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BOUNDARY CONTROLLABILITY AND OBSERVABILITY OF
COUPLED WAVE EQUATIONS WITH MEMORY

TI-JUN XIAO, ZHE XU

ABSTRACT. In this article we consider the controllability for a system of cou-
pled wave equations with memory. We reduce the control problem to a moment
problem which can be solved by showing the Riesz property of the associated
families of functions. In that way, we obtain (direct or indirect) boundary
observability inequalities and boundary controllability of the system.

1. INTRODUCTION

This article concerns the controllability and observability of the system

t
utt(-ryt> - uww<x7t) - / (uww(xv S) - ﬁy(xv 8))N(t - S)dS + Oéy(.fL',t) = 07
o (1.1)

Y (2, 1) — Yoo (2, ) — / (Yoo (x, 8) — Pu(z, $))N(t — s)ds + au(z,t) =0,

0
subject to initial and Dirichlet-Neumann boundary conditions
U($,0) = Uo, y(x,O) = Yo, ut(x70) = Uy, yt(xao) = Y1,
u(0,t) =g(t), y(0,t) = f(t), wux(mt)=y(m,t)=0,

where a, 3 € R (the set of real numbers) are the coupling coefficients, N(t) the
memory kernel, and f(t),g(¢) the control functions. Models of this type are of
interest in vibrating problems in relation to viscoelastic material, see for example
[11], (12, 13}, 14 [15).

When the memory terms are absent (i.e. N(-) = 0), controllability properties
of the coupled equations (|1.1)) with Dirichlet boundary conditions are discussed in
[B]; with an explicit analytic condition (which is necessary and sufficient) on the
coupling coefficient, the authors use the method of moments to establish indirect
exact boundary controllability of the system. See also the earlier work [I] for the
boundary controllability of an abstract system of two coupled second order evolution
equations (without memory either) by means of a two level energy method, under
the smallness condition on the coupling coefficient.

The controllability of single equations with memory has been studied in many
papers. We would like to mention specially the papers [2], 12| 14, [15], where the
controllability problems are reduced to moment problems. By showing the Riesz

(1.2)
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property of associated function families, the authors prove the controllability of the
systems.

The control problems for coupled string — beam equations with memory are
investigated in [13]. In their model, the memory kernel is of the exponential form
and the controls act on the boundary points of both string and beam. Reachability
results are obtained by writing the solutions of the system as Fourier series and
then showing Ingham type estimates.

In this article, we combine and adapt the ideas and methods from [2} [3], 12, [14] [T5]
to study the controllability of the coupled memory system . We consider two
cases; one involves two controls f and ¢, and the other only involves one control g.
We will illustrate the difference between the two cases.

As will be seen, we consider the existence of solutions in a weak form, because
the control functions may be rough. For general study on the existence of solutions
to equations with memory, we refer to some related results in [5, [6, [7] [, @ [16]. It
is known that exact controllability implies stabilizability in linear cases. We also
refer the reader to [7, [8, @, 10, I1] for more information about the stability and
perturbation results for equations with memory.

This article is organized as follows. In Section 2, we state our main theorems.
In Section 3, we reduce the control problem of system — to a moment
problem and give proofs of Theorems[2.4]and 2.5 for controllability and observability
when we have two control functions. In Section 4, we prove Theorems and
regarding the case when we have only one control function.

2. MAIN RESULTS
Let

H=1L*0,7), V={veH(0,7),v(0)=0}. (2.1)

There is a natural continuous embedding V' C H, which leads to the natural em-
bedding of H into the dual space V.

First we give a lemma for defining the weak solution of — with controls
on the boundary.

Lemma 2.1. Suppose that ui,y1 € V and
uo, Yo € H*(0,7)  with up(0) = yo(0) = up(r) = yo(r) = 0.
Let (u,y) be the classical solution of system (1.1))-(1.2) with f(t),g(t) =0. Then

[z (0, )1 Z2 0.7y + 1920, ) 720,27y < Cllluolly + lluallZ + loll3 + llyallzo),
a0, ) 207y < Cllluoll¥ + lunll; + lyollzr + v 17,

where C' is a constant independent of the initial data.
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We present the proof at the end of Section 3. Now consider the dual problem

T
U (2, 1) — Uy (x,t) — / Uyo(x,8)N(s —t)ds
., t
+ ay(x,t) + ﬁ/ y(z,s)N(s —t)ds =0,
' T
Tu@) = Taals) = [ Taala )N (s = 0)ds (22)

T
+ au(z,t) + ﬁ/ u(x,s)N(s —t)ds =0,
t
ﬂ(l’,T) = Ug, ﬂt(.Z,T) :ﬂlay(va) :yOa yt(x,T) :yla
u(0,t) = Uy (m,t) = y(0,t) =7, (7, t) = 0.

