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APPROXIMATE CONTROLLABILITY OF FRACTIONAL
CONTROL SYSTEMS WITH TIME DELAY USING THE

SEQUENCE METHOD

XIUWEN LI, ZHENHAI LIU, CHRISTOPHER C. TISDELL

Abstract. The aim of this article is to establish sufficient conditions for the

approximate controllability of fractional control systems with time delay in
Hilbert spaces. By the technique of sequential approach, we prove that the

fractional control systems with time delay are approximately controllable. Fi-
nally, an example is provided to illustrate our main results.

1. Introduction

Let V and U be Hilbert spaces. For 0 < h < b, let Z = L2([0, b];V ) be the
function space corresponding to V and Y = L2([0, b];U) be the function space
associating to U . C(J, V ) denotes the Banach space of all continuous functions
from the time interval J to V with the norm ‖x‖∗C = supt∈J e−λt‖x(t)‖V , where
λ is a fixed positive constant which will be fixed in Theorem 3.1. The purpose of
this paper is to consider the approximate controllability of the fractional control
systems with time delay:

CDα
t x(t) = Ax(t) +A1x(t− h) +Bu(t) + f(t, x(t− h)),

t > 0,
1
2
< α ≤ 1,

x(t) = φ(t), −h ≤ t ≤ 0.

(1.1)

where CDα
t denotes the Caputo fractional derivative of order α with the lower limit

zero. The state function x(·) takes its values in the space Z and the control function
u(·) takes its values in the space Y . Let φ ∈ C([−h, 0];V ). A : D(A) ⊆ V → V is
the infinitesimal generator of a C0−semigroup T (t)(t ≥ 0) on the Hilbert space V .
A1 is a bounded linear operator on V . B : Y → Z is a bounded linear operator.
f : [0, b]× V → V is a given function to be specified later.

Fractional differential equations arise in a natural manner as mathematical mod-
els of dynamic systems that exhibit such properties as long-term memory and self-
similarity. Recently, they have drawn great applications in the mathematical model-
ing of systems and processes in the fields of physics, aerodynamics, electrodynamics
of complex medium, heat conduction, electricity mechanics, blood flow phenomena,
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fluid flow in porous media, fitting of experimental data, etc. For more details on
this topic, we refer to [1, 2, 4, 5, 8, 9, 14, 16] and the references therein.

In recent years, an important number of problems arising in the modeling of
physical phenomena from science and engineering lead to the nonlinear systems
with time or state delay (cf. [3, 6, 7, 18, 19, 20]). On the other hand, extensive
attention has been paid to the approximate controllability of the nonlinear con-
trol systems by many authors. To our knowledge, most of them focused on the
approximate controllability of the nonlinear control system provided that the cor-
responding linear system is approximately controllable. For instance, one can see
[6, 7, 10, 12, 13, 15, 17] and the references therein. There are also some researchers
use other methods, such as sequence method, to study the approximate control-
lability for nonlinear control systems. For instance, Zhou [22] obtained sufficient
conditions for the existence of solution and approximate controllability for a class
of semilinear abstract equations without delay using sequence method. By apply-
ing similar technique of [22], Kumar et al. [7] obtained some suitable sufficient
conditions for approximate controllability of fractional order system; Liu and Li
[11] considered the approximate controllability of fractional evolution systems with
Riemann-Liouville fractional derivatives. Very recently, Shuklan et al. [18] obtained
results on approximate controllability of semilinear system with state delay also by
using sequence techniques. However, in best of our knowledge, the suitable suf-
ficient conditions for the approximate controllability of fractional control system
with state delay using similar techniques as in [7, 11, 18, 22] is still untreated topics
in the literature and this fact is the motivation of the present work. The main con-
tributions of our present paper is to show the approximate controllability of linear
and nonlinear system with delay by using a sequence approach with some suitable
hypotheses.

This article has five sections. In the next section, we include some basic defini-
tions, notations and results. In section 3, some sufficient conditions are established
to guarantee the existence of mild solution of system (1.1). In section 4, we are
concerned with the approximate controllability of the fractional control systems
with time delay. In the last section, a concrete application of our main results is
provided.

2. Preliminaries

Let us recall the following definitions related to fractional differentiation and
integration (cf. [5, 14]).

