
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 180, pp. 1–18.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

BOUNDARY CONTROLLABILITY AND OBSERVABILITY OF
COUPLED WAVE EQUATIONS WITH MEMORY

TI-JUN XIAO, ZHE XU

Abstract. In this article we consider the controllability for a system of cou-

pled wave equations with memory. We reduce the control problem to a moment
problem which can be solved by showing the Riesz property of the associated

families of functions. In that way, we obtain (direct or indirect) boundary

observability inequalities and boundary controllability of the system.

1. Introduction

This article concerns the controllability and observability of the system

utt(x, t)− uxx(x, t)−
∫ t

0

(uxx(x, s)− βy(x, s))N(t− s)ds+ αy(x, t) = 0,

ytt(x, t)− yxx(x, t)−
∫ t

0

(yxx(x, s)− βu(x, s))N(t− s)ds+ αu(x, t) = 0,
(1.1)

subject to initial and Dirichlet-Neumann boundary conditions
u(x, 0) = u0, y(x, 0) = y0, ut(x, 0) = u1, yt(x, 0) = y1,

u(0, t) = g(t), y(0, t) = f(t), ux(π, t) = yx(π, t) = 0,
(1.2)

where α, β ∈ R (the set of real numbers) are the coupling coefficients, N(t) the
memory kernel, and f(t), g(t) the control functions. Models of this type are of
interest in vibrating problems in relation to viscoelastic material, see for example
[11, 12, 13, 14, 15].

When the memory terms are absent (i.e. N(·) = 0), controllability properties
of the coupled equations (1.1) with Dirichlet boundary conditions are discussed in
[3]; with an explicit analytic condition (which is necessary and sufficient) on the
coupling coefficient, the authors use the method of moments to establish indirect
exact boundary controllability of the system. See also the earlier work [1] for the
boundary controllability of an abstract system of two coupled second order evolution
equations (without memory either) by means of a two level energy method, under
the smallness condition on the coupling coefficient.

The controllability of single equations with memory has been studied in many
papers. We would like to mention specially the papers [2, 12, 14, 15], where the
controllability problems are reduced to moment problems. By showing the Riesz
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property of associated function families, the authors prove the controllability of the
systems.

The control problems for coupled string − beam equations with memory are
investigated in [13]. In their model, the memory kernel is of the exponential form
and the controls act on the boundary points of both string and beam. Reachability
results are obtained by writing the solutions of the system as Fourier series and
then showing Ingham type estimates.

In this article, we combine and adapt the ideas and methods from [2, 3, 12, 14, 15]
to study the controllability of the coupled memory system (1.1). We consider two
cases; one involves two controls f and g, and the other only involves one control g.
We will illustrate the difference between the two cases.

As will be seen, we consider the existence of solutions in a weak form, because
the control functions may be rough. For general study on the existence of solutions
to equations with memory, we refer to some related results in [5, 6, 7, 8, 9, 16]. It
is known that exact controllability implies stabilizability in linear cases. We also
refer the reader to [7, 8, 9, 10, 11] for more information about the stability and
perturbation results for equations with memory.

This article is organized as follows. In Section 2, we state our main theorems.
In Section 3, we reduce the control problem of system (1.1)-(1.2) to a moment
problem and give proofs of Theorems 2.4 and 2.5 for controllability and observability
when we have two control functions. In Section 4, we prove Theorems 2.6 and 2.7
regarding the case when we have only one control function.

2. Main results

Let

H = L2(0, π), V = {v ∈ H1(0, π), v(0) = 0}. (2.1)

There is a natural continuous embedding V ⊂ H, which leads to the natural em-
bedding of H into the dual space V ′.

First we give a lemma for defining the weak solution of (1.1)-(1.2) with controls
on the boundary.

Lemma 2.1. Suppose that u1, y1 ∈ V and

u0, y0 ∈ H2(0, π) with u0(0) = y0(0) = u′0(π) = y′0(π) = 0.

Let (u, y) be the classical solution of system (1.1)-(1.2) with f(t), g(t) ≡ 0. Then

‖ux(0, t)‖2L2(0,T ) + ‖yx(0, t)‖2L2(0,T ) ≤ C(‖u0‖2V + ‖u1‖2H + ‖y0‖2V + ‖y1‖2H),

‖ux(0, t)‖2L2(0,T ) ≤ C(‖u0‖2V + ‖u1‖2H + ‖y0‖2H + ‖y1‖2V ′),

where C is a constant independent of the initial data.
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We present the proof at the end of Section 3. Now consider the dual problem

utt(x, t)− uxx(x, t)−
∫ T

t

uxx(x, s)N(s− t)ds

+ αy(x, t) + β

∫ T

t

y(x, s)N(s− t)ds = 0,

ytt(x, t)− yxx(x, t)−
∫ T

t

yxx(x, s)N(s− t)ds

+ αu(x, t) + β

∫ T

t

u(x, s)N(s− t)ds = 0,

u(x, T ) = u0, ut(x, T ) = u1, y(x, T ) = y0, yt(x, T ) = y1,

u(0, t) = ux(π, t) = y(0, t) = yx(π, t) = 0.