Let u,y be the solutions of (|1.1)-(1.2) with null initial data, multiply the equations
in W,y by u,y respectively, and integrate them over (0,7) x (0,7). After some
computations, we obtain

- /0” uw(T)uy 4+ y(T)y, — ue(T)ao — ye(T)Godx = /0 g(t)p1(t) + f(t)pa(t)dt,

where

T
o1(t) =T (0, 1) + /t N(s — ), (0, 5)ds,

T
palt) = 7,(0,1) + / N(s — 17, (0, 5)ds.

This suggests the following definition (see [9] for weak solutions of the systems
without memory).

Definition 2.2. Let T > 0, and g, f € L?(0,T). We say that (u,y) is a (weak)
solution of (1.1)-(1.2) with null initial data, if u,y € C([0,T); H) N C*([0,T]; V")
and satisfy

— (u(8), ) = (y(5), 71) + (Wi (S), Uo) + (4:(5), Yo)

S S
= / ()1 (t)dt + / f()p2(t)dt,
0 0

for any S > 0 and any functions ug,u1,9g,7; € C°(0,7), where (@,7) is the
solution of (2.2)), and (-,-) and (-, -) denote the inner product in H and the duality
pairing between V and V' respectively.

From (2.3]), we can deduce (by applying Lemma to the dual system (2.2))
that for any 7" > 0, there is a constant C' > 0 such that

Sup (u@lla + llue@llve + Ny @l + lye@llv)

)

(2.3)

< C(llgllzc0,ry + 1 fl20,7))>
and, when f(t) =

0,
ts[%pT](HU(t)IIH +lw@llv + ly@llv + ly: @) < Cliglzz0.1)-
€10,

The above observation leads to the following existence and uniqueness theorem.
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Theorem 2.3. Let T > 0, and g, f € L*(0,T). Then system (1.1))-(1.2)) with null
initial data has a unique (weak) solution (u,y). Moreover, if f(t) = 0, we have
y € C([0, T} V) nCH([0,T]; H).

Now we state our theorem for the controllability of the system with two controls.

Theorem 2.4. Let T > 2m and N(t) € H*(0,T). Then (LI)-(L.2) is exactly
controllable on the time interval [0, T] and the control space is H x V! x H x V'.
That is, for any given final state (£o,&1,m0,m) € H X V! x H x V' we can choose
suitable g(t), f(t) € L*(0,T) such that the solution of (LI)-(1.2) with null initial
data satisfies (u(T),uy(T), y(T), yi(T)) = (€0, €1, 70, )

We can also get the observability of the system.
Theorem 2.5. Let T > 27, and (u,y) solve - with
(uo,u1,y0,41) E VX HXV x H, and f(t),g9(t)=0.
Then we have the observability inequality
|22 (0, ')||2L2(0,T) + [ly= (0, ')||2L2(0,T)
> Clluoll¥y + lluallF + llyolly + [y 17,
where C' is a positive constant independent of the initial data.
The following two theorems are for the case of only involving one control. As
can be seen, the control space for y (resp. u) is smaller (resp. the same), and the

least control time is larger.
We assume that the coupling coefficients o and (3 are equal, and

(=3 +a#(m— 1) —a, (2.4)

for any m,n € N.

Theorem 2.6. Let (2.4) hold and f(t) = 0. Suppose that T > 47 and N(t) €
H3(0,T). Then ([LI)-(L2) is ezactly controllable on time interval [0,T] and the
control space is H x V! x V' x H. That is, for any given final state (§o,&1,m0,M) €
H x V' xV x H we can choose suitable g(t) € L?(0,T) such that the solution of

(LI)-(T-2) with null initial data satisfies (u(T), ue(T), y(T), ye(T)) = (€0, &1, M0, m)-
Theorem 2.7. Let assumption hold, T' > 4w, and u,y solve — with
(uo,u1,y0,y1) €V x Hx Hx V', and f(t),g(t) = 0.

Then we have the observability inequality
luw (0, 6)17 = Clluolly, + llusllF + llyollF + llyall5.

where C' is a positive constant independent of the initial data.

