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ABSTRACT 
 

Historically the determination of land cover types has relied upon techniques that 

analyze reflected spectral energy in the visible or near infrared wavelengths. Often, these 

wavelength bands are used in combination to produce vegetation indices like the 

Normalized Difference Vegetation Index (NDVI). 

Data derived from sources such as Light Detection and Ranging (LiDAR) or 

Structure from Motion (SfM) have been primarily utilized for construction of elevation 

models and contour maps. The resolution of this data generally allows for detailed 

reconstruction of the subject area terrain where one can see objects such as rivers, 

streams, buildings, stands of trees, etc.   

In the past 10 years drone technology has become available to the general public 

and with it a researcher is able to gather high resolution data in a fixed flight path where 

the camera orientation for each photo in relation to the ground is known. This detail 

subsequently has allowed for the creation of elevation models that show detail in 

individual tree crowns.  This dissertation uses drone technology to examine the role of 

tree canopy texture, derived from a hyperspatial digital elevation model, in identifying 

individual tree species. The research questions addressed in this dissertation include: (1) 

Are texture patterns derived from hyperspatial digital elevation models (DEM) of the tree 

canopy indicators of individual tree species? (2) What is the role of texture in 

determining species-level assemblages and/or individual tree entities? (3) Can texture 

alone match reflectance-based land-use/land-cover (LULC) detection methods in 
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accuracy of classification? To answer these questions three classification techniques are 

compared for a mixed canopy environment in the Texas, USA Hill Country: (1) object- 

based image analysis of drone-based canopy texture, (2) maximum likelihood 

classification of multispectral drone imagery, and (3) object-based image analysis of 

NDVI derived from National Agricultural Imagery Program aerial photography. Findings 

from this comparison suggest that an analysis of texture alone can match the results of 

multispectral image classification techniques. Findings lead to the conclusions that 

canopy texture is a key indicator of individual tree species and that hyperspatial DEMs 

adequately capture unique differences in tree species.  
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I. INTRODUCTION 

 Human population increases and resultant landscape alterations are leading causes 

of the global biodiversity crisis (Wilson 1988; Lambin et al. 2001; Groom, Meffe, and 

Carroll 2006). Historic and current literature on human induced land cover change 

identifies numerous and complex drivers of change, including social, economic and 

demographic conditions (Meyer and Turner 1992; Geist and Lambin 2002; Luus, 

Robinson, and Deadman 2013). A critical component of understanding the drivers of land 

cover change, which is inherent in all previous studies, is to have an accurate depiction of 

where, and at what pace, change is occurring.  Therefore, expeditious and accurate land 

cover change detection methods are key to monitoring and modeling critical 

environmental challenges.  

A primary means of monitoring land-cover change is via remote spectral 

measurements from airborne or satellite platforms.  Such remote sensing systems provide 

consistent data at a regular interval appropriate for detecting seasonal, annual, and 

decadal shifts in land-cover patterns.  Each sensor is designed to provide data at specific 

spectral, spatial, radiometric and temporal resolutions.  Although Land Use/Land Cover 

(LULC) change detection methods and technologies have advanced over the past 

decades, they suffer from resolution limitations that typically don’t capture fine spatial 

details of a complex ecosystem. Existing methods tend to observe landscape change at 

pixel resolutions amenable to detecting changes of large contiguous entities, such as a 

coniferous forest or riparian wetlands. At these scales, change is often well established by 

the time it is observable in the data. If the land cover change is detected early enough, 

steps can often be taken to minimize the impacts or possibly stop the damage altogether 
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before the change reaches the critical tipping point of irreversibility. These subtle 

changes can be easily detected using the drone-based sensing methods utilized in this 

study and others (Cunliffe, Brazier, and Anderson 2016). 

To illustrate the scope and scale of land cover change I refer to a recent study in 

the western Unites States.  Land cover change was analyzed between the years 1973 and 

2000 in 30 distinct ecological regions within six main regional groupings which share 

similar physical and biological characteristics (Soulard and Sleeter 2012). The authors 

found that the average overall change for this period was 5.8% with a range from 0.5% 

(in the Chihuahuan Desert Ecoregion) to 28.0% (in the Puget Lowland Ecoregion).  

The ecoregions showing the greatest change are the easiest to detect simply 

because their changes are easily discernible with coarse resolution (10-meter resolution 

or greater) sensors.  However, there are also other diverse ecosystems indicating lower 

than average change. The Sierra Nevada Ecoregion at 5.0% and the Wasatch Mountains 

Ecoregion at 2.0% are two examples of regions with below average change. The Wasatch 

Mountains Ecoregion is indicated to cover 44,176 square kilometers. A 2.0% change to 

44,176 square kilometers is 883.5 square kilometers, which when divided by the 27 years 

covered by the study, equals an average of 32 square kilometers of change per annum.  

Previous research has indicated that land cover change tends to start slowly and 

accelerate over time (Meyer and Turner 1992; Lambin et al. 2001). What kind of an 

impact 32 square kilometers of change per annum would have would vary from region to 

region and depend upon the spatial pattern of change. It may be concentrated in one place 

or it may be widely dispersed. If the 32 square kilometers of change were uniformly 

dispersed across the Wasatch Mountain Ecoregion the change would be undetectable by 
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many sensors because the within pixel variation of change is not known due to the 

relatively low resolution of the imagery. 

Hyperspatial imagery (imagery of a very high spatial resolution) is being utilized 

more frequently in remote sensing studies.  There is no current definition of what 

resolution is considered hyperspatial, but a search of recent literature finds that most 

authors utilizing what they call hyperspatial imagery use data ranging from 3 cm to 10 

cm resolution (Black et al. 2014; Tamminga et al. 2015). In a paper studying limits on 

tree density, Greenberg,  Dobrowski and Vanderbilt (2009) define hyperspatial as pixels 

smaller than tree crowns.  Based upon the resolution ranges in these previous studies, 

hyperspatial in this study will refer to imagery with a spatial resolution of 10 cm or 

lower. 

Publicly accessible satellite imagery does not currently include hyperspatial data. 

While sensors flown on aircraft have been capable of gathering hyperspatial data for 

quite some time they are often limited to no better than ½ meter resolution. There are 

many types of analysis that do not require hyperspatial data so the additional cost in 

equipment, time and storage are not included in a projects’ budget. Until recently aircraft-

derived hyperspatial photography came from specialized equipment meant to be mounted 

on the airframe. Today off the shelf hand-held cameras are very capable sensors for 

gathering hyperspatial data. They are typically limited to the RGB spectrum unless 

modified to allow sensing of the NIR bands.  

Recent literature indicates there are many uses for hyperspatial data and 

increasing the accuracy of biodiversity maps is a very common theme in publications 

over the past ten years (Murphy et al. 2008; Culbert et al. 2012; Agarwal et al. 2013; 
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Tamminga et al. 2015). With hyperspatial imagery it becomes possible to identify 

individual biological entities. What used to be just a stand of trees now can be identified 

as individual trees of a particular species.  (Franklin et al. 2000; Turner et al. 2003; Kerr 

and Ostrovsky 2003; Moskal and Franklin 2004; Boyd and Danson 2005; Liu, Hu, and 

Peng 2005; Murphy et al. 2008; Greenberg, Dobrowski, and Vanderbilt 2009; Strecha et 

al. 2012; Agarwal et al. 2013; Rocchini et al. 2013). Hyperspatial data is additionally 

important for monitoring individual plant species’ health and disease occurrence (Moskal 

and Franklin 2004; Greenberg, Dobrowski, and Vanderbilt 2009).  

While data gathered hyperspatially would seemingly be advantageous, there are 

some issues to be considered when attempting to use this data for land cover studies. 

When mapping urban tree species in India, Agarwal et al. (2013) found that diffferences 

in sunlit vs. non-sunlit leaves made detection of tree canopies challenging when using 

traditional pixel-based classification techniques. Their study showed the value in utilizing 

object-oriented classification to overcome these challenges that arise with hyperspatial 

imagery. 

A tree characteristic critical for accurate species level identification that only 

becomes apparent when using hyperspatial imagery is canopy texture.  Canopy texture 

derives from the arrangement of leaves and twigs in relationship to each other and to the 

sensor.  With imagery of a fine enough resolution to resolve individual leaves on trees, 

canopy texture patterns can be identified. These texture patterns may be unique to 

individual tree species and thus can be used for automated species detection methods. 

Data can be both hyperspectral  and hyperspatial. In comparing data that are either 

hyperspectral or hyperspatial there are significant differences between what can be 
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derived from the data and the ease with which one can obtain that data. The availability 

of existing sensors is one of the biggest differences. Hyperspatial data can be gathered 

from off the shelf low cost cameras which can be easily fitted to a small unammned 

aircraft. Hyperspectral data requires a much more expensive sensor that until very 

recently could only be fitted to a manned aircraft or a satellite. There may be a need for 

data that is both hyperspatial and hyperspectral but that should not always be the case. A 

secondary benefit of this study will show that inexpensive hyperspatial imagery can be a 

source for certain types of land cover classification.  

In this study I seek to demonstrate how hyperspatial mapping may provide 

adequate and prompt detection of ecosystem disturbances prior to significant shifts in 

ecosystem functioning. While a sensor with 30x30 meter resolution might detect large 

homogenous LULC changes, change may be well established before it is identified. This 

study seeks to establish a methodological framework for detecting change at a 

hyperspatial resolution that will allows for early detection of portending changes. 

The focus of my research introduces a methodology for distinguishing the 

individual landscape components (i.e., individual trees and groups of trees of the same 

species rather than just “forest” and “non-forest”) and shows that the combination of 

texture (through object-based image analysis) and traditional land cover change detection 

methods is superior to traditional spectral methods alone because it incorporates a more 

complete set of inherent characteristics of the object being remotely sensed, namely 

texture. To accomplish this, texture and reflectance were used in combination to detect 

individual landscape objects rather than broad landscape classes. 

With this focus I answered the following questions: 
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1. Are texture patterns derived from hyperspatial digital surface models 

(DSM) of the tree canopy indicators of individual tree species? 

2. What is the role of texture in determining species-level assemblages and 

individual tree entities? 

3. Can texture alone match reflectance-based LULC detection methods in 

accuracy of classification? 

Question one addresses whether patterns of tree canopy texture derived from 

hyperspatial DSM’s can be utilized for identifying tree species. Answering this question 

requires that (1) the DSM be of a resolution where elevations within the canopy can be 

resolved, and (2) the patterns derived from these elevations are significantly different 

between species so that the species can be detected and classified through object-based 

image analysis. 

Question two builds on the findings of question one by seeking to establish a 

relationship between the physical construction of the canopy and the texture pattern 

collected from the DSM. To analyze these patterns and derive meaningful information 

from them, this study will utilize a statistical method called Gray Level Co-occurrence 

Matrix (GLCM). GLCM analyzes the gray level intensity between a pixel and its 

neighbors. Using the GLCM statistical method in this study will quantify the texture 

patterns of each species which will in turn allow to differentiate between those species. 

This quantification shows what part of the overall classification texture plays. 

Question three directly addresses the question I believe would be of most 

interested: can this study provide a new method of classification that is at least as good as 

commonly used spectral data and classification techniques? To answer this question, the 
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texture analysis is compared to two other reflectance-based classification methods of the 

study area and significant differences are compared.  
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II. LITERATURE REVIEW 

Land Cover Change Detection 

Land cover is the biophysical covering of the Earth—the vegetation, geologic 

features or built-up environment that constitute the land surface. Land cover change 

refers to the change over time that occurs in the land cover and can be placed within two 

main categories: conversion from one land cover to another and modification within a 

land cover type (Meyer and Turner 1992). The causes of land cover change may be 

proximate (i.e., direct and localized causes of change) or underlying (i.e., indirect and 

often distant causes of change). Proximate causes generally refer to physical actions 

taken on the land-cover such as agricultural expansion or timber harvesting. Underlying 

causes constrain proximate causes and often arise at the intersection of complex political, 

demographic, technological, cultural, meteorological/climate and economic dimensions 

(Meyer and Turner 1992; Lambin et al. 2001; Geist and Lambin 2002). Underlying 

causes often originate at regional to global scales (Meyer and Turner 1992; Lambin, 

Geist, and Lepers 2003; Lambin and Geist 2006).   