Definition 2.1. The Riemann-Liouville fractional integral of order α with the
lower limit zero is defined by

Iαt f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, 0 < α < 1,

where Γ is the gamma function.

Definition 2.2. The fractional derivative of a function f ∈ C[0,∞), in the Caputo
sense, can be written as

CDα
t f(t) =

1
Γ(1− α)

d

dt

∫ t

0

(t− s)−α[f(s)− f(0)]ds, t > 0, 0 < α < 1.
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Remark 2.3. (i) The Caputo derivative of a constant is equal to zero.
(ii) If the function f ′ ∈ C[0,∞), then we can get

CDα
t f(t) =

1
Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds = I1−α
t f ′(t), 0 < α < 1.

(iii) If f is an abstract function with values in a Banach space V , then integrals
which appear in Definition 2.1 and 2.2 are taken in Bochner’s sense.

In view of [23, Lemma 3.1], we can give the following concept.

Definition 2.4. For any given u ∈ Y , a function x(·) ∈ C([−h, b];V ) is said to be
a mild solution of the system (1.1), if

x(t) =


Pα(t)φ(0) +

∫ t
0
(t− s)α−1Qα(t− s)[A1x(s− h)

+Bu(s) + f(s, x(s− h))]ds, t ≥ 0,

φ(t), −h ≤ t < 0.

(2.1)

where

Pα(t) =
∫ ∞

0

ξα(θ)T (tαθ)dθ, Qα(t) = α

∫ ∞
0

θξα(θ)T (tαθ)dθ,

ξα(θ) =
1
α
θ−1− 1

α$α(θ−
1
α ) ≥ 0,

$α(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα+ 1)
n!

sin(nπα), θ ∈ (0,∞).

It is interesting to notice that the functions $α(θ) and ξα(θ) act as a bridge
between the fractional and the classical abstract theories. Next results play an
important role for the main assertions of this article.

Lemma 2.5 ([23, Lemma 3.2-3.4]). The operators Pα(t), Qα(t) appeared in Defi-
nition 2.4 have the following properties:

(i) For any t ≥ 0, the operators Pα(t) and Qα(t) are linear. Moreover, if
supt≥0 ‖T (t)‖ ≤ M , then the operators Pα(t) and Qα(t) are bounded, i.e., for
any x ∈ V ,

‖Pα(t)x‖ ≤M‖x‖V , ‖Qα(t)x‖ ≤ M

Γ(α)
‖x‖V .

(ii) Operators Pα(t)(t ≥ 0) and Qα(t)(t ≥ 0) are strongly continuous, that is,
for all x ∈ V and 0 ≤ t1 ≤ t2 ≤ b, we have

‖Pα(t1)x− Pα(t2)x‖V → 0,

‖Qα(t1)x−Qα(t2)x‖V → 0, as t1 → t2.

(iii) For t > 0, Pα(t) and Qα(t) are compact operators if T (t) is compact.

3. Existence results

This section is devoted to the study of the existence of mild solution of the
fractional control systems with time delay. In the sequel, we make the following
hypotheses on the data of our problems:

(H1) The semigroup T (t) generated by A is uniformly bounded on V , i.e., there
is a constant M > 0 such that supt∈[0,∞) ‖T (t)‖ ≤M .
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(H2) The nonlinear function f(t, x) is continuous in t for all x ∈ V and continuous
with respect to x for almost all t ∈ [0, b] and there exists a positive constant
L, such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖V , for all x, y ∈ V.

Now, we are in a position to present the main result of this section.

Theorem 3.1. For each control function u(·) ∈ Y , problem (1.1) has a unique
mild solution on C([−h, b];V ) if conditions (H1) and (H2) are satisfied.

Proof. Consider the operator F defined by

(Fx)(t) =


Pα(t)φ(0) +

∫ t
0
(t− s)α−1Qα(t− s)[A1x(s− h)

+Bu(s) + f(s, x(s− h))]ds, t ≥ 0,

φ(t), −h ≤ t < 0.

(3.1)

In view of the definition of F , the problem of finding mild solutions of (1.1) is
equivalent to obtaining fixed points of F .