(2.2)

Let u, y be the solutions of (1.1)-(1.2) with null initial data, multiply the equations
in u, y by u, y respectively, and integrate them over (0, T ) × (0, π). After some
computations, we obtain

−
∫ π

0

u(T )u1 + y(T )y1 − ut(T )u0 − yt(T )y0dx =
∫ T

0

g(t)ϕ1(t) + f(t)ϕ2(t)dt,

where

ϕ1(t) := ux(0, t) +
∫ T

t

N(s− t)ux(0, s)ds,

ϕ2(t) := yx(0, t) +
∫ T

t

N(s− t)yx(0, s)ds.

This suggests the following definition (see [9] for weak solutions of the systems
without memory).

Definition 2.2. Let T > 0, and g, f ∈ L2(0, T ). We say that (u, y) is a (weak)
solution of (1.1)-(1.2) with null initial data, if u, y ∈ C([0, T ];H) ∩ C1([0, T ];V ′)
and satisfy

− (u(S), u1)− (y(S), y1) + 〈ut(S), u0〉+ 〈yt(S), y0〉

=
∫ S

0

g(t)ϕ1(t)dt+
∫ S

0

f(t)ϕ2(t)dt,
(2.3)

for any S > 0 and any functions u0, u1, y0, y1 ∈ C∞c (0, π), where (u, y) is the
solution of (2.2), and (·, ·) and 〈·, ·〉 denote the inner product in H and the duality
pairing between V and V ′ respectively.

From (2.3), we can deduce (by applying Lemma 2.1 to the dual system (2.2))
that for any T > 0, there is a constant C > 0 such that

sup
t∈[0,T ]

(‖u(t)‖H + ‖ut(t)‖V ′ + ‖y(t)‖H + ‖yt(t)‖V ′)

≤ C(‖g‖L2(0,T ) + ‖f‖L2(0,T )),

and, when f(t) ≡ 0,

sup
t∈[0,T ]

(‖u(t)‖H + ‖ut(t)‖V ′ + ‖y(t)‖V + ‖yt(t)‖H) ≤ C‖g‖L2(0,T ).

The above observation leads to the following existence and uniqueness theorem.
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Theorem 2.3. Let T > 0, and g, f ∈ L2(0, T ). Then system (1.1)-(1.2) with null
initial data has a unique (weak) solution (u, y). Moreover, if f(t) ≡ 0, we have
y ∈ C([0, T ];V ) ∩ C1([0, T ];H).

Now we state our theorem for the controllability of the system with two controls.

Theorem 2.4. Let T ≥ 2π and N(t) ∈ H2(0, T ). Then (1.1)-(1.2) is exactly
controllable on the time interval [0, T ] and the control space is H × V ′ ×H × V ′.
That is, for any given final state (ξ0, ξ1, η0, η1) ∈ H × V ′ ×H × V ′ we can choose
suitable g(t), f(t) ∈ L2(0, T ) such that the solution of (1.1)-(1.2) with null initial
data satisfies (u(T ), ut(T ), y(T ), yt(T )) = (ξ0, ξ1, η0, η1).

We can also get the observability of the system.

Theorem 2.5. Let T ≥ 2π, and (u, y) solve (1.1)-(1.2) with

(u0, u1, y0, y1) ∈ V ×H × V ×H, and f(t), g(t) ≡ 0.

Then we have the observability inequality

‖ux(0, ·)‖2L2(0,T ) + ‖yx(0, ·)‖2L2(0,T )

≥ C‖u0‖2V + ‖u1‖2H + ‖y0‖2V + ‖y1‖2H ,
where C is a positive constant independent of the initial data.

The following two theorems are for the case of only involving one control. As
can be seen, the control space for y (resp. u) is smaller (resp. the same), and the
least control time is larger.

We assume that the coupling coefficients α and β are equal, and

(n− 1
2

)2 + α 6= (m− 1
2

)2 − α, (2.4)

for any m,n ∈ N.

Theorem 2.6. Let (2.4) hold and f(t) ≡ 0. Suppose that T ≥ 4π and N(t) ∈
H3(0, T ). Then (1.1)-(1.2) is exactly controllable on time interval [0, T ] and the
control space is H × V ′× V ×H. That is, for any given final state (ξ0, ξ1, η0, η1) ∈
H × V ′ × V × H we can choose suitable g(t) ∈ L2(0, T ) such that the solution of
(1.1)-(1.2) with null initial data satisfies (u(T ), ut(T ), y(T ), yt(T )) = (ξ0, ξ1, η0, η1).

Theorem 2.7. Let assumption (2.4) hold, T ≥ 4π, and u, y solve (1.1)-(1.2) with

(u0, u1, y0, y1) ∈ V ×H ×H × V ′, and f(t), g(t) ≡ 0.

Then we have the observability inequality

‖ux(0, t)‖2 ≥ C‖u0‖2V + ‖u1‖2H + ‖y0‖2H + ‖y1‖2V ′ ,

where C is a positive constant independent of the initial data.

3. Reduction to a moment problem

In this section, we transform the control problem to a moment problem. First,
we define an operator A on H by

A = − d2

dx2
, with D(A) := H2(0, π) ∩ V.