 Amazonian deforestation is an example of proximate and underlying causes 

occurring in tandem. Geist and Lambin (2002) found that 96% of deforestation in 

Amazonia was due to agricultural expansion, and that the underlying drivers of expansion 

were economic, institutional, technological, cultural and demographic in nature. They 

cautioned against using single-factor explanations of deforestation yet noted that claims 

of irreducible complexity hinder progress toward meaningful solutions. Other studies 

indicate increased cropland is a regionally significant land cover change and that it has 

increased between 300 and 500% worldwide from the 1700s to the late 20th century 
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(Meyer and Turner 1992; Lambin et al. 2001). Meyer and Turner (1992) imply that at 

least some of the change is driven by perceived needs which would lead to land being of 

little benefit until the time when it is reutilized or re-forested. 

 In more industrialized nations where population growth is slowing and agriculture 

production has become increasingly efficient, the trend of change from forest to cropland 

has shifted. The largest increase in land cover change in these areas is change to urban 

and developed land cover types. Most often this change comes from former agricultural 

lands, which were often formerly forests or grasslands (Drummond and Auch 2016; 

Loveland and Acevedo 2016). 

Land cover change has accelerated substantially over the last several hundred 

years. Studies clearly show an acceleration of forested land converted to cropland starting 

around the year 1800 (Lambin et al. 2001), which coincides with what historians cite as 

the beginning of the first industrial revolution beginning circa the year 1780 (Deane 

1980; Crafts 1996). There are many other examples of land use/cover conversions 

(Lambin et al. 2001; Lambin and Geist 2006; Yacouba et al. 2009). Cropland is often 

converted to residential, industrial or commercial uses (Xiao et al. 2006; Lambin and 

Meyfroidt 2011). In much rarer circumstances, land is converted back to conditions prior 

to population/industrial influences (Lambin et al. 2001). 

Information pertaining to land cover and subsequent land cover change is 

important in a wide variety of environmental issues since land cover is a major ecosystem 

component. These range from the health of local ecosystems to global climatic change, 

and from human health and well-being to analysis of socio-economic systems. To fully 

understand change at the global scale one must understand change at the local scale. That 
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is, most global land cover trends result from the cumulative effect of local land cover 

changes. One challenge with global scale synthesis of land cover change, however, is that 

the details about local changes and their drivers are often hidden when examining 

aggregate global trends. Local changes are often dynamic, rapid and non-linear so that, 

when aggregated, they do not exhibit any apparent trend. Local changes that may not be 

apparent at larger scales are nevertheless important because they may reduce the capacity 

of an ecosystem to adapt to external impacts and its ability to continue functioning as it 

has in the past (Walker, Salt, and Reid 2006). These abrupt, local changes may be missed 

in larger scale studies until they grow to a point at which they are apparent at aggregate 

scales, but after mitigation efforts would be most effective. It remains true, however, that 

local land cover analyses have limited availability for synthesizing larger scale analyses 

and so confidence in global or regional results will likely be lower when aggregated. 

With a limited amount of current land cover analyses at local scales, errors are likely to 

be more significant in global synthesis studies. Even if local analyses were widely 

available, the aggregation process risks missing the dynamic, rapid and non-linear 

changes that are only apparent locally.  

 Despite the need for local land cover change analyses, there is limited availability 

of current imagery of a high enough spatial resolution to detect small scale changes. High 

resolution (1-2 meter spatial resolution) imagery, such as from the National Agriculture 

Imagery Program (NAIP) in the United States (Figure 1), generally has 4 spectral bands 

and has been utilized with some success in separating Ashe-juniper (Juniperus ashei) 

from Live Oak (Quercus virginiana) and other common species in central Texas 

(Ludeke, German, and Scott 2007). Without higher spatial resolution, however, it is 
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difficult to distinguish individual species entities.  Imagery able to detect reflectance 

patterns of narrow spectral bands, termed hyperspectral imagery, has the potential to 

differentiate species entities, but satellite-based hyperspectral data will, in most 

circumstances, have too coarse a spatial resolution to detect individual tree canopies 

(Asner and Heidebrecht 2010). Conversely, small scale, sub-orbital hyperspectral 

imagery is currently so cost prohibitive that availability is a problem. When attempting to 

detect rapid change at local scales this is a significant problem. The solution to this 

problem is to implement another type of data collection that is easily and quickly 

obtainable, and that will enhance current locally available data. 

 Two more recent studies which implemented texture as ancillary data show great 

promise for texture as an identifier of individual tree species. Yu et al. (2016) 

successfully combined color, structure and texture into what they refer to as the CTS 

descriptor. This descriptor was shown to successfully classify high resolution satellite 

imagery and was especially efficient with very large data sets. Salas, Boykin, and Valdez 

(2016) also combined texture with spectral data with significant results in the models 

using texture. This study successfully discriminated sparse vegetation from arid land and 

further demonstrated that texture can be used successfully with other types of data. 

 Studies that show the efficacy of  texture analysis utilizing grey level co-

occurrence matrix (GLCM) have recently been published. Kupidura (2019) demonstrated 

that the GLCM coupled with granulometric analysis produced texture data that were 

useful in land use classification. Combining multiple GLCM indices to create a 

composite band of textural information in pixel based and object-based land cover 

classification has also produced promising results (Wu et al. 2019; Tassi and Vizzari 
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2020). Numbisi, Van Coillie, and De Wulf (2019) compared different quantization levels 

of GLCM data and optical data in delineating cocoa agroforests. They found that data 

recorded in the 6-bit grey level to be most successful. 

 Combining GLCM data with SAR and optical data was successful in evaluating 

damage from a dam break in Uzbekistan. This study exhibited high classification 

accuracy in identifying inundated vegetation (Tavus, Kocaman, and Gokceoglu 2022). 

Another successful study combining GLCM with SAR was utilized for agricultural crop 

classification in differentiating onion from sunflower (Caballero et al. 2020). These and 

previous studies combined GLCM texture metrics with other types of data and highlights 

the utility of texture in image classification. What is not said is whether texture alone can 

be used to classify land cover at equal levels of accuracy as other methods. 
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Figure 1 - National Agriculture Imagery Program (NAIP) image showing a portion of the 
study area within Freeman (Ranch) Center near San Marcos, Texas. 
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Image Texture for Land Cover Classification 

 Generally, land cover determination through remote sensing involves spectral 

analysis of reflected light from a surface target. Human vision, although limited in 

spectral range, can distinguish between various vegetation types in an aerial photograph 

or digital image. Nevertheless, there are situations where the reflected energy between 

two different species is so similar that the two species cannot be differentiated.  Methods 

to distinguish between the two apparently spectrally identical species include 1) 

examining new wavelength ranges with the intent to discover spectral regions where the 

signature of the two land cover classes diverge, or 2) increasing the spectral resolution to 

examine narrower wavelength ranges. While these are possible methods, they are not 

practical for a remote sensing system where the measurement of specific wavelength 

ranges is engineered into the sensor. Instead, these options would require a different 

sensor, with different spectral resolution characteristics. Alternatively, a method that 

examines other physical characteristics of the land cover could be used. 

Identifying the species through physical rather than spectral differences is a viable 

alternative. Although the spectral signatures of similar species of vegetation may be the 

same, there may be significant differences in the leaf orientation, density or other 

physical attributes. One way to quantify these physical differences is to utilize a canopy 

elevation model to derive a canopy texture model.  

Texture plays an important role in human vision for feature recognition and 

interpretation. Perception of textures provides important details for the analysis of many 

types of images, including images of the natural environment and biomedical images 

(Zhu and Yang 1998). The texture of an image scene can be defined as the pixel to pixel 
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variation in intensity (Jensen 1986; Ulaby et al. 1986; Ngo et al. 2020; Zhang et al. 2022) 

and has been previously utilized in various LULC studies. Texture in this sense is not 

related to ground terrain but is instead the local spatial variability of pixel intensities 

obtained from remotely sensed imagery (Whiteside, Boggs, and Maier 2011; Ngo et al. 

2020; Iqbal et al. 2021).   

In studying image texture in relation to avian species richness, Culbert and 

Radeloff (2012) utilized 8 different texture classes, including contrast, correlation, and 

entropy, and combinations of these variables. They demonstrated that texture was an 

important tool for explaining avian species richness over broad areas as it measured the 

degree of ecosystem heterogeneity. Their findings indicated that a biodiverse ecosystem 

that supported a large variety of avian species had a more heterogenous image texture. 

Importantly, the authors point out that one limitation of their study was the lack of 

available imagery during the vegetation phenophase most appropriate for studying avian 

diversity.  

Tuttle et al. (2006) utilized texture in studying habitat use patterns of white- and 

tan-throated sparrows. The results of this study showed that the white-throated sparrow 

preferred high-density homogenous habitats such as bog while the closely related tan-

throated sparrow preferred areas with greater heterogeneity such as areas adjacent to 

ponds and meadows. Zhang and Zhu (2011) combined spectral analysis with principal 

components analysis of gray value textures to produce a land cover classification of 

suburban areas near Beijing with 90.91% accuracy. 

Outside the visible-to-near-infrared wavelength ranges, texture is especially 

important in RADAR image analysis, where an understanding of different kinds of 
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texture is essential to proper pre-processing and interpretation. The texture of RADAR 

images consists of three components: (1) micro-texture or speckle, which appears as 

grains the same size or larger than the resolution cells, (2) meso-texture or scene texture, 

which is the natural variation of reflectance from the part of an object facing the sensor to 

the shadow of the portion of the object facing away from the sensor, and (3) macro-

texture, which corresponds to variations in brightness over many resolution cells and 

usually corresponds to boundaries in larger objects such as roads or geologic features 

(European Space Agency (ESA) 2013). 

 Micro-texture or speckle is a phenomenon inherent to the RADAR system used to 

gather the data. The methodology utilized in this study derives the texture models directly 

from imagery and does not have the micro-texture component. This is of benefit as the 

meso- and macro- texture components are the most useful while the micro-texture 

component is noise that would need to be filtered out. 

Ulaby et al. (1986) stated that texture may, in fact, be more useful than image tone 

in interpreting RADAR images. The tonal variation of individual pixels within image 

objects were shown to be significant in a classification performed by Ulaby et al. (1986) 

in their study using RADAR images for LULC detection. Using tone alone a 

classification accuracy of 75% was achieved. When combining tone and texture the 

accuracy exceeded 90%. 

Implementing texture as a measure of the physical characteristics of a tree canopy 

has challenges like those of spectral imagery. Canopy texture is based on a canopy 

elevation model and creating an elevation model that captures the variability of within-

canopy height, leaf orientation and leaf density depends on the resolution of available 
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imagery. These physical characteristics will only be apparent with a very high spatial 

resolution image. For example, existing elevation models at 1 to 30 meters are too coarse 

to observe canopy texture so a method to obtain finer resolutions must be implemented. 

Figure 2 shows a section of a 1/9 arc second (~3 meter) DEM from central Texas. When 

comparing the NAIP image of the same area, individual tree crowns cannot be detected in 

the DEM. The NAIP image is at a resolution where individual crowns are visible, but 

even NAIP imagery has insufficient spatial resolution to detect canopy texture 

characteristics. 

Aerial imagery or DEM’s with the resolution to detect the texture of tree crowns 

is not something that is generally available without considerable effort and expense. An  

alternative is to create a DEM using overlapping stereo images. The first requirement to 

create a DEM at a very high resolution using overlapping imagery is to use a high-quality 

camera flown at a low altitude (< 150 meters) so as to produce high spatial resolution 

imagery.  The only option currently available that meets these requirements is to use an 

Unmanned Aerial System with a pre-programmed flight path and altitude.  

 

 



18 

 

Figure 2 - National Elevation Dataset (NED) 1/9 arc second (3 meter) resolution DEM 
and NAIP imagery at 1-meter resolution of the same portion of the study area. 
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Manual and Automated Photogrammetry 

The beginnings of stereo photography can be traced back as far as 280 A.D. when 

Euclid was the first to recognize that depth perception was the result of the eyes receiving 

two slightly different images. Much later, in 1611, Kepler’s Dioptrice was published and 

included descriptions of the projection theory of human stereo vision (Thakare, Arbal, 

and Shahade 2011). Parallax refers to the relative change in position of an object that is 

due to differences in the angle at which the object is viewed. After Kepler’s work, several 

methods were discovered that induced the human brain to perceive depth from two-

dimensional, overlapping images. Anaglyphic 3D originated circa 1850 and utilized 

colored filters to introduce to each eye an image of the same scene, but taken from 

different viewing angles. One hundred years later during WWII, photo analysts used 

stereoscopes (devices used to view overlapping photographs in 3D) to observe enemy 

installations taken by photo-reconnaissance aircraft.  

