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ABSTRACT

This thesis presents the effects of hardware prefetching on the performance of a

collection of programs and how learning algorithms can be used to predict the optimal

hardware prefetching algorithms to obtain improved performance. Modern processors

are equipped with several hardware prefetchers, each of which implements a different

prefetching algorithm. My goal was to select the best combination of these

prefetchers, as there is no single combination that results in best performance across

various programs. Effective program characterization is necessary when learning

models are used to make predictions based on program behavior. This thesis uses

hardware performance events in conjunction with a pruning algorithm to create a

concise and expressive feature set. The feature set is used in three different learning

models. These steps are tied together in the form of an autotuning framework that can,

on average, achieve up to 96% of the possible speedup that can be attained by varying

the combination of prefetchers in effect. The framework is built using open source

tools and frameworks, thereby making the framework easy to use, extend and port to

other architectures.
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1. INTRODUCTION

Prefetching is a commonly used technique to improve performance. A prefetcher

monitors memory accesses and predicts ahead of time the memory address that a

running program will need in the near future. Based on this prediction the prefetch

unit fetches the data from main memory to fast higher levels of memory such as

caches. When the program needs this piece of data, it can find it in a fast high-level

memory, and avoid the latency that is incurred on retrieving data from slow lower

levels of memory such as main memory. This has been shown to dramatically

improve performance [1, 2].

In modern architectures prefetching is more important than before. McCalpin

[3] has shown that the difference in CPU speed and DRAM speed differ by almost a

factor of 1000. This imposes a huge bottleneck in performance known as the memory

wall. The implication of the memory wall is that no matter how much CPU

performance is improved, overall performance will be held back by memory. Thus,

researchers have continually focused on techniques to hide memory latency, and

prefetching is one such technique.

Prefetching can be done in both hardware and software. Both of these

techniques have their own advantages and disadvantages. Hardware prefetchers can

predict simple memory access patterns well, and adapt to memory accesses taking

place in the system at runtime. This is especially useful in case of parallel workloads,

as individual threads of the same program as well as threads from other applications

running on the same core may exhibit varying memory access patterns. On the other
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hand, in case of software prefetching, the compiler analyzes program control and data

flow, and inserts machine specific prefetch instructions. This can result in more

accurate and effective prefetches, however, it is susceptible to failure due to other

programs running in the system [4].

There are several challenges associated with prefetching. Firstly, a prefetcher

must be accurate in predicting memory access patterns. If the prefetcher is incorrect,

it can result in increased memory traffic, and more importantly, cause contention for

space in the small and valuable cache. Secondly, a prefetch instruction must be timely.

If a prefetch causes data to be present in a higher level of memory earlier than

required, it may be evicted to accomodate more urgently required data, since higher

levels of memory are smaller. These challenges are amplified further in multi-threaded

programs. Since lower levels of memory such as L2 can be shared across multiple

threads, each of which may potentially request data from different parts of memory, it

can be difficult to correctly identify memory access patterns. Also, because multiple

threads share the same space-constrained cache, the importance of accurate prefetch

becomes more crucial to ensure that other threads are not affected poorly.

In this thesis, I have attempted to understand the effect of prefetching on

program performance. I have primarily used the PARSEC benchmark suite [5] and

two example programs that exhibit sequential memory access patterns and

randomized memory access patterns. I have observed the change in performance by

enabling and disabling the available hardware prefetchers on an Intel processor, and

that using the prefetchers can have negative effects on performance. On the particular
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machine I have conducted my experiments on, 4 hardware prefetchers are available,

and 16 different combinations of configurations can be obtained by enabling or

disabling them.

Next, I have used machine learning algorithms to obtain recommendations on

which configuration should be used for an unseen program. The primary reason

behind using learning models is that, programs can vary greatly and exhibit different

traits and behaviors. It is difficult to deduce rules of program behavior by hand for a

large number of programs that differ from each other. Learning models are well

known for their ability to draw decision boundaries over multiple dimensions of data

axes, and the problem I am tackling is a good fit for these models.

The first step to successfully use learning models is to be able to characterize

programs in a quantitative method that captures the differences between programs. To

do so, I have used hardware performance counters. Because there are many hardware

performance counters, I have designed a simple, yet effective procedure to prune the

number of counters required to characterize a program. I have shown the efficacy of

the pruning algorithm by testing different feature sets using a decision tree.

Finally, I have developed an autotuning framework that recommends hardware

prefetching configuration for unseen programs on the basis of seen programs. On

average, this framework can help the user gain up to 96% of the achievable speedup

that is available from the hardware prefetchers.

There are several advantages of using a software based recommendation system

to change the hardware configuration. First, it allows to use the existing hardware
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effectively by tapping into potential performance improvements. Second, this

approach does not require any source level changes for the program being optimized.

Lastly, the framework relies on open source technologies, therefore it is easy to extend

or port to different architectures.

The thesis is organized from here onwards in the following way: first, chapter 2

presents the reader with material that are helpful in understanding the associated

challenges and the problem statement of this thesis as a whole. Chapter 3 is a concise

summary of related work done in this field by other researchers. Chapter 4 describes

the autotuning framework that has been developed. The framework is divided into

separate components, and each of these components give the reader a top-level view

of the subproblems in this thesis. Chapter 5 is a description of the results,

experimental environment and the outcome from the learning models. This section

engages in a thorough examination of the solution to each of the subproblems

described in the preceding chapter. The final chapter concludes this thesis with a

summary of its contribution and an indication of the possible work that can be

conducted from here on.
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2. BACKGROUND

2.1 Prefetching

The key idea behind prefetching is to preload data before it is needed by a program.

The prefetcher predicts the memory address of the data and loads the data stored at

that particular address into high-level memory. If prefetching is done accurately and

in a timely manner, it can dramatically improve performance.

2.1.1 What to Prefetch

The first challenge for the prefetcher is to figure out what to prefetch. Incorrect

prefetches do not affect the correctness of the program because incorrect prefetch

requests are simply unused and dropped by the hardware. However, correct prediction

of prefetching is important because prefetching incorrect data can waste resources.

Memory bandwidth and memory at higher levels are precious resources. Incorrect

prefetch requests can increase memory traffic and also pollute the cache with useless

data. A simple measure of prefetch accuracy is to compute the ratio of used prefetches

over issued prefetches.

