
Electronic Journal of Differential Equations, Vol. 2007(2007), No. 11, pp. 1–16.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

ON THE ESSENTIAL SPECTRA OF MATRIX OPERATORS
AND APPLICATIONS

MONDHER DAMAK, AREF JERIBI

Abstract. In this paper, we investigate the essential spectra of some matrix
operators on Banach spaces. The results obtained are used for describing the

essential spectra of differential operators.

1. Introduction

This paper is devoted to the study of the essential spectra of 2 × 2 matrix
operators of the form

L0 =
(

A B
C D

)
considered on the product Banach space X := X1 ×X2. In general, the operators
occurring in the representation L0 are unbounded. The operator A acts on the
Banach space X1 and has the domain D(A), D is defined on D(D) and acts on
the Banach space X2, and the intertwining operator B (resp. C) is defined on
the domain D(B) (resp. D(C)) and acts from X2 to X1 (resp. from X1 to X2).
Below, we shall assume that D(A) ⊂ D(C) and D(B) ⊂ D(D), and then the matrix
operator L0 defines a linear operator in X with domain D(A)×D(B).

One of the problems in the study of such operators is that in general L0 is not
closed or even closable, even if its entries are closed. Important results concerning
the spectral theory of this type of operators have been obtained during the last
years. One of these works, the paper by Atkinson and all [3] concerns the essential
spectrum of such an operator. First, they give some sufficient conditions under
which L0 is closable and describe its closure which we shall denote by L. Second,
they study the Wolf essential spectrum of a matrix differential operator in the case
where the operators are defined on a bounded domain Ω ⊂ Rn.

The first main purpose of this paper is in a generalization of the results of [3]
on the essential spectrum of the closure L to the case where the assumptions of [3]
concerning the resolvent of the entry A are weakened. In [3] it is assumed that the
resolvent (A−λI)−1 for some (and hence for all) λ in the resolvent set ρ(A) of A is
a compact operator on X1; whereas in our paper we assume that only (A− λI)−1,
λ ∈ ρ(A) belongs to a two-sided closed ideal I(X1) ⊂ F(X1) of L(X1) where F(X1)
is the set of Fredholm perturbation on X1 (see Definition 2.1) and L(X1) denotes
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the Banach algebra of all bounded linear operators on X1. We shall show under
certain additional assumptions that the study of the essential spectrum of L will
be reduced to that of the Schur complement.

D − C(A− µI)−1B

for some λ ∈ ρ(A), where C(A− µI)−1B denotes the closure of the operator C(A−
µI)−1B. Note that the condition made on the resolvent of A in [3] fails if A is an
elliptic operator on a domain of infinite measure. Then, this condition is more
restrictive in the applications, and the class of entries of the matrix L0 that we
consider here is essentially more general than in [3].

There are several, and in general, non-equivalent definitions of the essential spec-
trum of a closed operator on a Banach space. Through all this paper we are con-
cerned with six of them (see Section 2). The second main purpose of this paper is
to study and characterize the essential spectrum of L in all cases. In particular,
the Wolf essential spectrum studied in [3] is included. Then, the aim of this work
is to pursue the analysis of the Wolf essential spectrum started in [3]. Indeed, we
extend the results obtained in [3] to a large class of operators and at the same time
to the six essential spectra. Therefore the results obtained in [3] turn out to be a
particular case of the results proven in this paper.

Let us conclude this introduction with some historical comments and some bib-
liographical references, which do not intend to be complete. The problem of the
essential spectrum of differential operators of mixed order, which appears in math-
ematical physics was studied by many authors. Among such works we can quote
for example [30, 39, 38, 1, 9]. The particular case of symmetric block differential
operators with Dirichlet boundary conditions for A, the essential spectrum was
studied in [1, 9]. An example from magnetohydrodynamics can be found in Section
5 in [3].