Aerial photography has well-known radial distortions that can be used to measure 

distances and heights from overlapping photograph pairs in a process called 

photogrammetry (Lillesand, Kiefer, and Chipman 2004). Using the focal length of the 

mapping camera and the flying height of the plane on which the camera flew, the scale of 

the photography can be determined, and horizontal measurements made on the 

photography can be converted to ground distances. Measuring object heights is more 

involved than horizontal measurements and requires that an analyst align the centers of 

two photographs (i.e., their principal points) with the centers of their neighboring 

photographs (i.e., their conjugal principal points) to determine a flight line, and then 

manually measuring the degree of displacement (i.e., the absolute parallax) of an object 
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in both overlapping photographs.  The absolute parallax is used to convert object heights 

from photograph units to actual ground heights.  

Using additional parameters that describe the camera orientation relative to the 

ground, manual photogrammetric principles are used to orthorectify images and create 

photo-mosaics and elevation models (in analog or digital format). Interior camera 

orientation parameters include precise measurements of the camera shape (e.g., the focal 

length and the camera width and length, as measured between fiducial marks encoded on 

the photographic images). Exterior orientation parameters include the horizontal 

coordinates (X, Y) and altitude (Z), as well as the 3D orientation (Ω, Φ, and Κ—also 

known as roll, pitch and yaw) of the camera, at the time of image acquisition. Tie points 

are points manually identified on multiple overlapping images that corresponds to 

matching objects on the ground, and ground control points are tie points for which XYZ 

ground coordinates are known. Tie points enable parallax height measurements across the 

images from which are derived surface elevations and ground control points enable 

creation of a georeferenced image mosaic and digital surface model.  

Structure from Motion (SfM) is an automated photogrammetric imaging 

technique for creating three dimensional objects from overlapping two dimensional 

images. Where SfM differs from traditional photogrammetry is that SfM does not require 

that the exterior camera orientation parameters or tie points be known a priori. Instead, 

camera positions and orientations are derived by automatically identifying common 

points in the overlapping imagery using one of a set of algorithms known as automatic 

feature detection algorithms (Tareen and Saleem 2018). By tracking these points through 

multiple overlapping images taken at various locations and angles, the X, Y and Z 
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coordinates, and the Ω, Φ and Κ 3D orientation angles of the camera can be calculated in 

relative space (Westoby et al. 2012). Once interior and exterior orientation parameters 

have been derived, digital image mosaics and surface models are created. If ground 

control points are available, these products can be accurately georeferenced (Westoby et 

al. 2012). 

While SfM is relatively new in the field of remote sensing it has been utilized in 

many studies in recent years. In a study concerning the role of SfM in physical 

geography, Smith, Carrivick, and Quincey (2015) highlights applications of SfM to 

monitoring glacier movement, quantifying soil loss and gully erosion, observing and 

tracking lava movement and landslide displacement, monitoring coastal recession, 

surveying fluvial morphology including submerged surfaces, characterizing rock 

outcrops and quantifying aboveground forest biomass. SfM studies specific to vegetation 

are increasingly common. In a study of dryland vegetation Cunliffe, Brazier, and 

Anderson (2016) were successful in showing that SfM could accurately model vegetation 

height. 

 

Lidar 

Elevation data can be generated using Light Detection and Ranging (lidar), a 

remote sensing technique that uses laser light to measure distances from a sensor to 

surface targets (ground, building, tree, etc.). The first lidar systems worked by 

transmitting one or more pulses of laser light from a sensor to the Earth’s surface. This 

system continues to be the most common system today, but systems that transmit a 

continuous waveform of laser light are becoming increasingly common (Mallet and 
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Bretar 2009). The transmitted laser light reflects off a surface target and returns to the 

sensor, where the difference in time from transmission to return is recorded (Dong and 

Chen 2017). Multiplying the speed of light by half the time difference produces the 

distance to the surface target. The distance datum, coupled with a GPS and Inertial 

Measurement Unit (IMU) to record the exact XYZ location and the 3D orientation of the 

sensor, allow for a precise determination of the location and elevation of the surface 

target. Multiple surface targets are measured this way through the forward motion of the 

sensing platform and by continuously changing the incidence angle of laser light. This 

point cloud of measurements often has sub-meter point density (depending on the aerial 

platform flying altitude and laser pulse density) and is the raw data produced by a lidar 

system. 

Current systems transmit and receive either multiple pulses, or a continuous 

waveform, of laser light. The first return is from a high elevation surface (i.e., the target 

closest to an airborne sensor) and the last return generally is the ground (i.e., the target 

furthest from an airborne sensor). Intermediate returns represent targets at intermediate 

elevations and the distribution of multiple returns is correlated with the physical object 

being measured. Most returns are from the uppermost surface targets, but even some 

points are usually returned from the ground for surface targets with gaps in their aerial 

coverage (e.g., trees). For example, the distribution of multiple returns in a forest 

ecosystem corresponds to the structure (e.g., distribution of leaves) in individual tree 

canopies (Froidevaux et al. 2016; McCarley et al. 2017; Wiggins et al. 2019). 

Importantly, the class of object represented by each point in the point cloud is unknown 

until further analysis is performed. 
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Lidar analysis usually involves ground filtering, point interpolation and the 

determination of object heights (Dong and Chen 2017). The purpose of ground filtering 

algorithms is to classify lidar points as ground or non-ground (Meng, Currit, and Zhao 

2010; Martínez Sánchez et al. 2019). Directional, morphological, interpolation-based and 

segmentation-based ground filtering algorithms are each appropriate for unique 

environmental conditions (Meng, Currit, and Zhao 2010; Ramola, Shakya, and Pham 

2020; Fonseca et al. 2021). These algorithms scan the point cloud for point-to-point 

differences in elevation and determine thresholds of elevation change that ground and 

non-ground surfaces.  

Interpolation of a gridded elevation raster using the entire lidar point cloud 

produces a Digital Surface Model (DSM) that is usually of little value because it averages 

multiple returns over a ground sample distance. Instead, the filtered ground points are 

interpolated to create a Digital Terrain Model (DTM). The non-ground points are used to 

determine objects heights above the surface of the terrain surface. Depending on the 

elevation and geometric distributions of point heights above the terrain, points can be 

further classified into unique surface objects (buildings, trees, etc.) (Meng, Currit, and 

Zhao 2010).  

The last decade has seen much growth in lidar technology with applications 

ranging from forestry, to the cryosphere, to urban growth and more (Dong and Chen 

2017; Liao, Zhou, and Yang 2021). Lidar data and analysis excel at producing ground 

and surface elevation datasets, even in areas of dense tree canopy coverage, but require 

great expense for equipment purchase, maintenance, and data storage and processing.  
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Comparing lidar and Structure from Motion 

Wallace et al. (2016) and Mlambo et al. (2017) indicate that while SfM produces 

an overall denser canopy point cloud than lidar, lidar still excels in the production of an 

accurate ground model.  Both studies indicated better accuracy from lidar in the 

representation of the bare earth model. Wallace et al. (2016) found a difference greater 

than 0.5m between lidar and SfM-based digital terrain models due to SfM’s limited 

ability to penetrate a vegetation canopy and register ground points in heavily vegetated 

areas.   

Due to the terrain being occluded at various viewing angles, Wallace et al. (2016) 

indicated a point density of 0.5 ground points per square meter in the SfM ground point 

cloud. Canopy height models were adversely affected due to the accuracy of the ground 

model as these measurements utilized ground height in their calculation. One other 

advantage that SfM holds over lidar besides canopy point density is the recording of RGB 

values. This allows the point cloud to be displayed in a manner similar to a photograph 

which is very advantageous when using the point cloud to delineate features. 

Advances in computer vision algorithms, such as parallel bundle adjustments 

which utilize the latest in graphic processing unit (GPU) technology allows for matching 

distinct objects found in hundreds or thousands of overlapping photographs taken from 

varying angles, have made SfM a viable option for creating digital surface models 

(Wallace et al. 2016; Deliry and Avdan 2021; Liao, Zhou, and Yang 2021). By extension, 

SfM appears to be an excellent technique for acquiring hyperspatial resolution elevation 

models of individual tree canopies that can be used to determine canopy texture.  
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Image Classification Algorithms and Techniques 

Unsupervised classification is used when an analyst has little or no information on 

the number, type or spectral variability of land-cover classes in a study area. The first 

step in unsupervised classification is to apply a clustering algorithm that identifies pixels 

of similar spectral value. One common algorithm in remote sensing analysis, the Iterative 

Self-Organizing Data Analysis Technique (ISODATA), requires that an analyst input an 

initial number of desired clusters to find before iteratively assigning pixels to spectrally 

similar clusters of pixels. Cluster assignments are iteratively refined until reaching an 

analyst-defined number of iterations or a threshold of unchanged pixel assignments is 

reached. The second step in unsupervised classification is for an analyst to manually 

apply a semantic label to each of the algorithmically defined spectral clusters that 

correspond with each land-cover classes of interest. 

Supervised classification automatically assigns a semantic label to pixels based on 

training data provided by an analyst that consists of manually assigned class labels for a 

selection of pixels of known value. An algorithm is then selected that will learn from the 

training data how to correctly assign the correct label to all image pixels. One of the most 

common supervised classification algorithms is the Maximum Likelihood Classifier 

(Yacouba et al. 2009). This method applies probability theory in determining class 

assignments by using the mean, variance and covariance to determine to which class a 

pixel belongs in the training data. A Bayesian probability function is applied to the 

variance and covariance matrices for each of the classes of the training data, resulting in a 

set of multi-dimensional ellipses defining class boundaries. All image pixels are then 

classified by the trained algorithm, resulting in an exhaustive image classification.  
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 Pixel-based image classification techniques assess each pixel in an image 

individually and assign that pixel to a land-cover class using an unsupervised or 

supervised technique that incorporates multiple spectral measurements per pixel. 

Ancillary information (e.g., a digital elevation model) may be used in pixel-based 

methods, but each pixel is considered in isolation—neighboring pixels are not examined 

when classifying a pixel. Pixel-based classification techniques have been extensively 

used, but recently object-based techniques have become prevalent because they show 

significant improvements in accuracy, especially with high spatial resolution remotely 

sensed images (Myint et al. 2011). 

Object-based classification techniques consider the spectral information of a 

neighborhood of pixels as well as other neighborhood parameters like texture and shape 

in the classification process, thereby increasing the ability to discriminate between 

different objects that have similar spectral signatures (Zhou and Troy 2008). Blaschke 

(2010) found broad agreement that current Object-Based Image Analysis (OBIA) builds 

on previous edge detection and feature extraction techniques, and argued for a new 

merger between GIS and previous image processing techniques that he called Geographic 

Object Based Image Analysis (GEOBIA).  

When performing GEOBIA, image pixels are segmented into superpixel 

objects—groups of neighboring pixels with a high degree of spectral homogeneity. 

Nevertheless, individual pixels in a segment may exhibit some heterogeneity due to 

factors such as shading or variations in sun angle (Whiteside, Boggs, and Maier 2011). 

Each segment is treated as a distinct ground object with unique spectral, spatial and 

texture attributes. The spectral attributes for each object are usually the average 
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reflectance of all pixels in each spectral band comprising the segmented object. A variety 

of spatial attributes can also be calculated, including the area and perimeter of the object 

and the concavity, semi-major axis, and orientation, for example. Texture attributes are 

measures of the pixel-to-pixel variation in spectral response within the segmented object. 

Together the spectral, spatial and texture attributes are used to assign each segmented 

object to a land-cover class using an unsupervised or supervised algorithm. Analysis of 

segmented objects eliminates problems faced in pixel-based classification where the 

variability in neighboring pixels that belong to the same ground object leads those pixels 

to be erroneously assigned to different land-cover classes. 