2.1.2 When to Prefetch

Timing of a prefetch request is also very important. A prefetch that arrives after the

program needs the data is late and therefore useless. On the other hand, prefetches

that are early can be evicted from the cache before they are required, in order to make

room for outstanding demand requests.
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The timeliness of prefetching can be tuned by adjusting prefetch aggression.

Prefetch aggression is the measure of how far ahead the prefetcher issues instructions

to load data into cache. This depends on the memory latency that the prefetcher is

attempting to hide, and is therefore architecture dependent.

2.1.3 Where to Prefetch

In a modern computer system there are several levels in the memory hierarchy, and

the prefetcher can prefetch to several levels. The most common levels to prefetch to

are L1 and L2 caches. In the case of hardware prefetchers, to which level the

prefetches are done is determined by how much of the memory access pattern is

visible to the prefetch unit. For instance, if the prefetcher is prefetching to L2, it sits

between the L2 cache and the memory controller. Therefore, it is blind to requests and

hits that are made in L1. On the other hand, if the prefetcher is prefetching to L1, it

can see all of the memory access pattern, but the L1 cache is small and this opens up a

possibility of perfomance penalty due to cache pollution.

It must also be decided where the prefetched data should be placed. The data

can be placed in the cache, which is usually the case in most modern systems, or the

data can be placed in a separate prefetch buffer, as was done in the ALPHA 21064

processor. The latter results in a more complex memory system, and presents further

challenges of keeping the prefetch buffer coherent and also sizing it, but it prevents

cache pollution [6].

Another architecture design choice to consider is whether to discriminate

between prefetched data and demand data in the cache in terms of replacement

6



policies. One policy is to consider them alike, while another option is to favor demand

fetched blocks. In such a case, if the prefetcher is effective, there is high risk of losing

out on performance improvements, since the prefetched blocks would be more likely

to be replaced before being used. The replacement policy could also be adaptive in

nature, such that if the prefetcher performs well, the policy is adjusted to favor the

prefetcher [7]. The Intel Ivy Bridge microarchitecture uses a similar strategy.

2.1.4 How to Prefetch

Prefetching can be done in several ways. The programmer can enter prefetch

intrinsics in the source level, in the form of direct prefetch instruction or hints, which

the compiler then uses to generate prefetch instructions. The compiler can also enter

prefetch instructions based on its internal program analysis. The hardware can issue

prefetch instructions during runtime.

A less often used technique is to execute a thread to prefetch data for the main

program [8]. This thread can be created by the programmer or the hardware. Doing

this by hardware usually requires complex hardware.

2.2 Performance Events in Hardware

Modern processors give us the ability to gain very fine-level quantified insight into

program performance through performance event measurements. These events such

as stalled CPU cycles, branch mis-predictions, page faults, prefetch requests and

many more are measured using special registers available in the CPU called

performance counters. These counter values allow us to capture program behavior and
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characterize it in terms of program features. For example, given a program, we could

profile it during its execution to measure how many times it misses the L2 cache. This

number would give us a sense of the program’s cache usage. A high miss rate would

indicate the program likely has a large working set or perhaps internally uses

pointer-based data structures. Thus, features such as these can then be used in various

learning models to classify programs into different categories. Examples of such

target categories would be “CPU bound programs”, “memory bound programs”,

“large/small working set”, etc.

However, characterizing programs based on performance counter values is

non-trivial and much research has been invested in solving this problem [9, 10]. This

is primarily because there is very little standardization of these events among

processor vendors. In fact, there is significant variety in the number of events

available and what quantity they measure across processor models of the same

vendors [11]. For instance, the Core2 architecture by Intel can measure 387

performance events, and the SandyBridge architecture, a more recent version, also by

Intel, can measure 294 performance events. While the nature of the available events in

both these architectures are similar, there is little intersection between these two sets.

The events are also ill-documented, often leaving the reader to deduce the metric from

the name of the event. Understanding these metrics are difficult without input from a

seasoned hardware architect.

In addition, measuring performance events often presents a challenge in itself

[12]. Vendors such as Intel provide proprietory performance diagnostic tools to
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measure these events such as Intel VTune. The Linux operating system ships a

performance monitoring tool called perfmon2 as part of its kernel tools package.

Open source tools such as Likwid also provide a viable alternative. However,

measurement of events on real machines is challenging because often times the

machine is running other auxiliary programs, daemons, checking over the network for

updates, scheduling processes and so forth, and these activities, known as operating

system jitter, add noise to the measurement.

2.3 Autotuning

Autotuning is an optimization technique that uses heuristic based search to find the

optimal parameters of a build system [13]. High performance computing systems are

often under-utilized because their underlying architecture remains largely

unexploited. Most domain experts, such as biologists and physicists, are not experts

on computer architecture and therefore do not write code that makes use of

architectural benefits such as cache locality. Compilers can be passed several

compile-time parameter, or hints in the form of macros, for example, loop unroll

parameters. This can also result in optimized code. However, many of these concepts

remain largely unknown to domain experts. Furthermore, the rapid change in

architecture also exacerbates this problem, as newer architectures provide more

features. An autotuning framework attempts to explore the search space of these

various build system parameters and find the most optimal one. The ideal autotuning

framework works across multiple architectures, compilers and types of programs.
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Researchers have been investigating various aspects of code that can be

exploited using autotuning models in order to gain performance benefits. Qasem et al.

[14] have investigated tunable parameters that affect both parallelism and data locality

in multi-threaded numerical applications. Hall et al. [15] have propose the use of

several ’recipes’ that provide a high-level interface to the code transformation and

capability of a compiler. Tiwari et al [16] have presented a scalable autotuning

framework for compiler optimization that is able to achieve speedup of 1.4 to 3.6 on

various ATLAS kernels over the Intel C Compiler. A common theme in most work

done in autotuning has been on improving performance of niche programs, such as

scientific programs, kernels or programs with a compute intensive loop nest. The

work presented in this thesis is different from the cited works in that this work

attempts to reach a broader audience by investigating the possible improvements in

the PARSEC benchmark suite [5] - a benchmark widely considered to consist of

programs across a wide spectrum of applications.

