefficient at 0.560. 

The Spearman’s rank results for cluster size yielded similar findings where mean 

planimetric area was most highly correlated with cluster size for two out of the three 

periods (post-flowering: 0.432 and harvest: 0.497).  For this variable though, harvest 

yielded the highest correlation coefficient instead of post-flowering.  The season average 

correlation coefficient remained the highest overall at 0.516. 

 As for yield, yet again mean planimetric area was consistently highly correlated 

with yield when compared to the RGB- and NIR-based canopy areas.  For yield though, 

unlike number of clusters and cluster size, planimetric area from the veraison 

phenological phase of the growing season resulted in the highest correlation coefficient 

(0.577).  The season average resulted in the highest correlation coefficient overall at 

0.654. 
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Canopy Density 

 Unlike the canopy area maps provided in Figure 3.4(a-c), the canopy density 

(NDVI-based) maps provided in Figure 3.5(a-c) were not spatially consistent over time.  

The central-west area noted previously for having consistently small planimetric canopy 

area had a low canopy density at post-flowering, a mixed density at veraison, and a high 

density at harvest.  Although such as scenario is possible (Hall et al., 2011), in this case it 

seems unlikely because it is not occurring in predictable areas within the vineyard.  

Similarly, in other areas of the vineyard, spatial patterns are inconclusive.   

The canopy density correlation results are provided in Table 3.2.  The inconsistent 

NDVI-based canopy density results shown in Figure 3.5(a-d) are confirmed by weak 

correlation coefficients between NDVI and all harvest variables.  The only phenological 

stage in which a statistically significant correlation coefficient was produced with or from 

NDVI was for the harvest stage and cluster size (0.273).  Due to the weak results of the 

NDVI, single-band correlations are also provided for the red and NIR bands.  High, 

positive correlations would be expected for NIR (high reflectance, low absorption), while 

high, negative correlations would be expected for red (low reflectance, high absorption).  

Red reflectance though, in all cases has little to no relationship with the three harvest 

variables (no statistically significant correlations).  NIR correlations, on the other hand, 

with the exception of the correlation between veraison and cluster size, are statistically 

significant and have moderate, positive relationships.  Looking at the NIR relationships, 

harvest NIR consistently exhibited the highest correlations with all harvest variables 

compared to post-flowering and veraison.  Season average NIR correlation coefficients 

were higher than harvest with number of clusters (0.509) and yield (0.634). 
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Vine Performance Index and Management Zone Delineation 

 Based on the correlation analysis, the season average canopy area and season 

average NIRmedian reflectance were used to calculate the vine performance index.   These 

two variables had the highest correlation coefficients when compared to eventual crop 

performance (harvest variables).  The vine performance index equation was provided 

previously with Equation 3.2.  This index simply multiplies canopy area values (extent in 

square meters) by canopy density values (albeit only NIR reflectance) resulting in high 

values for vines with high vigor and low values for vines with low vigor.  Correlation 

evaluation between the VPI and the harvest variables confirmed statistically significant, 

higher correlation coefficients (VPI, number of clusters: 0.585; VPI, cluster size: 0.505; 

VPI, yield: 0.685). 

Figure 3.6a displays the spatial distribution of vines with their calculated VPI 

values (high values are dark; low values are light).  The central-west portion of the 

vineyard was clearly the area of lowest vigor within the study vineyard with a number of 

missing/removed vines and vines with very low VPI values.  High vigor areas are found 

towards the northern end of the study vineyard as well as along the eastern edge.  

Medium-to-low vigor areas were present in the southeast and southwest corners of the 

vineyard. 

The automatic grouping analysis results are provided in Figure 3.6b.  These 

groups of vines were placed together based on spatial location and VPI value.  The 

proposed management zones are overlaid (black outline) on the grouping results (Figure 

3.6b) as well as provided in a separate figure (3.6c).  The proposed management zones 

were created based on the grouping results (Figure 3.6b), existing vineyard geometry, and 
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ease of adoption.  The proposed management zones (Figure 3.6c) are numbered 1-6 with 

1 being the highest vigor zone and 6 being the lowest. 

Discussion 

Assessment of Methodology and Results 

The proposed methodology provided a very low-cost means by which to collect 

remotely sensed images of vineyards and was successful in identifying spatial variation in 

vine canopy vigor, especially canopy area.  Planimetric canopy area was 

comprehensively successful in retrieving significant, moderate, positive correlative 

relationships with harvest variables similar to Hall et al. (2011).  As for the spectrally-

based canopy density figures, estimation of canopy density by way of NDVI remained 

difficult due to the use of a simple, off-the-shelf UDC to collect the visible bands.  Much 

of the error observed with the red band reflectance related to the likelihood of the UDC 

CCD (and the internal Bayer filter) to emphasize color as it was measured.  This resulted 

in inconsistent, under- and, for the most part, overestimations of brightness in the red and 

other visible wavelengths that while appropriate for recreational image capture, is not 

desirable for quantitative remote sensing.  For further discussion on the error associated 

with UDC-collected visible bands see Mathews (2014). 

Using digital cameras for UAV research relates to the very low payload of UAVs.  

Fortunately for future studies, sensors created specifically for UAV remote sensing are 

rapidly being developed and will likely become increasingly affordable.  Many studies 

have utilized the Tetracam multispectral UAV sensor with success (Turner et al. 2011; 

Kelcey and Lucieer, 2012; Primicerio et al., 2012), but currently this sensor remains cost 

prohibitive for most practitioners without substantial technology budgets.  Without 
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changing the sensors employed in this study, Mathews (2014) suggested attempting to 

record specific bands of visible information, like the red band, with a red-only spectral 

filter forcing the digital camera to collect a smaller range of wavelengths similar to how 

the NIR image data, which proved more useful, was collected.  Whether or not such a 

method will improve collected visible reflectance is unknown. 

Based on the results of this study, which had success using planimetric extent for 

canopy area and NIRmedian reflectance for canopy density, the imagery collected at harvest 

produced the highest correlation coefficients of all phenological stages when related to 

the harvest variables collected.  Therefore, if only one image acquisition were possible in 

future growing seasons with this system and methodology, harvest would be the best time 

to capture image data.  In cases where multiple acquisitions are possible, collection of 

data throughout the growing season and calculation of mean values of all image periods 

resulted in even higher correlation coefficients for canopy area and NIRmedian reflectance 

when related to eventual crop performance.  Based on these results, collection of multiple 

image sets is preferred to single stage image capture because it provides a fuller picture 

of vine canopy vigor over an entire growing season. 

Image segmentation provided a relatively quick and standardized method to create 

per-vine objects for each phenological stage to calculate canopy area and extract spectral 

information from collected imagery.  Implementation of image segmentation algorithms 

into image processing workflows in this and other very high spatial resolution vineyard 

studies (Smit et al. 2010; Hall and Wilson 2013) has proven very useful at extracting per-

vine canopy information.   
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The proposed VPI is simple to calculate and successful in displaying spatial 

variation in vigor across vineyards.  The VPI worked well for the datasets collected in 

this study due to the success of image segmentation and the radiometric accuracy of the 

ADC collecting the NIR imagery.  Incorporation of the season average NIRmedian in the 

VPI was based on the high correlation coefficients NIR shared with harvest variables.  

Although this study was unable to do so, integration of red reflectance would provide a 

more complete picture of the photosynthetic ability of each vine than would NIRmedian 

alone.  Using VPI values for all vines, the grouping analysis was advantageous in 

creating preliminary groupings that provided visual aids for manual delineation of 

management zones.  This type of analysis is quick to process and provides an automated, 

objective option to generate preliminarily management groups.  Using these groups made 

manual delineation of the final management zones much easier and less time-consuming. 

Future Work  

Instead of exclusively relying on collected spectral information that in this study 

proved unsuccessful overall, another UAV and digital camera-based method may exist to 

estimate vine canopy density, more specifically canopy structure.  Mathews and Jensen 

(2013), for example, estimated LAI for vines with moderate success based on SfM point 

clouds created from UAV-captured RGB images.  High quality, dense SfM point clouds 

of vineyards might also be used to begin to estimate vertical canopy extent in addition to 

planimetric extent.  Such analysis could yield values of vine canopy volume that may 

correlate highly with eventual yield and other harvest variables. 

Similar future studies may wish to capture imagery over several seasons to 

explore season-to-season trends in canopy vigor and harvest variables (similar to Hall et 
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al. 2011).  Such research could clarify the best phenological timing for image capture for 

this or a similar UAV system.  Future studies may wish to further pursue other useful 

metrics in regards to image segmentation results.  This may include creating temporal 

visualizations to view canopy vigor (area and/or density) change over a season and/or 

calculating per-vine change metrics to relate to vine performance variables.  Also, future 

work may wish to explore the full potential of the very high spatial resolution afforded by 

this UAV such as adapted/improved segmentation algorithms for vineyard UAV remote 

sensing and extraction of information from within per-vine canopy objects (i.e. 

identification of high and low vigor areas within single vine canopies).  Future studies 

may also wish to customize the grouping analysis utilized in this study to automate the 

entire management zone delineation process by accounting for vineyard geometry and 

automatically outputting practical, ready-for-adoption zones. 

Conclusion 

The UAV and digital camera system employed in this study was successful at 

identifying spatial variability in vine canopy vigor, specifically planimetrically-derived 

canopy area, at a study vineyard in the Texas Hill Country AVA during the 2012 growing 

season.  The UAV and digital cameras utilized, data collection methods, and data 

workflow provided a very inexpensive approach to survey vineyards with very high 

spatial resolution orthophotos (25 mm on average).  Spectral performance of the digital 

cameras was not adequate to calculate useful values of NDVI for canopy density 

estimation.  Only NIR reflectance correlated with harvest variables as expected.  A vine 

performance index was calculated that provided per-vine estimates of vigor for the entire 
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study vineyard.  Management zones for future seasons were successfully delineated based 

on grouping analysis of vines of similar vigor and spatial location. 

 

Table 3.1. UAV-collected images, conversion results, and output orthophoto attributes. 