There appears to be disagreement in the available literature over how and when 

object-based classification outperforms pixel-based classification. Many publications 

claim that object-based classification has greater potential for classifying higher spatial 

resolution imagery than pixel-based methods (Willhauck 2000; Mansor, Hong, and 

Shariff 2002; Oruc, Marangoz, and Buyuksalih 2004). However, Dingle Robertson and 

King (2011) found no statistically significant difference between the two methods in their 

study using McNemar's non-parametric test for proportional difference (de Leeuw, 

Verschure, and van Liere 2006), although visual inspection indicated the object-based 

approach incurred less significant error in the larger regions of homogeneous cover and 

performed better in temporal analysis of land cover change (Dingle Robertson and King 

2011). Niemeyer and Canty (2003) claim that object-based classification has greater 

potential for detecting change in higher resolution imagery. Castillejo-González et al. 

(2009) found that an object-based method out-performed five pixel-based supervised 

classification algorithms (parallelepiped, minimum distance, Mahanalobis Distance 
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Classifier, Spectral Angle Mapper, and MLC) for mapping crops and agro-environmental 

associated measures. Based on their reference data, Gao and Mas (2008) achieved far 

greater accuracy in mapping 12 land cover classes using an object-based versus a pixel-

based approach (83.25% and 46.48%, respectively), while the object-based methodology 

used by Gao and Mas (2008) outperformed both MLC and nearest neighbor pixel-based 

methods in mapping cover using SPOT 5 (10 m spatial resolution) data. However, the 

authors noted that after smoothing filters were applied to the imagery, the accuracy of the 

pixel-based methods increased while object-based accuracies decreased. 
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III. DATA & METHODOLOGY 

Study Area 

Freeman (Ranch) Center is located approximately 7 kilometers northwest of San 

Marcos, Texas on the eastern edge of the Texas Hill Country and Balcones Escarpment 

(Figure 3). The ranch covers an area of 1702 ha (4,204 acres). It is a working ranch that is 

operated by Texas State University and is available for research in fields such as ecology 

and agriculture. The land cover consists of areas that are primarily pastureland with 

Plateau Live Oak (Quercus virginiana var. fusiformis) and Ashe juniper (Juniperus ashei) 

savannas in the uplands that grade gradually into closed-canopy woodlands. The variation 

of the land cover makes it ideal for the proposed study. Predominant soils of the ranch are 

the Comfort and Rumple series which are moderately deep upland soils. Each of these 

soils is of a stony clay mixture which is ideal for growth of Ashe-junipers (Baccus et al. 

2000). The topography of the ranch is generally hilly with several steep canyons and 

streams. Elevations range from 204 to 287 meters. 

According to the Köppen Climate Classification system the Ranch has a humid 

subtropical environment (Cfa) which is characterized by hot, humid summers (July mean 

temperature of 30°C) and generally cool to mild winters (January mean temperature of 

10°C). Mean annual precipitation averages approximately 900 mm but is characterized by 

great seasonal and annual variation (Earl, Dixon, and Day 2006; U.S. Climate Data 

Center 2021).   
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Figure 3 - Polygon indicates location of study area located 11 kilometers Northwest of 
San Marcos.  Scale 1:300,000. (ESRI, 2013) 
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The diversity of the ranch is evident when listing the ecosystems located within 

the ranch boundaries. The Texas Ecological Systems Classification Project (Texas Parks 

and Wildlife 2021) lists 27 distinct ecosystems on Freeman Ranch (Table 1, Figure 4). 

The specific study area is located in the southeastern third of the ranch. Air 

navigation sectional charts indicate the northern portion of the ranch intersects an 

approach cone for the San Marcos Municipal Airport. For safety and efficiency reasons it 

is advisable to stay in the southernmost section of the ranch. 

After evaluating several potential study areas, a plot of approximately 53 hectares 

was selected at Freeman Ranch in San Marcos Texas (Figure 5). The criteria used for 

selecting this area were accessibility and variability. The accessibility allows for easy 

access for both data gathering and ground truthing. Variability of the site is good as it 

contains a variety of species. Species found on the site during the initial survey were 

primarily Plateau Live Oak (Quercus virginiana) and Ashe Juniper (Juniperus ashei), and 

secondarily Honey Mesquite (Prosopis glandulosa), Netleaf hackberry (Celtis laevigata), 

and Cedar elm (Ulmus crassifolia). It was determined that Honey Mesquite, Netleaf 

Hackberry and Cedar Elm were so scarce and dispersed that this research will only 

classify Plateau Live Oak and Ashe Juniper.  The terrain is variable ranging from 214 

meters ASL to 242 meters ASL with the highest point in the northwest corner and the 

lowest in the southeast. The study area is bisected from north to south by Sink Creek 

which is the ephemeral headwaters of the San Marcos River. 
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Table 1. Texas Ecological System Classification Project ecosystems located in Freeman 
Ranch. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Ashe Juniper Slope Forest 
Ashe Juniper / Live Oak Shrubland 
Ashe Juniper Motte and Woodland 
Deciduous Oak / Evergreen Motte and Woodland 
Floodplain Deciduous Shrubland 
Floodplain Hardwood / Ashe Juniper Forest 
Floodplain Hardwood Forest 
Floodplain Herbaceous Vegetation 
Floodplain Live Oak Forest 
Live Oak Motte and Woodland 
Live Oak Slope Forest 
Native Invasive  Deciduous Woodland 
Native Invasive  Juniper Woodland 
Native Invasive  Mesquite Shrubland 
Oak / Ashe Juniper Slope Forest 
Oak / Hardwood Motte and Woodland 
Oak / Hardwood Slope Forest 
Post Oak Motte and Woodland 
Riparian Ashe Juniper Forest 
Riparian Ashe Juniper Shrubland 
Riparian Deciduous Shrubland 
Riparian Hardwood / Ashe Juniper Forest 
Riparian Hardwood Forest 
Riparian Herbaceous Vegetation 
Riparian Live Oak Forest 
Savanna Grassland 
Shin Oak Slope Shrubland 
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Figure 4 - Ecosystems of Freeman Ranch (Texas Parks and Wildlife 2021) 
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Figure 5 – Study area within the Freeman Ranch Boundary  

 

 

 



35 

Data Collection of Tree Canopy Elevation Textures 

An Unmanned Aerial System (UAS) was used to gather primary image data in the 

spring and summer of 2015 under clear skies and near solar noon to minimize shadows. 

Reducing shadows was important because shadows obfuscate the actual land cover and, 

of special relevance to this study, hide the textural variations in smaller trees adjacent to 

larger trees. Collected imagery was mosaiced into a seamless RGB image mosaic and a 

3D pointcloud and digital surface model were created by utilizing the stereoscopic 

qualities of the overlapping imagery and SfM algorithms. Then, the texture of the canopy 

elevations (as an indicator of canopy structure) was derived from the DSM. An initial 

segmentation was performed on the RGB mosaic to delineate forested areas that served to 

refine the extent of the study area and made possible the classification of tree types based 

on their canopy texture. Two classifications were made from the forested study region as 

follows: (1) The canopy texture model was combined with the RGB image mosaic and 

classified using GEOBIA techniques, and (2) The RGB image mosaic was classified 

using the pixel-based, supervised Maximum Likelihood classifier. For comparison, a 

third classification was performed on National Agriculture Imagery Program (NAIP) 

imagery using NDVI incorporated into GEOBIA techniques and in the same forested 

study region as the other classifications. Once the classifications were completed, ground 

truthing took place and statistical tests were performed to assess accuracy. 

UAS Image Collection 

Five ground control points (GCP) were placed in the study site prior to UAS 

image data collection to aid in mosaicking and georeferencing the imagery obtained.  The 



36 

GCP targets consisted of orange foam squares measuring 1 x 1 meter with a 12-inch 

diameter circle painted in the middle. The precise XYZ coordinates of the GCP’s were 

measured using an Ashtec MM100 GPS and differential correction techniques to an 

accuracy of < 1 cm (Figure 6). 

 

 

 

 

 

 

 

 

 



37 

 

Figure 6 - DEM (left) created from UAS imagery indicating approximately 7.5cm 
resolution. Right image shows ground control target in same location. 
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Two aerial systems were considered for this study: one rotorcraft and one fixed 

wing. The two systems had very different flight characteristics and utilized cameras with 

very different specifications. The rotorcraft was built by 3D Robotics with a Gopro 3+ 

Black mounted on a 2D gimble. The fixed wing Areohawk was manufactured by 

Hawkeye UAS and carries a Sony Nex7 camera. Specifications for each platform can be 

viewed in the Appendix. After evaluating data collected by both systems it was decided 

to utilize the imagery from the Areohawk.  While the X8 flew at a much lower altitude 

(increasing the pixel resolution) it also used a much lower quality camera. Imagery from 

the AreoHawk showed better resolution even when flying over three times the altitude of 

the X8. The GoPro imagery from the X8 platform also required processing to remove the 

fisheye effect inherent in that camera which added to the complexity of the process. 

The aircraft was always required to be within the line of sight of the drone 

operator per FAA regulations, even though the airspace utilized was below the regulated 

airspace for manned traffic. Pre-flight safety checks were an important part of drone 

operation (just as they are with manned aircraft) and included the following items: 

1. Check aircraft propellers, body, and control surfaces for damage. 
2. Power up ground station and load flight plan. 
3. Check flight plan parameters such as waypoints, speed and altitude. 
4. Power on hand control transmitter. 
5. Power up aircraft. 
6. Check wireless link between hand control and aircraft. 
7. Check wireless link between ground station and aircraft. 
8. Upload mission to aircraft. 
9. Check throttle, and control surface links between manual controller and aircraft. 

Upon passing all of these checks the aircraft was ready for launch. 

Ground control software, software installed on a portable computer that maintains 

constant contact with the UAS while it is in operation, was used to upload the flight plan 
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to the UAS and issue commands to it while it was in flight. Flying altitude and the 

amount of photographic overlap were important considerations of the flight plan because 

they have a direct relationship with the resolution of the objects in the images—higher 

altitudes lead to coarser spatial resolution images and lower altitudes increase the 

likelihood of motion blur being introduced to images. The flight altitude was 

programmed to stay just below the 400-meter maximum altitude dictated by law for 

radio-controlled aircraft in the United States and the photographs in this study had a 

minimum of 50% overlap obtained using a back-and-forth (mowing the lawn) flight path. 

The camera shutter was manually controlled from the ground and was adjusted depending 

on the speed of the aircraft. It was determined that approximately one photo per second 

was the ideal rate at which to take photos.  

The ground control software monitored the UAS’s precise flight path and 

recorded the camera location and attitude (i.e., its 3D rotation along X, Y and Z axes) for 

each photograph taken (Table 2, Figure 7). This data allowed the SfM software to 

accurately place measured object points in their proper location and orientation in space. 

Without attitude data, the resultant geometric accuracy of the images would be spatially 

most accurate near the GCP’s and would degrade with distance away from the GCP 

points. With the attitude data, the resultant images had improved geometric fidelity. The 

photographs and the camera logs containing the camera location and attitude data were 

saved on completion of the photography mission.  
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Table 2 – Sample of flight log data created by autopilot. The columns that are used in the 
SfM process are CLat (Camera Latitude), CLon (Camera Longitude), CAlt, (Camera 
Altitude), CPi (Camera Pitch), CRol (Camera Roll), CYaw (Camera Yaw), and CFOV 
(Camera Field of View). 