2.4 Machine Learning

As there exists a large number of measurable performance events, many of which are

arcane and difficult to understand, it then becomes challenging to understand which

set of events should be looked at in order to characterize programs. Often times

program characterization is the first step of a larger problem, where the characteristics

of a program, such as values of a set of performance events, are fed into a learning

model that has a separate defined objective. Learning models are helpful because they
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can draw complex decision boundaries across multiple dimensions. This is

particularly important because even if a subset of expressive events has been derived,

there are usually 10-15 events to look at, and it is difficult to analyze each of these

events by hand in order to derive a set of rules that can discern programs based on

program behavior.

In this section, the two learning models that have been used, and the reason for

choosing them among many other available models are discussed briefly.

2.4.1 Logistic Regression

Logistic regression is a learning model that can classify data points into different

classes. There are two types of logistic regression models - binomial and multinomial.

Binomial models can classify a data instance into 1 of 2 classes, whereas multinomial

models can classify into multiple classes. In this work, the logistic regression models

are binomial. The choice of this model was due to its simplicity and success in

classification in prior reported work [9].

2.4.2 Decision Trees

Decision trees can be of two types - classifiers and regressors. In this work,

classification trees have been used. Decision trees examine values of provided

features, and greedily choose the feature that provides the maximal information gain

or split in classification. It recursively proceeds to classify until a leaf node is reached.

This model was chose because it complements the logistic regression model with a

model that internally prunes features. Also, the final tree and its branches can give
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helpful insights into how a decision has been reached, rather than in the case of

logistic regression, where the classification process cannot be easily understood.

2.5 The PARSEC Benchmark Suite

The PARSEC benchmark suite comprises programs across wide spectrum of

applications [5]. It contains programs with varying working sets, locality, data

sharing, synchronization and off-chip traffic. It is publicly available and has been

developed at Princeton University. PARSEC includes emerging applications in

computer vision, data mining, finance as well as simulations. Other benchmarks such

as ALPBench [17], BioBench [18], MediaBench [19], and MineBench [20] focus on

niche areas and thus limits the applicability of the optimization framework. We have

previously worked using the SPEC CPU 2006 [21] benchmark, however, the

benchmark only contains single threaded programs. Using a diverse, multi-threaded

and relatively newer benchmark such as PARSEC increases the impact of this work

significantly.

In addition the programs included in PARSEC, I have written two simple

benchmark programs, referred in this thesis as stream and random. In the stream

program, several arrays are initialized and repeatedly accessed in streams, thus being

an ideal candidate to benefit from prefetching. The random program, on the other

hand, accesses several arrays in random locations, thus very likely to throw off the

prefetchers as they fail to predict which memory locations will be accessed in the

future. The two programs were written to complement the real world program

12



collection of PARSEC, where programs call helper libraries, process user input, read

and write from files besides its central objective.

13



3. RELATED WORK

This section is a summary of existing related work on prefetching, program

characterization and use of machine learning in program performance optimization.

We briefly describe these works and compare how our work is similar and/or different.

3.1 Prefetching

Prefetching is a widely explored area, and the benefits of prefetching are widely

documented and studied. Lee et al. [22] was one of the first researchers to introduce

the concept of data prefetching in hardware to hide the memory access time

bottleneck. Chen et al. [1, 2], in his early work, studied the effects of data prefetching

in both hardware and software. Plenty of work on data prefetching has been done

since then. More recently, with the introduction of multicore processors, the effects of

prefetching are more interesting and have also been studied in various ways.

Mehta et al. [23] have presented a multi stage co-ordinated prefetch scheme for

the Intel SandyBridge and the Intel Xeon Phi architecture. Their compiler framework

uses the intermediary representation of source code to estimate the prefetch-distance

in loops and inserts prefetch instructions. Prefetching is done in stages, from main

memory to L2, and then to L1. They have been able to gain speedup of 1.55x over the

hardware prefetchers. However, their solution has several disadvantages. First, their

work requires input from an architecture expert, and works for existing architectures

only. For new architectures it would be necessary to study the architecture and

provide similar fine-grained input. Their solution also involves incorporating their
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scheme into an existing compiler, which can be difficult.

Prefetching can hurt performance, and the ill-effects of prefetching have also

been studied [24, 25]. Puzak et al. [26] demonstrate the case when prefetching hurts

performance and propose the characterization of prefetching based on timeliness,

coverage and accuracy. Lee et al. [27] have conducted an in-depth investigation of

when and why prefetching works. They have done an extensive analysis of both

software and hardware prefetching performance on the SPEC CPU2006 benchmark,

however the discussion has focused on serial workloads.

Several studies on prefetching based on available resources and feedback have

been performed [28, 29, 30, 31, 32]. While these are effective and novel ways of using

prefetching, they present new hardware design considerations. Our approach is to

maximize performance based on the hardware and software available currently.

3.2 Program Characterization and Machine Learning

A significant part of this thesis involves successful program characterization and using

machine learning models. As such, I have studied several notable works in this regard.

Jayasena et al. [33] have demonstrated effective use of a decision tree to prune

performance events used as features in order to detect false sharing. This approach

has motivated me to include decision trees in this work. Cavazos et al. [9] have

developed a machine learning model to find optimal optimization configuration for

the SPEC CPU2006 benchmark suite. The goal of this work was to select a set of

compiler optimizations that results in performance improvement. They have reported
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high classification accuracies in using performance events as features for a learning

algorithm. Milepost GCC is [34] a large project to further the attempts at

crowdsourced optimization learning. This work, however, uses static program features

to characterize programs. A similar work done by Demme et al. [35] uses graph

clustering from data and control flow of programs to characterize program behavior.

However, these characterizations are difficult, as they involve modifying the compiler,

or working on the intermediary representations of the program. Such procedures are

difficult to adopt for a wide audience.

Among all the works that I have studied, two are very similar to mine. McCurdy

et al. [10] have characterized the impact of prefetching on scientific applications using

performance events. They have experimented with a combination of several

benchmark programs on AMD processors. Their work is primarily on serial

workloads, but they have studied the effects of running multiple serial programs

simultaneously. However, their work hinges on successfully isolating the performance

events that are expressive enough to capture the effects of prefetching. For the AMD

architectures they have worked on, they hand picked the performance events. For new

architectures, they would have to repeat the process of studying all available

performance events.