For Agmon, Douglis and Nirenberg elliptic system [2], the most general results
were obtained by Grubb and Geymonat [15]. We recall, the abstract model L0 was
introduced in [3]. This model clarifies the essence of the problem and allows us to
uncover details that have not been noticed before, even for concrete problems, for
example, the condition that the matrix operators admit a closure and the descrip-
tion of the domain of this closure. Recently, in Kurasov and Nabako [32], it has been
proven that the essential spectrum of self-adjoint operator associated with matrix
differential operator appearing in problems of magnetic hydrodynamics, consists of
two branches. The first one is called regularity spectrum and the second branch is
called singularity spectrum which appears due to singularity of the coefficients.

Our paper is organised as follows: In Section 2, we introduce the algebraic
framework in which our investigation will be done. The analysis is based on the
concept of Fredholm perturbations. In Section 3, we introduce a general hypotheses
on different entries of the operators matrix L. In Section 4, we investigate some
results concerning essential spectra of L. The main results of this section are
Theorems 4.1 and 4.3 which contain a general description of different types of the
essential spectra of the operator L. In the end of Section 4 we give some sufficient
conditions to verify our hypothesis. Finally, in Section 5 we apply the results
obtained in Sections 4 to study the essential spectra of an example where A, B
and C are ordinary differential operators on spaces of vector functions and D is a
multiplication operator.
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2. Preliminary Results

Let X and Y be Banach spaces and let A be an operator from X into Y . We
denote by D(A) ⊂ X its domain and R(A) ⊂ Y its range. We denote by C(X, Y )
(resp. L(X, Y )) the set of all closed, densely defined linear operators (resp. the
Banach algebra of all bounded linear operators) from X into Y . For A ∈ C(X, Y ),
by σ(A), ρ(A) and N(A) we denote the spectrum, the resolvent set and the null
space of A respectively. The nullity, α(A), of A is defined as the dimension of N(A)
and the deficiency, β(A), of A is defined as the codimension of R(A) in Y . The set
of upper semi-Fredholm operators from X into Y is defined by

Φ+(X, Y ) = {A ∈ C(X, Y )s uch that α(A) < ∞ and R(A) is closed in Y },

the set of lower semi-Fredholm operators from X into Y is defined by

Φ−(X, Y ) = {A ∈ C(X, Y ) : β(A) < ∞ and R(A) is closed in Y },

the set of semi-Fredholm operators from X into Y is defined by

Φ±(X, Y ) = Φ+(X, Y ) ∪ Φ−(X, Y ),

the set of Fredholm operators from X into Y is defined by

Φ(X, Y ) = Φ+(X, Y ) ∩ Φ−(X, Y ),

the set of bounded Fredholm operators from X into Y is defined by

Φb(X, Y ) = Φ(X, Y ) ∩ L(X, Y ),

and the set ΦA is defined by

ΦA = {λ ∈ C : λ−A ∈ Φ(X, Y )}.

If A ∈ Φ(X, Y ), the number i(A) = α(A)−β(A) is called the index of A. The subset
of all compact operators of L(X, Y ) is denoted by K(X, Y ). If X = Y then L(X, Y ),
K(X, Y ), C(X, Y ), Φ+(X, Y ), Φ−(X, Y ), Φ±(X, Y ), Φ(X, Y ) and Φb(X, Y ) are
replaced, respectively, by L(X), K(X), C(X), Φ+(X), Φ−(X), Φ±(X), Φ(X) and
Φb(X).

Definition 2.1. Let X and Y be two Banach spaces and let F ∈ L(X, Y ). F is
called a Fredholm perturbation if U + F ∈ Φb(X, Y ) whenever U ∈ Φb(X, Y ).

The set of Fredholm perturbations is denoted by Fb(X, Y ). This class of opera-
tors is introduced and investigated in [10]. In particular, it is shown that Fb(X, Y )
is a closed subset of L(X, Y ) and if X = Y , then Fb(X) := Fb(X, X) is a closed
two-sided ideal of L(X).