 

Photo    Epoch  Time     SLR     TLat        TLon         AAT     Azi    Dpr      CLat         Clon       CAlt   CPi    CRoll   CYaw  CFOV
26 48270 15322875 0 29.93294 -97.9883 0 0 90 29.93293 -97.9882 1427.5 1.2 -1.36 179.39 70
27 48321 15323075 0 29.93341 -97.9882 0 0 90 29.93338 -97.9882 1415.7 -0.33 -1.49 -175.38 70
28 48371 15323275 0 29.93387 -97.9882 0 0 90 29.9338 -97.9881 1409.1 -0.42 -3.76 -168.43 70
29 48421 15323475 0 29.93436 -97.9879 0 0 90 29.93427 -97.9879 1397.3 -3.34 1.65 -170.92 70
30 48471 15323675 0 29.93484 -97.9876 0 0 90 29.9347 -97.9878 1388.5 -5.04 5.6 -172.93 70
31 48521 15323875 0 29.93534 -97.9877 0 0 90 29.93514 -97.9877 1386.2 -5.58 0.06 -173.74 70
32 48571 15324075 0 29.93574 -97.9875 0 0 90 29.93564 -97.9876 1389.4 -3.69 1.14 -171.85 70
33 48621 15324275 0 29.93612 -97.9875 0 0 90 29.93607 -97.9875 1394.4 -1.19 -0.24 -172.38 70
34 48671 15324475 0 29.93648 -97.9873 0 0 90 29.93648 -97.9874 1396.3 1.11 0.89 -173.88 70
35 48721 15324675 0 29.93697 -97.9873 0 0 90 29.93696 -97.9873 1390.1 -0.37 0.54 -174.63 70
36 48771 15324875 0 29.93747 -97.9871 0 0 90 29.9374 -97.9872 1394.4 -2.15 1.09 -170.94 70
37 48821 15325075 0 29.93797 -97.9872 0 0 90 29.93784 -97.9871 1398.3 -3.19 -2.73 -170.25 70
38 48871 15325275 0 29.93825 -97.9868 0 0 90 29.93832 -97.987 1397.6 2.2 3.63 -173.77 70
39 48921 15325475 0 29.93876 -97.9872 0 0 90 29.93874 -97.9869 1396 1 -10.18 -173.69 70
40 50561 15340050 0 29.94004 -97.9881 0 0 90 29.94016 -97.988 1348.8 -4.66 1.41 12.95 70
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Figure 7 – Example of flight path and photo points overlaid on aerial imagery. Any points 
that fall outside of the known flight path should be eliminated. 
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Structure from Motion Processing 

 Before SfM processing could occur, each photograph was manually evaluated and 

any photograph that was undesirable was eliminated along with its corresponding record 

in the camera log. Examples of eliminated photos included those that were out of focus or 

taken as the aircraft was banking. The raw imagery was then color balanced in Adobe 

Photoshop and converted to the RAW image format preferred by the SfM software. The 

camera log files were imported into Microsoft Excel where the appropriate photograph 

filenames and file types were associated with their corresponding X, Y, Z coordinates 

and roll, pitch and yaw camera orientation angles. The ground control points were added 

into a second Excel spreadsheet and saved in the same way as the log files. The workflow 

then used to create the mosaic and point cloud is shown in Figure 8. 
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Figure 8 – Data Processing Workflow 

 

 

 

 

 

 

 



44 

Color-balanced drone imagery was processed using SfM techniques found in the 

Agisoft Photoscan software and included the bundle adjustment procedure, image mosaic 

creation, and extraction of the 3D point cloud. The tie points created in the bundle 

adjustment procedure were identified by aerial triangulation of corresponding features 

tracked from image to image that allowed for the derivation of the camera position in 

relation to each tie point. Coordinates of matching photograph points were determined 

relative to the different camera positions and added to a point cloud database.  Because 

this study collected georeferenced ground control points prior to image data collection, 

the resultant image mosaic and point cloud were georeferenced in 3D space and ready for 

integration with other geospatial data. The point cloud created through the SfM process 

was then converted to a digital surface model (DSM) using ArcGIS 3D Analyst. Because 

of the high resolution of the digital camera, the relatively low flying altitude, and the 

accuracy of photograph placement using the SfM technique, a resolution of less than 

10cm was achieved. This hyperspatial DSM was then used to create a measure of tree-

canopy texture that was incorporated into the supervised classification processes, as 

described in the next section.  

Land-cover Classifications and Comparisons 

Three classification methods were used for this study, 1) a texture-based GEOBIA 

of the canopy structure derived from drone imagery, 2) a spectral-based supervised 

classification of the drone imagery using the maximum likelihood algorithm, and 3) an 

NDVI-based classification using National Agriculture Imagery Program (NAIP) digital 

aerial photography. Trimble eCognition Developer software © was used for the GEOBIA 
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models and ERDAS Imagine was used for the spectral model. Classifications from the 

different methods were compared to test whether there was significant improvement in 

the accuracy of the texture-based GEOBIA classification compared to the other 

classification methods. 

GEOBIA and The Gray Level Co-occurrence Matrix 

GEOBIA consisted of segmenting the image mosaic into groups of image pixels 

called super-pixels or objects, calculating object attributes including the mean spectral 

response and image texture based on the Gray Level Co-occurrence Matrix (GLCM) for 

each segmented object, and classifying the objects into land-cover classes. The image 

mosaic was segmented using the eCognition software’s multi-resolution segmentation 

process, which required 3 analyst-defined parameters: scale, shape and compactness. 

There is no agreed upon set of scale, shape and compactness values for optimal 

segmentation in all cases, nor any heuristics for selecting values for a particular use case 

(Kavzoglu and Yildiz 2014; Akar and Gormus 2021; Bai et al. 2021). Instead, these 

values are set by trial and error until a satisfactory segmentation has been reached, as 

determined by the analyst. Scale is an abstract value that determines the maximum 

possible change in heterogeneity that results from merging neighboring objects and 

roughly corresponds to average object size. Small (large) scale parameter values tend to 

result in smaller (larger) sized objects, on average. The shape parameter value is a real 

number in the range [0, 1] that determines the balance between spectral heterogeneity and 

geometric shape in determining segments. Small (large) shape parameter values tend to 

result in objects primarily defined by their spectral (geometric) characteristics. The 
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compactness parameter value is a real number in the range [0, 1] that determines the 

balance between smoothness and compactness metrics of segment geometries. 

Smoothness and compactness metrics are calculated as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑙𝑙
√𝑛𝑛

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑙𝑙
𝑏𝑏

 

where 𝑙𝑙 is the perimeter of a potential image object, n is number of pixels in the object, 

and b is shortest possible border length of a box bounding of the object. Small (large) 

compactness parameter values tend to result in objects that are less (more) circular in 

shape. The resultant smoothness and compactness values were 0.3 and 0.5, respectively, 

which resulted in the image segments displayed in Figure 9. 

 A two-step segmentation process was followed in this research. The first 

application of image segmentation was used to delineate broad land cover classes to 

identify forested areas. In this step, the aim was to distinguish between other land cover 

classes (e.g., grasslands, roads, buildings, and shadows) and forested areas. 

Oversegmented forest object boundaries were dissolved to delineate a single multi-

polygon representation of forested areas, and these forested areas became the refined 

study area where the influence of tree canopy texture on classification accuracy could be 

tested using object- and pixel-based classification methods (i.e., all three methods 

proposed in this research). The second application of image segmentation was used in the 

first and third GEOBIA classification efforts that included segmentation of individual 
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trees or tree clusters of the same species into unique image objects, object attribution 

(including a GLCM texture measure or NDVI, depending on the classification method), 

and the classification of objects into either the Live Oak or Ashe Juniper land cover 

classes.   
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Figure 9 – Results of the GEOBIA segmentation process using Trimble eCognition. The 
segments created were used to (1) delineate the forested-region study area for all 
classification methods, and later to (2) delineate individual trees or clusters of trees of the 
same species within the forested study area using the first and third classification 
methods.   
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The Gray Level Co-occurrence Matrix (GLCM) represents the joint probability of 

occurrence of 2 values at given distance and orientation offsets (Rampun, Strange, and 

Zwiggelaar 2013; Akar and Gormus 2021). It is a statistical method that measures texture 

by tabulating how often different combinations of pixel brightness values occur in an im-

age (Hall-Beyer 2017). This statistical relationship is generally measured between refer-

ence pixels and their immediate neighbor pixels in a specified direction and orientation, 

making it a second order relationship (Hall-Beyer 2017; Weigand et al. 2020). While 

third order and higher calculations are possible, they are computationally intensive and 

do not yield significantly improved results (Hall-Beyer 2017). The purpose of using the 

GLCM in this research is to examine the role of canopy structure in land-cover classifica-

tion, where canopy texture is a proxy for canopy structure, Therefore, the DSM created as 

described in the previous section was added as a 4th layer to compliment the 3 RGB lay-

ers of the drone imagery mosaic in the GEOBIA process. The GLCM required 8-bit inte-

ger values, so the floating-point elevation values were first normalized to the digital num-

ber (DN) range [0..255] and was referred to as the normalized DSM (nDSM). The steps 

outlined in the following paragraphs were made for a 5x5 kernel successively centered on 

each pixel of the normalized image to produce an output surface texture image.  

An empty GLCM with cells for all possible DN combinations in the kernel was 

created (e.g., [0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1] and [2,2] for a kernel with 3 

DN values). Each pixel in the kernel (called a reference pixel) was compared to its neigh-

bor pixel and a tally of each DN combination was kept in the GLCM matrix. For exam-

ple, if the reference pixel had a DN value of 1 and its neighbor had a DN value of 2, the 
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tally of the 1st row and 2nd column of the GLCM matrix would increment by 1. This pro-

cedure continued until all pixels were evaluated. The tally was repeated by switching ref-

erence and neighbor pixels to create a GLCM matrix that was symmetrical around the di-

agonal. Matrix values were then converted to probabilities by dividing each cell by the 

total number of possible DN combinations in the matrix. Finally, the correlation texture 

measure was calculated from the GLCM probability matrix and assigned to the pixel at 

the kernel center in the output surface texture image. The correlation texture measure was 

calculated as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝑃𝑃𝑖𝑖,𝑗𝑗

𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0
⎣
⎢
⎢
⎡(𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑗𝑗 − 𝜇𝜇𝑗𝑗�

��𝜎𝜎𝑖𝑖2��𝜎𝜎𝑗𝑗2� ⎦
⎥
⎥
⎤
 

where Pi, j probability matrix, N is the number of rows or columns, µi and µj are the means 

of row i and column j, and 𝜎𝜎𝑖𝑖2 and 𝜎𝜎𝑗𝑗2are the variances for row i and column j. The resulting 

image had pixel values that ranged from 0 to 1, with 0 being a smooth textured surface and 

1 being a highly variable texture surface.  

The mean red, green, blue and texture attribute values were calculated for each 

segmented object in the dataset using zonal statistics and were used to classify the objects 

into land-cover classes. A selection of segmented objects was manually made and used to 

train the nearest neighbor classification algorithm to recognize the selected land-cover 

types. This was an iterative process that allowed for continuous improvements in classifi-

cation accuracy. Once classification of objects into vegetation types was completed, final 

tree classes were exported as classified vector objects for accuracy assessment and com-

parison to other classification data and methods. 
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Pixel-based, Supervised Maximum Likelihood Classification 

A multi-spectral (i.e., no canopy texture measure) classification was preformed 

using the drone-based imagery and a supervised maximum likelihood classifier (MLC) in 

ERDAS Imagine. The MLC is a parametric statistical technique that assumes normally 

distributed training data for each spectral band of each land-cover class. Based on 

knowledge of the study site obtained through field surveys, individual polygons were 

digitized around samples of each land-cover type and mean class vectors and the 

covariance matrix was calculated from the pixel values for each spectral band of each 

land-cover class.  The training data was reviewed, and new training polygons were 

created as needed to ensure the data were normally distributed. These polygons were 

grouped using the ERDAS signature editor to create a representative signature for each 

land-cover type (Figure 10). The classified raster image (Figure 11) was then converted 

to a vector GIS file for accuracy assessment and comparison to the other classification 

methods. 

The training data was used to calculate the probability of each pixel in the image 

belonging to a land-cover class, according to the following equation 

𝑝𝑝(𝑋𝑋|𝑤𝑤𝑖𝑖) =
1

√2𝜋𝜋𝑛𝑛�|𝑉𝑉𝑖𝑖|
𝑒𝑒𝑒𝑒𝑒𝑒 �

−1
2

(𝑋𝑋 −𝑀𝑀𝑖𝑖)𝑇𝑇𝑉𝑉𝑖𝑖−1(𝑋𝑋 −𝑀𝑀𝑖𝑖)� 

where 𝑝𝑝(𝑋𝑋|𝑤𝑤𝑖𝑖) is the probability that unknown vector X (the RGB pixel values) belongs 

to land-cover class 𝑤𝑤𝑖𝑖, n is the number of bands (3 in this case), 𝑉𝑉𝑖𝑖−1is the inverse of the 

covariance matrix and |𝑉𝑉𝑖𝑖| is the determinant of the covariance matrix. The class wi with 

the greatest probability is the class assigned to the output pixel—it becomes the land-  
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Figure 10 – Table showing RGB signatures of study area tree classes.   
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Figure 11 – Drone imagery classified using the maximum likelihood classifier (top) was 
clipped using the forest canopy segments to include only forested areas (bottom). 
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cover class for that pixel. The mean class vectors (𝑀𝑀𝑖𝑖and covariance matrix (Vi) were 

estimated from the training data. 