Write

φn(x) :=

√
2
π

sin(n− 1
2

)x, λn := (n− 1
2

)2, µn := n− 1
2
,



EJDE-2018/180 BOUNDARY CONTROLLABILITY AND OBSERVABILITY 5

for n ∈ N (the set of positive integers). It is easy to see that λn and φn(x) are
respectively the eigenvalues and the corresponding normalized eigenfunctions of
operator A, and {φn}n∈N forms an orthogonal basis in H. Hence, letting (u, y)
be the solution of (1.1) with null initial data, we see that there exist {ωn}n∈N,
{ω′n}n∈N, {υn}n∈N and {υ′n}n∈N such that

u(x, t) =
+∞∑
n=1

ωn(t)φn(x), ut(x, t) =
+∞∑
n=1

ω′n(t)φn(x),

y(x, t) =
+∞∑
n=1

υn(t)φn(x), yt(x, t) =
+∞∑
n=1

υ′n(t)φn(x).

(3.1)

Observe that

(Au, φn)H = −µn

√
2
π
g(t) + λnωn(t), n ≥ 1,

(Ay, φn)H = −µn

√
2
π
f(t) + λnυn(t), n ≥ 1,

by integration by parts and the boundary condition in (1.2). Then, multiplying the
equations in (1.1) by φn(x) and using (3.1), we know that ωn(t) and υn(t) satisfy

ω′′n(t) + λnωn(t) + λn

∫ t

0

N(t− s)ωn(s)ds+ αυn(t)

+ β

∫ t

0

N(t− s)υn(s)ds = µng̃(t),

ωn(0) = ω′(0) = 0,

υ′′n(t) + λnυn(t) + λn

∫ t

0

N(t− s)υn(s)ds+ αωn(t)

+ β

∫ t

0

N(t− s)ωn(s)ds = µnf̃(t),

υn(0) = υ′(0) = 0,

(3.2)

where

g̃(t) :=

√
2
π

(
g(t) +

∫ t

0

N(t− s)g(s)ds
)
,

f̃(t) :=

√
2
π

(
f(t) +

∫ t

0

N(t− s)f(s)ds
)
.

(3.3)

Clearly, for any given T > 0, the above two maps g → g̃ and f → f̃ are both
bounded and boundedly invertible in L2(0, T ).

Set
an(t) = ωn(t) + υn(t), bn(t) = ωn(t)− υn(t), (3.4)

ĝ(t) = g̃(t) + f̃(t), and f̂(t) = g̃(t)− f̃(t). Obviously

a′′n(t) + λ1nan(t) + (λn + β)
∫ t

0

N(t− s)an(s)ds = µnĝ(t),

an(0) = a′n(0) = 0,
(3.5)
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b′′n(t) + λ2nbn(t) + (λn − β)
∫ t

0

N(t− s)bn(s)ds = µnf̂(t),

bn(0) = b′n(0) = 0,
(3.6)

where λ1n := λn + α, λ2n := λn − α for all n ≥ 1. Therefore,

an(t) =
∫ t

0

e1n(t− s)ĝ(s)ds, a′n(t) =
∫ t

0

e2n(t− s)ĝ(s)ds,

bn(t) =
∫ t

0

s1n(t− s)f̂(s)ds, b′n(t) =
∫ t

0

s2n(t− s)f̂(s)ds,

where e2n(t) := e′1n(t), s2n(t) := s′1n(t), and e1n(t) and s1n(t) are respectively the
solutions to the corresponding homogeneous equations of (3.5) and (3.6) with initial
data

e1n(0) = 0, e′1n(0) = µn, s1n(0) = 0, s′1n(0) = µn.

Next, we show the connection of the controllability of system (1.1)-(1.2) with
some moment problem. Let T > 0. For any given final states ξ0(x), η0(x) ∈ H and
ξ1(x), η1(x) ∈ V ′, we have

u(x, T ) = ξ0(x) =
+∞∑
n=1

ξ0nφn(x), ut(x, T ) = ξ1(x) =
+∞∑
n=1

ξ1nφn(x),

y(x, T ) = η0(x) =
+∞∑
n=1

η0nφn(x), yt(x, T ) = η1(x) =
+∞∑
n=1

η1nφn(x),

where

ξ0n := (ξ0, φn)L2(0,π), ξ1n := (ξ1, φn)L2(0,π),

η0n := (η0, φn)L2(0,π), η1n := (η1, φn)L2(0,π).

It is easy to see that {ξ0n}, { ξ1n

µn
}, {β0n}, {β1n

µn
} are all in l2. We write

e±n(t) =
1
µn
e2n(t)± e1n(t)i, z±1n =

1
µn
ξ1n ± ξ0ni,

s±n(t) =
1
µn
s2n(t)± s1n(t)i, z±2n =

1
µn
ξ1n ± η0ni.

Then, e±n(t) and s±n(t) solve respectively the equations

e′′±n(t) + λ1ne±n(t) + (λn + β)
∫ t

0

N(t− s)e±n(s)ds = 0, (3.7)

s′′±n(t) + λ2ns±n(t) + (λn − β)
∫ t

0

N(t− s)s±n(s)ds = 0, (3.8)

with the initial conditions

e±n(0) = s±0(0) = 1, e′±n(0) = s′±0(0) = ±µni. (3.9)

This leads to the moment problem

z±1n + z±2n =
∫ T

0

e±n(T − s)ĝ(s)ds, (3.10)

z±1n − z±2n =
∫ T

0

s±n(T − s)f̂(s)ds. (3.11)
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So, proving that system (1.1)-(1.2) is controllable and the control space is H×V ′×
H × V ′ is equivalent to finding g, f such that (3.10) and (3.11) are satisfied, i.e.,
the above moment problem being solvable.