Proposition 2.2 ([10, pp. 69-70]). Let X, Y , Z be Banach spaces. If at least one
of the sets Φb(X, Y ) or Φb(Y, Z) is not empty, then

(i) F ∈ Fb(X, Y ), A ∈ L(Y,Z) imply AF ∈ Fb(X, Z).
(ii) F ∈ Fb(Y,Z), A ∈ L(X, Y ) imply FA ∈ Fb(X, Z).

Definition 2.3. Let X be a Banach space and R ∈ L(X). R is said to be a Riesz
operator if ΦR = C \ {0}.

For further information on the family of Riesz operators we refer to [4, 27] and
the references therein.
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Remark 2.4. (i) In [44], it is proved that Fb(X) is the largest ideal of L(X)
contained in the family of Riesz operators.

(ii) Let X and Y be two Banach spaces. If in Definition 2.1 we replace Φb(X, Y )
by Φ(X, Y ) we obtain the set F(X, Y ).

Definition 2.5. Let X and Y be two Banach spaces and let F ∈ L(X, Y ). Then
F is called an upper (resp. lower) Fredholm perturbation if U + F ∈ Φb

+(X, Y ) :=
Φ+(X, Y ) ∩ L(X, Y ) (resp. Φb

−(X, Y ) := Φ−(X, Y ) ∩ L(X, Y )) whenever U ∈
Φb

+(X, Y ) (resp. Φb
−(X, Y )).

The sets of upper semi-Fredholm and lower semi-Fredholm perturbations are de-
noted by Fb

+(X, Y ) and Fb
−(X, Y ), respectively. In [11], it is shown that Fb

+(X, Y )
and Fb

−(X, Y ) are closed subsets of L(X, Y ), and if X = Y , then Fb
+(X) :=

Fb
+(X, X) is a closed two-sided ideal of L(X).

Remark 2.6. Let X and Y be two Banach spaces. If in Definition 2.5 we replace
Φb

+(X, Y ) (resp. Φb
−(X, Y )) by Φ+(X, Y ) (resp. Φ−(X, Y )) we obtain the set

F+(X, Y ) (resp. F−(X, Y )).

Definition 2.7. An operator A ∈ L(X, Y ) is said to be weakly compact if A(B)
is relatively weakly compact in Y for every bounded subset B ⊂ X.

The family of weakly compact operators from X into Y is denoted by W(X, Y ).
If X = Y , the family of weakly compact operators on X, W(X) := W(X, X), is a
closed two-sided ideal of L(X) containing K(X) (cf. [8, 12]).

Definition 2.8. Let X and Y be two Banach spaces. An operator A ∈ L(X, Y ) is
called strictly singular if, for every infinite-dimensional subspace M , the restriction
of A to M is not a homeomorphism.

Let S(X, Y ) denote the set of strictly singular operators from X into Y . The
concept of strictly singular operators was introduced in the pioneering paper by
Kato [28] as a generalization of the notion of compact operators. For a detailed
study of the properties of strictly singular operators we refer to [12, 28]. For our own
use, let us recall the following four facts. The set S(X, Y ) is a closed subspace of
L(X, Y ), if X = Y , S(X) := S(X, X) is a closed two-sided ideal of L(X) containing
K(X). If X is a Hilbert space then K(X) = S(X). The class of weakly compact
operators on L1-spaces (resp. C(K)-spaces with K a compact Haussdorff space)
is nothing else but the family of strictly singular operators on L1-spaces (resp.
C(K)-spaces) (see [41, Theorem 1]).

Let X be a Banach space. If N is a closed subspace of X, we denote by πX
N

the quotient map X → X/N . The codimension of N , codim(N), is defined as the
dimension of the vector space X/N .