Liao et al. [36] have presented a machine learning based approach to selecting

the optimal prefetch configuration, in a way very similar to the way we have

formulated ours. However, their work, too, hinges on identifying architecture specific

performance events, which they have done by hand. In addition, their work involves
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serial workloads, whereas I am interested in parallel programs.
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4. AUTOTUNING FRAMEWORK

This section discusses the autotuning framework, and explains the various

components of the framework and how they are tied together. This section also

describes the tools that have been used to build this framework.

Figure 4.1 shows the major tasks that the autotuning framework performs.

There are two phases of the autotuning framework. The first phase is called the

training phase. In this phase, sample programs are used to train a learning model. To

begin with, programs are run in the hardware search space in order to find the optimal

hardware configuration. For this problem statement, the programs are run across all

possible prefetching configurations and the ground truth for all the configurations are

recorded. The programs are also run in order to generate features, and the feature sets

and the found optimal hardware configurations are used to build a dataset. This

dataset is used to train a learning model.

The testing phase is relatively simpler. First an unseen program is run in order

to collect features. The features are then fed into the trained learning model to obtain

prediction or recommendations on the optimal hardware configuration.

4.1 Prefetch Configurations

Modern processors implement prefetching in hardware. In these experiments an Intel

Core2 processor was used, and this architecture is equipped with 4 prefetchers,

described below:

1. Data cache unit (DCU) prefetcher: this prefetchers attempts to recognize a
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(a) Training phase of the autotuning framework

(b) Testing phase of the autotuning framework

Figure 4.1: Autotuning framework

streaming algorithm and prefetches the next line into the L1 cache.

2. Instruction pointer (IP) based stride prefetcher: this prefetcher tracks

individual load instruction and attempts to detect strided accesses. It can detect

strides of up to 2K bytes and prefetches to the L1 cache.

3. Spatial prefetcher (CL): this prefetcher attempts to complete every cache line

brought to L2 by fetching the pair cache line that completes it to form a 128

byte aligned chunk.

4. Streamer prefetcher (HW): This prefetcher attempts to detect streaming

requests from the L1 cache, and brings in anticipated cache lines into L2 and

LLC.
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It should be noted that Intel architectures that have been released after Core2,

such as SandyBridge and Haswell also ship with the same prefetchers.

It is not defined what the default configuration in processors is, that is, which of

these 4 prefetchers are enabled or disabled [36]. In some machines all the 4

prefetchers are turned on, in some only 2, while none of the prefetchers are turned on

in some. In this work, we define a configuration to be a combination of enabled or

disabled state of all these prefetchers. Configurations can be represented using a bit

mask, where each bit represents a prefetcher, and the value 1 represents the prefetcher

being on, and 0 represents the prefetcher being off. From most significant bit to least,

the mapping of bit to prefetcher is: HW, CL, DCU, IP.

The prefetcher configuration in the processor was changed using an open source

tool called Likwid [37]. Likwid manipulates bits on the model-specific registers of

processors to enable or disable a specified prefetcher. On the Intel Core2 architecture,

this can be done at runtime. However, in later architectures, such as SandyBridge, the

bit required to toggle the state of the prefetcher is reserved. It is still possible to toggle

the prefetcher from the BIOS, but this requires a reboot and can be cumbersome.

Additionally, it is up to the BIOS writer to expose this setting to the end user.

It may seem that turning on all the prefetchers, that is configuration 1111, is a

viable policy, however, it was observed that significant performance variation can be

seen by changing the configuration, and configuration 1111 is not always the best.

As a matter of fact, in some cases configuration 1111 is seen to hurt performance, as

can be seen in figure 4.2. The speedup values in this figure are runtime improvements
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Figure 4.2: Effect of changing configuration on program speedup
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reported over the baseline 0000. For each configuration, 3 runs were carried out, and

the best runtime among the 3 was used to calculate the speedup. This helps us shield

our experimental results from operating system jitter. The best value was chosen

instead of the average of the 3 values because if any of the runs is severely interrupted

due to some unknown process, the effect would be propagated through the average

calculation. Conversely, the run resulting in the best runtime can not only be seen as

the least interrupted, but also as a run that was able to finish the task in the least

possible time, therefore, we strive to improve upon this value.

Several observations can be made from this figure. First, within programs,

changing the configuration has significant impact on performance. For example,

freqmine and streamcluster show significant variance in performance when

the configuration is changed. Second, configuration 1111 is not always the best

option, as can be seen in the cases of random, stream, streamcluster and

vips. Third, configuration 0000 can be the best configuration, that is, using

prefetching can hurt performance, as in the case of canneal, fluidanimate and

in several configurations of random. Finally, in several cases, there are multiple

“good” configurations, that is, several configurations perform almost as well as the

best.

Using these programs, the following sections describe the process of program

characterization and the use of learning models to predict optimal prefetching

configurations for unseen programs.
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4.2 Feature Extraction

This section describes the feature extraction procedure. I collected hardware

performance counter values and used these counter values as the feature set describing

our programs. I have measured all of the 387 available performance events on the

Core2 architecture. I measured all 387 events because I believe these events are able

to capture program behavior. Additionally, these events are available on nearly every

modern architecture, and can be measured using various tools. The alternate would be

to analyze the source code of programs, but no generalized tool that does not require

interfacing with the compiler could be found. Also, with such source code analysis I

would be limited to static program behavior. The tools that I have used to measure the

performance events are easy to install and can be used in many modern architectures.

I wrote a Bash script that uses a Linux tool called perf [38]. Perf can measure

performance events, and I used it in our framework to find the values of all the events

for all the programs. The performance events are measured using hardware registers,

and the Core2 architecture has 2 available registers for this purpose. Therefore, it can

measure 2 performance events at a time. To measure all the events for any given

program, I ran the program 194 times. I could reduce the number of times I have to

run a program by sampling the counter values. Perf has a feature that enables the user

to specify, for a single run, more events than there are registers available. When this

happens, perf internally samples the counter values. For example, I could measure 4

events for a given run, and this would halve the number of runs required to measure

all the events to 97. But this would introduce a sampling error, and to avoid this, I
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chose to run each program 194 times. Nevertheless, the measurements are not free of

errors. If the same performance event is to be measured twice, there will be some

difference in the measurements. This is because of several reasons. First, the

programs being profiled are multi-threaded and are timing dependent. It is not

possible to predict beforehand which thread will finish first or last, and this will cause

differences in measurement across multiple runs. Repeating the experiment using

different pairs of events on each run can also result in different values. Measurement

variations also occur due to operating system jitter, for instance, variances in thread

scheduling policies across different runs of the same program. These variances are

acceptable and expected on a real system.