For a given control u(·) ∈ Y , to show that the operator F has a fixed point on
the interval [−h, b], the positive constant λ appearing in the definition of the norm
‖ · ‖∗C is chosen below

λ ≥ b2α−1

(2α− 1)

(M(‖A1‖+ L)
Γ(α)

)2

> 0,

and the radius of the sphere BR is defined by

R ≥ max
{
‖φ‖∗C , 2M‖φ(0)‖+ 2

M

Γ(α)

[√ b2α−1

2α− 1
‖Bu‖Z +

Lfb
α

α

]}
,

where Lf = maxt∈[0,b] ‖f(t, 0)‖V , M = supt∈[0,+∞) ‖T (t)‖. Now, to prove that F
has a fixed point, we subdivide the proof in two steps.

Step 1: For the sphere BR = {x(·) ∈ C([−h, b], X) : ‖x‖∗C ≤ R}, we show F(BR) ⊂
BR.

If t ∈ [−h, 0), it is readily to get that ‖Fx‖∗C = ‖φ‖∗C ≤ R. For any x ∈ BR, if
t ∈ [0, b], under the assumption (H2) and by Lemma 2.5 (i), we have

e−λt‖(Fx)(t)‖V

≤ e−λt‖Pα(t)φ(0)‖+ e−λt
∫ t

0

(t− s)α−1‖Qα(t− s)‖

× ‖A1x(s− h) +Bu(s) + f(s, x(s− h))‖ds

≤M‖φ(0)‖+
Me−λt

Γ(α)

[ ∫ t

0

(t− s)α−1‖A1x(s− h)‖V ds

+
∫ t

0

(t− s)α−1‖Bu(s)‖Zds

+
∫ t

0

(t− s)α−1[‖f(s, x(s− h))− f(s, 0)‖V + ‖f(s, 0)‖V ]ds
]

≤M‖φ(0)‖+
Me−λt

Γ(α)

[√ b2α−1

2α− 1
‖Bu‖Z + (‖A1‖+ L)
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×
∫ t

0

(t− s)α−1‖x(s− h)‖V ds+
Lfb

α

α

]
≤ κ+

M(‖A1‖+ L)e−λt

Γ(α)

∫ t

0

(t− s)α−1eλ(s−h)e−λ(s−h)‖x(s− h)‖V ds

≤ κ+
M(‖A1‖+ L)e−λt

Γ(α)

(∫ t

0

(t− s)2(α−1)ds
) 1

2
(∫ t

0

e2λ(s−h)ds
) 1

2 ‖x‖∗C

≤ κ+
M(‖A1‖+ L)e−λt

Γ(α)

√
b2α−1

2α− 1

√
e−2λh(e2λt − 1)

2λ
R

≤ κ+
M(‖A1‖+ L)

Γ(α)

√
b2α−1

2λ(2α− 1)
R.

where

κ = M‖φ(0)‖+
M

Γ(α)

[√ b2α−1

2α− 1
‖Bu‖Z +

Lfb
α

α

]
.

From the definitions of λ and R, we obtain ‖Fx‖∗C ≤ R, which proves the claim.
Step 2: We show that F is a contraction operator on C([−h, b];V ). If t ∈ [−h, 0),
the claim is obviously valid.

If t ∈ [0, b], for any x, y ∈ C([−h, b];V ) and under the assumption (H2), we know

‖(Fx)(t)− (Fy)(t)‖V

≤
∫ t

0

(t− s)α−1‖Qα(t− s)[A1x(s− h)−A1y(s− h)]‖ds

+
∫ t

0

(t− s)α−1‖Tα(t− s)[f(s, x(s− h))− f(s, y(s− h))]‖ds

≤ M(‖A1‖+ L)
Γ(α)

∫ t

0

(t− s)α−1eλ(s−h)e−λ(s−h)‖x(s− h)− y(s− h)‖V ds

≤ M(‖A1‖+ L)eλt

Γ(α)

√
b2α−1

2λ(2α− 1)
‖x− y‖∗C .

Using the definition of λ, it follows easily that

‖Fx−Fy‖∗C ≤
M(‖A1‖+ L)

Γ(α)

√
b2α−1

2λ(2α− 1)
‖x− y‖∗C ≤

1
2
‖x− y‖∗C .

Hence, F is a contraction operator on C([−h, b];V ). As a consequence of the
Banach’s fixed point theorem, we can deduce that F has a unique fixed point x(·)
on C([−h, b];V ), which is the desired solution of the system (1.1), which completes
the proof. �

4. Approximate controllability results

In the remainder of this section, we study the approximate controllability results
of the nonlinear control systems driven by fractional-order involving time delay. To
prove the approximate controllability results, the following definitions are essential
for our work.