Definition 2.9. Let X and Y be two Banach spaces and S ∈ L(X, Y ). S is said
to be strictly cosingular operator from X into Y , if there exists no closed subspace
N of Y with codim(N) = ∞ such that πY

NS : X → Y/N is surjective.

Let CS(X, Y ) denote the set of strictly cosingular operators from X into Y . This
class of operators was introduced by Pelczynski [41]. It forms a closed subspace of
L(X, Y ) which is, CS(X) := CS(X, X), a closed two-sided ideal of L(X) if X = Y
(cf. [46]).
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Definition 2.10. A Banach space X is said to have the Dunford-Pettis property
(for short property DP) if for each Banach space Y every weakly compact operator
T : X → Y takes weakly compact sets in X into norm compact sets of Y .

It is well known that any L1 space has the DP property [7]. Also, if Ω is a
compact Hausdorff space, C(Ω) has the DP property [14]. For further examples
we refer to [6] or [8, p. 494, 497, 508, 511]. Note that the DP property is not
preserved under conjugation. However, if X is a Banach space whose dual has
the DP property then X has the DP property (see [14]). For more information
we refer to the paper by Diestel [6] which contains a survey and exposition of the
Dunford-Pettis property and related topics.

The following identity was established in [35, Lemma 2.3 (ii)].

Lemma 2.11 ([35]). Let X be an arbitrary Banach space. Then

F(X) = Fb(X),

where F(X) := F(X, X).

An immediate consequence of this result is that F(X) is a closed two-sided ideal
of L(X).

Remark 2.12. Let X and Y be two Banach spaces. In contrast to the result
of Lemma 2.11, the fact that F(X, Y ) is equal or not to Fb(X, Y ) seems to be
unknown.

In general, we have the following inclusions:

K(X) ⊂ S(X) ⊂ Fb
+(X) ⊂ F(X),

K(X) ⊂ CS(X) ⊂ Fb
−(X) ⊂ F(X)

where Fb
−(X) = Fb

−(X, X).
We say that X is weakly compactly generating (w.c.g.) if the linear span of some

weakly compact subset is dense in X. For more details and results we refer to [6].
In particular, all separable and all reflexive Banach spaces are w.c.g. as well as
L1(Ω, dµ) if (Ω, µ) is σ-finite.

It is proved in [47] that if X is a w.c.g. Banach space then

F+(X) = S(X) and F−(X) = CS(X).

We say that X is subprojective, if given any closed infinite-dimensional subspace M
of X, there exists a closed and finite dimensional subspace N ⊂ M and a continuous
projection from X onto N . Clearly any Hilbert space is subprojective. The spaces
c0, lp, (1 ≤ p < ∞), and Lp (2 ≤ p < ∞), are also subprojective (cf. [48]).

We say that X is superprojective if every subspace V having infinite codimension
in X is contained in a closed subspace W having infinite codimension in X and such
that there is a bounded projection from X to W . The spaces lp, (1 < p < ∞), and
Lp (1 < p ≤ 2), are superprojective (cf. [48]).

Let X be a w.c.g. Banach space. If X is superprojective (resp. subprojective)
then S(X) ⊂ CS(X) (resp. CS(X) ⊂ S(X)). So, S(X) ⊂ F+(X) ∩ F−(X) (resp.
CS(X) ⊂ F+(X)∩F−(X)), where F+(X) := F+(X, X) and F−(X) := F−(X, X).

Let (Ω,Σ, µ) be a positive measure space and let Xp denote the spaces Lp(Ω, dµ)
with 1 ≤ p < ∞. Since p ∈ [1,∞) the spaces Xp are w.c.g. and consequently we
have F+(Xp) = S(Xp) and F−(Xp) = CS(Xp). In Xp and in C(E) (the Banach
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space of continuous scalar-valued function on E with the supremum norm) provided
that E is a compact Hausdorff space we have S(Xp) = CS(Xp) = F(Xp) (cf. [47]).