Once generated, all the features are normalized over the instruction count of the

program. This helps in scaling the programs in relation to each other. For instance,

100 page faults may not be significant for a program with 1 billion instructions, but it

will be significant for a program with 10 thousand instructions. For the program with

10 thousand instructions, the normalized value will appear larger in relation with the

program with 1 billion instructions, which is what I want to capture.

Figures 4.3 and 4.4 demonstrate the value of all the events that have been

measured for all 14 programs. The values have been normalized over a million

instructions. The figures only provide visualization of all the programs in terms of the

performance events. Thus, the axes labels have been removed as it is not realistic to

analyze them by hand.

From the figures, it becomes apparent that values for many events are similar for
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Figure 4.3: Feature extraction, part 1

almost all programs. These events do not carry any discriminative value. This has

driven my pruning algorithm, described in a later section. Also, as I have manually

inspected some of the events, I know that several of the events that appear to be 0 in

the plots are, in fact, not 0. Because many of the events have a very large range, some

of the events with smaller ranges are not visible. I have addressed this issue with a

technique called feature scaling.
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Figure 4.4: Feature extraction, part 2

4.3 Feature Selection

In this section I discuss the feature selection procedure. As mentioned, I have used

performance events to represent our programs, and, there are 387 performance events

on the Core2 machine I have run my experiments on. To ensure that the learning

models perform well, a concise feature set is required, so that the models are not fed

with unnecessary and irrelevant information. Additionally, if all the 387 events are
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used, every time the model is tested with a new program, the new program will need

to be run 194 times before all its features can be extracted. This is a very high

overhead, and another reason why a smaller feature set is needed. I have developed a

simple and effective procedure to prune the feature set into a smaller set. The

procedure is outlined in algorithm 1 and 2.

Algorithm 1 describes the process of finding events that capture the difference

between two programs. For each event that is measured for both the programs, it is

checked if the percentage difference, expressed in the interval (0, 1.00) and expressed

as φ, is beyond a certain threshold. If it is, the event is added to a list called bucket.

This list contains the set of events that can be used to differentiate between two

programs. I have experimentally found φ = 0.95 to work best.

The subroutine FindEvents is used in algorithm 2. The EventUnion

subroutine takes a list of programs, and for all possible unique pairs of programs, it

calls the FindEvents subroutine. It collects the sets of events that represent each

pair of programs and adds it to a 2D list called buckets. Therefore, buckets

contains sets of events from all possible unique pairs of programs.

Next, in lines 11-19, the EventUnion subroutine goes through all the sets and

for each event in the set, it first checks if the event name exists in a dictionary. If it

does not exist, the event name is added and assigned a value of 1. If the event name

already exists in the dictionary, the corresponding value of the event name is

incremented by 1. Thus, the subroutine counts how many times an event occurs in all

the sets.
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Finally, the dictionary is sorted based on the count of how many times an event

has occured in the sets. We can iterate over the dictionary in descending order to find

the most discriminating events first.

The algorithm is driven by the idea that, if an event has largely different values

for any two programs, it captures an arbitrary aspect in which the two programs differ,

and therefore we should inspect that event. However, there are many events that differ

significantly for any two programs, and we end up with a large set of events to look at.

Thus, we sort the dictionary to prioritize the events that differ in value for more

number of programs than others. Once the dictionary is sorted, we can control how

many top events we want to include in our final feature set.

Algorithm 1 Finding events that express difference between two programs, A and B
Precondition: Ea and Eb contain measurements of the same events, in same order

1: function FINDEVENTS(Ea, Eb, φ)
2: bucket← []
3: for i← 1 to Ea.size do
4: if DIFF(Ea[i].value, Eb[i].value) ≥ φ then . percentage difference
5: bucket.INSERT(Ea.name)
6: end if
7: end for
8: return bucket
9: end function

A final preprocessing step is performed before using the dataset to train the

learning model. This step is called feature scaling. Learning models are known to

struggle if there is a large variance in the numeric range of features in a feature set.

For example, if a feature has range (1 - 10), while another feature in the same feature

set has range (-10000 - 10000), the learning model can struggle to draw accurate
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Algorithm 2 Finding union set of all events with their occurence values
1: function EVENTSUNION(programs)
2: buckets← []
3: dict← DICTIONARY() . key: event name, value: occurence
4: numProgs← programs.length

5: for i← 0 to numProgs do
6: for j ← i to numProgs do
7: bucket← FINDEVENTS(programs[i], programs[j])
8: buckets.INSERT(bucket)
9: end for

10: end for
11: for bucket in buckets do
12: for event in bucket do
13: if dict.CONTAINS(event.name) then
14: dict.UPDATE(event.name, dict[event.name] + 1)
15: else
16: dict.INSERT(event, 1)
17: end if
18: end for
19: end for
20: SORT(dict.value)
21: return dict
22: end function

decision boundaries [39]. To address this, features in a feature set are scaled.

Generally, to scale a feature vector x, the following formula is used:

xi = xi − µ(x)
max(x)−min(x) for i = 0 to len(x)

where µ(x) is the average of all the values in the feature vector x. After feature

scaling is performed, all features are withing the range (−1, 1).

Figures 4.5 and 4.6 show the effect of feature scaling. It can be seen that the

plots are now significantly different from those in figures 4.3 and 4.4. Also, the
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differences in the behavior of the programs are now much more apparent. For

example, when not scaled, the plots for blackscholes and bodytrack are not as

distinguishable as they are when scaled in figure 4.5. Additionally, canneal appears

significantly different from both bodytrack and blackscholes in figure 4.5.

The plot for canneal is indicative that many event values in canneal are not 0,

contrary to how the plot for canneal appears in figure 4.3. Also, in figure 4.4, the

plots for swaptions, vips and x264 are very similar looking, but once the

features are scaled it is clear that there are differences in their performance event

values. This holds for all other programs. The plots of unscaled features are visibly

sparse and empty, where as the plots for scaled features are much more drastically

different across programs, and also very dense.