Definition 4.1. Let x(t;u) be the state value of system (1.1) at time t correspond-
ing to the control u(·) ∈ Y . The set Kb(f) = {x(b;u) : u(·) ∈ Y } is called the
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reachable set of system (1.1) at terminal time b (b > h). If f ≡ 0, then the system
(1.1) is called the corresponding linear system and is denoted by (1.1)∗. In this
case, Kb(0) denotes the reachable set of the linear system (1.1)∗.

Definition 4.2. The system (1.1) is said to be approximately controllable at time
b (b > h) if Kb(f) = V , where Kb(f) denotes the closure of Kb(f). Clearly, the
corresponding linear system (1.1)∗ is approximately controllable if Kb(0) = V .

Now, to begin our study on the approximate controllability of the system (1.1),
we define a bounded and linear operator G : Z → C([0, b];V ) by

Gh =
∫ b

0

(b− s)α−1Qα(b− s)h(s)ds, for h(·) ∈ Z.

From Definition 4.2, we know that system (1.1) is approximately controllable at
time b (b > h), if for every desired final state ζ ∈ V and any ε > 0, there exists a
control uε(·) ∈ Y , such that

‖ζ − Pα(b)φ(0)− GA1x
h
ε − GFxhε − GBuε‖ < ε,

where (Fxh)(t) = f(t, x(t− h)), A1x
h = A1x(t− h) and xε(t) = x(t;uε) is a mild

solution of system (1.1) corresponding to uε(·) ∈ Y . Relevant results regarding the
approximate controllability can be found in [6, 7, 10, 11, 12, 13, 15, 17, 18, 19, 20,
22].

Remark 4.3. In Definition 4.2, we require that b > h. This is reasonable since
one cannot control the value of x(s) for [b− h, 0] if b < h. Indeed, it is easy to see
that x(s) = φ(s) in [−h, 0] is independent of the control u(t).

To prove our main result, we also suppose that:

(H3) For any ε > 0 and ϕ(·) ∈ Z, there exists a u(·) ∈ Y , such that

‖Gϕ− GBu‖V < ε, (4.1)

‖Bu(·)‖Z < γ‖ϕ(·)‖Z , (4.2)

where γ is a positive constant which is independent of ϕ(·) ∈ Z and satisfies

M(‖A1‖+ L)γ
Γ(α)

√
b2α−1

2α− 1
Eα(M(‖A1‖+ L)bα) < 1. (4.3)

To investigate the approximate controllability of system (1.1), we need the following
lemma.

Lemma 4.4. Suppose that conditions (H1) and (H2) hold, then any mild solutions
of system (1.1) satisfy the following inequalities

‖x(·;u)‖∗C ≤ κEα(M(‖A1‖+ L)bα), for any u(·) ∈ Y,
‖x1(·)− x2(·)‖∗C ≤ ρEα(M(‖A1‖+ L)bα)‖Bu1(·)−Bu2(·)‖Z ,

for any u1(·), u2(·) ∈ Y,

where

κ = M‖φ(0)‖+
M

Γ(α)

[√ b2α−1

2α− 1
‖Bu‖Z +

Lfb
α

α

]
, ρ =

M

Γ(α)

√
b2α−1

2α− 1
,
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and Eα is the Mittag-Leffler function defined by

Eα(z) =
∞∑
k=0

zk

Γ(kα+ 1)
.

Proof. If x(·;u) = x(·) is a mild solution of system (1.1) with respect to u(·) ∈ Y ,
then

x(t) = Pα(t)φ(0) +
∫ t

0

(t− s)α−1Qα(t− s)[A1x(s− h) +Bu(s) + f(s, x(s− h))]ds.