3. REDUCTION TO A MOMENT PROBLEM

In this section, we transform the control problem to a moment problem. First,
we define an operator A on H by

2

d , ,
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for n € N (the set of positive integers). It is easy to see that )\, and ¢,(z) are
respectively the eigenvalues and the corresponding normalized eigenfunctions of
operator A, and {¢, }nen forms an orthogonal basis in H. Hence, letting (u,y)

be the solution of (1.1)) with null initial data, we see that there exist {wy, }nen,
{w! }nen, {Un}tnen and {v], }nen such that

+o0 oo
)= wn(®)pn(x), wilw,t)= Zw%(t)% x
n=1
+oo
= Zvn(t)¢n(x)? yt x, t ZU

Observe that

(Au, n)i = —pin \/5 (t) + Anwn(t), n2>1,

(Aya ¢n = \/7.][‘ + A Un n > 13

by integration by parts and the boundary condition in ([1.2)). Then, multiplying the
equations in (1.1)) by ¢, () and using (3.1)), we know that w, (t) and v, (t) satisfy

W) 4+ Apwn (t) + A /0 N(t — 8)wn(8)ds + av,(t)

+ 8 /0 Nt = $)on(s)ds = g (1),
wn(0) = W' (0) = 0,

t (3.2)
V() + Apon (t) + A / N(t — s)v,(s)ds + aw, (t)
0
v / N(t — 8)un(s)ds = pn (2),
0
vp(0) = v'(0) =0,
where
3 t
gt)==1/—(9(t) + | N(t—s)g(s)ds),
\/;( /0 ) (3.3)

ft) = \/z(f(t) + /Ot N(t— s)f(s)ds).

Clearly, for any given T" > 0, the above two maps ¢ — ¢ and f — f are both
bounded and boundedly invertible in L?(0, 7).
Set

an(t) = wn(t) + vp(t), bu(t) = wn(t) — v,(t), (3.4)
g(t) = g(t) + (), and f(t) = §(t) — f(t). Obviously

a1 (1) + Ann(®) + (o + ) / N(t = 8)an(s)ds = mg(t).
a,(0) = al,(0) =0,
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b (t) + Aanbn(t) /Nt—s (s)ds = pn f(1),
by (0) = b.,(0) =0,

where A1y, := Ap + @, Aoy, := A, — « for all n > 1. Therefore,

an(t) = /0 ein(t —8)g(s)ds, al(t)= /0 ean(t — 8)g(s)ds,

(3.6)

o~

bn(t):/o sin(t — ) 7(s)ds, b;(t):/o son(t — $)7(5)ds,

where eq, (t) 1= €],,(t), s2,(t) := s1,,(t), and ey, () and s1,(t) are respectively the
solutions to the corresponding homogeneous equations of (3.5)) and (3.6 with initial
data

e1n(0) =0, €1,(0) = ftn, 51(0) =0, 51,,(0) = pin.
Next, we show the connection of the controllability of system (1.1])-(1.2) with

some moment problem. Let T > 0. For any given final states & (z), no(z) € H and
§1(x),n(z) € V', we have

y(@, T) =no(z Z Non®n(2), Yz, T) =m(z Z Min@n (@

where

Son = (§0, Pn)r2(0,m)s E1n = (1, On)L2(0,7)s
Non := (N0 Pn)r2(0,x)s  Mn = (M1, Pn)L2(0,7)-
It is easy to see that {£on}, {%—:}, {Bon}, {%—:} are all in [2. We write
1 , 1 .
exn(t) = ;eQn(t) Tem(t)i, ztin = /T&n = Eont,

n

1 . 1 .
s4n(t) = /782n(t) +s1n(t)i, 2Zion = /T&n =+ Noni.

n

Then, ey, (t) and si,(t) solve respectively the equations

e, () + Anern(t) + (A + 6) /0 N(t — s)exn(s)ds =0, (3.7)

t
S () + Aansin(t) + (A — B) / N(t — 8)stn(s)ds =0, (3.8)
0
with the initial conditions
e1n(0) =510(0) =1, €,,(0) = 5'5(0) = £ppi. (3.9)

This leads to the moment problem
T

Z4in T Z42n = / etn(T )9(s)ds, (3.10)
0

T
Zgin — Z42n /o s+0(T —s)f(s)ds (3.11)
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So, proving that system (L.1])-(1.2) is controllable and the control space is H x V' x
H x V' is equivalent to finding g, f such that and are satisfied, i.e.,
the above moment problem being solvable.