Acquisition 

Date 
Bands 

All 

Images 

Nadir 

Images 

Images 

Used 

Spatial 

Resolution 
Conversion Equation R2 (RMSE) 

16 May 

 

Post-

flowering 

Blue 

150 59 25 26 mm 

 (0.7076 * DN) - 71.149 0.999 (2.753) 

Green (0.6016 * DN) - 48.385 0.982 (10.158) 

Red (0.6162 * DN) - 55.824 0.991 (6.631) 

NIR 191 45 13 35 mm (0.5124 * DN) - 11.675 0.992 (3.420) 

6 July 

 

Veraison 

Blue 

268 96 57 21 mm 

(0.4835 * DN) - 25.615 0.778 (18.519) 

Green (0.4465 * DN) - 11.218 0.853 (15.418) 

Red (0.4417 * DN) - 18.794 0.923 (11.018) 

NIR 96 36 26 25 mm (0.5122 * DN) + 2.8008 0.988 (3.791) 

1 August 

 

Harvest 

Blue 

241 81 45 20 mm 

(0.5239 * DN) - 37.712 0.884 (13.400) 

Green (0.4394 * DN) - 17.472 0.844 (15.865) 

Red (0.3481 * DN) - 15.105 0.984 (4.313) 

NIR 248 77 59 22 mm (0.5193 * DN) - 5.347 0.994 (2.739) 

 

Table 3.2. Canopy area correlations. 

 Canopy Area (Planimetrically-based) 

Post-Flowering Veraison Harvest Season Average 

H
a

rv
es

t 
V

a
ri

a
b

le
s 

Number of 

Clusters^ 

RGB 

NIR 

Mean 

0.404 

0.425 

0.492 

0.438 

0.344 

0.438 

0.392 

0.370 

0.488 

0.515 

0.479 

0.560 

Cluster 

Size† 

RGB 

NIR 
Mean 

0.357 

0.380 

0.432 

0.375 

0.284 

0.363 

0.408 

0.371 

0.497 

0.461 

0.409 

0.516 

Yield (kg)^ 

RGB 

NIR 

Mean 

0.445 

0.485 

0.528 

0.538 

0.516 

0.577 

0.374 

0.457 

0.510 

0.606 

0.616 

0.654 
^Pearson Correlation Coefficient; †Spearman’s Rank Correlation Coefficient; All 

correlations significant to the .01 level; Note: Areas were calculated in square meters. 
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Table 3.3. Canopy density correlations. 

 Canopy Density (Spectrally-based) 

Post-

Flowering 
Veraison Harvest Season Average 

H
a

rv
es

t 
V

a
ri

a
b

le
s 

Number of 

Clusters^ 

Red 
NIR 

NDVI 

0.080 

0.430** 

-.028 

0.154 

0.217* 

-0.112 

0.021 

0.440** 

0.068 

0.132 

0.509** 

-0.002 

Cluster 

Size† 

Red 
NIR 

ND
VI 

-0.060 

0.326** 

0.101 

-0.002 

0.136 

-0.029 

-0.194 

0.441** 

0.273** 

-0.083 

0.409** 

0.202* 

Yield (kg)^ 

Red 

NIR 
ND

VI 

0.095 

0.366* 

-0.014 

0.137 

0.432** 

-0.004 

0.148 

0.613** 

-0.003 

0.198 

0.634** 

-0.071 

^Pearson Correlation Coefficient; †Spearman’s Rank Correlation Coefficient; 

*Correlation significant to .05 level; **Correlation significant to .01 level; Note: All 

spectral values extracted from vine objects are medians. 

 

 

Figure 3.1. The study vineyard in the Texas Hill Country AVA. 
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Figure 3.2. Data workflow from collection through processing and final analysis. 
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Figure 3.3. Image segmentation results and extraction zones for select vine canopies for 

the veraison RGB orthophoto. 

 

 

 
 

Figure 3.4. Observed canopy area (mean area of RGB and NIR segments) for the study 

vineyard at (a) post-flowering, (b) veraison, (c) harvest, as well as for (d) the entire 

growing season (season average). 
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Figure 3.5. Observed canopy density (NDVI-based) for the study vineyard at (a) post-

flowering, (b) veraison, (c) harvest, as well as for (d) the entire growing season (season 

average). 

 

 

 
 

Figure 3.6. Vine performance analyses including (a) the calculated vine performance 

index or VPI, (b) vine grouping results, and (c) proposed management zones numbered 

from 1 (high vigor) to 6 (low vigor). 
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CHAPTER IV 

A NEW METHOD FOR VISUALIZING AND QUANTIFYING VINEYARD  

CANOPY DENSITY3 

Introduction 

Identification of spatial variation in leaf canopy density is important in crop 

management and for accurate biomass estimation.  Within viticulture specifically, being 

able to recognize such disparities provides vineyard managers the opportunity to examine 

and address this spatial variability by adjusting the management scheme with the 

potential of improving the crop (Proffitt et al. 2006).  Vine canopy density is vital in 

protection and production of high quality winegrapes.  Moderate canopy density is 

typically desired, depending on the time of the growing season, specific location, and 

grapevine varietal (Creasy and Creasy 2009).  Passive remote sensing datasets like aerial 

and satellite-based imagery of vineyard canopy can successfully identify such variability 

in canopy density and subsequent crop health within vineyard blocks (Hall et al. 2003, 

2011; Johnson et al. 2003a, 2003b).  Calculated vegetation indices, namely the 

normalized difference vegetation index (NDVI; Rouse et al. 1973), highly correlate with 

changes in canopy density measured by leaf area index (LAI; ratio of leaf surface area to 

ground surface area following Johnson (2003)).  More recently, other datasets, like those 

provided by active remote sensors, are beginning to play a role in such viticultural 

research. 

Unlike imagery, both terrestrial and airborne discrete return light detection and 

ranging (lidar) systems provide an additional third dimension of information (Z) for 

                                                 
3 This chapter was published with the title “Visualizing and Quantifying Vineyard Canopy LAI Using an 

Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud” in Remote 

Sensing (2013, Issue: 5(5), Pages: 2164-2183). 
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height and volumetric analysis.  Terrestrial lidar has been successfully implemented to 

explore biophysical properties of vines (Rosell et al. 2009; Keightley and Bawden 2010; 

Llorens et al. 2011a, 2011b; Sanz-Cortiella et al. 2011). Keightley and Bawden (2010) 

measured uprooted grapevine trunk biomass with a stationary terrestrial lidar scanner.  

Rosell et al. (2009) utilized a tractor-mounted lidar sensor to create three-dimensional 

(3D) scenes of vineyards and fruit orchards.  These lidar data were found to be strongly 

correlated with field measurements and therefore were highly accurate when used to 

portray the entire crop structure (trunks, canopy, and trellis systems if present).  

Similarly, Llorens et al. (2011b) generated whole vineyard 3D canopy structure maps 

with a lidar sensor mounted on a tractor while moving between vine rows.  Llorens et al. 

(2011a) modeled leaf area and accurately gauged ideal pesticide amounts for vineyards 

and orchards.  Sanz-Cortiella et al. (2011) used a tractor-mounted lidar system to study 

pear tree leaf density and found that the sensor provided an accurate 3D representation of 

leaf area but was highly affected by the height and angle of the sensor.  Rosell et al. 

(2009) suggested that lidar data may be used to explore relationships with LAI.  Llorens 

et al. (2011b), in turn, reported a moderate, positive correlation between number of lidar 

returns and measured LAI of a given portion of canopy.  Similarly, high total leaf area of 

juvenile trees has been shown to directly correlate with point density of the terrestrial 

lidar point cloud (Seidel et al. 2011).  In all of these cases, collected terrestrial-based lidar 

point clouds exist in a Cartesian coordinate system requiring a highly accurate location 

tracking global positioning system (GPS) mounted on the lidar sensor platform (tractor or 

otherwise) for proper georectification (Llorens et al. 2011b). 
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To a much lesser extent, airborne lidar datasets have proven useful in 

visualization of vine canopy and vineyard structure leading to accurate delineation of 

vineyard parcels (Mathews and Jensen 2012a).  Although not specifically applied to 

viticulture, airborne lidar datasets can confidently predict LAI and other biophysical 

characteristics of tree vegetation by calculating several height-based metrics (Means et al. 

2000; Popescu et al. 2004; Jensen et al. 2008; Peduzzi et al. 2012).  Yet another method, 

that of statistically-based modeling, was implemented by Louarn et al. (2008) to look at 

single vine canopy and explore potential light interception for different grapevine 

varietals.  For sake of practicality and cost though, airborne and terrestrial lidar datasets 

have proven difficult to acquire (Omasa et al. 2007) and repeat acquisitions are usually 

cost-prohibitive.  Due to this, alternative ways to gather similar datasets have emerged 

like Structure from Motion (SfM; Leberl et al. 2010).  Most recently, successful vineyard 

canopy modeling has been completed by way of SfM primarily for visualization (Turner 

et al. 2011; Dey et al. 2012).  Across an entire vineyard, Turner et al. (2011) compared a 

pre-growth and full-growth point cloud of vineyard canopy in natural color by way of 

SfM.  At a more reduced scale, another SfM-based vineyard analysis accurately classified 

vine structures (grapes, canopy, trellis and other hardware) along portions of a vine row 

(Dey et al. 2012). 

SfM is a computer vision technique based heavily on the principles of 

photogrammetry wherein a significant number of photographs taken from different, 

overlapping perspectives are combined to recreate an environment (keypoint matching of 

features across images).  SfM stems from a number of works, namely that of Snavely 

(2008) and Snavely et al. (2008), which documents the development of the Bundler 
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algorithm that is now employed by the most well-known SfM platform: Microsoft 

PhotoSynth.  Although SfM was first intended to be used for ground-based applications, 

it has been used from aerial platforms and for geographic applications (Leberl et al. 2010; 

Kaminsky et al. 2009; Dandois and Ellis 2010; Harwin and Lucieer 2012; Mathews and 

Jensen 2012b; Turner et al. 2012; Fonstad et al. 2013).  For use in such geographic 

applications, the SfM output, which is made up of an internally consistent arbitrary 

coordinate system, must be transformed to real-world coordinates.  Accordingly, 

georeferenced SfM datasets are similar to lidar datasets consisting of a set of data points, 

the keypoints generated from SfM product creation, with X, Y, and Z information 

(known as a point cloud in its entirety) with additional color information (red, green and 

blue [RGB] spectral) from the photographs.  The cost to collect SfM point clouds remains 

very low compared to lidar; hence, there exists great interest in using such methods to 

model in 3D. 

SfM-based 3D models have been used extensively in recreating urban and cultural 

features (Snavely et al. 2008; Kaminsky et al. 2009; Mathews and Jensen 2012b; 

Pollefeys et al. 2004), and to a lesser extent topography and other surface features 

(Rosnell and Honkavaara 2012; Fonstad et al. 2013) such as vegetation (Dandois and 

Ellis 2010; Turner et al. 2011).  The accuracy of the SfM approach, however, is often less 

trusted than other similar datasets provided by airborne or terrestrial lidar systems.  