In addition to providing an effective visualization of the program in term of their

programs, from feature scaling it is clear that to characterize programs the use of

learning models well justified, as generating rules by hand from such a large feature

set is not feasible. This also adds value to the pruning algorithm we have presented.

From the plots in figures 4.3 and 4.4 it might appear that one could select performance

events by hand based on the spikes in the graphs, but after feature scaling it is not

quite as obvious.

4.4 Learning Models

The final component of the autotuning framework is a learning model. We have

evaluated two different traditional learning models, logistic regression and decision
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Figure 4.5: Feature scaling, part 1

trees, and designed a simple Euclidean distance based classifier that is well tailored to

our needs and captures the available information best.

4.4.1 Training Labels

Learning models usually have two phases, training and testing. Both these phases are

carried out on a dataset. The dataset is comprised of data instances. Each data instance

has a feature set and a target. The learning models that I have used require that the
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Figure 4.6: Feature scaling, part 2

feature set in all the data instances of a dataset be identical. When the training phase is

carried out, the learning model internally uses statistical methods to draw decision

boundaries such that each data instance is mapped to its corresponding target. The

found decision boundary can subsequently be used to predict unseen data instances.

For our domain, the feature set is a collection of performance events. The target

is formulated in two ways. In the first method, program is classified as whether it can

benefit from prefetching. If by applying any configuration of prefetching has resulted
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Table 4.1: Maximum achievable speedup by varying prefetch configurations

Program Speedup Program Speedup
blackscholes 1.05 fludianimate 1.00

bodytrack 1.02 vips 1.14
facesim 1.32 x264 1.03
ferret 0.99 canneal 1.00

freqmine 1.51 streamcluster 1.37
raytrace 1.04 random 1.08

swaptions 1.00 stream 1.23

in a speedup of at least 10% over configuration 0000 the program is considered to

have benefitted from prefetching. Out of the 14 programs, 4 do not benefit from

prefetching at all. They are ferret, swaptions, fluidanimate and

canneal. The other 10 have at least 1.02 speedup. If we classified programs as

benefitting if they simply performed better on 1111, then this would be a highly

skewed dataset. Also, the effort for creating an autotuning framework is better

justified for speedups above 10%.

We classify each program in this manner to form the dataset. From table 4.1 we

can see that 5 data instances can be classified to be as benefitting from prefetching.

This approach, however, fails to distinguish between different prefetch

configurations. From figure 4.2, it is evident that configuration 1111 is outperformed

by other configurations in several cases. To address this, 4 independent learning

models for 4 hardware prefetchers are used. Each classifier is tied to a prefetcher and

predicts, for a given program, whether the corresponding prefetcher should be

applied. For each program, the effect of applying only that prefetcher on configuration

0000 is considered. If a speedup of more than or equal to 2% is observed, the

program is labelled as one that benefits from that prefetcher. I chose 2% here because
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Table 4.2: Classifier training labels and actual best configuration

Program Training Labels Actual best configurationhw dcu cl ip
blackscholes 0 1 0 1 1010

bodytrack 0 0 0 0 1111
facesim 1 1 1 1 1110
ferret 0 0 0 0 0000

freqmine 1 0 0 1 1111
raytrace 1 1 0 0 1011, 1110, 1111

swaptions 0 0 0 0 0000
fluidanimate 0 0 0 0 0000, 1000

vips 0 1 1 1 0011
x264 0 1 1 0 0100, 0110

canneal 0 0 0 0 0000
streamcluster 1 1 1 1 0110

random 1 0 0 1 1000, 1011
stream 1 1 0 1 1000, 1001, 1011

contributions by the individual prefetchers may add up to a larger speedup.

4.4.2 Euclidean Distance Based Model

The final approach taken to predict configurations uses Euclidean distance as a

similarity metric. When presented with an unseen program, this model computes

distance between the unseen program and every other known program, and uses these

distances as weights to compute the weighted score of the 16 prefetcher

configurations across all known programs. Concretely, the model computes the

following 16-length vector:

ConfigurationScore =
[

m∑
i=0

Pi[0]
d 2

i

,
m∑

i=0

Pi[1]
d 2

i

, ...
m∑

i=0

Pi[15]
d 2

i

]

where m is the number of the programs present in the training dataset. Pi is a
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vector of length 16, corresponding to program i. Each index in the vector represents a

configuration. Conversion of the index in its decimal form to binary results in the

configuration. Each value in the vector represents the fraction of achievable speedup

that was reached by using the corresponding configuration on program i. For

example, P2[3] represents the fraction of speedup that was obtained on the 2nd

program using configuration 0011, since 310 = 00112. Finally, di is the Euclidean

distance between the unseen program and the ith program.

When fully computed, the vector contains the weighted score of all the

prefetching configurations across all programs. The recommended configuration is the

binary representation of the index belonging to the maximum element in the vector.

This approach considers the effect of every prefetching configuration on all known

programs and qualifies this score using distance squared. Thus, the scores of more

similar programs have greater effect than those that are different. Also, in the event

that an unseen program is very similar to multiple programs, and not just one, this

approach ensures that the most similar program is not the only basis of decision, as

the scores from all programs are used.

The motivation for designing this approach stems from the failure of capturing

interaction between independent prefetchers when using 4 independent classifiers for

predicting prefetch configurations. From table 4.2 it is observed that a fully accurate

classifier would not be able to recommend prefetcher configurations that result in the

maximum speedup. For example, consider raytrace, where the recommended

prefetchers are hw and dcu, which is configuration 1100. However, the combination
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of the two prefetchers does not yield the best performance. Thus, I have designed a

Euclidean distance based metric that captures similarity in program behavior

sufficiently to recommend prefetch configuration.
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5. RESULTS AND ANALYSIS

5.1 Experimental Environment

In this section the machine and compile time configurations used throughout the

experiment are described.

5.1.1 Machine Configuration

The machine the experiments were conducted on has a 4 core Intel Core2 Quad CPU.

Each core has a clock speed of 2.40GHz. The individual cores have 32KB of L1

cache. Cores 0 and 2 share a 4MB L2 cache, and cores 1 and 3 share a separate 4MB

L2 cache, resulting in a total 8MB of L2 cache. The machine also has 4GB of main

memory.