For a self-adjoint operator A on a Hilbert space X, the essential spectrum of A
is the set of limit points of the spectrum of A (with eigenvalues counted according
to their multiplicities), i.e., all points of the spectrum except isolated eigenvalues
of finite multiplicity (see, for example, [49, 50]).

If X is a Banach space and A ∈ C(X), there are many ways to define the essential
spectrum. We recall six of them:

• σe1(A) := {λ ∈ C : λ−A 6∈ Φ+(X)} = C \ Φ+A,
• σe2(A) := {λ ∈ C : λ−A 6∈ Φ−(X)} = C \ Φ−A,
• σe3(A) = {λ ∈ C : λ−A 6∈ Φ±(X)} = C \ Φ±A,
• σe4(A) := {λ ∈ C : λ−A 6∈ Φ(X)} = C \ ΦA,
• σe5(A) := C \ ρ5(A),
• σe6(A) := C \ ρ6(A).

where ρ5(A) := {λ ∈ ΦA : i(λ−A) = 0} and

ρ6(A) := {λ ∈ ρ5(A) such that scalars near λ are in ρ(A)}.

The subsets σe1(.) and σe2(.) are the Gustafson and Weidmann essential spectra
[16]. σe3(.) is the Kato essential spectrum [29]. σe4(.) is the Wolf essential spectrum
[13, 50, 42, 49]. σe5(.) is the Schechter essential spectrum [13, 16, 42, 43], and σe6(.)
denotes the Browder essential spectrum [16, 27, 40, 42]. Note that all these sets
are closed and in general satisfy the following inclusions

σe1(A) ∩ σe2(A) = σe3(A) ⊂ σe4(A) ⊂ σe5(A) ⊂ σe6(A).

Note that, if A is a self-adjoint operator on a Hilbert space, then

σe1(A) = σe2(A) = σe3(A) = σe4(A) = σe5(A) = σe6(A).

The essential spectra were studied by many authors. Now, the main question is
about the classes of stability of the essential spectra by a perturbation. Motivated
by a problem concerning the spectrum of the transport operator posed in [33],
Latrach and Jeribi [36] proved that the Shechter essential spectrum is stable with
the perturbations by weakly compact operators on L1-spaces. Then, Jeribi, Latrach
and Dehici have extended the results about the classes of stability to strictly singular
operators on Lp-spaces (see [18, 19, 20, 26, 37]), to weakly compact operators on
Dunford-Pettis spaces (see [21, 34]), and to Fredholm perturbation operators on
Banach spaces (see [25, 22, 24, 35]). The Wolf essential spectrum for the N -body
problem, was studied in [5].

Remark 2.13. If λ ∈ σC(A) (the continuous spectrum of A) then R(λ − A) is
not closed (otherwise λ ∈ ρ(A) see [45, Lemma 5.1 p. 179]). Therefore λ ∈ σei(A),
i = 1, . . . , 6. Consequently we have σC(A) ⊂ ∩6

i=1σei(A). If the spectrum of A is
purely continuous then σ(A) = σC(A) = σei(A) i = 1, . . . , 6.

3. General Hypotheses

The aim of this section is to present some hypotheses which we need in the
sequel. We begin with hypotheses which assure the closedness of the operator L0.
Let X1 and X2 be Banach spaces. In the product space X := X1×X2 we consider
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an operator formally defined by a matrix

L0 :=
(

A B
C D

)
. (3.1)

Our assumptions are as follows: in general, the operators occurring in the repre-
sentation L0 are unbounded, A acts on the space X1 and has the domain D(A),
D is defined on D(D) and acts on X2, and the intertwining operators B and C
are defined on the domains D(B) and D(C), respectively, and acts between these
spaces.

In what follows, we assume that the following conditions hold.