Despite this, a number of research results insist that SfM point clouds are in fact 

comparable if not more accurate than lidar point clouds (Leberl et al. 2010; Dandois and 

Ellis 2010; Fonstad et al. 2013).  Unfortunately, comparison of such datasets is difficult 
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unless both datasets are collected for the same research purpose and at similar point 

densities.   

The SfM approach with vegetation has proven more difficult than with urban and 

other features because of their more complex and discontinuous structures (Omasa et al. 

2007; Dandois and Ellis 2010).  Keypoint matching is considerably more difficult when 

working with vegetative features because of leaf gaps, repeating structures of the same 

color, and inconsistent/random geometries.  The resulting SfM point cloud can therefore 

be more random and less uniform in its spatial coverage (Dandois and Ellis 2010).  

Despite this, satisfactory results of vegetation modeling (canopy height) with SfM have 

been reported (Dandois and Ellis 2010).  Placement of colored field markers, 

modification of the SfM algorithms, increasing the number of photographs captured, and 

taking images at higher altitudes were just a few of the suggestions provided to improve 

vegetation modeling when implementing the SfM approach (Dandois and Ellis 2010). 

Besides Turner et al. (2011) and Dey et al. (2012), no studies have reported 

specifically modeling vineyard vegetation with SfM.  More importantly, no studies have 

explored the relationship between SfM point clouds and in situ LAI measurements as 

have been explored with lidar data.  Consequently, this study uses SfM to create a 3D 

vineyard point cloud to visualize vineyard vegetation as well as attempt to predict vine 

LAI based on information derived from the created SfM point cloud.  A number of 

metrics are calculated with extracted points from the SfM point cloud that are compared 

to LAI measurements to explore how LAI relates to said metrics (point heights, number 

of points, etc.). 
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Materials and Methods 

Study Site 

The Texas Hill Country American Viticultural Area (THCAVA) was officially 

recognized in 1991 and is located in central Texas west of Austin and north of San 

Antonio (Figure 4.1).  This viticultural area contains 22 wineries, encompasses parts of 

22 counties, and covers an area of over 36,000 square kilometers (14,000 square miles).  

This study looked at two contiguous vineyard blocks managed by one winery within the 

THCAVA.  These two blocks of trellis-trained Tempranillo (Vitis vinifera) vines are 

shown outlined in red in Figure 4.2 and total approximately 1.9 hectares (4.8 acres).  

Within this outlined area, the eastern block (separated by the dashed red line) was planted 

prior to the western block.  Due to this, vines in the western block have smaller, less 

dense canopies than those in the eastern block.  Both blocks are included to provide 

obvious leaf canopy size and density variation throughout the study site to enhance the 

robustness of the model results.  All of the study vines are between four and six years of 

age.  The vines within the block immediately west of the highlighted study vines are not 

included because they are less mature and are a different varietal.  In total, the study 

blocks include 38 rows of vines with approximately 65-95 vines per row (around 3,000 

vines total).  The precise location of the study vineyard within the THCAVA is not 

disclosed as requested by the property owners. 

Data Collection 

Point cloud creation and 3D modeling was completed using the SfM approach 

discussed previously.  This method provides a low cost alternative to generate 3D data 

similar to lidar data and for sake of practicality remains a highly replicable method for 
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future studies.  Data were collected during the veraison phenological phase of the 

growing season (nearly 100% or full veraison) following Stamatiadis et al. (2010).  This 

phenological phase was chosen for modeling because during phases prior to this the 

canopy may not be fully developed, while phases after this may be highly affected by 

canopy management practices like leaf thinning (Creasy and Creasy 2009).  Additionally, 

observations from this part of the growing season have been shown to highly correlate 

with eventual vine performance in studies using multispectral imagery (Hall et al. 2011; 

Johnson et al. 2003a). 

Over 200 images were taken of the study vineyard with an unaltered, off-the-shelf 

Canon PowerShot A480 (RGB) digital camera.  Images were captured with the use of a 

remote controlled Hawkeye unmanned aerial vehicle (UAV) system 

(www.ElectricFlights.com, Kingsland, Texas, USA).  The camera was mounted in the 

UAV facing downward for nadir capture.  This kitewing plane UAV platform was flown 

in vine row direction (north-to-south) for multiple passes to collect the imagery.  This 

flight path was employed because the study UAV flies in a more stable fashion when 

flown directly into (to the south) or with (to the north) the wind.  Flying height ranged 

from 100 to 200 meters above ground.  The Canon Hackers Development Kit (CHDK; 

chdk.wikia.com) intervalometer script was employed to continuously capture images 

every second during flight.  Images not captured within this altitude threshold (at or near 

takeoff, landing, and during ascent/descent) were not included in image processing and 

are not reported in Table 4.1.  Images were captured on a cloud free day (16 June 2012) 

around 11:00AM to minimize the effect of shadowing between the vines rows.  The UAV 

captured images at nadir and varying oblique angles.  Oblique images were captured both 
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unintentionally, during side-to-side UAV movement caused by crosswinds, and 

intentionally, by way of banking (leaning) the aircraft.  Oblique images were included to 

better gain a sense of and model the canopy in 3D, instead of inputting only nadir images.  

Increased number of differing angles/perspectives with overlap only serves to further 

improve the SfM end product (Dandois and Ellis 2010). 

The difficulty of SfM keypoint matching with vegetation has been noted (Dandois 

and Ellis 2010) due to the uniform and repeating nature of the surface area being 

modeled.  Leaves can also be shiny due to their wax-like nature, further deterring proper 

keypoint matching.  To address this and aid efficient SfM product creation, a number of 

colored targets were placed in the field prior to image capture.  Nine, 25-centimeter wide 

plastic buckets (pails) were placed in random locations upside-down atop trellis support 

posts throughout the vineyard.  These adornments did not touch the vine canopy growing 

on the trellis below.  The buckets were painted several different flat (non-shiny) colors 

(orange, yellow, white, and gray) to provide added visual distinctness from the 

surrounding canopy (green), repeating trellis structure (black), and underlying soil 

(red/brown).  The discreteness of these targets within the vineyard landscape provides 

cursory SfM keypoints from which further keypoints can more easily be generated.  This 

is assumed to create a more accurate SfM model overall as well as potentially reduce 

processing time.  In total, nine buckets were considered enough to aid in cursory keypoint 

matching, although best practices of employing such aids has yet to be tested in SfM 

studies. 

To properly georeference the SfM point cloud, five ground control points (GCPs) 

were accurately located using a Trimble GeoXH GPS with an external antenna averaging 
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a total of 200 separate GPS positions for each location (X,Y: NAD 1983, UTM Zone 

14N; and Z: NADV88).  GPS acquisition was limited to a maximum position dilution of 

precision (PDOP) of three.  Differential correction of the collected GPS positions was 

completed using the Trimble GPS Analyst Extension in ArcGIS and resulted in a mean 

estimated error of 0.1083 m.  GCP targets were crafted out of sturdy foamboard, sized 0.6 

m by 0.6 m, and painted red with white and black center targets following Aber et al. 

(2010).  This ensures proper identification within the resulting point cloud model.  The 

GCP targets were designed with further distinct colors to additionally aid in SfM 

keypoint matching much like the previously discussed colored buckets. 

LAI data were collected using an AccuPAR LP-80 ceptometer (Decagon Devices, 

Pullman, Washington, USA) immediately following UAV image capture for improved 

accuracy with higher sun angles (Lopez-Lozano et al. 2013).  Similar to Johnson (2003), 

offset stratified sampling was implemented consisting of every tenth vine in every fifth 

row starting with the easternmost row (alternating between the first and fifth vine to 

begin each sample row starting from the north).  A total of 67 vines were sampled for 

LAI measurements.  Ceptometer measurements were taken directly beneath the central 

portion of the vine canopy beside the vine trunk in a perpendicular fashion to the vine 

canopy row similar to the accurate measurement protocol M3 reported by (Lopez-Lozano 

et al. 2013).  All sample vines were GPS located based on averaging 30 positions rather 

than 200 as was employed with the GCPs (mean estimated error of 0.1660 m).  Following 

differential correction of the captured GPS positions, collected LAI information for each 

vine was attributed to their respective locations. 
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Data Processing 

The 3D vineyard point cloud was created automatically using Agisoft PhotoScan 

(Agisoft LLC, St. Petersburg, Russia).  It should be noted that manual processing by way 

of open source software is also possible, but remains more time consuming (Dandois and 

Ellis 2010; Mathews and Jensen 2012b; Fonstad et al. 2013).  Of the total 206 images 

captured, 201 were input into the model.  Five images were not included because they 

were either overly blurry or did not capture the study vineyard within the field of view.  

The latter was due to the UAV having to turn around at the end of the flight line.  Such 

images can potentially introduce noise into the model as well as slow processing time 

(more images; blurry images are more difficult to identify matching keypoints across 

images).  PhotoScan, much like Microsoft PhotoSynth (Microsoft Corporation, Seattle, 

Washington, USA), automatically generated the 3D model based on input images.  This 

model was then manually georeferenced within PhotoScan by way of identifying the 

GCPs within the model and substituting those data point’s arbitrary coordinates with the 

GPS measured coordinates and applying this locational transformation to the entire point 

cloud.  The georeferenced point cloud was then exported using the high point density 

setting to LAS file format. 

Point cloud processing was completed using LP360 (QCoherent Software LLC, 

Madison, Alabama, USA).  Manual removal of noise within the point cloud was first 

necessary to remove obvious outliers not representing actual ground features (points 0.5 

m or greater beneath the ground surface and points 10 m above the ground surface based 

on field observation).  The spatial extent of the dataset was also reduced to decrease 

processing time.  Points greater than 70 m away from the study block outline were 
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removed from the dataset.  Following this manual effort, the point cloud was processed 

similar to that of a lidar dataset with automatic point filtering to separate ground points 

from non-ground points. LP360 uses an adaptive TIN method to first approximate a 

terrain surface using the lowest elevations in a large grid and then iteratively refines the 

surface until an accurate representation of bare earth points is achieved (Axelsson 2000).  

After automatic classification, additional manual classification was necessary to reassign 

obvious misclassified points to their proper class for improved ground—non-ground 

separation.   

The classified LAS file was imported into ArcGIS (ESRI, Redlands, California, 

USA) as separate vector files of ground and non-ground points.  Ground points were used 

to create a very high spatial resolution (0.25 m) digital terrain model (DTM) using 

ordinary kriging.  To create relative height of non-ground points, the DTM height was 

subtracted from the absolute height of each non-ground point.  This resulted in 

meaningful heights for each point in the non-ground point cloud representing 

measurements from the ground surface rather than from sea-level.   