To deal with the moment problem —7 it suffices to show the Riesz
property of families {e1,(t)} and {si,(¢t)}. There are several equivalent ways to
define Riesz sequences, we use the following.

Definition 3.1. Let {3,} be a sequence in a Hilbert space H. We say {§,} is a
Riesz sequence, if there exist m, M > 0 such that

mlanliz < 1Y anballa < Mllaw |
whenever {a,} € 2. If {3,} is complete in H, we call it a Riesz basis.

Note that {e1,(t)} and {si,(t)} solve the equations (3.7)), (3.8) with initial
conditions in (3.9). The Riesz property of the families which solve similar equations
has been studied in [12, 2], and the following result can be obtained in the same
way.

Proposition 3.2. For any given T > 2w, {e1n(t)} and {s+,(t)} are both Riesz
sequences in L?(0,T).

Clearly, this proposition justifies Theorem [2.4] To derive Theorem [2.5, we shall
use the property of Riesz sequences. When (u,y) is the solution of (1.1)-(1.2), we
know that w, (t) and v, (t) solve (3.2) with the null initial data replaced by

wn(o) = QQn, w;l(O) = (1n, Un(o) = 6071’ ’U;l(O) = Blna

where

Qop, = (u07¢n)L2(O,ﬂ')v Alp 1= (u17¢n)L2(0,ﬂ')7

Bon = (Y0, Pn)r2(0,7)s  Bin = (Y1, Pn)L2(0,7)>
and that

[uoll + lualFr + [lyoll3 + v I

= |lunaonllfe + el + [lunBonllfe + [1B1n 7.
Noticing the definitions of ey, (t) and si,(t), we deduce that

wn (t)
= i{ [(OZOn + Bon) — Mz} en(t) + [(a(m + Bon) + WZ} e_n(t)
+ [ (on = o) - (alni;ﬁl")l} su(t) + [(@on = fon) + L;ﬁ“‘)z} sonlt)}
and
Un(t)
B %{ [(0‘% + fon) = Mﬂ en(t) + [(aOn + Bon) + Wi}e_n(ﬂ

(aln - ﬁln) . (aln - ﬁln) .
- |:(a0n - 6071) - fl} Sn(t) - |:(a0n - 6071) + fl} an(t)}
Accordingly, when T' > 27, using the Riesz property of e+, (t) and s, (t) we obtain

m(|luoll + lluslFr + llyoll¥ + Iy lI7)
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T
< / 112 (0, 8)% + [y (0, £) Pt
0

< M(Jluoll¥y + lunll + llyolld + lynllz).

It is clear that the second inequality is still valid when T' < 27; thus we have shown
Theorem and the first part of Lemma [2.1

4. PROOFS OF THEOREMS AND

First, we state the moment problem related to the control problem when f(¢) = 0.
It is easy to see that in this case, under Assumption (2.4)), e1, () and si,(¢) satisfy

t
¢ (1) + Anean(t) + A / N(t — s)ean(s)ds = 0, (4.1)
0

t
S () + A2nstn(t) + Aap / N(t — 8)stn(s)ds = 0, (4.2)
0
with the initial conditions

e1n(0) = 510(0) =1, €,,(0) = 5',5(0) = £ppi. (4.3)

By hypothesis, {o(z) € H, &i(z) € V', and no(x) € V, m(z) € H; so {zx1n,
fnZ+on} € 2. Thus the moment problem is as follows

Zhin = %/0 (exn(T — 5) + s, (T — 8))g(s)ds, (4.4)
1 (7 _
InZ4on = 5/0 tn(exn(T — 8) — 840 (T — 8))g(s)ds. (4.5)

Since we have only one control g(t), we have to prove the Riesz property of the
function family

{5 (en(t) + 52n(®), B2 (en(t) — 5n(0)}.

Theorem 4.1. Let assumption [2.]] be satisfied, {e1,(t)} and {s1,(t)} solve the
equations (4.1) and (4.2)) respectively with the initial condition (4.3). Then

{5 (een(t) + s (t)), 2 (en(t) — s(t))}

is a Riesz sequence in L*(0,T) when T > 4x.

Remark 4.2. As in Section 3, we can prove Theorem [2.7 and the second inequality
in Lemma, [2.1] by using Theorem [4.1

Before proving Theorem we state two definitions.