(H1) A is a densely defined operator in X1 with nonempty resolvent set ρ(A).
(H2) B and C are densely defined closable operators from X2 into X1 and from

X1 into X2, respectively, and D(C) ⊃ D(A).
(H3) For some µ ∈ ρ(A) the operator (A − µI)−1B is bounded on its domain

D(B).
(H4) D(B) ⊂ D(D).
(H5) For some µ ∈ ρ(A) the operator D−C(A−µI)−1B is closable. We denote

its closure by S(µ).

For a better understanding, we give some comments to explain these hypothesis.

Remark 3.1. (i) From the fact that D(C) ⊃ D(A) and the closed graph theorem
we infer that for each µ ∈ ρ(A) the operator G(µ) := C(A − µI)−1 is defined on
X1 and is bounded.

(ii) If the hypothesis (H3) holds for some µ ∈ ρ(A) then it holds for all µ ∈ ρ(A).
Indeed, let µ0 ∈ ρ(A) be such that the operator (A− µ0I)−1B is bounded. Then,
for arbitrary µ ∈ ρ(A) the relation

(A− µI)−1B = (A− µ0I)−1B + (µ− µ0)(A− µI)−1(A− µ0I)−1B (3.2)

shows that (A− µI)−1B is also bounded.
(iii) We denote the closure of (A − µI)−1B by F (µ). Then the relation (3.2)

implies
F (µ) = F (µ0) + (µ− µ0)(A− µI)−1F (µ0).

(iv) The fact that µ ∈ ρ(A) implies that the operator C(A − µI)−1 is defined
everywhere on X1 and hence the operator C(A− µI)−1B is defined on D(B).

(v) According to assumption (H4), the operator D − C(A − µI)−1B is defined
on D(B).

(vi) If hypothesis (H5) holds for some µ ∈ ρ(A) then it holds for all µ ∈ ρ(A).
(vii) With the matrix defined in (3.1), we associate the operator L0 : D(L0) ⊂ X,

with D(L0) = D(A)×D(B) and

L0

(
x1

x2

)
=

(
Ax1 + Bx2

Cx1 + Dx2

)
The operator L0 can be factored in the Frobenius-Shur sense:

L0 − µI =
(

I 0
G(µ) I

) (
A− µI 0

0 D − C(A− µI)−1B − µI

) (
I F (µ)
0 I

)
We recall now a result from [3] regarding the closability of the operator L0.
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Theorem 3.2 ([3, Theorem 1.1]). Let hypotheses (H1)–(H5) be satisfied and let
µ ∈ ρ(A). Then L0 is closable and its closure L is given by

L = µI +
(

I 0
G(µ) I

) (
A− µI 0

0 S(µ)− µI

) (
I F (µ)
0 I

)
,

or equivalently, L : D(L) ⊂ X → X with D(L) =
{ (

x1

x2

)
∈ X : x1 + F (µ)x2 ∈

D(A) and x2 ∈ D(S(µ))
}

and

L

(
x1

x2

)
=

(
A(x1 + F (µ)x2)− µF (µ)x2

C(x1 + F (µ)x2) + S(µ)x2

)
Remark 3.3. Using the hypotheses (H2) and (H3) we infer that, for µ, µ0 ∈ ρ(A),
the difference(

D−C(A−µ)−1B
)
−

(
D−C(A−µ0)−1B

)
= (µ−µ0)C(A−µ)−1(A−µ0)−1B (3.3)

is a bounded operator. Therefore if the operator D − C(A − µI)−1B is closable
for some µ ∈ ρ(A) then it is closable for all µ ∈ ρ(A). Since the operator L is
the closure of L0, it does not depend on the choice of the point µ ∈ ρ(A) in its
description above.

For the rest of this article, I(X) will denote an arbitrary nonzero two-sided
closed ideal of L(X) satisfying the condition

I(X) ⊂ F(X).

Using Lemma 2.11 and [11, Proposition 4, p. 70] we deduce that

K(X) ⊂ I(X),

where K(X) stands for the ideal of compact operators. Hence the ideal of compact
operators is the minimal subset of L(X) (in the sense of the inclusion) for which
the results of this paper are valid.