Data Analysis 

Non-ground points were extracted based on proximity to the LAI sampled vines.  

Points were extracted using rectangles sized 1 m by 2 m, centered on sample vine trunk 

locations, and orientated north-to-south in line with the vine rows.  Even though LAI 

measurements were only taken at the central base of each vine, these extraction zones are 

most representative of the full canopy of each vine, more so than a circular buffer around 

the vine location would be.  This is due to the trellis system onto which the vines are 

trained to grow and the inherent geometry.  Vine-to-vine spacing within each row is 2 m.  
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Therefore, a meter to the north and the south of each vine trunk location represents 

canopy from that particular vine.  Likewise, canopy width is no greater than a meter wide 

(east-to-west), which provides enough space to include the entire canopy. 

Following extraction of non-ground points to each sampled LAI vine, several 

metrics were calculated to explore correlations with the LAI measurements following 

Popescu et al. (2004) and Jensen et al. (2008).  These metrics include the count or 

number of points within each vine’s zone as well as several height-based metrics such as 

mean height, variance, standard deviation, coefficient of variation, kurtosis, percentiles 

(10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, 100th), percentile differences (100th–10th, 

90th–20th, 100th–50th), and percentile point ratios (i.e., number of points above percentile 

heights relative to the total number of points within the extraction zone).  Furthermore, 

points with heights below 0.3 m and above 2.3 m were not included in metric calculation.  

These points were excluded based on field observation, which determined that points at 

these heights could not represent vine canopy.  The relationship between these metrics 

and the measured LAI were modeled using the All Possible Models (i.e. best subsets 

regression) function in the JMP statistical package (SAS Institute, Cary, North Carolina, 

USA).   

A square root transformation (LAISQRT) was applied to the field-measured LAI 

data to meet the assumption of data normality (minimize skewness and kurtosis).  

LAISQRT served as the dependent variable (Y) while the height-based metrics served as 

the independent or explanatory variables (X’s).  Sample vines with low point counts of 

less than six were excluded from analysis.  This condition was imposed based on prior 

consultation with an expert statistician to determine the minimum number of points 
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necessary for reliable metric calculation (i.e., variance, coefficient of variation, etc.).  As 

such, the total number of observations included in the regression analysis was limited to 

44 of the original 67 vines.   

      Correlation analyses between each metric and LAISQRT were performed but 

yielded weak results for individual metrics (-0.3372 to 0.3941).  However, as is common 

in lidar-based analyses, 3D-dervied LAI estimates typically require several predictor 

variables to accurately quantify structural characteristics such as LAI.  In that regard, 

weak individual correlations were not viewed as a limitation for further analysis.  The All 

Possible Models procedure was implemented to provide a range of one-to-six covariate 

term models.  Candidate models were selected based on a several criteria including R2, 

adjusted R2, RMSE, individual covariates, and overall model significance (α ≤ 0.05).    

The candidate models were also subjected to a Predicted Residual Sum of Squares 

(PRESS) analysis, which was used to determine the prediction error of each candidate 

model.  The candidate model with the smallest difference in model root mean square 

error (RMSE) to PRESS RMSE was selected as the final model.   

Results 

SfM Results and Point Cloud Visualization 

Characteristics of the vineyard SfM model are reported in Table 4.1.  Of the 206 

total images captured by the digital camera during UAV flight, five were not input into 

the SfM model.  From the 201 input images, PhotoScan exported a point cloud with a 

total of 462,959 points.  After removal of noise within the dataset, a total of 432,184 

points remained (93.3% of original), of which 333,835 points were classified as ground 

(72.1% of original) and the remaining 98,349 points as non-ground (21.2% of original).  
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Typically, points flagged and removed as noise were located much higher or lower than 

expected and did not represent any actual feature on the ground or within the vine 

canopy.  The extent of the dataset was also reduced to decrease processing time and the 

points located outside of the clipped extent were also classified as noise, comprising 

6.7% of the original output point cloud.  

The filtered point cloud provides a clear 3D visualization of the study site as shown 

in Figure 4.3 at an oblique angle looking north.  Points classified as ground are shown in 

gray, while points classified as non-ground are shown in orange.  The background, and 

therefore any area not being covered by data points, is displayed in black.  The vine 

canopy with its distinct trellis-trained rows quickly becomes evident, especially at the 

vineyard edges where features are not found aboveground.  Likewise, taller objects like 

the trees to the north of the study vineyard are properly replicated by the SfM model. 

For further depiction of the filtering results, a nadir view of an actual UAV captured 

image (Figure 4.4a) and the classified point cloud of the same extent (Figure 4.4b) are 

shown in Figure 4.4.  This is the northwesternmost portion of the study vineyard, the 

extent of which is denoted with a red outline in Figure 4.4b.  The repeating linear 

structure of the vine canopy is again apparent in this case.  Other objects on the ground 

are also well classified such as the vehicle in the upper-right of Figure 4.4a.  The points 

representing the vehicle are correctly classified as non-ground.  Likewise, other features 

like the fence enclosing the vineyard (between the vehicle and the start of the vine rows) 

and the building northwest of the vehicle are also captured by the point filtering as non-

ground.  The non-ground points representing vine canopy though, are patchy and less 
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uniform than found in other areas of the vineyard (refer back to Figure 4.3).  This is not 

due to misclassification but rather less abundance of points in this area. 

Due to the overlap of the UAV images input into the SfM model, the point density 

across the study vineyard is not uniform.  Figure 4.5 shows both ground point density 

(left) and non-ground point density (right).  Overall, ground points have a higher density 

than non-ground points because many more points are classified as ground than non-

ground (333,835 vs. 98,349).  The spatial pattern of high point density though, remains 

similar across both sets of points.  Both display high densities of points over the central 

and western sections of the study vineyard.  This is where the most overlap in the input 

images occurred and results in more keypoints within those areas.  Additionally, the 

northern edge of the vineyard shows higher degrees of point density because this was the 

staging area from which the UAV was launched and landed, resulting in more images 

being taken at the north end of the vineyard compared to the south.  Mean point densities 

within the study vineyard block (the extent as shown in Figure 4.5) resulted as follows: 

9.07 points per square meter for all points (unclassified), 6.33 points per square meter for 

ground classified points, and 2.74 points per square meter for non-ground classified 

points.  

Despite spatial variation in point density, the SfM point cloud can be used to create 

powerful visualizations of the study vineyard at a number of scales (see Figure 4.6a-c) 

including whole vineyard (Figure 4.6a), partial vineyard or vine row (Figure 4.6b), and 

partial vine row or per vine (Figure 4.6c).  The three-dimensional perspective provided in 

this case increases the ability to perceive the SfM representation of the vine canopy and 

the density of the non-ground points.  This is especially the case with Figure 4.6b in 
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which the low angle provides a view similar to that of standing at the study site looking 

down the vine rows. Elements added for visual effect include: colored DTM surface, 

lines representing trellis wires, red poles with cone bases to represent the sampled vine 

trunk locations and generalized vine heights, red transparent partitions to highlight the 

sample vine rows, and extraction rectangles (boxes).  The 1 m by 2 m extraction 

rectangles exist within 0.3 to 2.3 m above the DTM surface and are displayed in a 

transparent brown hue only in Figure 4.6c.  All of the points within these shapes were 

extracted and attached to that particular LAI sampled vine.   

Ceptometer collected LAI data throughout the study vineyard resulted in a large 

range of values from 0.54 to 5.65.  Indeed, a large variation in canopy density across the 

study site existed, which may be attributed to ceptometer uncertainty (Lopez-Lozano et 

al. 2013; Hyer and Goetz 2004; Garrigues et al. 2008).  The spatial distribution of these 

collected values are interpolated and shown with Figure 4.7.  This figure confirms the 

previously mentioned east-west block differentiation in canopy density based on age of 

the vines where the more established vines to the east have larger, denser canopies while 

the vine canopies to the west are considerably smaller and less dense.  The location of the 

stratified sample of 67 vines is also shown along with the vine row structure.  Spacing of 

the sample points appears to be less uniform in the western block (greater distance 

between sample points); this is due to removal of vines in the western block, especially 

noticeable in the last sampled row furthest west. 

Relationship between SfM Output and LAI 

In total, 44 of the 67 sampled vines had point counts of six or greater.  These 44 

observations (n) were used to evaluate the relationship between the SfM height metrics 
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and field-measured LAI (Table 4.2).  The final model was selected based on the best 

subset of covariates and explained 57% of the variation in field-based measures with an 

RMSE of 0.24.  The six covariate terms used to predict LAISQRT include the variance 

(Var), coefficient of variation (CV), the 50th and 90th percentile heights (Per5 and Per9), 

the difference between the 100th percentile height and the 50th percentile height (Per10-5), 

and the ratio of the number of points above the 60th percentile to the total number of 

points within the extraction zone (RatioPer6). A summary of the parameter estimates and 

overall model performance is provided in Table 4.2. 

The regression results are shown graphically in Figure 4.8 with observed LAI on the 

X-axis and predicted LAI on the Y-axis.  Estimates were back-transformed to LAI and 

the observed vs. predicted values are shown around a one-to-one relationship line (gray) 

and a regression fit trend line (black). 

Discussion 

General Study Limitations 

This study presents preliminary findings using SfM to visualize vine canopy and 

predict LAI.  The scope of this study remains limited to a one-time data acquisition in 

July 2012 at a single vineyard site in the THCAVA.  The potential utility of the presented 

method, therefore, remains limited to this dataset.  Due to the high variation of SfM 

output (i.e. point density) based on image input, it is highly likely that the captured image 

data influences the success with which this method is employed.  In general, comparative 

SfM studies exploring the degree to which SfM models vary in recreating the same 

subject at or near the same time period would be very useful.  Specifically, further SfM-

based viticultural research would benefit greatly from replicating such analyses over 
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several data acquisitions within the growing season, over several years, and across 

several vineyard sites.  At that point, the robustness of this method can fully be 

recognized.  Continued success and advancement of this method may also lead to 

exploration of differences between grapevine varietals and management practices (more 

or less leaf thinning). 

Though LAI measurements over the study area were obtained in a manner to 

mitigate potential error sources, error may have been introduced in the LAI data 

acquisition either through the sampling strategy or measurement theory.  For example, 

the ceptometer requires specific parameters that can influence how LAI is calculated by 

the device including illumination conditions and leaf angle distribution (Garrigues et al. 