Definition 4.3. We say two sequences {e, }, {z,} in a Hilbert space are quadrat-

ically close when
Z llen — znll* < +o00.
Definition 4.4. A sequence {e,} in a Hilbert space is said to be w-independent if

{en} € 2 and Zanen =0

implies «,, = 0 for all n.
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Our proof is based on Bari’s theorem [4, [I7], which is as follows (with a slight
changes).

Theorem 4.5. Let {uy}n>1 be an w-independent sequence in H, and let {vy, n>n,
(for some ng € N) is a Riesz sequence in H. If {un}n>n, s quadratically close to
{vn}tn>ng, then {up}tn>1 is also a Riesz sequence in H.

By Assumption [2:4] it is clear that A1, # A2y, and there exists ng € N such that
A,y Aon > 0 when n > ng.

Now we begin our proof of Theorem First we prove the quadratic closeness
for n > ng. Set

V=", Win = VA, 0x1n(t) 1= exn(t) — TV >,

By equation (4.1]) with initial condition (4.3)), when n > ny we obtain

t
en(t) = e“"l"t+clnei“’1"tfclne*i“’l"tfwln/ sin wy, (t—s) N(s—r)e,(r)drds,
0

where
c o H Win
1n 2w1n
Thus, integration by parts gives
€n(t) = eiwlnt +p1n / Nln n( )dS,
where
Pin(t) = cipe™t = cppe”

Ny (t) := N(0) coswy,t — N(t) + /0 cos wip (t — s)N'(s)ds.

Using Gronwall’s inequality we have

len(t)| < C1, Vtel0,T]. (4.6)
Also, we see that
S1nt) = P1a(t) + qin(t) + T1n(t /A% )01 (5)ds
where
. .71}(6(iw1"+v)t o efiwlnt) B N(O) (i 40)t
q1n( ) = % - e
W1y + v 1W1p + VU
N 1 ¢ .
: (t> — / N/(t _ S)e(mum+v)sds7
Wiy + UV Wi, + U

t—s
Tin(t) == / / coswin(t — s — T)N/(T)dre(iw1n+’u)sd8'
0o Jo

It is clear that

C
p1n () + qun () + r1n(B)] < =2, V€ [0, 7).

n

Therefore,

G < L2, vee0,7], n > no. (4.7)

n
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The same can be done for §_1,,(t).
For s1,(t), we set

+iwoy, t+vt
Wan = V )\2n7 5:|:2n = S:I:n(t) — et +v P n > no.

Obviously,
Sn(t) — ez’wznt 4 aneiwz"t _ Czneiiwznt
t S
- w?n/ sin wan (¢ — s) / N(s —r)sp(r)drds,
0 0
and

don(t) = pan(t) + qan(t) + ron(t) + /0 N3 (t — 8)d2,(s)ds,

where
Con = w, p2n(t) = CZneiwz,Lt o czne_i“’z”t
Wan
(twan+v)t _ ,—iwant N(O ‘
Qan(t) ::v(e ' e ) _ (0) Qliwan+v)t
22’11]2” +v 1Wap + v
N(t) 1

¢
/ N'(t - s)e(m2”'+”)sds,
+v Jo

1Wop + U B 1Wan,
t t—s )
Ton(t) := / / cos way, (t — s — r)N/(T)dre(ZwZ"Jr”)sds,
o Jo

¢
N3, (t) := N(0) cos want — N(t) + / cos way, (t — s) M’ (s)ds.
0
Then we obtain

[stn(t)] < Cay 0420 ()] < %7 vVt € [0,T], n > nep. (4.8)

n

Next, we focus on the sequence

{5ean(0) + 520(0), B es0(0) — 520 ()},

For convenience, we set

Za1n(t) = 5 (exnt) + 520 (1),

zan(t) = 5 (en(t) = 52n(0), (49
Eiln(t) = Ziln(t) _ 6i(lw1n+7j)t’
€1an(t) = z1on(t) — '“?" (ei(iwm-i-v)t _ e(iz‘wgnﬂ)t)7 n> no.