NDVI analysis using NAIP Imagery 

A third classification was made with which to compare the previous drone-based 

imagery classifications. This third classification was done using readily available U.S. 

National Agricultural Imagery Program (NAIP) imagery with high spatial resolution (1 

meter) and low spectral resolution (4 VNIR bands). A significant limitation of NAIP 

imagery is that its spatial resolution is too coarse to do texture-based analysis of tree 

canopies, but in this case, it serves as a baseline against which canopy texture-based 

classifications can be compared.  

GEOBIA was used for the NAIP classification, including segmentation, 

attribution and classification of segmented objects. Therefore, the methodology for this 

section is the same as for the previous GEOBIA section with the exception that texture 

was not calculated as an attribute. Instead, the Normalized Difference Vegetation Index 

(NDVI) was calculated and used as an attribute for segment classification, in addition to 

the mean red, green and blue band values per segment. Calculation of NDVI required a 

NIR band so it was not possible to use the drone imagery for NDVI analysis, but using it 

here with NAIP imagery was a best practice for imagery with a NIR band. Analyst-

selected objects were used as training data for an MLC classification to identify tree 

types. Classified vector segments were exported for accuracy assessment and comparison 

to the other classification methods. 
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Accuracy Assessment 

Accuracy assessment was a multi-step process to quantify thematic accuracy of 

the UAS-based RGB/texture classification using GEOBIA, the UAS-based RGB image 

classification using a pixel-based Maximum Likelihood Classifier, and the NAIP-based 

RGB/NDVI classification using GEOBIA. Assessing thematic accuracy of classified 

pixels and objects required creating a set of point reference features through a ground 

survey of the study area. The land cover classes confirmed in the ground reference survey 

were used to populate an error matrix—a cross-tabulation table used to compare 

reference data to classified pixels. Various accuracy metrics were derived from the error 

matrix to assess the accuracy of each classification separately and then pair-wise 

statistical comparisons were made between pairs of classifications. These methods are 

discussed in further detail below. 

A stratified random sampling design, based on the work of  Lo and Watson 

(1998), was used to conduct the ground reference survey. In their study, Lo and Watson 

evaluated the accuracy of five sampling designs for a land cover classification of the 

Okefenokee Swamp, including the simple random sample, stratified random sample, 

random systematic sample, stratified systematic unaligned sample, and random cluster 

sample designs. They classified a Landsat TM image and compared samples obtained 

using each of the different sampling designs to a detailed reference land cover map 

rasterized to the same resolution as the TM image. Kappa coefficients and Z scores 

indicated that the stratified random sampling and stratified systematic unaligned methods 

produced the highest accuracies, but the chi-square goodness of fit test comparing the 

stratified random sample with the reference data was the only comparison in which the 
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null hypothesis (i.e., no difference between samples) was accepted. That is, the stratified 

random sample was the most accurate sampling technique, and it was selected for use in 

this research to provide ground reference points.  

Selecting the number of the reference points per class was a balance between 

acquiring a sufficiently sized sample for statistical validity and the difficulty of acquiring 

reference data in the field (Foody 2002; Congalton 2004). Importantly, a sample that is 

too small may result in the inability to detect differences that are large and important, and 

a sample that is too large may result in any non-zero off-diagonal value being statistically 

significant (Foody 2009). While care must be taken to obtain a properly sized sample, 

there is no single, globally accepted method for determining the sample size and a 

combination of methods are often used (Foody 2009). Congalton and Green (2019) stated 

that as a rule of thumb sample sizes should have a minimum of 50 samples per class. The 

size selected for the accuracy assessment reference set in this research was 85 points per 

tree class (170 total points per classification method) which exceeds Congalton and 

Green’s rule of thumb and, according to binomial probability theory and multinomial 

probability theory (Snedecor and Cochran 1967; Olofsson et al. 2014), provided 7.4% 

and 8.4% confidence intervals at the 0.05 significance levels, respectively. A number of 

points proportional to the areal coverage of each classified land cover type were 

randomly placed within each land cover strata. 

 A unique stratified random sampling was made for each of the forest classes 

derived from each classification method performed in this research (i.e., ground reference 

samples were not reused in for different classification methods). The actual tree types 

found at each sampling point were confirmed by field verification and an error matrix 
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was created. Accuracy metrics derived from the error matrix included overall accuracy, 

user’s accuracy and producer’s accuracy. Kappa is an often-used metric that attempts to 

correct for chance agreement between classified and reference pixels, but Olofsson et al. 

(2014) recommend against its use because (1) it tends to underestimate the probability 

that a random pixel is classified correctly, (2) it bases its estimates of random agreement 

on the marginal proportions of map area (which are not randomly distributed), and (3) it 

is redundant because it is so highly correlated with overall accuracy. We did not report it 

in this research for the reasons outlined above. 

Overall accuracy is the percentage of correctly classified reference pixels and was 

calculated by dividing the sum of the correctly classified reference pixels (i.e., the cells 

on the error matrix diagonal) by the total count of reference pixels. The distribution of 

off-diagonal reference pixels gave further insight into the accuracy of individual land 

cover classes. Dividing the total number of correctly classified pixels in a class by the 

total of that class’ reference data (i.e., the column total) yielded the producer’s 

accuracy—the probability that the reference pixel was classified correctly. Dividing the 

total number of correctly classified pixels in a class by the total of that class’ classified 

data (i.e., the row total) yielded the user’s accuracy—the probability that a classified 

pixel corresponds to that land cover class in the field. Subtracting the producer’s and 

user’s accuracies from 100 yielded errors of omission and commission, respectively.  

 Lastly, the accuracies for each classification type were analyzed for significant 

differences using a multinomial comparison called the Z score (aka standard score). The Z 

score was calculated as 
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Where p represents the proportional accuracy of each map (sample size/correct 

observation) and s represents the standard deviation. First, the Z score was calculated for 

significance between the remotely sensed data and the ground reference data and second, 

a test for significance between each of the remotely-sensed results was performed. The 

final test indicated if there was a significant improvement between the different data and 

methods of classification. 
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IV. RESULTS AND DISCUSSION 

An error matrix is shown for each classification type: (1) UAS-based RGB/texture 

classification using GEOBIA, (2) UAS-based RGB image classification using a pixel-

based Maximum Likelihood Classifier, and (3) the NAIP-based RGB/NDVI 

classification using GEOBIA. The overall, producer’s, and user’s accuracies are reported. 

The accuracies of each classification are ranked to assess the relative utility of each 

method with special attention to the texture-based method.  

Overall, Producer’s and User’s Accuracies 

The initial survey of the study area identified five tree species: Live Oak, Ashe 

Juniper, Cedar Elm, Net Leaf Hackberry and Mesquite. Upon completion of the image 

processing, analysis and ground truthing, it was found that the number of trees species 

other than Live Oak and Ashe Juniper was so small and dispersed as to be 

indistinguishable from the two dominant species. Live Oak and Ashe Juniper were the 

only classes analyzed and reported on. One-hundred seventy ground reference points 

were randomly distributed in each land cover class in number proportional to the areal 

coverage of each land cover class. 

Table 3 displays the error matrices resulting from the three classification 

algorithms. The columns correspond to the ground reference data and the rows 

correspond to the classified data. Cross referencing each cell shows the number of correct 

identifications and misidentifications for each class. The first row in the first table shows 

that of 62 objects classified as Juniper, 11 were actually Live Oak. The first column of 
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the first table shows that out of 72 Juniper reference pixels, 21 were erroneously 

classified as Live Oak. These matrix tallies lead to producer’s and user’s accuracies of 

70.83% and 82.26%, respectively. The rest of the tables can be interpreted the same way. 

The overall accuracy is calculated by dividing the number of correctly classified 

observations by the total number of reference points. Based upon the overall accuracy, 

the texture-based GEOBIA model ranked highest with 81.18% overall accuracy. 

Producer’s and user’s accuracies were also acceptable. The spectral-based maximum 

likelihood classification has the second highest overall accuracy (78.24%) and the NDVI-

based GEOBIA had the lowest overall accuracy (75.29%).  
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Table 3 – Error matrices for the three classification methods. Overall accuracies are 
shown to the right of each error matrix. User’s accuracy (UA) and producer’s accuracy 
(PA) are shown for each row and column, respectively, in the error matrix. 

A. Texture-based GEOBIA     
  Reference    
  Juniper Live Oak  UA  

Cl
as

sif
ie

d 

Juniper 51 11 62 82.26%  

Live Oak 21 87 10
8 80.56%  

  72 98 17
0  Overall 

 PA: 70.83% 88.78%   81.18% 
       

B. Spectral-based MLC     
  Reference    
  Juniper Live Oak  UA  

Cl
as

sif
ie

d 

Juniper 45 15 60 75.00%  

Live Oak 22 88 11
0 80.00%  

  67 103 17
0  Overall 

 PA: 67.16% 85.44%   78.24% 
       

C. NDVI-based GEOBIA     
  Reference    
  Juniper Live Oak  UA  

Cl
as

sif
ie

d 

Juniper 50 18 68 73.53%  

Live Oak 24 78 10
2 76.47%  

  74 96 17
0  Overall 

 PA: 67.57% 81.25%   75.29% 
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Table 4 is a comparison of the rankings in accuracy between the overall results 

and the Z score of each classification. Importantly, these results show Z scores for all 

three tests that are well above 1.96 indicating that these methods show results that are 

significantly better than random. These results support the hypothesis that canopy texture 

is an indicator of individual tree species and that its use improves on commonly used 

reflectance-based methods. 
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Table 4 – Classification significance levels. Z-scores and their significance levels are 
shown for each classification at the 95% confidence level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classification Algorithm Overall Accuracy Z score

Texture-Based Drone 81.18 10 Significant
Spectral-Based Maximum Likelihood 78.24 8 Significant
NDVI-Based OBIA 75.29 7 Significant

Result (95% confidence level) if Z is 
above 1.96
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Pair-wise Comparisons 

Table 5 compares the texture-based results to the maximum likelihood results and 

the NDVI results. Results of the tests indicate that the texture-based method is not 

significantly different at the 95% confidence level than the other methods of 

classification. The Z statistic for the texture-based drone method vs. NDVI- based 

method yielded a 1.32 Z statistic (1.96 being the target) at an 81% confidence level. 

Results of the texture-based drone method vs. maximum likelihood yielded a Z statistic 

of 0.67 at a 49% confidence level. The overall accuracy of the texture-based GEOBIA 

classification was 2.94% higher than the spectral-based classification (which is 

considered the baseline, or “standard”, classification method). However, the difference in 

overall accuracy was not statistically significant at the 95% confidence level. Certainly, 

one interpretation of this finding is that the texture-based GEOBIA does not provide an 

improvement over standard classification methods and refutes the premise of this 

research that hyperspatial DEMs collected with a UAS will improve classification 

accuracies. By this logic, similar classification accuracies can be obtained using NAIP 

imagery and supervised classification using the maximum likelihood decision rule. This 

logic suggests that the overhead incurred by using UAS to derive hyperspatial DEM data 

that can measure tree canopy texture may not be as advantageous as initially thought. 

Alternative explanations, however, offer greater insight into the findings.  
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Table 5 – Comparative classification analyses. Z-scores of the comparative analyses 
between classifications showing significance results at the 95% confidence level. 

  Z statistic Confidence level Result (95% confidence level) 
Texture-based vs. maxi-

mum likelihood 0.67 0.49 NS 
Texture-based vs. NDVI 1.32 0.81 NS 
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While the difference between the texture-based GEOBIA classification and the 

spectral-based classification was not significantly different at the 95% confidence 

interval, there is still the higher overall accuracy to consider. And even though there is 

less confidence attributed to that difference, the 2.94% higher accuracy of the texture-

based GEOBIA classification cannot be ignored. Moreover, that this accuracy is achieved 

when texture is the only unique attribute on which the segments are classified, suggests 

that texture is an important distinguishing ecological attribute of tree species that can be 

assessed with drone-based imagery—and perhaps only with drone-based imagery.  