To deal with the moment problem (3.10)-(3.11), it suffices to show the Riesz
property of families {e±n(t)} and {s±n(t)}. There are several equivalent ways to
define Riesz sequences, we use the following.

Definition 3.1. Let {βn} be a sequence in a Hilbert space H. We say {βn} is a
Riesz sequence, if there exist m,M > 0 such that

m‖αn‖l2 ≤ ‖
∑

αnβn‖H ≤M‖αn‖l2

whenever {αn} ∈ l2. If {βn} is complete in H, we call it a Riesz basis.

Note that {e±n(t)} and {s±n(t)} solve the equations (3.7), (3.8) with initial
conditions in (3.9). The Riesz property of the families which solve similar equations
has been studied in [12, 2], and the following result can be obtained in the same
way.

Proposition 3.2. For any given T ≥ 2π, {e±n(t)} and {s±n(t)} are both Riesz
sequences in L2(0, T ).

Clearly, this proposition justifies Theorem 2.4. To derive Theorem 2.5, we shall
use the property of Riesz sequences. When (u, y) is the solution of (1.1)-(1.2), we
know that ωn(t) and υn(t) solve (3.2) with the null initial data replaced by

ωn(0) = α0n, ω′n(0) = α1n, υn(0) = β0n, υ′n(0) = β1n,

where

α0n := (u0, φn)L2(0,π), α1n := (u1, φn)L2(0,π),

β0n := (y0, φn)L2(0,π), β1n := (y1, φn)L2(0,π),

and that

‖u0‖2V + ‖u1‖2H + ‖y0‖2V + ‖y1‖2H
� ‖µnα0n‖2l2 + ‖α1n‖2l2 + ‖µnβ0n‖2l2 + ‖β1n‖2l2 .

Noticing the definitions of e±n(t) and s±n(t), we deduce that

ωn(t)

=
1
4

{[
(α0n + β0n)− (α1n + β1n)

n
i
]
en(t) +

[
(α0n + β0n) +

(α1n + β1n)
n

i
]
e−n(t)

+
[
(α0n − β0n)− (α1n − β1n)

n
i
]
sn(t) +

[
(α0n − β0n) +

(α1n − β1n)
n

i
]
s−n(t)

}
,

and

υn(t)

=
1
4

{[
(α0n + β0n)− (α1n + β1n)

n
i
]
en(t) +

[
(α0n + β0n) +

(α1n + β1n)
n

i
]
e−n(t)

−
[
(α0n − β0n)− (α1n − β1n)

n
i
]
sn(t)−

[
(α0n − β0n) +

(α1n − β1n)
n

i
]
s−n(t)

}
.

Accordingly, when T ≥ 2π, using the Riesz property of e±n(t) and s±n(t) we obtain

m(‖u0‖2V + ‖u1‖2H + ‖y0‖2V + ‖y1‖2H)
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≤
∫ T

0

|ux(0, t)|2 + |yx(0, t)|2dt

≤M(‖u0‖2V + ‖u1‖2H + ‖y0‖2V + ‖y1‖2H).

It is clear that the second inequality is still valid when T < 2π; thus we have shown
Theorem 2.5 and the first part of Lemma 2.1.

4. Proofs of Theorems 2.6 and 2.7

First, we state the moment problem related to the control problem when f(t) ≡ 0.
It is easy to see that in this case, under Assumption (2.4), e±n(t) and s±n(t) satisfy

e′′±n(t) + λ1ne±n(t) + λ1n

∫ t

0

N(t− s)e±n(s)ds = 0, (4.1)

s′′±n(t) + λ2ns±n(t) + λ2n

∫ t

0

N(t− s)s±n(s)ds = 0, (4.2)

with the initial conditions

e±n(0) = s±0(0) = 1, e′±n(0) = s′±0(0) = ±µni. (4.3)

By hypothesis, ξ0(x) ∈ H, ξ1(x) ∈ V ′, and η0(x) ∈ V , η1(x) ∈ H; so {z±1n,
µnz±2n} ∈ l2. Thus the moment problem is as follows

z±1n =
1
2

∫ T

0

(e±n(T − s) + s±n(T − s))g̃(s)ds, (4.4)

µnz±2n =
1
2

∫ T

0

µn(e±n(T − s)− s±n(T − s))g̃(s)ds. (4.5)

Since we have only one control g(t), we have to prove the Riesz property of the
function family {1

2
(e±n(t) + s±n(t)),

µn
2

(e±n(t)− s±n(t))
}
.

Theorem 4.1. Let assumption 2.4 be satisfied, {e±n(t)} and {s±n(t)} solve the
equations (4.1) and (4.2) respectively with the initial condition (4.3). Then{1

2
(e±n(t) + s±n(t)),

µn
2

(e±n(t)− s±n(t))
}

is a Riesz sequence in L2(0, T ) when T ≥ 4π.

Remark 4.2. As in Section 3, we can prove Theorem 2.7 and the second inequality
in Lemma 2.1 by using Theorem 4.1.

Before proving Theorem 4.1, we state two definitions.

Definition 4.3. We say two sequences {en}, {zn} in a Hilbert space are quadrat-
ically close when ∑

‖en − zn‖2 < +∞.

Definition 4.4. A sequence {en} in a Hilbert space is said to be ω-independent if

{en} ∈ l2 and
∑

αnen = 0

implies αn = 0 for all n.
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Our proof is based on Bari’s theorem [4, 17], which is as follows (with a slight
changes).