It is easy to see that when n > ng,
1 ) )
€1n (t) = 5 (51n(t) + 52n (t) + e(zwz,ﬂrv)t - e(lwanrv)t)a

2n(t) = 5 (31n () = 020 (1),
Since wi, — wa, = O(l%n), we have
Cy
len(t)] < o e 0,7, n > no. (4.10)

n
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To estimate eg,(t), we observe that

EZn(t) *NJ (pln( ) an( ) + qln( ) Q2n(t) + Tln(t) - T2n(t))
[ NG e+ 2 [ N1 9) = N0 = ()

0
Using (4.8) we have

lean ()] < %, Vt € [0,T], n > no. (4.11)

The same can be done for e_1,(t) and e_o, (¢).
Let T > 4x. From [3] page 706], one knows that under assumption (2.4)),

. sin wy,t — sin wa,t COS Wint — COS Way,t
sin wypt, , COSWint,
W1n — Won Wip — Won n>mng
forms a Riesz sequence in L?(0,T). Accordingly, noting w1, — wa, = (‘%), we
see that

{ezl:uvlnt’ »n (ezl:zwlnt _ e:l:uvgnt)
2 n>ngo

is also a Riesz sequence in L?(0,T); hence so is

{t,i(i'iu11n+1))t7 %(e(iiwl,ﬂrv)t . e(iiwszrv)t)}

n>ngo

This family and {z4+1n, 2420 }n>n, are quadratically close by (4.10) and (4.11). The
following lemma (due to Paley and Wiener) will be helpful.

Lemma 4.6. If {e,} is quadratically close to a Riesz sequence {z,}, then there
exists N > 1 such that {e, : n > N} is also a Riesz sequence.

According to this lemma, there exists Ny > ng such that {z11n, 2420 n>n, IS &
Riesz sequence in L?(0,7T) when T > 4.

Next we derive asymptotic representations for €/, (¢) and €, (t). First we
calculate the derivative of 01, (¢):

plln(t) = iwlnclneiwlnt + iwlnclneiiwlntv
3N(0) N(0) v? ,
P = - 7 (twin+o)t YY) —iwint v Gwin o)t
1n(?) 1 © e t Lo, T NO) €
U2 . t t ( + )
o —iwint N/ t— iwintv)s g
diwyn + N(0)° /0 (t=s)e >

/ ) ) )
t ( (iw1n+v)t zwl,bt) ( (iw1n+v)t zwl,bt)
"1alt) = N(0) ¢ 4iwy, + N(0) ¢ ¢

—I—/ cos Wiy (t — s)/ N"(s — r)el im0 qr ds.
0 0
Then, we find

5/1n(t) — Dleiwlnt + DQefiwlnt + Dge(iwn+v)t

, 4.12
+ [ Nt = 9051, (5)ds + xan®) e
0
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where D1, Do, D3 are constants, and x1,(t) is such that

Ix1n (t)] < % vt € [0,T], n > ng.

n

Next we divide §},,(t) into three parts:
015, (t) = D1014(t) + D2min(t) + Dscin(t) + Cia(t),

where
Cin() = xan(t /Nm $)Cin(s)ds (4.13)
Uln( = 6“01" / Nln Uln( )dS, (414)
mn(t) ==e —iwint 4 / Nln 771n( )d (4.15)
Cin(t) = Wi tv)t 4 / N, (t = 8)sin(s)ds. (4.16)
0

It is clear that o

|G ()] < f vt € [0,T], n > no. (4.17)

Since o1,(t) and 11, (t) have the same form as 61, (t), we have
Dlaln(t) + D2771n(t) — Dle(iwln—i-v)t + D2€(—1’w1n+v)t + f"?ln(t);

where k1, (t) satisfies

c
lkan ()] < =2, Wt €[0,T], n > no,

n

and ¢, (t) has the estimate
[s1, ()] < C11, Vte€[0,T], n>ng. (4.18)
Computing ¢1,(t) term by term we have

§1n(t) = Clln (t) + g12n(t) + glgn(t)a

where
¢
o) == [ V(e = s)unls)ds,
0
t t—s
i (1) := / / coswin(t — s — r)N'(r)drsi,(s)ds,
o Jo
¢
3, (t) i= eltwintv)t 4 N(O)/ cos wip(t — 5)Sin(s)ds.
0
y (#.18),
C
[sin(D)] < Cra, |7, ()] < f vt €[0,7], n = mno. (4.19)

Noting the above estimates we deduce that

t
$fo(t) = I £ N (0) /O €08 Win (t — 8)<7y (5)ds + o1a (1),
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where

t
1 (t) = N(0) [ coswnnt = 5)(chy(s) + ()
0
Hence, combining (4.18) and (4.19) yields