For t ∈ [0, b], we obtain

‖x(t)‖V

≤ ‖Pα(t)φ(0)‖+
∫ t

0

(t− s)α−1‖Qα(t− s)‖

× ‖A1x(s− h) +Bu(s) + f(s, x(s− h))‖V ds

≤M‖φ(0)‖+
M

Γ(α)

[ ∫ t

0

(t− s)α−1‖A1x(s− h)‖V ds+
∫ t

0

(t− s)α−1‖Bu(s)‖ds

+
∫ t

0

(t− s)α−1[‖f(s, x(s− h))− f(s, 0)‖V + ‖f(s, 0)‖V ]ds
]

≤M‖φ(0)‖+
M

Γ(α)

[√ b2α−1

2α− 1
‖Bu‖Z

+ (‖A1‖+ L)
∫ t

0

(t− s)α−1‖x(s− h)‖ds+
Lfb

α

α

]
≤ κ+

M(‖A1‖+ L)
Γ(α)

∫ t

0

(t− s)α−1‖x(s− h)‖V ds.

It follows from Corollary 2 in [21] that

‖x‖∗C = sup
t∈[0,b]

e−λt‖x(t)‖V ≤ κEα(M(‖A1‖+ L)bα).

Similarly, we obtain

‖x1(·)− x2(·)‖∗C ≤ ρEα(M(‖A1‖+ L)bα)‖Bu1(·)−Bu2(·)‖Z .

This completes the proof. �

Now, we are in a position to present the other main result of this section.

Theorem 4.5. Under conditions (H1)–(H3), system (1.1) is approximately con-
trollable.

Proof. Since D(A) = V , it is sufficient to prove that D(A) ⊂ Kb(f), i.e., for any
ε > 0 and η ∈ D(A), there exists a control uε(·) ∈ Y , such that

‖η − Pα(b)φ(0)− GA1x
h
ε − GFxhε − GBuε‖ < ε. (4.4)

Firstly, for any given η ∈ D(A) and any x0 ∈ V , there exists a function ϕ(·) ∈ Z,
such that Gϕ = η − Pα(b)φ(0). Next, we show that there is a control uε(·) ∈ Y
such that the inequality (4.4) holds.
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Now, we begin to construct a sequence of the control. Let ε > 0 and u1(·) ∈ Y
be arbitrary. It follows from H(3) that there is a u2(·) ∈ Y , such that

‖η − Pα(b)φ(0)− GA1x
h
1 − GFxh1 − GBu2‖ <

ε

22
,

where x1(t) = x(t;u1) for 0 ≤ t ≤ b. Denote x2(t) = x(t;u2) for 0 ≤ t ≤ b, by H(3)
again, we know there exists w2(·) ∈ Y , such that

‖G[A1x
h
2 −A1x

h
1 + Fxh2 − Fxh1 ]− GBw2‖ <

ε

23
,

and

‖Bw2(·)‖Z ≤ γ‖(A1x
h
2 −A1x

h
1 ) + (Fxh2 − Fxh1 )‖

≤ γ(‖A1 + L)‖x2(·)− x1(·)‖

≤ M(‖A1 + L)γ
Γ(α)

√
b2α−1

2α− 1
Eα(M(‖A1 + L)bα)‖Bu1(·)−Bu2(·)‖Z .

Now, we define u3(t) = u2(t)− w2(t), u3(·) ∈ Y , and it is readily to get that

‖η − Pα(b)φ(0)− GA1x
h
2 − GFxh2 − GBu3‖

≤ ‖η − Pα(b)φ(0)− GA1x
h
1 − GFxh1 − GBu2‖

+ ‖GBw2 − [A1x
h
2 −A1x

h
1 + Fxh2 − Fxh1 ]‖

≤ (
1
22

+
1
23

)ε.

By induction, we know there exists a sequence {un(·)} ⊂ Y , which follows that

‖η − Pα(b)φ(0)− GA1x
h
n − GFxhn − GBun+1‖ < (

1
22

+ · · ·+ 1
2n

)ε,

where xn(·) = x(·;un) for 0 ≤ t ≤ b, and

‖Bun+1 −Bun‖Z

<
M(‖A1 + L)γ

Γ(α)

√
b2α−1

2α− 1
Eα(M(‖A1 + L)bα)‖Bun(·)−Bun−1(·)‖Z .

From (4.3), we know the sequence {Bun : n = 1, 2, · · · } is a Cauchy sequences
on the Banach space Z. Therefore, there exists a ψ(·) ∈ Z, such that

lim
n→∞

Bun(·) = ψ(·) in Z.

Then, for all ε > 0, there exists a positive integer number N , such that

‖GBuN+1 − GBuN‖ <
ε

2
.