2008).  Slight changes in illumination conditions throughout the measurement period can 

also influence LAI measurements because the device requires information on the total to 

direct flux (Garrigues et al. 2008). Lopez-Lozano et al. (2013) reported that the best 

results from a SunScan ceptometer were obtained under very specific illumination 

conditions, namely when the sun was neither directly overhead nor parallel to the vine 

rows.  Further, even though the number of PAR sensors was limited to account for the 

relatively narrow width of the vine rows, the physical footprint of the sensor likely varied 

despite best efforts to position the sensor exactly the same for all measurement locations.  

Lastly, LAI measurements are likely influenced by the trellis system itself, as the wooden 

components and wires influence light interception.   

SfM as an Alternative Source of High-Density 3D Data 

The low cost and relative ease of creating 3D visualizations by way of SfM will 

likely see an expansion of use within the coming years.  Inputting 201 images to 
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PhotoScan, with relatively little user input, resulted in a dense (unclassified) point cloud 

with a mean of 9.07 points per square meter for use in visualization and analysis.  A 

relative disadvantage of the SfM method of creating 3D datasets, however, is the random 

nature of SfM-obtained points within the output point cloud, since points can only be 

assigned based on conjugate feature recognition, or the ability of the matching algorithm 

to identify similar features in two or more images.  Spatial variation in point cloud 

density is likely to occur when creating SfM-based models even with careful planning of 

image capture.  As Figure 4.3 illustrates, higher point densities tended to result from 

increased overlap between images.  As such, a potential solution would be to ensure that 

the entire study area be redundantly imaged.  In short, to minimize spatial variation in 

point density across a study area, UAVs equipped with autopilot and flight planning 

functionality could be programmed with automated image capture to ensure more equal 

study site coverage.  This includes obtaining a great deal of overlap of images at the 

edges of the study site, which can be obtained by buffering the desired coverage area by a 

generous distance. 

SfM-acquired topographic datasets were comparable to airborne lidar data in 

terms of point densities and horizontal and vertical precision (Fonstad et al. 2013).  For 

vegetation-based studies, such as those presented here, the ability to image the ground 

surface due to the trellis-row nature of the vineyard provided an opportunity to filter 

ground from non-ground points and generate SfM-derived terrain and canopy datasets.  

This may not always be the case, especially in areas of high canopy density, where the 

ground is not visible to the passive imaging system.  However, if lidar data are available 

for an area, the SfM technique may be used to acquire vegetation canopy information 
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such as height or percent cover as long as the lidar data are used to model the bare ground 

(Dandois and Ellis 2010).   

As it currently stands, multi-temporal lidar acquisitions are not economically 

feasible for fine/small scale acquisitions; however, a simple, low cost aerial camera 

system can be easily configured to provide similar information and more frequently than 

commissioning a lidar acquisition.  Nonetheless, we explicitly state, that unlike lidar, the 

accuracy of the projected point coordinates are dependent on the geometric 

transformation between field-measured GPS positions and clearly identifiable features in 

the imagery and point density is variable and dependent on image overlap and conjugate 

surface features.  Future research in SfM-acquisition for 3D datasets would certainly 

benefit from guidance regarding image acquisition and spatial redundancy as well as 

optimal placement of GCPs to distribute transformation uncertainties equally throughout 

the study area as this may affect location (X,Y) and height (Z) accuracies. 

SfM LAI Estimates Compared to Lidar and Spectral-based Approaches 

The results of this study are similar to accuracies reported from other vineyard 

site lidar-based LAI estimation.  For example, Llorens et al. (2011b) was able to account 

for 49% of the variability of field-measured LAI using the number of lidar returns from a 

tractor-mounted terrestrial lidar.  Llorens et al. (2011a) achieved a maximum R2 value of 

0.40 for a regression model that used the number of lidar canopy returns acquired from a 

tractor-mounted terrestrial lidar.  An exception to other lidar-based approaches is Arno et 

al. (2013), who achieved exceptional R2 values of up to 0.99 using a tree area index 

metric derived from very high density terrestrial lidar scanner data.  
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Passive optical imagery acquired by either aerial or satellite-based platforms has 

been the traditional data used to estimate LAI and has, with the exception of Arno et al. 

(2013) produced better results than lidar for vineyard canopy LAI.  For example, Johnson 

(2003) used 4 m multispectral IKONOS imagery to calculate predictor variables based on 

NDVI and accounted for 91 to 98% variability in field-measured LAI over four different 

measurement dates.  In another study, Johnson et al. (2003b) used NDVI derived from 

IKONOS imagery and was able to account for 72% of field-measured LAI.  Using 0.25 

m multispectral aerial imagery and a NDVI threshold of 0.6, Hall et al. (2012) calculated 

planimetric vine canopy area that accounted for 83% of the variability of LAI over 

several phenological stages.  

Potential of SfM as a Source of 3D Data for LAI Estimation 

Although the results of our SfM-derived LAI model only explained a moderate 

percent of variation in field-measured LAI (R2 = 0.567), these results provide proof-of-

concept in that SfM data, due to its similarity with lidar may be used to predict LAI for 

vineyards.  However, several issues provide discussion points in terms of the SfM point 

densities.  As mentioned previously, low point densities in portions of the vineyard were 

an issue that quickly became apparent during metric calculation of point- and height-

based regression covariates.  Out of 67 LAI-sampled vines, 23 field-measured LAI 

observations were excluded from regression modeling because the extraction zones 

surrounding the vines failed to have more than five points.  Higher density of points may 

have led to an improved R2 value between LAI and the SfM metrics, although we 

acknowledge that this relationship is not evident in the current modeled output. 
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Our regression analysis included a series of point- and height-based metrics.  

Additional research could address the calculation and implementation of more traditional 

lidar-derived metrics used to predict LAI such as the laser penetration metric (Zhao and 

Popescu 2009), laser penetration index, or the laser interception index (Barilotti et al. 

2006).  Lastly, higher point density may allow for analysis of points within the X, Y axis.  

Analysis within this plane at designated height profiles could lead to accurate estimates 

of vine canopy width and overall size.  A metric like this could further bolster the 

regression model that currently is primarily based on height-based metrics.  Such analysis 

was attempted in this study but was unsuccessful presumably due to the lack of points. 

Conclusions 

This study presented several visualizations of vine canopy from the whole 

vineyard to single vine scale based on a SfM-derived point cloud.  This generated model 

of vine canopy was created by capturing 201 aerial photographs with a digital camera 

mounted on a kitewing UAV.  The SfM point cloud was then classified as ground and 

non-ground with non-ground points representing vegetation.  This method was successful 

at quickly, practically, and inexpensively recreating the vineyard environment at the 

study site including the vine canopy.  Using extracted points from this point cloud, this 

study reported moderate success in relating measured LAI of vine canopy to SfM point 

cloud derived metrics with an R2 value of 0.567. 

More work utilizing this rapidly developing SfM-methodology is necessary.  This 

is especially the case with vegetation related studies because of the added level of 

difficulty associated with it.  At this stage, modeling vegetation with SfM remains highly 

experimental and only moderately successful as shown by this and other studies (Dandois 
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and Ellis 2010).  The reasonable success of this method in such an early stage provides 

hope that this technique can be improved upon.  The practical and inexpensive nature of 

the SfM method of 3D modeling makes it highly attractive to researchers and 

practitioners within a variety of fields.   

Future work using SfM for vegetation should employ colored targets to aid in 

keypoint matching.  Likewise, higher point density is always desirable and can be 

obtained by acquiring more images, although this will prolong processing time to 

generate the point cloud.  Implementation of this SfM method to predict LAI of other 

types of vegetation, particularly in forestry, would be worth exploring.  SfM point clouds 

could also be utilized to estimate volumetric variables like biomass.  Within the realm of 

viticulture, using this method at and between each phenological phase (budbreak, 

flowering, veraison, and harvest) to quickly generate whole vineyard 3D maps of vine 

growth both for visualization and LAI would be useful for vineyard managers wanting to 

assess spatial variation in size and density of vine canopy.  It would be worth exploring 

potential variability in the prediction of LAI based on phenological phase, where fuller or 

lesser dense canopies may improve the accuracy of LAI prediction.   

 

Table 4.1. Inputs and outputs of PhotoScan and LP360 point cloud processing. 

 

Total 

Images 

Discarded 

Images 

Input 

Images 

Entire 

Point Cloud 

Noise 

Removed 

Classified 

Ground Non-ground 

206 5 201 462,959 30,775 333,835 98,349 

100.0% 2.4% 97.6% 100.0% 6.7% 72.1% 21.2% 
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Table 4.2. Results of stepwise multiple regression predicting LAI based on SfM derived 

metrics. 

 

R2: 0.567 | R2 Adj.: 0.495 | RMSE: 0.236 
n: 44 | F Ratio: 7.86 | p < 0.0001 

Term Estimate Standard Error t Ratio 
Prob > |t| 
α = 0.05 

Intercept 4.61 0.979 4.71 < 0.001 

Var 4.77 1.97 2.42 0.020 

CV -5.05 1.58 -3.19 0.003 

Per5 -2.91 0.565 -5.16 < 0.001 

Per9 1.85 0.422 1.38 < 0.001 

Per10-5 -0.716 0.289 -2.48 0.018 

RatioPer6 -2.45 0.996 -2.51 0.017 

= 4.61 + (4.77 * Var) – (5.05 * CV) – (2.91 * Per5) + (1.85 * Per9) 

– (0.716 * Per10-5) – (2.45 * RatioPer6) 

 

 

 
 

Figure 4.1. Study area in the Texas Hill Country American Viticultural Area with winery 

locations. 
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Figure 4.2. The study vineyard blocks. 

 

 

 
 

Figure 4.3. The filtered point cloud of ground (gray) and non-ground (orange) 

points.   

 

 

 

 

 

 

 

 

 

 

 

N 



  

  

103 

(a) (b) 

  
 

Figure 4.4. A comparison of an actual UAV captured image (a) and the filtered 

point cloud (b) for the same area. 

 

 

 
 

Figure 4.5. The density of points (local average number of points per square meter) 

for both the ground and non-ground point clouds. 
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Figure 4.6. Three-dimensional visualization of the study vineyard (a, b, and c) 

including sample vines (red poles) with highlighted sample rows, non-ground point 

cloud (green spheres), projected trellis wiring (gray lines), and underlying DTM 

surface at (a) whole vineyard, (b) partial vineyard, and (c) per-vine scales. 
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Figure 4.7. Canopy density (measured LAI) across the study vineyard blocks. 