Theorem 4.5. Let {un}n≥1 be an ω-independent sequence in H, and let {vn}n≥n0

(for some n0 ∈ N) is a Riesz sequence in H. If {un}n≥n0 is quadratically close to
{vn}n≥n0 , then {un}n≥1 is also a Riesz sequence in H.

By Assumption 2.4, it is clear that λ1n 6= λ2m and there exists n0 ∈ N such that
λ1n, λ2n > 0 when n ≥ n0.

Now we begin our proof of Theorem 4.1. First we prove the quadratic closeness
for n ≥ n0. Set

v =
N(0)

2
, w1n =

√
λ1n, δ±1n(t) := e±n(t)− e±iw1nt+vt, n ≥ n0.

By equation (4.1) with initial condition (4.3), when n ≥ n0 we obtain

en(t) = eiw1nt+c1neiw1nt−c1ne−iw1nt−w1n

∫ t

0

sinw1n(t−s)
∫ s

0

N(s−r)en(r) dr ds,

where
c1n :=

µn − w1n

2w1n
.

Thus, integration by parts gives

en(t) = eiw1nt + p1n(t) +
∫ t

0

N∗1n(t− s)en(s)ds,

where

p1n(t) := c1ne
iw1nt − c1ne−iw1nt,

N∗1n(t) := N(0) cosw1nt−N(t) +
∫ t

0

cosw1n(t− s)N ′(s)ds.

Using Gronwall’s inequality we have

|en(t)| ≤ C1, ∀t ∈ [0, T ]. (4.6)

Also, we see that

δ1n(t) = p1n(t) + q1n(t) + r1n(t) +
∫ t

0

N∗1n(t− s)δ1n(s)ds,

where

q1n(t) :=
v(e(iw1n+v)t − e−iw1nt)

2iw1n + v
− N(0)
iw1n + v

e(iw1n+v)t

+
N(t)

iw1n + v
− 1
iw1n + v

∫ t

0

N ′(t− s)e(iw1n+v)sds,

r1n(t) :=
∫ t

0

∫ t−s

0

cosw1n(t− s− r)N ′(r)dre(iw1n+v)sds.

It is clear that

|p1n(t) + q1n(t) + r1n(t)| ≤ C2

µn
, ∀t ∈ [0, T ].

Therefore,

|δ1n(t)| ≤ C3

µn
, ∀t ∈ [0, T ], n ≥ n0. (4.7)
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The same can be done for δ−1n(t).
For s±n(t), we set

w2n =
√
λ2n, δ±2n = s±n(t)− e±iw2nt+vt, n ≥ n0.

Obviously,

sn(t) = eiw2nt + c2ne
iw2nt − c2ne−iw2nt

− w2n

∫ t

0

sinw2n(t− s)
∫ s

0

N(s− r)sn(r) dr ds,

and

δ2n(t) = p2n(t) + q2n(t) + r2n(t) +
∫ t

0

N∗2n(t− s)δ2n(s)ds,

where

c2n :=
µn − w2n

2w2n
, p2n(t) := c2ne

iw2nt − c2ne−iw2nt,

q2n(t) :=
v(e(iw2n+v)t − e−iw2nt)

2iw2n + v
− N(0)
iw2n + v

e(iw2n+v)t

+
N(t)

iw2n + v
− 1
iw2n + v

∫ t

0

N ′(t− s)e(iw2n+v)sds,

r2n(t) :=
∫ t

0

∫ t−s

0

cosw2n(t− s− r)N ′(r)dre(iw2n+v)sds,

N∗2n(t) := N(0) cosw2nt−N(t) +
∫ t

0

cosw2n(t− s)M ′(s)ds.

Then we obtain

|s±n(t)| ≤ C4, |δ±2n(t)| ≤ C5

µn
, ∀t ∈ [0, T ], n ≥ n0. (4.8)

Next, we focus on the sequence{1
2

(e±n(t) + s±n(t)),
µn
2

(e±n(t)− s±n(t))
}
.

For convenience, we set

z±1n(t) =
1
2

(e±n(t) + s±n(t)),

z±2n(t) =
µn
2

(e±n(t)− s±n(t)),

ε±1n(t) = z±1n(t)− e±(iw1n+v)t,

ε±2n(t) = z±2n(t)− µn
2

(
e±(iw1n+v)t − e(±iw2n+v)t

)
, n ≥ n0.

(4.9)

It is easy to see that when n ≥ n0,

ε1n(t) =
1
2

(
δ1n(t) + δ2n(t) + e(iw2n+v)t − e(iw1n+v)t

)
,

ε2n(t) =
µn
2

(δ1n(t)− δ2n(t)).

Since w1n − w2n = O( 1
µn

), we have

|ε1n(t)| ≤ C6

µn
, ∀t ∈ [0, T ], n ≥ n0. (4.10)
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To estimate ε2n(t), we observe that

ε2n(t) =
µn
2

(p1n(t)− p2n(t) + q1n(t)− q2n(t) + r1n(t)− r2n(t))

+
∫ t

0

N∗1n(t− s)ε2n(t) +
µn
2

∫ t

0

(N∗1n(t− s)−N∗2n(t− s))δ2n(s)ds.