Therefore, we have

‖η − Pα(b)φ(0)− GA1x
h
N − GFxhN − GBuN‖

≤ ‖η − Pα(b)φ(0)− GA1x
h
N − GFxhN − GBuN+1‖+ ‖GBuN+1 − GBuN‖

≤ (
1
22

+ · · ·+ 1
2n

)ε+
ε

2
< ε.

Hence, from the above argument, it is easy to get that system (1.1) is approximate
controllability. This completes the proof. �
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5. Application

In this section, a possible application of Theorem 4.5 on the approximate con-
trollability of control systems with state delay is presented, such as:

D
2/3
t x(t, θ) =

∂2

∂θ2
x(t, θ) + x(t− h, θ) + f(t, x(t− h, θ)) +Bu(t, θ),

t ∈ (0, 1], θ ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ (0, 1),

x(t, θ) = φ(t), t ∈ [−h, 0], θ ∈ [0, π].

(5.1)

Take V = U = L2(0, π) and the operator A = x′′ with the domain given by

D(A) = {x ∈ V : x, x′ are absolutely continuous, x′′ ∈ V, x(0) = x(π) = 0}.

Then, A can be written as

Ax = −
∞∑
n=1

n2(x, σn)σn, x ∈ D(A),

where σn(θ) =
√

2/π sin(nθ)(n = 1, 2, · · · ) is an orthonormal basis of V . It is well
known that A is the infinitesimal generator of a compact semigroup T (t)(t > 0) in
V given by

T (t)x =
∞∑
n=1

e−n
2t(x, σn)σn, x ∈ V, and ‖T (t)‖ ≤ 1.

For every u(·) ∈ Y = L2([0, 1];U), we have

u(t) =
∞∑
n=1

un(t)σn, un(t) = 〈u(t), σn〉,

Define the operator B by

Bu(t) =
∞∑
n=1

un(t)σn,

where for n = 1, 2, . . . ,

un(t) =

{
0, 0 ≤ t < 1− 1

n2 ,

un(t), 1− 1
n2 ≤ t ≤ 1;

then, one can easily obtain that ‖Bu(·)‖ ≤ ‖u(·)‖, which implies that B is a
bounded linear operator from Y to Z = L2([0, 1];V ).

Firstly, by the definition of the operator B, the corresponding linear system of
(5.1) is

D
2/3
t xn(t) + n2xn(t) = un(t), 1− 1

n2
< t < 1,

xn(0) = φ(t), t ∈ [−h, 0], .
(5.2)

Next, we will check that the hypotheses of (H3) are satisfied. To check these, let
us denote

h =
∫ 1

0

(1− s)−1/3Q2/3(1− s)g(s)ds =
∞∑
n=1

hnσn, hn = 〈h, σn〉,
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for every g(·) ∈ L2(J,X). In fact, we can choose ũn(t) which follows from

ũn(t) =
2n2

1− e−2
hne
−n2(1−t), 1− 1

n2
≤ t ≤ 1,

and

hn =
∫ 1

1− 1
n2

∫ ∞
0

(1− t)−1/3θξ2/3(θ)e−n
2θ(1−t)2/3 ũn(t)dθdt.

For this, we define u(t) =
∑∞
n=1 un(t)σn, where for n = 1, 2, . . . ,

un(t) =

{
0, 0 ≤ t < 1− 1

n2 ,

ũn(t), 1− 1
n2 ≤ t ≤ 1 .

Therefore, for any given function g(·) ∈ Z, there exists u(·) ∈ Y , such that∫ 1

0

(1− s)−1/3Q2/3(1− s)Bu(s) =
∫ 1

0

(1− s)−1/3Q2/3(1− s)g(s)ds,

which implies the condition (4.2) of (H3) is satisfied. Moreover, we can get

‖Bu(·)‖2 =
∞∑
n=1

∫ 1

1− 1
n2

|ũn(t)|2dt = (1− e−2)−1
∞∑
n=1

2n2h2
n

=
3
2

(1− e−2)−1
∞∑
n=1

(1− e−2n2
)
∫ 1

0

|gn(t)|2dt

≤ 3
2

(1− e−2)−1|g(·)|2.

Hence, it can be seen that the conditions of (H3) are satisfied, then system (5.1) is
approximately controllable on J , if

3
√

3(1 + L)
2Γ( 2

3 )
(1− e−2)−1E2/3(1 + L) < 1,

is satisfied.
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