 

 

 
 

Figure 4.8. Scatterplot of LAI predicted with SfM height metrics (Y-axis) and field-

measured LAI (X-axis).  
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CHAPTER V 

CONCLUSIONS 

Chapter II Accomplishments 

 Research objective 1 was addressed in Chapter II and entailed the setup and 

calibration of digital cameras for use as UAV-mounted remote sensors.  This UAV and 

digital camera combination was very successful in capturing high quality aerial images of 

a vineyard study site in the Texas Hill Country.  By way of SfM-processing, these images 

were used to produce site-specific DTMs for orthophoto production.  On average (six 

orthophotos total), the created orthophotos exhibited very high spatial resolution of 25 

mm.  The generated orthophotos (RGB and NIR) were geometrically and radiometrically 

corrected for use in analysis.  Due to the very high spatial resolution, the generated 

orthophotos are very useful for qualitative (visual) analyses.  As for radiometric accuracy 

and subsequent quantitative analyses, the digital cameras and empirical line method 

employed was deemed inadequate for the blue and green bands in producing accurate 

estimates of spectral reflectance.  In fact, all of the visible bands (including red) were 

susceptible to being over- and underestimated by the digital camera.  Of the four 

produced bands, regression analysis showed that the red and NIR bands were the most 

radiometrically accurate.  The red and NIR bands were still associated with an amount of 

error in the estimates of reflectance.  In the end, Chapter II successfully assembled a very 

low-cost system and proposed a practical, replicable methodology that even with its 

discussed weaknesses would be a useful, adoptable system and method for other 

researchers and practitioners. 
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Chapter III Accomplishments 

 Research objective 2 was addressed in Chapter III and involved the identification 

of spatial variation in canopy vigor throughout the 2012 growing season.  The UAV and 

digital camera system discussed in Chapter II was used to collect image sets at post-

flowering, veraison, and harvest.  Object-based image segmentation provided an 

automated and relatively easy way to delineate vine canopy pixels from non-vine canopy 

pixels.  Based on this separation, canopy objects and subsequent canopy extent (area) was 

acquired for all vines.  This planimetrically-based canopy area was successfully 

correlated to the field collected vine performance or harvest variables of numbers of 

clusters, cluster size, and yield.  Spectrally-based estimations of canopy density were 

extracted per-vine using the canopy objects.  Median spectral values were extracted for 

all vines (red and NIR) to calculate NDVImedian.  These spectrally-based attempts to gauge 

canopy density were not as successful as for canopy area.  NIRmedian reflectance proved to 

be the only statistically significant variable in correlation analysis with the previously 

mentioned harvest variables.  Redmedian and subsequent NDVImedian had no relationship 

with eventual vine performance, which relates back to the radiometric inaccuracy found 

in Chapter II.  A simple vine performance index (VPI) was calculated as the product of 

season average canopy area and season average NIRmedian to assess per-vine vigor for the 

2012 growing season.  Following this, grouping analysis was performed and management 

zones were manually delineated for use in future growing seasons.  In the end, Chapter 

III provided a straightforward, low-cost UAV-based methodology to identify spatial 

variation in vine performance for an entire vineyard over a single growing season 
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Chapter IV Accomplishments 

 Research objective 3 was addressed in Chapter IV and proposed a cutting-edge 

SfM-based methodology to estimate vineyard canopy LAI.  The methodology was 

moderately successful at predicting LAI for specific vines using several calculated 

metrics based on a SfM three-dimensional point cloud.  Additionally, this SfM-based 

modeling of the vineyard environment produced 3D visualizations.  This methodology is 

novel due to its inclusion of 3D canopy data, instead of solely using two-dimensional, 

image-based approaches with NDVI or other vegetation indices, to estimate canopy LAI 

across an entire vineyard.  The results reported in Chapter IV have room for 

improvement, which may come from increasing point densities (more images, improved 

SfM algorithms) and/or better image capturing techniques (improved, more uniform 

coverage).  Overall, Chapter IV provided a novel, low-cost UAV and SfM-based method 

to visualize and quantify vineyard canopy density and structure (LAI) throughout a 

vineyard. 

Final Recommendations for Viticulturists 

 One of the overarching aims of this dissertation was to not only successfully 

identify spatial variation in crop performance, but also be able to do so using very 

inexpensive tools and practical methodologies that could be replicated by other interested 

researchers and/or practitioners.  In this way, the technology used in this dissertation was 

very low-cost at around $1000 USD total for the UAV and two digital cameras.  The 

methods presented in the Chapters II-IV likewise are for the most part processed with 

low-cost or open-source software.  Although a substantial amount of manual data 

manipulation and processing time is needed as well as some expensive equipment (GPS, 
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spectroradiometer; although this equipment could be rented or borrowed), with some 

training this methodology could be adopted by tech-savvy practitioners.  Further, what 

will likely make adopting such methods even easier in the near future is improvement in 

UAV technology as well as software to process UAV-collected images.   UAVs are 

becoming increasingly autonomous from launch to retrieval so much so that, unlike in 

this study, manual control will soon be needed only in emergency situations.  Software 

for processing UAV-collected images is rapidly advancing as well and will likely soon be 

almost completely automated including options to radiometrically correct input images. 

At the very least, orthophotos produced using the proposed methodology outlined 

in Chapter II (with or without conversion to reflectance) can be used by viticulturists for 

qualitative analysis of spatial variation in vigor.  Additionally, due to the very high spatial 

resolution of the orthophotos (25 mm), printed maps may serve as useful field tools for 

sampling, pruning, harvesting, etc.  The workers at the vineyard study site were very 

excited to use these maps and utilized them extensively for daily planning purposes.  

More advanced users looking to do quantitative analyses can follow the methods 

provided in Chapters III and IV to explore canopy vigor by way of planimetric extent, 

spectral assessment (NIR-based) of canopy density, and even attempt to estimate LAI. 

 



  

  

110 

LITERATURE CITED 

 

Aber, J.S., I. Marzoff, and J.B. Ries. 2010. Small-format aerial photography: principles, 

techniques and geosciences applications. Oxford, UK: Elsevier. 

 

Acevedo-Opazo, C., B. Tisseyre, S. Guillaume, and H. Ojeda. 2008. The potential of high 

spatial resolution information to define within-vineyard zones related to vine 

water status. Precision Agriculture 9: 285-302. 

 

Arno, J., A. Escola, J.M. Valles, J. Llorens, R. Sanz, J. Masip, J. Palacin, and J.R. Rosell-

Polo. 2013. Leaf area index estimation in vineyards using a ground-based LiDAR 

scanner. Precision Agriculture 14(3): 290-306. 

 

Axelsson, P. 2000. DEM generation from laser scanner data using adaptive TIN models. 

International Archives of Photogrammetry and Remote Sensing 33: 110-117. 

 

Baboo, S.S. and M.R. Devi. 2011. Geometric Correction in Recent High Resolution 

Satellite Imagery: A Case Study in Coimbatore, Tamil Nadu. International 

Journal of Computer Applications 14(1): 32-37. 

 

Baluja, J., M.P. Diago, P. Balda, R. Zorer, F. Meggio, F. Morales, and J. Tardaguila. 

2012. Assessment of vineyard water status variability by thermal and 

multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation 

Science 30(6): 511-522. 

 

Barilotti, A., S. Turco, and G. Alberti. 2006. LAI determination in forestry ecosystem by 

lidar data analysis. Proceedings of the Workshop for 3D Remote Sensing of 

Forestry, Vienna, Austria. 

 

Bellvert, J., P.J. Zarco-Tejada, J. Girona, and E. Fereres. 2013. Mapping crop water stress 

index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal 

remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture 

doi:10.1007/s11119-013-9334-5. 

 

Best, S., L. Leon, and M. Claret. 2005. Use of Precision Viticulture Tools to Optimize the 

Harvest of High Quality Grapes. Information and Technology for Sustainable 

Fruit and Vegetable Production: FRUTIC 05. Montpellier, France. 12-16 

September. 249-258. 

 

Bramley, R.G.V. 2001. Progress in the Development of Precision Viticulture - Variation 

in Yield, Quality and Soil Properties in Contrasting Australian Vineyards. 

Precision Tools for Improving Land Management: 14th Annual FLRC Workshop. 

Massey University, New Zealand. 25-43. 

 



  

  

111 

Bramley, R.G.V. and R.P. Hamilton. 2004. Understanding variability in winegrape 

production systems: 1 Within vineyard variation in yield over several vintages. 

Australian Journal of Grape and Wine Research 10: 32-45. 

 

Bramley, R.G.V., B. Pearse, and P. Chamberlain. 2003. Being Profitable Precisely – A 

Case Study of Precision Viticulture from Margaret River. The Australian & New 

Zealand Grapegrower & Winemaker: Annual Technical Issue. 

 

Bramley, R.G.V. and T. Proffitt. 1999. Managing Variability in Viticultural 

Production.The Australian & New Zealand Grapegrower & Winemaker 427: 11-

16. 

 

Bramley, R.G.V., T. Proffitt, C.J. Hinze, B. Pearse, and R.P. Hamilton. 2005. Generating 

benefits from Precision Viticulture through selective harvesting. 5th European 

Conference on Precision Agriculture Uppsala, Sweden. 891-898. 

 

Cheng, C. and A. Rahimzadeh. 2005. Hacking Digital Cameras. Indianapolis, IN, USA: 

Wiley Publishing, Inc. 

 

Coombe, B.G. and P.R. Dry. 1988. Viticulture: Volume 2, Practices (2nd Edition). 

Ashford, SA, Australia: Winetitles. 

 

Creasy, G.L. and L.L. Creasy. 2009. Crop Production Science in Horticulture 16: 

Grapes. Cambridge, UK: CABI. 

 

Cunha, M., A.R.S Marcal, and L. Silva. 2010. Very Early Prediction of Wine Yield 

Based on Satellite Data from Vegetation. International Journal of Remote Sensing 

31: 3125-3142. 

 

Dandois, J.P. and E.C. Ellis. 2010. Remote sensing of vegetation structure using 

computer vision. Remote Sensing 2: 1157-1176. 

 

Dandois, J.P. and E.C. Ellis. 2013. High spatial resolution three-dimensional mapping of 

vegetation spectral dynamics using computer vision. Remote Sensing of 

Environment 136: 259-276. 

 

Dare, P.M. 2008. Small Format Digital Sensors for Aerial Imaging Applications. The 

International Archives of the Photogrammetry, Remote Sensing, and Spatial 

Information Sciences XXXVII(B1): 533-538. 

 

Dean, C., T.A. Warner, and J.B. McGraw. 2000. Suitability of the DSC460c colour 

digital camera for quantitative remote sensing analysis of vegetation. ISPRS 

Journal of Photogrammetry & Remote Sensing 55: 105-118. 