Using (4.8) we have

|ε2n(t)| ≤ C7

µn
, ∀t ∈ [0, T ], n ≥ n0. (4.11)

The same can be done for ε−1n(t) and ε−2n(t).
Let T ≥ 4π. From [3, page 706], one knows that under assumption (2.4),{

sinw1nt,
sinw1nt− sinw2nt

w1n − w2n
, cosw1nt,

cosw1nt− cosw2nt

w1n − w2n

}
n≥n0

forms a Riesz sequence in L2(0, T ). Accordingly, noting w1n − w2n = O( 1
µn

), we
see that {

e±iw1nt,
µn
2

(e±iw1nt − e±iw2nt)
}
n≥n0

is also a Riesz sequence in L2(0, T ); hence so is{
e(±iw1n+v)t,

µn
2

(e(±iw1n+v)t − e(±iw2n+v)t)
}
n≥n0

.

This family and {z±1n, z±2n}n≥n0 are quadratically close by (4.10) and (4.11). The
following lemma (due to Paley and Wiener) will be helpful.

Lemma 4.6. If {en} is quadratically close to a Riesz sequence {zn}, then there
exists N ≥ 1 such that {en : n ≥ N} is also a Riesz sequence.

According to this lemma, there exists N0 ≥ n0 such that {z±1n, z±2n}n≥N0 is a
Riesz sequence in L2(0, T ) when T ≥ 4π.

Next we derive asymptotic representations for ε′±1n(t) and ε′±2n(t). First we
calculate the derivative of δ1n(t):

p′1n(t) = iw1nc1ne
iw1nt + iw1nc1ne

−iw1nt,

q′1n(t) =− 3N(0)
4

e(iw1n+v)t +
N(0)

4
e−iw1nt +

v2

4iw1n +N(0)
e(iw1n+v)t

− v2

4iw1n +N(0)
e−iw1nt −

∫ t

0

N ′(t− s)e(iw1n+v)sds,

r′1n(t) =
N ′(0)
N(0)

(
e(iw1n+v)t − eiw1nt

)
+

N ′(0)
4iw1n +N(0)

(
e(iw1n+v)t − e−iw1nt

)
+
∫ t

0

cosw1n(t− s)
∫ s

0

N ′′(s− r)e(iw1n+v)r dr ds.

Then, we find

δ′1n(t) = D1e
iw1nt +D2e

−iw1nt +D3e
(iwn+v)t

+
∫ t

0

N∗1n(t− s)δ′1n(s)ds+ χ1n(t),
(4.12)
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where D1, D2, D3 are constants, and χ1n(t) is such that

|χ1n(t)| ≤ C8

µn
, ∀t ∈ [0, T ], n ≥ n0.

Next we divide δ′1n(t) into three parts:

δ′1n(t) = D1σ1n(t) +D2η1n(t) +D3ς1n(t) + ζ1n(t),

where

ζ1n(t) := χ1n(t) +
∫ t

0

N∗1n(t− s)ζ1n(s)ds, (4.13)

σ1n(t) := eiw1nt +
∫ t

0

N∗1n(t− s)σ1n(s)ds, (4.14)

η1n(t) := e−iw1nt +
∫ t

0

N∗1n(t− s)η1n(s)ds, (4.15)

ς1n(t) := e(iw1n+v)t +
∫ t

0

N∗1n(t− s)ς1n(s)ds. (4.16)

It is clear that

|ζ1n(t)| ≤ C9

µn
, ∀t ∈ [0, T ], n ≥ n0. (4.17)

Since σ1n(t) and η1n(t) have the same form as δ1n(t), we have

D1σ1n(t) +D2η1n(t) = D1e
(iw1n+v)t +D2e

(−iw1n+v)t + κ1n(t),

where κ1n(t) satisfies

|κ1n(t)| ≤ C10

µn
, ∀t ∈ [0, T ], n ≥ n0,

and ς1n(t) has the estimate

|ς1n(t)| ≤ C11, ∀t ∈ [0, T ], n ≥ n0. (4.18)

Computing ς1n(t) term by term we have

ς1n(t) = ς11n(t) + ς21n(t) + ς31n(t),

where

ς11n(t) := −
∫ t

0

N(t− s)ς1n(s)ds,

ς21n(t) :=
∫ t

0

∫ t−s

0

cosw1n(t− s− r)N ′(r)drς1n(s)ds,

ς31n(t) := e(iw1n+v)t +N(0)
∫ t

0

cosw1n(t− s)ς1n(s)ds.

By (4.18),

|ς11n(t)| ≤ C12, |ς21n(t)| ≤ C12

µn
, ∀t ∈ [0, T ], n ≥ n0. (4.19)

Noting the above estimates we deduce that

ς31n(t) = e(iw1n+v)t +N(0)
∫ t

0

cosw1n(t− s)ς31n(s)ds+ %1n(t),
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where

%1n(t) := N(0)
∫ t

0

cosw1n(t− s)(ς11n(s) + ς21n(s))ds.

Hence, combining (4.18) and (4.19) yields

|%1n| ≤
C13

µn
, ∀t ∈ [0, T ], n ≥ n0.

Now, separate ς31n(t) into two parts. One of them has the order O( 1
µn

), and the
other satisfies

θ1n(t) = e(iw1n+v)t +N(0)
∫ t

0

cosw1n(t− s)θn(s)ds.

To find out the exact form of θ1n(t), we introduce the integral operator

P1n(p) := N(0)
∫ t

0

cosw1n(t− s)p(s)ds.