We conclude this section with the following hypotheses:
(H6) For some µ ∈ ρ(A) the resolvent (A− µI)−1 ∈ I(X1).
(H7) For some µ ∈ ρ(A) the operator G(µ)F (µ) := C(A− µI)−2B ∈ I(X2).

Remark 3.4. Note that the assumptions (H1)–(H6) do not imply (H7) even if the
operator C(A− µI)−1B is bounded (see [3, p. 8] where I(X) = K(X) is the ideal
of compact operators).

4. Main Results

In this section we present some results concerning the essential spectra of the
operator L. We begin with the following preparatory result which is crucial for
our purposes. It describes a sufficient condition for assumption (H1)–(H6) ti imply
(H7).

Theorem 4.1. Under the assumptions (H1)–(H6), condition (H7) is satisfied if
and only if the operator S(µ) admits the representation

S(µ) = S0 + M(µ) µ ∈ ρ(A) (4.1)

with a closed operator S0, which is independent of µ, and an operator M(µ) ∈
I(X2). In this case S0 can be chosen to be S(µ0) for any µ0 ∈ ρ(A), and M(µ)
depends holomorphically on µ in ρ(A).
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Proof. If (H7) is satisfied, by (3.3), we write S(µ) in the form

S(µ) = S(µ0) + (µ− µ0)G(µ)F (µ0)

= S(µ0) + (µ− µ0)G(µ0)F (µ0) + (µ− µ0)2G(µ0)(A− µI)−1F (µ0).

From assumptions (H6) and (H7) and Proposition 2.2 we can deduce that the
representation (4.1) follows, with S0 = S(µ0).

Conversely, equation (4.1) implies that

S(µ)− S0 = (M(µ)−M(µ0))|D(S0). (4.2)

On the other hand,

S(µ)− S(µ0) = (µ− µ0)G(µ)F (µ0)|D(S0). (4.3)

So, using (4.2) and (4.3), we deduce that

G(µ)F (µ0) = (µ− µ0)−1(M(µ)−M(µ0)).

If µ → µ0 the operator G(µ)F (µ0) tends to G(µ0)F (µ0) in the operator norm
topology which mean that (µ−µ0)−1(M(µ)−M(µ0)) also converges to G(µ)F (µ0)
in the operator norm topology. Furthermore, (M(µ)−M(µ0)) ∈ I(X2) and I(X2)
is a closed sided ideal of L(X2). So, G(µ0)F (µ0) ∈ I(X2) and this completes the
proof. �

For µ ∈ ρ(A), we introduce the following matrix operators which we shall need
in the sequel:

G(µ) :=
(

I 0
G(µ) I

)
,

D(µ) :=
(

A− µI 0
0 S0 + M(µ)− µI

)
,

F(µ) :=
(

I F (µ)
0 I

)
.

The following remark will be used for proving the next Theorem 4.3.

Remark 4.2. (a) Using Theorems 3.2 and 4.1 we can write the operator L in the
form

L− µI = G(µ)D(µ)F(µ). (4.4)
(b) If µ ∈ ρ(A), then

(i) α(A− µI) = β(A− µI) = 0.
(ii) α(D(µ)) = α(S0 + M(µ)− µI).
(iii) β(D(µ)) = β(S0 + M(µ)− µI).

We now state the main result of this paper.

Theorem 4.3. Assume hypotheses (H1)–(H7). Then
(i) σei(L) = σei(S0) for i = 4, 5. Moreover, if Cσe5(L) [the complement of

σe5(L)] is connected and neither ρ(S0) nor ρ(S(µ)) is empty, then

σe6(L) = σe6(S0).