 



  

  

112 

De Biasio, M., T. Arnold, R. Leitner, G. McGuinnigle, and R. Meester. 2010. UAV-

based environmental monitoring using multi-spectral imaging. Proceedings of 

SPIE – The International Society for Optical Engineering 7668: 1-7. 

 

de Blij, H. 1983. Wine: A Geographic Appreciation. Totowa, NJ, USA: Rowman & 

Allanheld Publishers. 

 

Delenne, C., S. Durrieu, G. Rabatel, and M. Deshayes. 2010. From pixel to vine parcel: A 

complete methodology for vineyard delineation and characterization using 

remote-sensing data. Computers and Electronics in Agriculture 70: 78-83. 

 

Dey, A., L. Mummet, and R. Sukthankar. 2012. Classification of Plant Structures from 

Uncalibrated Image Sequences. Proceedings of IEEE Workshop on Applications 

of Computer Vision Breckenridge, CO. January 9-11. 

 

Dobrowski, S.Z., S.L. Ustin, and J.A. Wolpert. 2002. Remote estimation of vine canopy 

density in vertically shoot-positioned vineyards: Determining optimal vegetation 

indices. Australian Journal of Grape and Wine Research 8: 117-125. 

 

Dobrowski, S.Z., S.L. Ustin, and J.A. Wolpert. 2003. Grapevine dormant pruning weight 

prediction using remotely sensed data. Australian Journal of Grape and Wine 

Research 9: 177-182. 

 

Dry, P.R. and B.G. Coombe. 2004. Viticulture:  Volume 1, Resources (2nd Edition). 

Ashford, SA, Australia: Winetitles. 

 

Everaerts, J. 2008. The use of unmanned aerial vehicles (UAVs) for remote sensing and 

mapping. The International Archives of the Photogrammetry, Remote Sensing, 

and Spatial Information Sciences XXXVII(B1): 1187-1191. 

 

Fonstad, M.A., J.T. Dietrich, B.C. Courville, J.L. Jensen, and P.E. Carbonneau. 2013. 

Topographic structure from motion: a new development in photogrammetric 

measurement. Earth Surface Processes and Landforms 38(4): 421-430. 

 

Garrigues, S., N.V. Shabanov, K. Swanson, J.T. Morisette, and F. Baret. 2008. 

Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-

2000, AccuPar, and digital hemispherical photography over croplands. 

Agricultural and Forest Meteorology 148: 1193-1209. 

 

Hall, A. 2003. Defining Grapevine and Vineyard Characteristics from High Spatial 

Resolution Remotely Sensed Optical Imagery. Doctoral thesis, Charles Sturt 

University (Australia). 

 

Hall, A. and J. Hardie. 2008. Using precision technologies to improve grape yield 

forecasting. Australian & New Zealand Grapegrower & Winemaker 538: 20-24. 

 



  

  

113 

Hall, A., D.W. Lamb, B. Holzapfel, and J. Louis. 2002. Optical Remote Sensing 

Applications in Viticulture - A Review. Australian Journal of Grape and Wine 

Research 8: 36-47. 

 

Hall, A., D.W. Lamb, B. Holzapfel, and J. Louis. 2011. Within-season temporal variation 

in correlations between vineyard canopy and winegrape composition and yield. 

Precision Agriculture 12: 103-117. 

 

Hall, A. and J. Louis. 2009. Vineclipper: A Proximal Search Algorithm to Tie GPS Field 

Locations to High Resolution Grapevine Imagery. Innovations in Remote Sensing 

and Photogrammetry 3: 361-372. 

 

Hall, A., J. Louis, and D.W. Lamb. 2003. Characterising and mapping vineyard canopy 

using high-spatial-resolution aerial multispectral images. Computers & 

Geosciences 23: 813-822. 

 

Hall, A., J. Louis, and D.W. Lamb. 2008. Low resolution remotely sensed images of 

winegrape vineyards map spatial variability in planimetric canopy area instead of 

LAI. Australian Journal of Grape and Wine Research 14: 9-17. 

 

Hall, A., L. Quirk, M.A. Wilson, and J. Hardie. 2009. Increasing the Efficiency of 

Forecasting Winegrape Yield by Using Information on Spatial Variability to 

Select Sample Sites. The Grapevine Management Guide 2009-2010, National 

Wine and Grape Industry Centre, Wagga Wagga, Australia. 11-12. 

 

Hall, A. and M.A. Wilson. 2013. Object-based analysis of grapevine canopy relationships 

with winegrape composition and yield in two contrasting vineyards using 

multitemporal high spatial resolution optical remote sensing. International 

Journal of Remote Sensing 34(5): 1772-1797. 

 

Harwin, S. and A. Lucieer. 2012. Assessing the accuracy of georeferenced point clouds 

produced via multi-view stereopsis from unmanned aerial vehicle (UAV) 

imagery. Remote Sensing 4: 1573-1599. 

 

Hellman, E.W., E.A. Takow, M.D. Tchakerian, and R.N. Coulson. 2011. Geology and 

Wine 13: Geographic Information System Characterization of Four Appellations in 

West Texas, USA. Geoscience Canada 38(1): 6-20. 

 

Hunt, E.R., M. Cavigelli, C.S.T. Daughtry, J. McMurtrey, and C.L. Walthall. 2005. 

Evaluation of Digital Photography from Model Aircraft for Remote Sensing of 

Crop Biomass and Nitrogen Status. Precision Agriculture 6: 359-378. 

 

Hunt, E.R., W.D. Hively, C.S.T. Daughtry, and G.W. McCarty. 2008. Remote Sensing of 

Crop Leaf Area Index Using Unmanned Airborne Vehicles. In ASPRS Pecora 17, 

Denver, CO, November 18-20: 1-9. 

 



  

  

114 

Hyer, E.J., and S.J. Goetz. 2004. Comparison and sensitivity analysis of instruments and 

radiometric methods for LAI estimation: assessments from a boreal forest site. 

Agricultural and Forest Meteorology 122: 157-174. 

 

Jackson, R.S. 2008. Wine Science: Principles and Applications (3rd Edition). Burlington, 

MA, USA: Elsevier. 

 

Jensen, J.L.R., K.S. Humes, L.A. Vierling, and A.T. Hudak. 2008. Discrete-return lidar-

based prediction of leaf area index in two conifer forests. Remote Sensing of 

Environment 112: 3947–3957. 

 

Jensen, J.R. 2005. Introductory Digital Image Processing: A Remote Sensing 

Perspective. Upper Saddle River, NJ, USA: Pearson Prentice Hall. 

 

Jensen, T., A. Apan, F. Young, and L. Zeller. 2007. Detecting the attributes of a wheat 

crop using digital imagery acquired from a low-altitude platform. Computers and 

Electronics in Agriculture 59: 66-77. 

 

Johnson, L.F. 2003. Temporal Stability of an NDVI-LAI Relationship in a Napa Valley 

Vineyard. Australian Journal of Grape and Wine Research 9: 96-101. 

 

Johnson, L.F., D.F. Bosch, D. Williams, and B. Lobitz. 2001. Remote sensing of 

vineyard management zones: implications for wine quality. Applied Engineering 

in Agriculture 17: 557-560. 

 

Johnson, L.F., S. Herwitz, S. Dunagan, B. Lobitz, D. Sullivan, and R. Slye. 2003a. 

Collection of Ultra High Spatial Resolution Image Data over California Vineyards 

with a Small UAV. Proceedings, International Symposium on Remote Sensing of 

Environment, Honolulu, HI. 10-14 November. 

 

Johnson, L.F., D.E Roczen, S.K. Youkhana, R.R. Nemani, and D.F. Bosch. 2003b. 

Mapping vineyard leaf area with multispectral satellite imagery. Computers and 

Electronics in Agriculture 38: 33-44. 

 

Johnson, L.F., and T. Scholasch. 2005. Remote Sensing of Shaded Area of Vineyards. 

HortTechnology 15: 859-863. 

 

Kaminsky, R.S., N. Snavely, S.T. Seitz, and R. Szeliski. 2009. Alignment of 3D point 

clouds to overhead images. Second IEEE Workshop on Internet Vision, Miami, 

FL. 

 

Karpouzli, E. and T. Malthus. 2003. The empirical line method for the atmospheric 

correction of IKONOS imagery. International Journal of Remote Sensing 24(5): 

1143-1150. 

 



  

  

115 

Kelcey, J., and A. Lucieer. 2012. Sensor Correction of a 6-Band Multispectral Imaging 

Sensor for UAV Remote Sensing. Remote Sensing 4: 1462-1493. 

 

King, D.J. 1995. Airborne Multispectral Digital Camera and Video Sensors: A Critical 

Review of System Designs and Applications. Canadian Journal of Remote 

Sensing 21(3): 245-273. 

 

Keightley, K.E. and G.W. Bawden. 2010. 3D Volumetric Modeling of Grapevine 

Biomass Using Tripod LiDAR. Computers and Electronics in Agriculture 74: 

305-312. 

 

Kurtural, S.K., I.E. Dami, and B.H. Taylor. 2006. Utilizing GIS Technologies in 

Selection of Suitable Vineyard Sites. International Journal of Fruit Science 6: 87-

107. 

 

Laliberte, A., Goforth, M.A., Steele, C.M., & Rango, A. 2011. Multispectral Remote 

Sensing from Unmanned Aircraft: Image Processing Workflows and Applications 

for Rangeland Environments. Remote Sensing 3(11): 2529-2551. 

 

Lamb, D.W. 2001. Remote Sensing – A Tool for Vineyard Managers? 11th Australian 

Wine Industry Technical Conference: Workshop W14 Precision Viticulture – 

Principles, Opportunities and Applications. Adelaide, Australia. 15-20. 

 

Lamb, D.W., A. Hall, and J. Louis. 2001. Airborne remote sensing of vines for canopy 

variability and productivity. Australian & New Zealand Grapegrower & 

Winemaker 449: 89-92. 

 

Lamb, D.W., M.M. Weedon, and R.G.V. Bramley. 2004. Using remote sensing to predict 

grape phelonics and colour at harvest in a Cabernet Sauvignon vineyard: Timing 

observations against vine phenology and optimising image resolution. Australian 

Journal of Grape and Wine Research 10: 46-54. 

 

Leberl, F., A. Irschara, T. Pock, P. Meixner, M. Gruber, S. Scholz, and A. Weichert. 

2010. Point clouds: Lidar versus 3D vision. Photogrammetric Engineering & 

Remote Sensing 76: 1123–1134. 

 

Lebourgeois, V., A. Begue, S. Labbe, B. Mallavan, L. Prevot, and B. Roux. 2008. Can 

Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop 

Monitoring Test. Sensors 8: 7300-7322. 