Clearly,
(I − P1n)θ1n = e(iw1n+v)t;

then we can construct θ1n(t) by the convergent iteration series

θ1n(t) =
+∞∑
k=0

P k1ne
(iw1n+v)t, (4.20)

with the help of consecutive applications of the operator Pn. Then, we see that

θn(t) = O(
1
µn

) + eiw1nt
+∞∑
i=0

+∞∑
j=i

(vt)j

j!

= O(
1
µn

) + eiw1nt(
+∞∑
i=0

(vt)i

i!
(i+ 1))

= O(
1
µn

) + eiw1nt(evt + vtevt).

For ς11n(t) we have

ς11n(t) = −
∫ t

0

N(t−s)ς11n(s)ds−
∫ t

0

N(t−s)
(
e(iw1n+v)s + vse(iw1n+v)s

)
ds+O(

1
µn

);

thus

|ς11n(t)| ≤ C14

µn
, ∀t ∈ [0, T ], n ≥ n0.

By now we have made every term of δ′1n(t) clear, and δ′1n(t) can be written in the
form

δ′1n(t) = Q1e
(−iw1n+v)t +Q2e

(iw1n+v)t +Q3e
(iw1n+v)tt+O(

1
µn

), n ≥ n0 (4.21)

(Q1, Q2, Q3 being constants); the same can be done for δ′2n(t), and we can get

δ′2n(t) = Q1e
(−iw2n+v)t +Q2e

(iw2n+v)t +Q3e
(iw2n+v)tt+O(

1
µn

), n ≥ n0. (4.22)

Thus,

ε′1n(t) =Q1e
(−iw1n+v)t +Q2e

(iw1n+v)t +Q3e
(iw1n+v)tt



14 T.-J. XIAO, Z. XU EJDE-2018/180

+
µn
2

(
e(iw2n+v)t − e(iw1n+v)t

)
+O(

1
µn

), n ≥ n0.

To give the asymptotic representations for ε′2n(t), we estimate

δ′1n(t)− δ′2n(t) = D1(σ1n(t)− σ2n(t)) +D2(η1n(t)− η2n(t))

+D3(ς1n(t)− ς2n(t)) + ζ1n(t)− ζ2n(t).

Noticing (4.14), (4.15), we infer that

σ1n(t)− σ2n(t) = e(iw1n+v)t − e(iw2n+v)t +O(
1
µ2
n

),

η1n(t)− η2n(t) = e(−iw1n+v)t − e(−iw2n+v)t +O(
1
µ2
n

).

Computing χ1n(t) in (4.12) and combining (4.13), we obtain

ζ1n(t)− ζ2n(t) = O(
1
µ2
n

).

We estimate ς1n(t)−ς2n(t) step by step similarly to the estimate for ς1n(t). First,
since

ς1n(t) = e(iw1n+v)t + vte(iw1n+v)t +O(
1
µn

),

ς2n(t) = e(iw2n+v)t + vte(iw2n+v)t +O(
1
µn

),

it follows that

|ς1n(t)− ς2n(t)| = O(
1
µn

), (4.23)

|ς11n(t)− ς12n(t)| = O(
1
µn

). (4.24)

Then we have

ς21n(t)− ς22n(t) =
∫ t

0

∫ t−s

0

(cosw1n(t− s− r)− cosw2n(t− s− r))N ′(r)drς1n(s)ds

+
∫ t

0

∫ t−s

0

cosw2n(t− s− r)N ′(r)dr(ς1n(s)− ς1n(s))ds;

it is clear that the second term is O( 1
µ2

n
). Also,∫ t

0

∫ t−s

0

(cosw1n(t− s− r)− cosw2n(t− s− r))N ′(r)drς1n(s)ds

=
∫ t

0

( 1
w1n

sinw1n(t− s)− 1
w2n

sinw2n(t− s)
){
N ′(0)ς1n(s)

+
∫ t

0

N ′′(s− r)ς1n(r)dr
}
ds.

Therefore,

|ς21n(t)− ς22n(t)| = O(
1
µ2
n

). (4.25)

Thus, using (4.23)-(4.25) we obtain

ς31n(t)− ς32n(t) = θ1n(t)− θ2n(t) +O(
1
µ2
n

).
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Computing the convergent iteration series (4.20) and omitting the terms of the
order O( 1

µ2
n

); we have

θ1n(t)− θ2n(t) = e(iw1n+v)t − e(iw2n+v)t + vt(e(iw1n+v)t

− e(iw2n+v)t) +O(
1
µ2
n

).
(4.26)

Using (4.24)-(4.26) we have

|ς11n(t)− ς12n(t)| = O(
1
µ2
n

). (4.27)

The above estimates imply that

ς1n(t)− ς2n(t) = e(iw1n+v)t − e(iw2n+v)t

+ vt
(
e(iw1n+v)t − e(iw2n+v)t

)
+O(

1
µ2
n

).
(4.28)

Therefore,

ε′2n(t)

= S1µn

(
e(−iw1n+v)t − e(−iw2n+v)t)

)
+ S2µn

(
e(iw1n+v)t − e(iw2n+v)t)

)
+ vtS3µn

(
e(iw1n+v)t − e(iw2n+v)t

)
+O

( 1
µn

)
,

(4.29)

where S1, S2, S3 are constants. Since the memory kernel N(t) ∈ H3(0, T ), we can
also estimate ε(2)1n (t), ε(2)2n (t) and ε