5.1.2 Build Configuration

The programs are all built using GCC 4.8.2 using optimization level -O2 on an

Ubuntu 14.04 operating system. The PARSEC programs were invoked using the

provided parsecmgmt script, and all 14 programs were run using 8 threads on the

native input. We initially experimented with the effect of varying the number of

threads across different prefetching configurations, however little change in speedup

was observed. 8 threads were chosen even though the machine has 4 cores because it

can slightly skew the operating system thread scheduling policy in favor of the

experiment.
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5.2 Evaluation Method

This section discusses how the recommendations from the learning models have been

assessed.

5.2.1 Cross Validation

We have validated our learning models using a well-known validation method called

(k − 1) validation, also known as leave-one-out validation. In this method, for a

dataset containing k data instances, the learning model is trained using (k − 1) data

instances, and tested using the kth data instance. This is repeated k times such that

each data instance is used as a test data instance. We chose this validation approach

because of the low number of data instances in our data set.

5.2.2 Metrics

Initially, a simple prediction accuracy to assess the performance of the models was

used. However, prediction accuracy in this problem statement does not capture the

effectiveness of learning models. For instance, the best configuration for the program

streamcluster is 0110, which results in a speedup of 1.37, and the models are

trained to predict this configuration. However, if the model predicts 0111, then this

prediction should not be considered to be completely incorrect because 0111 yields a

speedup of 1.34. Therefore, when assessing the performance of the learning model, it

is more effective to look at how much of the achievable speedup can be found using

the recommendation from the learning model. Thus, ideally the goal is for the
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learning models to predict configurations that allow the user to reach 100% of the

possible speedup.

5.3 Choosing the Optimal Number of Features

I have performed feature selection based on algorithm 1 and 2. However, the efficacy

of the pruning algorithm needs to be tested. Also, the optimal number of features for

the learning algorithms also need to be determined. Concretely, from the sorted

dictionary, obtained form algorithm 2, it is yet to be determined how many of these

top performance events one should use to train the models. To do this, increasing

number of features are used to train a decision tree based classifier, until the learning

model benefits from more features or starts to perform poorly. I chose a decision tree

for this purpose because the tree output of a decision tree allows inspection of the

decision making process. On the other hand, a logistic regression classifier would

function as a black box model and it would be difficult to understand the underlying

process. Figure 5.1 shows a sample decision tree that was found after training a model

with top 8 performance event values. In this sample tree, the decision tree makes its

decision on the basis of two events: SIMD UOP TYPE EXEC ARITHMETIC and

SIMD UOP TYPE EXEC LOGICAL. If the scaled value of the first event is greater or

equal to −0.0719, then it suggests the user to not prefetch. If the value is less, then it

checks the scaled value of the second event. If it is greater than or equal to −0.2926 it

suggests prefetching, otherwise not.

The classification task for this purpose is to predict whether given a program, the
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SIMD_UOP_TYPE_EXEC_ARITHMETIC <= -0.0719

SIMD_UOP_TYPE_EXEC_LOGICAL <= -0.2926

no

Don’t prefetch
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Don’t prefetch

no

Prefetch
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Figure 5.1: Decision tree found from training on top 8 performance events

program is likely to benefit by more than 10% from config 1111. First, the classifier

is trained with values of all the performance events, and then repeatedly trained the

classifier using increasing number of top performance events found from the pruning

algorithm. The precision, recall and accuracy in prediction for the model are

measured. The (k − 1) cross validation was used. Precision and recall are defined as:

Precision = TruePositive

TruePositive+ FalsePositive

Recall = TruePositive

TruePositive+ FalseNegative

True positive are data instances that belong to positive class and have been

correctly classified as such. False positives are those that have been incorrectly

classified as positive. True negative and false negative are also defined similarly - true

negative are correctly classified negative instances and false negatives are those that

were incorrectly classified as false.

Precision tells us out of the classes labelled positive by the classifier, how many

were actually positive. This is a stronger metric than simply accuracy. Recall tells us,
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Table 5.1: Effect of varying the number of features on learning

Featureset Precision Recall Accuracy
All events 0.50 0.40 0.64

Top 2 0.25 0.20 0.50
Top 3 0.33 0.20 0.57
Top 4 0.40 0.40 0.57
Top 5 0.40 0.40 0.57
Top 6 0.75 0.60 0.78
Top 7 0.75 0.60 0.78
Top 8 0.80 0.80 0.85
Top 9 0.80 0.80 0.85

Top 10 0.80 0.80 0.85
Top 20 0.60 0.60 0.71
Top 30 0.50 0.60 0.64

out of all the positive instances in the data set, how many was the classifier able to

identify. In our case, we define a data instance as positive if we should apply

prefetching on it.

From table 5.1 it can be seen that the best classification occurs with top 8, 9 and

10 features. It also results in the best precision and recall, too. The decision trees

found from these feature sets are identical, in that they make their decisions on the

same features and same values. Adding more features causes a decline in the

classifier’s prediction. For the rest of the experiments top 8 performance events are

used as the feature set for the logistic regression and decision tree models. For the

Euclidean distance based model, top 6 features were used. During the experiments, it

was discovered that using 6 features for this model improved the quality of

recommendation. The 8 features and their accompanying definition from Intel

manuals are provided in table 5.2.
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Table 5.2: Top 8 performance events used as features

Feature/Event Definition
FP ASSIST This event counts the number of floating point

operations executed that required micro-code assist
intervention.

SIMD COMP INST
RETIRED SCALAR
DOUBLE

This event counts the number of computational SSE2
scalar-double instructions retired. Computational
instructions perform arithmetic computations (for
example: add, multiply and divide).

SIMD INST RETIRED
SCALAR SINGLE

This event counts the number of SSE scalar-single
instructions retired.

SIMD UOP TYPE EXEC
LOGICAL

This event counts the number of SIMD packed
logical micro operations executed.

SIMD COMP INST
RETIRED SCALAR
SINGLE

This event counts the number of computational SSE
scalar- single instructions retired. Computational
instructions perform arithmetic computations (for
example: add, multiply and divide).

SIMD UOP TYPE EXEC
ARITHMETIC

This event counts the number of SIMD packed
arithmetic micro-ops executed.