C
lo1n| < = [0,T], n > ng.
i

n

Now, separate ¢},(t) into two parts. One of them has the order O(I%), and the
other satisfies

t
01 (t) = el V)t L N(0) / cos Wip (t — $)0,(s)ds.
0

To find out the exact form of 61,,(¢), we introduce the integral operator

¢
Py, (p) := N(0) / cos win (t — s)p(s)ds.
0
Clearly,
(I - Pln)eln = e(iw1n+v)t;

then we can construct 61, (t) by the convergent iteration series

—+oo
O1n(t) = P elimtolt, (4.20)
k=0
with the help of consecutive applications of the operator P,. Then, we see that

+o00 +o00 j
Hn(t) = O(i) + eiwlnt Z Z (U]t')

P i=0 j=i

+o0 i
= O(i) +emnt (Y (“_f) (i+1))

ol
Hn i=0

1 _
= O0(—) + et (e + vte').
[in

For ¢i,,(t) we have
1
Hn

t t
chalt) = = [ N=s)elu(o)ds= [ N(t=s) (et 4 vl 0%) dsr0( )

thus

C
(B < = ¥t e 0,T], n 2 np.

n
By now we have made every term of 41, () clear, and §1,,(t) can be written in the
form

n(t) = Q7T 4 Qpelimint0)t o Qaeliwintiy 4 O(—), n>mng (4.21)
fin
(Q1,Q2, Q3 being constants); the same can be done for 05, (¢), and we can get
1

8, (1) = Qremiwantt 4 Queliwantv)t 4 O pliwento)ty 4 O(Z) 5 >ng. (4.22)

229
Thus,

€l (t) =Qrel Tl 4 Qpelivin Tt 4 Qgeliwintoly
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+ % (e(iwzn—&-v)t _ e(iwm—&-v)t) + O(i), n > no.
Hn

To give the asymptotic representations for €}, (t), we estimate
1n(t) = 82, () = D1(01n(t) — 020(t)) + Da2(min(t) = n2n(t))
+ D3 (s1n(t) = 2n(t)) + Cin(t) — Can(d)-

Noticing (4.14), (4.15]), we infer that

1
o1n(t) — oo (t) = eliwinto)t _ o(fwantv)t o(

u%)
, , )

Min(t) = non(t) = eTnt0Il — g(Fiwanto)t 4 OCz)-
n

Computing x1,(t) in (4.12)) and combining (4.13]), we obtain

Cint) — Con(t) = 0(/%2)

n
We estimate 1, (t) — o, (t) step by step similarly to the estimate for 1, (). First,
since

sin(t) = et g gpelivnntolt 4 O(Min),
Gon (t) = W2tV g ypeliwantolt 4 O(uin),
it follows that
[s1n(t) — c2n ()] = O(M—ln), (4.23)
st (t) = 2 ()] = O(/Tln)' (4.24)

Then we have

G2 () — <2 (t / / (coswin(t — s — 1) — coswan(t — s — 1)) N'(r)drei,(s)ds
" / | T costna(t — 5 — IV () (sin(s) — sia(s)ds:

it is clear that the second term is O( ) Also,

/ / ) (coswin(t — s — 1) — cosway,(t — s —1))N'(r)drein(s)ds
0 Jo

= /Ot (wiln sinwi, (t —s) — wizn sin wa,, (t — s)) {N’(O)gln(s)
+ /t N"(s— r)qn(r)dr}ds.
Therefore, ’
NEORESHOIE OC5)- (4.25)
Thus, using — we obtain !

(1) = n(t) = 01 (t) — O20(t) + O(N )-
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Computing the convergent iteration series (4.20) and omitting the terms of the
order O(“%); we have

Hln(t) — 92n(t) — e(iwm-‘rv)t _ e(iwzn-‘rv)t + vt(e(iwm""v)t

P 1 (4.26)
— gliwzntvity 4 O(LTQ)
Using (4.24)-(4.26]) we have
1
[6in () — 2n(t)] = 0(/72) (4.27)
The above estimates imply that
gln(t) — Qon (t) = e(iwln_‘—v)t — e(inn_‘—v)t
. . 1 4.28
+ Ut(e(zwln-i-v)t _ e(zwgn-i-v)t) + O(F) ( )
Therefore,
€ (t)
— Syt (6(7iw1n+u)t _ e(fiwz,LJr'u)t)) + Sopin (e(iwanrv)t _ e(iwszrv)t)) (4.29)