(3)
1n (t), ε(3)2n (t) (:= ε′′′2n(t)). The asymptotic repre-

sentations are given by

ε
(k)
1n (t) = µk−1

n

(
Q1ke

(−iw1n+v)t +Q2ke
(iw1n+v)t +Q3ke

(iw1n+v)tt
)

+Q4k
µn
2

(
e(iw2n+v)t − e(iw1n+v)t

)
+O

( 1
µn

)
, n ≥ n0,

ε
(k)
2n (t) = µk−1

n

(
S1kµn(e(−iw1n+v)t − e(−iw2n+v)t)

)
+ S2kµn

(
e(iw1n+v)t − e(iw2n+v)t)

)
+ vtS3kµn

(
e(iw1n+v)t − e(iw2n+v)t

)
+O

( 1
µn

)
, n ≥ n0;

(4.30)

where, k = 2, 3, and Qik, Sjk (i = 1, . . . , 4; j = 1, . . . 3) are constants.
Also, the same results can be proved for ε−1n(t) and ε−2n(t). Next we prove the

ω-independence of {z±1n(t), z±2n(t)}. Let {α±n, β±n} ∈ l2 satisfy∑
α±nz±1n(t) + β±nz±2n(t) = 0.

Then ∑
γ±ne±n(t) + η±ns±n(t) = 0,

where

γ±n :=
1
2
α±n +

µn
2
β±n, η±n :=

1
2
α±n −

µn
2
β±n,

and
α±n = β±n = 0 ⇐⇒ γ±n = η±n = 0.



16 T.-J. XIAO, Z. XU EJDE-2018/180

We set

z̃±1n(t) = e(iw1n+v)t, z̃±2n(t) = µn(e(±iw1n+v)t − e(±iw2n+v)t), n ≥ n0,

and

G(t) =
∑
n≥n0

α±nz̃±1n(t) + β±nz̃±2n(t)

=−
∑
n≥n0

α±nε±1n(t) + β±nε±2n(t)−
∑
n<n0

α±nz±1n(t) + β±nz±2n(t).

Using the representations for {ε±1n(t), ε±2n(t)}n≥n0 we have

G(t) ∈ L2(0, T ) and {α±n, β±n} ∈ l2.

Recall that when T ≥ 4π, {z̃±1n(t), z̃±2n(t)}n≥n0 forms a Riesz sequence in L2(0, T ),
and use the representation for {ε′±1n(t), ε′±2n(t)}n≥n0 ; then we obtain

G′(t) =
∑
n≥n0

((±iw1n + v)α±n ± i(w1n − w2n)µnβ±n)z̃±1n(t)

+ (±iw2n + v)β±nz̃±2n(t) ∈ L2(0, T ),

which implies {µnα±n, µnβ±n} ∈ l2.
By the derived representations of {ε(k)±1n(t), ε(k)±2n(t)} for k = 2, 3, we deduce that

{µ3
nα±n, µ

3
nβ±n} ∈ l2 and {µ2

nγ±n, µ
2
nη±n} ∈ l2.

Now, using the equations (4.1) and (4.2) for {e±n(t), s±n(t)} yields∑
λ1nγ±ne±n(t) + λ2nη±ns±n(t)

+
∫ t

0

N(t− s)
∑

λ1nγ±ne±n(s) + λ2nη±ns±n(s)ds = 0.

This implies ∑
λ1nγ±ne±n(t) + λ2nη±ns±n(t) = 0,

and so ∑
(λ1n − λ11)γ±ne±n(t) + (λ2n − λ11)η±ns±n(t) = 0.

Setting γ(1)
±n = (λ1n − λ11)γ±n and η

(1)
±n = (λ2n − λ11)η±n, we have∑

γ
(1)
±ne±n(t) + η

(1)
±ns±n(t) = 0,∑

α
(1)
±nz±1n(t) + β

(1)
±nz±2n(t) = 0,

where

α
(1)
±n := γ

(1)
±n + η

(1)
±n, β

(1)
±n :=

1
µn

(γ(1)
±n − η

(1)
±n).

Similarly, we obtain∑
(λ1n − λ21)γ(1)

±ne±n(t) + (λ2n − λ21)η(1)
±ns±n(t) = 0.

Thus for any k ≥ 1, we can construct

γ
(2k)
±n =

∏
i=1,2, j≤k

(λ1n − λij)γ±n, η
(2k)
±n =

∏
i=1,2, j≤k

(λ2n − λij)η±n,



EJDE-2018/180 BOUNDARY CONTROLLABILITY AND OBSERVABILITY 17

such that ∑
n>k

γ
(2k)
±n e±n(t) + η

(2k)
±n s±n(t) = 0. (4.31)

Let k = N0 in (4.31). Recalling that {z±1n(t), z±2n(t)}n≥N0 is a Riesz sequence
in L2(0, T ), using (4.9), and noting assumption (2.4), we can deduce that γ±n =
η±n = 0 for all n > N0. Hence∑

n≤N0

γ±ne±n(t) + η±ns±n(t) = 0.

The linear independence of the finite sequence {e±n(t), s±n(t)}n≤N0 is easy to see;
so we have

γ±n = η±n = 0, ∀n ≤ N0.

Thus, we derive the ω−independence of {z±1n(t), z±2n(t)}. The proof is complete.
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