SIMD INST RETIRED
SCALAR DOUBLE

This event counts the number of SSE2 scalar-double
instructions retired.

SIMD INST RETIRED
VECTOR

This event counts the number of SSE2 vector integer
instructions retired.

5.4 Recommending Optimal Prefetching Configuration

In this section I present the outcome of using learning models to predict the optimal

prefetch configuration. I used 4 independent learning models for each of the

prefetchers. To evaluate the models I measured how much of the achievable speedup

can be obtained from using these models.

The performance of the logistic regression model is shown in table 5.3. On

average this model reaches 92.42% of the achievable speedup. It suffers in predicting

a configuration for freqmine. This is because the training data is formed on the

basis of whether applying a prefetcher results in a speedup of more than 2% over
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Table 5.3: Fraction of achievable speedup reached by the three different models

Program Logistic Regression Decision Tree Euclidean Distance
blackscholes 0.95 0.95 0.97

bodytrack 0.98 0.98 0.99
facesim 0.96 0.98 0.89
ferret 0.99 0.99 0.99

freqmine 0.67 1.00 0.99
raytrace 0.88 0.99 1.00

swaptions 1.00 1.00 1.00
fluidanimate 0.96 0.98 0.98

vips 0.88 0.87 0.90
x264 0.98 0.97 0.98

canneal 0.95 0.95 0.98
streamcluster 0.82 0.82 0.78

random 0.93 0.85 1.00
stream 1.00 1.00 1.00

0000. Applying the cl and dcu prefetcher separately as config 0100 and 0010

does not yield speedup, therefore the models are trained to leave them turned off.

However, the better combinations have both these prefetchers turned on. In this case,

two prefetchers that did not result in significant speedup individually, resulted in

speedup greater than their sums combined.

The decision tree based model performs better than the logistic regression

model on average, reaching 95.26% of the achievable speedup. For freqmine it is

able to suggest the best configuration. This has likely occured by chance because the

information about the interaction of the prefetchers is not carried into the independent

models.

The Euclidean distance reaches 96.11% of achievable speedup on average. Like

the decision tree, it is able to suggest a good configuration for freqmine, however

this is not a case where the model simply got lucky. This is because the configurations
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Figure 5.2: Fraction of achievable speedup reached by the three different models

are recommended based on the most similar program in the training data. Thus, this

model makes predictions based on program behavior, instead of the effect of

individual prefetchers.

The Euclidean distance based classifier is a good fit because it makes full use of

the information found from our exhaustive search of the hardware parameter space for

the optimal configuration. The other classifiers attempt to make predictions for the

best configuration based on the impact of the individual prefetchers, discarding the

information that is available about mixed configurations where multiple prefetchers

are turned on. This model makes use of that information by associating an unseen

program with its closest neighbor.

The only instance where this model is outperformed by the other happens in the

case of stream. We inspected the distance between stream and every other
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program and found that it is closest raytrace. The best configuration for

raytrace is 1111 which results in a speedup of 1.04 in stream, but the

maximum possible speedup in stream is 1.23. Also, stream achieves its best

speedup on configuration 1000, which has only one prefetcher enabled. Since the

other models predict single prefetchers, they perform better in this case.

All the models also suffer in predicting configurations for streamcluster.

This can be explained by inspecting the Euclidean distance model. I found out that

streamcluster is significantly far from every other program. It is closest to

stream, and using the recommendation for stream on streamcluster,

speedup of 1.16 is gained. However, because it is possible to get speedup up to 1.37

by using configuration 0110, the bar for streamcluster in figure 5.2 is at 0.84.

Nonetheless, even though the learning models have not been able to recommend the

optimal configuration, the suggested configuration still results in significant speedup.
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6. CONCLUSION

This section summarizes the contribution and the work done in this thesis, and

indicates the direction this work can take in the future.

6.1 Contribution

This thesis presents the effects of hardware prefetching on the PARSEC benchmark

suite and 2 sample programs. On Intel processors, 4 hardware prefetchers are

available, and 16 different prefetching configurations can be formed by enabling and

disabling each and/or a combination of the prefetchers. The effects of applying all

these prefetching configurations on the 14 programs were recorded. The programs

were also characterized using performance events. However, there are too many

measurable performance events available on modern machines, making it very

difficult to understand each and every one of them. All the events can not be measured

in a single execution of a program that needs to be characterized. On the Intel Core2

machine that was used, each program was run 194 times to collect the value of all the

performance events. This is a huge overhead, and to eliminate most of it, I used an

effective pruning algorithm to identify a concise set of performance events that should

be used to characterize programs. After pruning, it was possible to come down to 8

performance events. These events were used to characterize the programs.

Once it was possible to characterize programs, 3 learning models were used to

to predict optimal prefetching configurations. The models are logistic regression, Gini

decision tree and a Euclidean distance based similarity model. I used (k − 1)
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validation to assess the performance of our models. For this problem statement simple

prediction accuracy was not a good fit, as multiple prefetch configurations result in

significant speedup. Therefore, it was observed how much of the achievable speedup

could be extracted by using the learning models. The best performing model was the

Euclidean distance based model. On average, it allowed extraction of 96.11% of the

achievable speedup across all programs. Liao et al. [36] formulated their problem in a

similar way to how was done in this thesis, by observing how much of the possible

speedup can be achieved using learning models. They reported achieving up to

96.50% performance using a support vector machine on a collection of data center

applications. This measure, however, is a weighted geometric mean, where the

weights are reflections of how often an application is used in a data center.

6.2 Future Work

In this work I presented a framework that predicts optimal hardware prefetching

configurations. There are several ways I would like to extend this work. First, I would

like to assess the effectiveness of the framework on more programs. I have currently

used the PARSEC benchmark suite because it is diverse in the nature of the

applications it contains, as well as it is one of the newer benchmarks. I would now

like to target other benchmark suites and assess how well our learning models

perform. In addition, it would be interesting to see how well the models perform when

there is a large number of programs.

Next, I would like to apply this framework on a different architecture, and also a
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different memory hierarchy. Finally, I would like to use the framework with a

different search space. I have currently used it to study the effects of prefetching. It

would be useful to validate whether the general process of optimization holds for

other areas such as working set size and thread migration strategies.
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