In fact, recent evidence suggests that the incorporation of multiple ancillary data 

sources, including texture, improve classification accuracies. Yu et al. (2016) explored 

the capabilities of texture analysis with a model called Color-Texture-Structure (CTS). 

This model incorporated both texture, spectral and structural elements into the model. 

Structure in this model refers to the co-occurrence of objects such as an island being in 

co-occurrence with surrounding water. The results of the CTS study showed significant 

improvements in classification accuracies by using color, texture and structure in 

combination. Salas, Boykin, and Valdez (2016), in a study of vegetation in the Pamir 

Mountains in Tajikistan, performed an analysis of the spectral curve called the Moment 

Distance Index (MDI) and used it as ancillary data in combination with texture analysis. 

In this case, the comparison was between texture alone and texture and MDI in 

combination. They found significant improvements in classification accuracy with the 

addition of MDI. It is interesting to note that the results of Salas, Boykin, and Valdez 

(2016) approximate those of this dissertation. Additionally, Husson, Ecke, and Reese 

(2016) produced overall accuracy results of 75%  using similar methodologies on RGB 
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drone imagery, which further suggests that the methodology employed in this dissertation 

is comparable to related methodologies.  

Reconsidering Texture as an Ancillary Data Source 

The findings of this study, and the recent evidence cited above, suggest that 

certain assumptions of this research should be reconsidered, including the role of canopy 

structure, the selection of a texture measure, and spatial and temporal variations in 

texture.  

Canopy Structure 

The canopy structure of the tree species in this study were the basis for creating 

the classifications. Without significant differences in the canopy structures, a 

classification algorithm could not discern one species from another by studying their 

textures. It is likely there are tree species with similar canopy structures which may be 

indistinguishable using this model, but in such cases additional ancillary data could be 

added to the model to discern differences in the species. 

A canopy can be defined as the above ground portion of a plant community or 

crop, formed by the collection of individual plant crowns (Norman and Campbell 1989). 

Specific to this study, the “canopy” is the portion of the overall tree canopy that is 

viewable from the air and thereby part of the structure used when creating the DSM and 

subsequent models. 

The structure of the canopy is made up of a variety of components. The smallest 

elements are the leaves. The leaves of the two species examined in this study are very 
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different in terms of shape and density. The Live Oaks have flat and oval leaves while the 

Ashe Juniper’s are needle-like—typical of an evergreen. Density refers to how tightly 

clustered the leaves are in a typical tree representative of this species. The lower the 

density the greater the gaps in the canopy which results in a greater variation of light to 

dark as reflectance changes from a leaf face to a shadow. These differences in leaf 

density lead to changes in tree canopy textures that are unique to each tree species. 

Finally, crown size is an important indicator of tree species—clusters of individual trees 

of a given species can produce a pattern that is discernable from one species to another. 

These tree canopy characteristics visible to a remote sensor are important to consider in 

devising accurate methodologies to distinguish between tree species.  

  
Scale Texture 

If a person were to view a typical example of a Live Oak or an Ashe-Juniper at 

close range (from any side or above it), it would be easy to tell them apart. Besides differ-

ences in the green tone of the leaves, each tree has a different shaped canopy and differ-

ent leaf structure, as noted previously. Additionally, the bark or the size of branches may 

be different between the species. The challenge in automating what a person can detect is 

that a person is able to detect small differences that may not be detectable by a computer 

algorithm. There are at least two reasons why a computer algorithm may perform poorer 

than a person: (1) an algorithm only classifies what the user explicitly instructs the algo-

rithm to classify, and (2) the data used may be of a resolution that is incongruent with the 

pattern trying to be detected. For example, a person might see slight variations in the 

shapes of the leaves. One leaf might be completely rounded where the other ends in a 

point.  These subtle differences would not be enough to change the texture pattern at the 
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scale this model utilizes and would not be practical as the resolution required for such de-

tection would make the file size of the imagery unmanageable. Unique texture patterns 

may emerge, however, if multiple, aggregated, pixels resolutions are examined. That is, 

texture indices based on coarser resolution DEMs may be unique to a particular species.  

During the GEOBIA process, the object size is something that can be set as one of 

the working parameters. As can be seen in Figure 9, the segmented object size is often 

roughly the size of an individual tree crown, but is equally often larger in size where 

groups of trees are very clustered—the entire cluster is a single segmented object. Visual 

analysis of the image shows that some tree species tend to cluster together while others 

are more widely dispersed. While this pattern is not canopy texture measured at the pixel-

to-pixel level (as was done with the GLCM in this dissertation), these patterns of growth 

(clustered vs. dispersed) could be considered a type of image texture attributable to a 

broader spatial scale. Incorporation of this type of spatial arrangement in the 

classification process could potentially be an additional ancillary data source.  

In contrast to the textures that become apparent at a broad spatial scale, some 

texture characteristics may only become apparent at finer spatial scales. For example, the 

bark color or texture, or the arrangement of branches (during a leaf off period) may be 

unique to a tree species and could possibly be assessed with a texture-based method. 

This, too, could be an additional source of ancillary data.  
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Temporal Texture 

Temporal texture refers to how the texture pattern varies as a function of plant 

phenology—the seasonal cycle of the plant. Two species that have the same texture pat-

tern at time A might have very different texture patterns at time B. For example, Live 

Oaks in this study area lose their leaves in the spring rather than the fall. In this case, the 

texture pattern will be vastly different in the springtime, when the Live Oaks are either 

dropping leaves or growing new ones while other leaf bearing trees are in the middle of a 

different phenophase. The opposite will take place in the fall when the Live Oaks are 

fully leafed and other trees are dropping leaves. This is a scenario where texture patterns 

will be very different at particular times of the year.  Ashe juniper are a true evergreen 

and consequently, can be easily distinguished from Live Oak during the spring when the 

oaks have shed their leaves. 

 

Other Potential Applications of Hyperspatial Texture-based Land Cover Classification 

 The findings and conclusions of this research suggest that hyperspatial digital 

canopy models are accurate indicators of individual tree species. Canopy structure, scale 

texture and temporal texture each play a role in the ability of texture metrics to facilitate 

the classification process. While the environment (Freeman Ranch) in which this research 

took place has unique characteristics that will likely only be matched in nearby locations, 

the findings were sufficient to suggest texture could be equally valuable in other 

environmental conditions. In the paragraphs below, I briefly explore how texture could 

play a role in other regions of Texas. No doubt classifications from regions across the 

globe could also benefit from texture analysis.  
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 Invasive or non-native species are a large problem in many places. Salt Cedar 

(Tamarix ramosissima) is a non-native plant invading habitat in states such as California, 

Arizona, New Mexico, Texas, Colorado, Utah and Wyoming (Lovich 2022). Part of 

eliminating invasive species is the ability to quickly identify where these species are 

growing and stressing native plant and animal life. Salt Cedar is problematic in that it 

consumes large quantities of ground water thereby denying many native plants adequate 

water. Salt Cedar are shrubby with green wispy foliage. Their canopy structure is unique 

compared to the native broad-leafed tree that grow in proximity to Salt Cedar, much like 

the canopy differences between the Ashe Juniper and Live Oak species studied in this 

dissertation. With the likely difference in texture between the Salt Cedar and proximate 

native tree canopies, a study of identifying this invasive species would be a worthy 

endeavor.  

 Invasive species are a serious threat in the Trans-Pecos region of West Texas. Salt 

Cedar is, again, one of the species of concern in this area including but not limited to 

Chinaberry trees (Melia azedarach), Mimosa (Albizia julibrissin), and Yellow Star 

Thistle (Centaurea repens). A common trait in many of these invasive species is their 

ability to consume available water which is not only what makes them successful in these 

areas but also what makes them so dangerous to native species. Another concern of these 

water hungry, non-native species is by consuming so much water from the surrounding 

areas, they create overly dry ground conditions leading to additional dust blown into the 

atmosphere. West Texas is a prime area for wind and solar energy generation. Dust 

accumulation on solar panels is a big problem in this windy part of the state. By 
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controlling the invasive species and returning the native plants and grasses would play a 

big part in limiting the dust in the atmosphere. 

 The Trans Pecos desert of Texas is likely to be another area of slower than 

average change as was discussed in the introduction of this dissertation. The areas of 

change are likely to be more spread out making them more difficult to detect with 

common, low resolution remotely sensed data. As previously mentioned, Salt Cedar has a 

similar structure to that of Ashe Juniper, making the methodology in this study a good fit 

for this area. Many of these invasive plants produce distinctively shaped buds and flowers 

during in their phenological cycle. These changes to the plant structure would very likely 

be detectable with the texture-based GEOBIA method test in this study. 
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V. CONCLUSION 

The variety and magnitude of land cover changes across the globe occur because 

complex social, economic, and demographic conditions drive a multitude of local 

landscape changes. A constant challenge for the remote sensing of land cover changes is 

to obtain an accurate depiction of where, and at what pace, change is occurring. Orbital 

and suborbital remote sensing systems are designed with specific spatial, spectral, 

radiometric and temporal resolution characteristics that constrain the types of changes 

that can possibly be detected. Certain resolution characteristics are better suited for 

detecting particular types of landscape conditions or changes. Remotely sensed, 

hyperspatial (very high spatial resolution) imagery is well-suited for detecting small-scale 

changes to landscapes that may portend future larger-scale changes. Early identification 

of these small-scale changes may be key to the success of efforts that seek to mitigate 

land-use and land-cover change trends.  

The hyperspatial imagery produced by Unmanned Autonomous Systems (UAS, 

aka drones) and associated data processing methods have recently been used in a variety 

of applications. Their use in land-use and land-cover mapping and in landscape change 

analysis allow for monitoring of small-scale, potentially rapid, changes like the health of 

and disease occurrence in individual plant species. In forestry applications this means that 

hyperspatial UAS imagery may enable the detection of individual trees or clusters of 

identical tree types based on characteristics invisible with coarser resolution imagery. 

One important tree characteristic that only becomes possible to measure with hyperspatial 

imagery is the tree canopy texture, or the pixel-to-pixel variation of intensity caused by 
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the physical structure of the tree canopy (e.g., its height, shape, the orientation of its 

leaves, branches, their shadows, etc.).  

This study sought to build a methodological framework for detecting species level 

differences by creating and analyzing tree canopy texture derived from drone-based 

hyperspatial data. The goal was to answer the following questions:  

1. Are texture patterns derived from hyperspatial digital surface models (DSM) 

of the tree canopy indicators of individual tree species? 

2. What is the role of texture in determining species-level assemblages and indi-

vidual tree entities? 

3. Can texture alone match reflectance-based LULC detection methods in accu-

racy of classification? 

Tree canopy texture was captured in this research by applying Structure from Mo-

tion (SfM) techniques to overlapping UAS photographs to create a hyperspatial resolu-

tion RGB image mosaic and digital surface model (DSM). The Gray Level Co-occur-

rence Matrix (GLCM) was used to calculate the tree canopy texture from the DSM, and 

the RGB image mosaic and the tree canopy texture were used in combination to test the 

effectiveness of canopy texture on tree classification in a Texas Hill Country environ-

ment. 

Image segmentation was first used to delineate the forested area at the study site 

and then three techniques were used to classify tree species. The three techniques were 

(1) Geographic Object-based Image Analysis (GEOBIA) (i.e., image segmentation, ob-

ject attribution and object classification) using UAS-based hyperspatial RGB imagery 
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with the corresponding GLCM measure of tree canopy texture, (2) pixel-based, super-

vised maximum likelihood classification using the UAS-based hyperspatial imagery, and 

(3) GEOBIA using commonly available National Agricultural Imagery Product (NAIP) 

imagery and a measure of NDVI derived from the NAIP imagery.  

Findings indicated that the use of GEOBIA techniques with UAS-based RGB im-

agery and a GLCM-based measure of tree canopy yielded an 81.18% overall accuracy 

with a Z score of 10 indicating these results were significantly better than random (Table 

3). The UAS-based RGB imagery classified without texture and using a pixel-based 

Maximum Likelihood classifier yielded an overall accuracy of 78.24%, and the NAIP-

based VNIR/NDVI imagery classified with GEOBIA techniques yielded an overall accu-

racy of 75.29%. This study has shown the texture-based method to be as good as the 

other measures when considered at the 95% confidence level. The tests resulted in a con-

fidence level of 0.81 for the DSM vs. NDVI test and 0.49 for DSM vs. maximum likeli-

hood with an improvement in overall accuracy for both tests. The conclusion is that the 

texture patterns derived from the tree canopy DSM are indicators of individual tree spe-

cies and can match the reflectance-only based methods in accuracy. 