1
ﬂn)7

where S, S5, S5 are constants. Since the memory kernel N(t) € H3(0,7T), we can
also estimate 6(2)(75),6%32 (t) and egg)(t),egl) (t) (:= €5 (t)). The asymptotic repre-

In n
sentations are given by

fg? (t) = pp" (Qlke(fiwl”ﬂ)t + Qapelivn VIt Q3k6(iw1"+v)tt>

+ UtS?)/’('n (e(iunn-‘rv)t _ e(iw2n+v)t> + O(

n( (i ; 1
+ Q%% (e““”*’”“)t - e(“‘“”“)t) + 0(;)’ n = ng,

$)(0) = s (Supp el 0N — vt (430)

+ Sleffn (e(iwln-‘rv)t _ e(iwzn-‘rv)t))

1
in
where, k = 2,3, and Qix, Sjr (i =1,...,4; j =1,...3) are constants.

Also, the same results can be proved for e_1,(t) and e_o,(t). Next we prove the
w-independence of {241, (t), 242, (t)}. Let {4y, Bin} € [? satisfy

Z ainzi11b(t) + Banz+on (t) =0.

+ vtSskfin (e(iwl"ﬂ)t - e(iwz"ﬂ)t) +0(—), n=mno;

Then
Z'Y:I:ne:tn(t) + ninsin(t) = Oa
where
1 1
V£n = iain + %ﬁina Ntn = §ain - %ﬂin’
and

Qtpn = ﬂ:ﬁ:n =0 <= Y4n =74, =0.
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We set
z:tln(t) — e(iwhﬁrv)t’ z:l:2n(t) _ ‘un(e(:tiwln+v)t . 6(:tiw2n+v)t)’ n > no,
and
Z a:l:nzzl:ln + ﬁ:tnz:th(t>
n>ng
= - Z a:l:nej:ln + /B:I:nezl:2n Z ainziln + ﬂj:nzjﬁn(t)
n>ngo n<ng

Using the representations for {€11,(t), €x2, (t) }n>n, We have
G(t) € L*(0,T) and {ain,fBin} €12

Recall that when T' > 4, {Z41,, (), 2220 (t) }n>n, forms a Riesz sequence in L?(0,T),
and use the representation for {€/,,,(t), €\a,,(t)}n>n,; then we obtain

G/(t) = Z ((ilwln + U)OH:TL + Z(ujln - w?n)ﬂnﬁin)ziln(t)

n>ngo
+ (iiw2n + U)ﬂ:l:nz:th(t) € L2(07 T),
which implies { i, Q4n, finBen} € 1.
By the derived representations of {efl)n(t) e(ikQ)n( t)} for k = 2,3, we deduce that
{:U’iaina M?Lﬁin} € 12 and {Mn'YinaM?znin} € l2'
Now, using the equations (4.1)) and (4.2 . ) for {e4n(t), s4n(t)} yields

Z )\ln’yinein(t) + )\Znninsin (t)

t
+ / N(t—s) E AMnY£n€tn(8) + AonNtns+tn(s)ds = 0.
0

This implies
Z AMnY+n€tn(t) + AapNtns+n(t) =0,
and so
Y in = M) venean(t) + (Aon = A1)iensia(t) = 0.

Setting 75:17)1 = (AMn — A11)Y+n and nil,)l = (A2n — AM11)74n, we have

1
S v esn(t) +nl)sea(t) =0,

Y alzian () + B zan(t) = 0,
where
Y I N C PR L )
Similarly, we obtain

SO = Ao resn(®) + (an = or)nisn () = 0.

Thus for any k£ > 1, we can construct

2k 2k
’Y(in) = I | (>\1n - )\ij)’Y:l:nv ﬂin) I | ()\271 - )\ij)ﬂim
i=1,2,j<k i=1,2, j<k
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such that

S A8 ewn(t) + 0l sa(t) = 0. (4.31)
n>k

Let k = Ny in (4.31). Recalling that {z41,(t), 222,(t) }n>n, is & Riesz sequence
in L2(0,7), using (4.9), and noting assumption (2.4), we can deduce that v, =
N+n = 0 for all n > Ny. Hence

Z 'Yinein(t) + ninsin(t) =0.
nSN()

The linear independence of the finite sequence {e1,(t), s1n(t)}n<n, is easy to see;
so we have

Ytn = Ntn =0, Vn < Np.
Thus, we derive the w—independence of {211, (t), z42,(¢t)}. The proof is complete.
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