 

Lelong, C.C.D., P. Burger, G. Jubelin, B. Roux, S. Labbe, and F. Baret. 2008. 

Assessment of Unmanned Aerial Vehicles for Quantitative Monitoring of Wheat 

Crop in Small Plots. Sensors 8: 3557-3585. 

 



  

  

116 

Levin, N., E. Ben-Dor, and A. Singer. 2005. A digital camera as a tool to measure colour 

indices and related properties of sandy soils in semi-arid environments. 

International Journal of Remote Sensing 26(24): 5475-5492. 

 

Llorens, J.; E. Gil, J. Llop, and A. Escola. 2011a. Ultrasonic and LiDAR sensors for 

electronic canopy characterization in vineyards: advances to improve pesticide 

application methods. Sensors 11: 2177–2194. 

 

Llorens, J., E. Gil, J. Llop, and M. Queralto. 2011b. Georeferenced LiDAR 3D Vine 

Plantation Map Generation. Sensors 11: 6237-6256. 

 

Louarn, G., J. Lecoeur, and E. Lebon. 2008. A three-dimensional statistical 

reconstruction model of grapevine (vitis vinifera) simulating canopy structure 

variability within and between cultivar/training system pairs. Annals of Botany 

101: 1167–1184. 

 

Mathews, A.J. 2014. A practical UAV remote sensing methodology to generate 

multispectral orthophotos for vineyards: Estimation of spectral reflectance using 

compact digital cameras. International Journal of Applied Geospatial Research 

(accepted: February 1). 

 

Mathews A.J. and J.L.R. Jensen. 2012a. An airborne LiDAR-based methodology for 

vineyard parcel detection and delineation. International Journal of Remote 

Sensing 33: 5251-5267. 

 

Mathews A.J. and J.L.R. Jensen. 2012b. Three-dimensional building modeling using 

structure from motion: improving model results with telescopic pole aerial 

photography. Papers of the Applied Geography Conferences 35: 98-107. 

 

Mathews, A.J. and J.LR. Jensen. 2013. Visualizing and Quantifying Vineyard Canopy 

LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure 

from Motion Point Cloud. Remote Sensing 5(5): 2164-2183. 

 

McCoy, R.M. 2005. Field Methods in Remote Sensing. New York, NY, USA: The 

Guilford Press. 

 

Means, J.E., S.A. Acker, B.J. Fitt, M. Renslow, L. Emerson, and C.J. Hendrix. 2000. 

Predicting forest stand characteristics with airborne scanning Lidar. 

Photogrammetric Engineering & Remote Sensing 66: 1367–1371. 

 

Morrison, P.C. 1936. Viticulture in Ohio. Economic Geography 12: 71-85. 

 

Mullins, M.G., A. Bouquet, and L.E. Williams. 1992. Biology of the Grapevine. 

Cambridge, MA, USA: University Press. 

 



  

  

117 

Newman, J.L. 1986. Vines, Wines, and Regional Identity in the Finger Lakes Region. 

Geographical Review 76: 301-316. 

 

Niethammer, U., S. Rothmund, U. Schwaderer, J. Zeman, and M. Joswig. 2011. Open 

source image-processing tolls for low-cost UAV-based landslide investigations. 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences XXXVIII-1/C22. 

 

Omasa, K., F. Hosoi, and A. Konishi. 2007. 3D Lidar imaging for detecting and 

understanding plant responses and canopy structure. Journal of Experimental 

Botany 58: 881-898. 

 

Peduzzi, A, R.H. Wynne, V.A. Thomas, R.F. Nelson, J.J. Reis, and M. Sanford. 2012. 

Combined use of airborne Lidar and DBInSAR data to estimate LAI in temperate 

mixed forests. Remote Sensing 4: 1758–1780. 

 

Peters, G.L. 1984. Trends in California Viticulture. Geographical Review 74: 455-467. 

 

Petrie, R.P., M.C.T. Trought, and G.S. Howell. 2000. Fruit composition and ripening of 

Pinot Noir (Vitis vinifera L.) in relation to leaf area. Australian Journal of Grape and 

Wine Research 6: 45-45. 

 

Popescu, S.C., R.H. Wynne, and J.A. Scrivani. 2004. Fusion of small-footprint and 

multispectral data toestimate plot-level volume and biomass in deciduous and 

pine forests in Virginia, USA. Forest Science 50: 551–565. 

 

Pollefeys, M., L.V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, and J. Tops. 2004. 

Visual modeling with a hand-held camera. International Journal of Computer 

Vision 59: 207-232. 

 

Primicerio, J., S.F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, and F.P. 

Vaccari. 2012. A flexible unmanned aerial vehicle for precision agriculture. 

Precision Agriculture 13(4): 517-523. 

 

Proffitt, T., R.G.V. Bramley, D.W. Lamb, and E. Winter. 2006. Precision Viticulture: A 

New Era in Vineyard Management and Wine Production. Ashford, SA, Australia: 

Winetitles. 

 

Rango, A., A. Laliberte, J.E. Herrick, C. Winters, K. Havstad, C. Steele, and D. 

Browning. 2009. Unmanned aerial vehicle-based remote sensing for rangeland 

assessment, monitoring, and management. Journal of Applied Remote Sensing 

3(1): 033542. 

 

Ritchie, G.L., D.G. Sullivan, C.D. Perry, J.E. Hook, and C.W. Bednarz. 2008. 

Preparation of a Low-Cost Digital Camera System for Remote Sensing. Applied 

Engineering in Agriculture 24: 885-896. 



  

  

118 

 

Rodríguez-Pérez, J.R., D. Riaño, E. Carlisle, S. Ustin, and D.R. Smart. 2007. Evaluation 

of Hyperspectral Reflectance Indexes to Detect Grapevine Water Status in 

Vineyards. American Journal of Enology and Viticulture 58(3): 302-317. 

 

Rosell, J.R., J. Llorens, R. Sanz, J. Arno, M. Ribes-Dasi, J. Masip, A. Escola, F. Camp, F. 

Solanelles, F. Gracia, E. Gil, L. Val, S. Planas, and J. Palacin. 2009. Obtaining the 

three-dimensional structure of tree orchards from remote 2D terrestrial LiDAR 

scanning. Agricultural and Forest Meteorology 149: 1505–1515. 

 

Rosnell, T., and E. Honkavaara. 2012. Point cloud generation from aerial image data 

acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still 

camera. Sensors 12: 453-480. 

 

Rouse, J.W., R.H. Haas, J.A. Schell, and D.W. Deering. 1973. Monitoring Vegetation 

Systems in the Great Plains with ERTS. Proceedings of the Third Earth 

Resources Technology Satellite-1 Symposium NASA SP-351: 309-317. 

 

Sanz-Cortiella, R., J. Llorens-Calveras, A. Escola, J. Arno-Satorra, M. Ribes-Dasi, J. 

Masip-Vilalta, F. Camp, F. Gracia-Aguila, F. Solanelles-Batlle, S. Planas-

DeMarti, T. Palleja-Cabre, J. Palacin-Roca, E. Gregario-Lopez, I. Del-Moral-

Martinez, and J.R. Rosell-Polo. 2011. Innovative LiDAR 3D dynamic 

measurement system to estimate fruit-tree leaf area. Sensors 11: 5769-5791. 

 

Seidel, D., F. Beyer, D. Hertel, S. Fleck, and C. Leuschner. 2011. 3D-laser scanning: a 

non-destructive method for studying above-ground biomass and growth of 

juvenile trees. Agricultural and Forest Meteorology 151: 1305-1311. 

 

Smit, J.L., G. Sithole, and A.E. Strever. 2010. Vine Signal Extraction – an Application of 

Remote Sensing in Precision Viticulture. South African Journal of Enology & 

Viticulture 31(2): 65-74. 

 

Smith, G.M. and E.J. Milton. 1999. The use of the empirical line method to calibrate 

remotely sensed data to reflectance. International Journal of Remote Sensing 

20(13): 2653-2662. 

 

Snavely, N. 2008. Scene reconstruction and visualization from internet photo collections. 

Doctoral dissertation, University of Washington (USA). 

 

Snavely, N., S.M. Seitz, and R. Szeliski. 2008. Modeling the world from internet photo 

collections. International Journal of Computer Vision 80: 189-210. 

 



  

  

119 

Stamatiadis, S., D. Taskos, E. Tsadila, C. Christofides, C. Tsadilas, and J.S. Schepers. 

2010. Comparison of passive and active canopy sensors for the estimation of vine 

biomass production. Precision Agriculture 11: 306-315. 

 

Trolier, L.J., W.R. Philipson, and W.D. Philpot. 1989. Landsat TM analysis of vineyards 

in New York. International Journal of Remote Sensing 10: 1277-1281. 

 

Turner, D., A. Lucieer, and C. Watson. 2011. Development of an Unmanned Aerial 

Vehicle (UAV) for Hyper Resolution Mapping Based Visible, Multispectral, and 

Thermal Imagery. Proceedings of 34th International Symposium of Remote 

Sensing Environment. Sydney, Australia. 

 

Turner, D., A. Lucieer, and C. Watson. 2012. An automated technique for generating 

georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) 

imagery, based on structure from motion (SfM) point clouds. Remote Sensing 4: 

1392-1410. 

 

Wassenaar, T., J.M. Robbez-Masson, and P. Andrieux. 2002. Vineyard identification and 

description of spatial crop structure by per-field frequency analysis. International 

Journal of Remote Sensing 23: 3331-3325. 

 

Watkins, R.L. 1997. Vineyard site suitability in Eastern California. GeoJournal 43: 229-

239. 

 

Watts, A.C., V.G. Ambrosia, and E.A. Hinkley. 2012. Unmanned Aerial Systems in 

Remote Sensing and Scientific Research: Classification and Considerations of 

Use. Remote Sensing 4(6): 1671-1692. 

 

Weigend, G.G. 1954. The Basis and Significance of Viticulture in Southwest France. 

Annals of the Association of American Geographers 44: 75-101. 

 

Zarco-Tejada, P.J., A. Berjon, R. Lopez-Lozano, J.R. Miller,P. Martin, V. Cachorro, 

M.R. Gonzalez, and A. de Frutos. 2005. Assessing Vineyard Condition with 

Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-

Structured Discontinuous Canopy. Remote Sensing of Environment 99: 271-287. 

 

Zhao, K. and S.C. Popescu. 2009.  Lidar-based mapping of leaf area index and its use for 

validating GLOBCARBON satellite LAI product in a temperate forest of the 

southern USA. Remote Sensing of Environment 113: 1628-1645. 