To answer the question of what role texture plays in the determination of tree 

assemblages one must directly compare the DSM texture patterns to the physical 

structure of the tree species being studied. Visually, texture is the pattern of variations in 

contrast of the colors of an object. If one were to start with the texture model and work 

backwards to the original imagery and then directly observe the object in the imagery one 

could see where the dark areas, in general, correspond to openings in the canopy, or areas 

with depth, and lighter areas would be the highest parts of the canopy. Expanding on 
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these observations, if one were to observe a mix of highly contrasting pixels in one area it 

is likely this is an area of low leaf density where there are high and low elevation areas 

within close proximity of each other. Subsequently a low contrast area, an area with 

variation of grey pixels, would likely correspond to moderate leaf density or perhaps an 

area of high density with small leaves. These patterns which are processed and grouped 

with the GEOBIA software are now directly relatable to specific types of canopy 

structure. 

The results of this study indicate that, while not statistically significantly better, 

the DSM, texture-based method is at least as good as the traditional reflectance-based 

methods. Table 4 shows a better overall accuracy for the DSM, texture-based method and 

significant results for all three methods when compared to random. Table 5 shows the 

results of the comparisons of the DSM-based texture method vs. the reflective-bands 

method at the confidence level of 0.81, and for the comparison of the DSM-based texture 

method vs. the NDVI maximum likelihood method at the confidence level of 0.49. 

Ecosystem disturbances are something that will always be present in our 

environment. Whether man-made or natural these disturbances can have long-lasting 

impacts. By demonstrating that hyperspatial, object-based analysis and mapping can yield 

acceptable results in comparison with traditional methods, I believe I have opened a 

pathway to further exploration of these techniques. These methods dig deeper into what 

was happening at the time the data were gathered and can be analyzed near-real time 

rather than showing the result of what took place as you would see when examining 

historic datasets.    
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By demonstrating in this study that techniques utilizing texture and GEOBIA can 

equal the results of traditional remote sensing methods I believe that more new studies 

should not limit themselves to the pixel.  As new technology developed for remote 

sensing starts to penetrate all aspects of human life as other technologies have done in the 

past, we need to look beyond what has been and start looking at what can be. The 

technology is here now that allows analysis beyond the pixel and on to statistical analysis 

of the patterns these pixels build up. 

 
Study Limitations 

The analysis in this study is limited to data acquired on a single day at a single 

location. Therefore, any variability due to changes in conditions from weather, canopy 

density, flight conditions, or annual phenological stage are not considered. Since 

completion of the data processing of this study, the author has had opportunities to use 

several alternate SfM software packages and has found great variability in the quality of 

the output generated. It has also been discovered that the locations of ground control 

points relative to each other can influence the quality of the output. When considering all 

these possible variations one can conclude that this study is just a very narrow band 

within a full spectrum of possibilities for UAS-based, DSM-based GEOBIA 

classification studies.  

Future research should consider a testing of accuracy of these various software 

packages and the effect of ground control positioning on final results. Future work should 

also include a sensor capable of recording NIR so the NDVI data can be gathered with 
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the drone. It would be valuable to know if the additional resolution would produce 

significantly more accurate NDVI results. 

This study was additionally limited by the maximum resolution of NAIP imagery. 

Under ideal circumstances both data sets (UAS imagery and NAIP imagery) would have 

been of similar resolution to eliminate the possibility that the difference in resolution 

would have an effect on the outcome. At this time NAIP imagery of this quality is not 

available. It would be possible to equip a drone with a CIR/RGB sensor to create NDVI 

data at a similar resolution to the texture data.  

Future Work 

 As drone, camera and software capabilities continue to improve it will be 

worthwhile to explore the texture-based classification methodology again. Considering 

this methodology proved to be as good as existing methods, it may show improvements 

as the technologies involved mature. 

 For the near future this study shows that those interested in texture-based 

classification should not exclusively rely on texture. Future researchers should consider 

utilizing additional ancillary data sources to enhance the texture classifications. These 

data sources can include spectral data in both the visible and non-visible spectrums, leaf 

area indexes (LAI), canopy volume calculations and many other types of remotely sensed 

data. Future studies relying exclusively on texture may also wish to gather data during 

different stages of the phenological cycle and implement change detection into the 

classification routine. 
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This study has also proven that accurate land cover surveys can be accomplished 

using relatively inexpensive unmanned systems. While NAIP imagery is available for 

free this data is often months or even years old. When there is a need for fresh data, 

unmanned systems are now a very viable alternative to expensive manned flights. 

Land cover analysis using drones is in its infancy and is progressing rapidly. More 

studies involving SfM land cover studies are essential. This study was successful at 

matching current measures so it should be given further study when considering how 

early this technology is in development.  

It would be prudent to review the methodology to see if there are any potential 

areas where changes could improve the results. One factor worth considering is weather 

conditions on data gathering days.  In this study every effort was made to fly at times that 

had the best possible conditions. Unfortunately, it was not possible to wait for optimum 

weather conditions and flying had to be conducted within a certain timeframe. Ideally, 

wind speed would be near zero to obtain the absolute best canopy DSM but that was not 

the case on the days flying was conducted. Winds were generally light between 8-13 kph 

but there was still some canopy movement detectable in the imagery mosaics. The degree 

to which wind affected the final results is unknown, but it merits further consideration. 

Drone technology is advancing rapidly and also decreasing in cost. The FAA has 

now relaxed restrictions on commercial and educational drone operations allowing for 

data gathering where it was previously illegal without specific clearance from the FAA 

for a given property. 
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While not part of the primary research questions, some data relative to the costs 

and ease of use of each model were noted and may be of use to future researchers. The 

least expensive of the three is the NDVI model utilizing the NAIP imagery. The imagery 

is free to download so the only cost is the software and the time to process and analyze. 

ESRI’s ArcMap, with the proper extensions, as well as ERDAS Imagine, is capable of 

NDVI analysis. University GIS departments will likely already have ArcMap as do many 

private companies involved in cartography or environmental studies which would 

essentially negate that cost as it has already been acquired. There are also free online 

tools for NDVI analysis such as Drone Data Management System (DDMS). DDMS 

requires only an account registration after which one may upload and process imagery 

with a variety of tools.  However, the free account limits the resolution of the output. 

There is a paid account which allows higher resolution output.  These free tools will not 

be as robust as the ESRI and ERDAS software but do offer a no/low-cost alternative if 

that software is not available. 

 The UAS-based maximum likelihood model falls in the middle of the three in 

terms of cost. Software for analysis is essentially the same as the NDVI model. The 

additional cost is the drone equipment, processing software and time to process the 

imagery to a point where it is in the same state as the downloadable NAIP imagery. 

 Currently, the UAS-based GEOBIA model is the costliest of the three. This will 

likely change as will be explained. This model requires everything the two models above 

utilize with the addition of software for the object-based analysis. The change referred to 

is that as of version 10.3 ESRI has begun including GEOBIA tools as part of their Spatial 
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Analyst extension. The functionality is not as robust as Trimble eCognition but that will 

likely change in the coming software upgrades. If ESRI begins to include tools that match 

the capability of eCognition it will make the costs of the two drone-based methods equal. 

 While the two drone-based models are the most expensive to implement they have 

one distinct advantage—the advantage of data acquisition when desired. With NAIP 

imagery one is limited to, at best, new data once a year. With the drone-based models, 

data acquisition can happen anytime weather permits.  This advantage alone can make the 

added cost of the drone-based models desirable. 
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APPENDIX  

AERIAL PHOTOGRAPHY PLATFORMS 

The rotorcraft is a model X8 built by 3D Robotics (Figure 12). It is classified as an 

octaquad as it utilizes eight motors and propellers on four arms.  Specifications for the 

system are listed below.  

• Battery: 4S 14.8V 10,000 mAh 10C 
• Battery Dimensions: 6.6 in x 2.6 in x 1.4 in (16.7 cm x 6.5 cm x 3.5 cm) 
• Battery Weight: 803 g 
• Autopilot hardware: Pixhawk v2.4.5 
• Autopilot firmware: ArduCopter 3.2 
• GPS: 3DR u-blox GPS with Compass (LEA-6H module, 5 Hz update) 
• Ground Station Radio: 3DR Radio v2 (915 MHz) 
• Motors: SunnySky V2216-12 KV800 II Controller: FlySky FS-TH9X with FrSky 

telemetry module 
• Frame Type: X 
• Propellers: APC Propeller 11x4.7 SF (4), APC Propeller 11x4.7 SFP (4) 
• Vehicle Dimensions: 13.7 in x 20.1 in x 11.8 in (35 cm x 51 cm x 20 cm) 
• Payload Capacity: 800 g (1.7 lbs). Vehicle Weight with Battery: 2.56 kg (5.6 lbs) 
• Maximum Estimated Flight Time: 15 min 

 
The camera is a Gopro 3+ Black(TM) capable of shooting 12 megapixel still photos in a 

wide angle fisheye format. The camera is mounted on a 2D gimble for stability. 

The X8 is launched from the ground by manual controls until it reaches an altitude of 

about 10 meters above ground level (AGL). Once the X8 has reached that altitude it is 

switched to autopilot mode and it begins to fly its pre-programmed mission. The X8 is 

monitored at all times via a wireless link to a ground station which tracks and stores the 

telemetry. The flight plan typically ranges between 30 and 50 meters AGL, speed during 

photography is approximately 5 meters per second and the camera fires one time per 

second which is programmed directly into the camera rather than controlled by the 

computer or autopilot. Because of the preprogrammed timing of the photographs it is not 
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possible to detect regions of little image overlap, that may result from drift or increased 

speed due to tailwinds, until after the X8 has landed and data has been downloaded and 

processed. The values for optimal speed and altitude are based on more than two years of 

test flights at the study area. These flights were conducted at varying altitudes, and speeds 

to determine what parameters yielded the sharpest images. A typical flight can yield 

between 300 and 600 individual photos depending on flight time. Upon completing the 

programmed flight, the X8 will return to the launch point automatically and hover at a 

predetermined altitude.  At this point the operator takes manual control for landing. 
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Figure 12 - 3D Robotics X8 Rotorcraft Drone 
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The fixed wing platform is the AreoHawk manufactured in New Zealand by Hawkeye 

UAV (Figure 8). This is a large survey grade system and requires a minimum of two 

people to operate. AreoHawk specifications are listed below. 

• Dimensions 5.1 – 5.8 kg 2.65m wingspan 1.47m  
• 120 min + endurance Electric motor 
• Cruise speed 60-70 km/hr  
• Service ceiling 4,300 meters 
• Max 45 km/hr wind capability  
• 900 MHz spread-spectrum frequency hopping   
• 30 Km range Multiple control station operation  

The camera utilized with the Areohawk is a Sony Nex7(TM) with a wide angle survey 

lens. The Nex7(TM) is a high-end mirrorless digital camera in a small form factor allowing 

it to fit into a small space (due to size of the limited space in the airframe) but still having 

the capabilities of a full sized SLR. The Nex7 has a full-size, 24.3-megapixel APS-C 

sensor. 

 The AreoHawk is hand-launched by one individual while a second person 

monitors the systems on the ground station. The takeoff after launch is autonomous but 

the ground station is capable of taking over at any time in case of any malfunctions. Once 

in the air the AreoHawk automatically goes into loiter mode until it is instructed to begin 

the photography mission.  Once the mission commences it can fly a preprogrammed 

pattern or it can be maneuvered through point and clicks on the ground station computer 

screen.  Each time a photograph is taken the footprint is overlaid on the ground station 

screen. This eliminates most problems with missed areas because the operator can see the 

image footprints in real-time on the computer screen and either alter the flight parameters 

or manually re-shoot missed areas. 
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Figure 13 - Hawkeye AreoHawk Survey Grade Fixed Wing UAS 
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 Upon completing the photography mission, the AreoHawk returns to the launch 

point and at a predetermined altitude will deploy a recovery parachute. The parachute 

deployment point is automatically determined based upon the desired landing zone, wind 

speed, and direction. 
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