(ii) If I(X2) ⊂ F+(X2) then σe1(L) = σe1(S0).
(iii) If I(X2) ⊂ F−(X2) or [I(X2)]∗ ⊂ F+(X∗

2 ), then σe2(L) = σe2(S0).
(iii) If I(X2) ⊂ F+(X2) ∩ F−(X2) then σe3(L) = σe3(S0).
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Proof. (i) First assume that λ ∈ ρ(A). It is clear that F(λ) is a bijection from D(L)
onto D(D(λ)) = D(A)×D(S0) and G(λ) is a bijection from X onto X. Therefore,

α(L− λI) = α(D(λ)), (4.5)

β(L− λI) = β(D(λ)). (4.6)

By Remark 4.2 (b) (ii)-(iii) taking into account (4.5), (4.6), we obtain

α(L− λI) = α(S0 + M(λ)− λI), (4.7)

β(L− λI) = β(S0 + M(λ)− λI). (4.8)

Since M(λ) ∈ I(X2), the numbers α(L − λI) and β(L − λI) are finite if and
only if α(S0 − λI) and β(S0 − λI) are finite. Consequently, L − λI is a Fredholm
operator if and only if S0 − λI is a Fredholm operator and, if this is the case,
i(L− λI) = i(S0 − λI).

Let λ 6∈ ρ(A). By hypothesis (H6), the spectrum of A is discrete. Therefore, λ
is an isolated eigenvalue of A. Let

Pλ = − 1
2πi

∫
|λ−ξ|=ε

(A− ξI)−1dξ

be the Riesz projection with ε sufficiently small. Then λ ∈ ρ(Aλ) where Aλ is the
finite-dimensional perturbation of A given by

Aλ := A(I − Pλ) + δPλ, δ 6= λ.

Now, for µ ∈ ρ(Aλ), we have

D − C(Aλ − µI)−1B = S0 + Mλ(µ)

where the operator S0 is introduced in (4.1) and operator Mλ(µ) is an operator
from I(X2). Let Lλ be the closure of the operator(

Aλ B
C D

)
.

Since Lλ is a finite-dimensional perturbation of L, L−λI is a Fredholm operator on
X if and only if Lλ − λI is a Fredholm operator on X. Now, with the first part of
the present proof, we conclude that λ ∈ σei(Lλ) if and only if λ ∈ σei(S0) i = 4, 5.

The proof of statement (i) for i = 6 is essentially the same as that of the last
assertion of [35, Theorem 3.1]. This completes the proof of part (i).

(ii) Let λ ∈ ρ(A). Using the fact that I(X2) ⊂ F+(X2) and [35, Lemma Lemma
2.2 (i)] we deduce that α(S0 +M(λ)−λI) is finite if and only if α(S0−λI) is finite.
Hence, by (4.7) α(L− λI) is finite if and only if α(S0 − λI) is finite.

Let λ 6∈ ρ(A). Since F+(X1) ⊂ F(X1), then by hypothesis (H6) we deduce that
λ is an isolated eigenvalue of A. Now, the rest of the proof of (ii) may be done in
a way similar to that in (i). This completes the proof of (ii).

(iii) If I(X2) ⊂ F−(X2) then the proof is the same as in (ii). It suffices to use
(4.8) and [35, Lemma 2.2 (ii)].

If [I(X2)]∗ ⊂ F+(X∗
2 ), the result follows from the fact that α(S∗

0 +M(λ)∗−λ̄I) =
β(S0 + M(λ)− λI) (see [12] or [29]).

(iv) Assertion (iv) follows from [35, Proposition 3.1 (iv)]. The proof is complete.
�
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Remark 4.4. Let X be a Banach space having the Dunford-Pettis property. It
is proved in [34] that the ideal of weakly compact operators, W(X), leaves invari-
ant the sets Φ+(X), Φ−(X), Φ±(X) and Φ(X) under additive perturbations, i.e.,
W(X) ⊂ F+(X)∩F−(X). Hence for I(X) = W(X), the assertions of the Theorem
4.3 are valid.

We deduce the following result.

Corollary 4.5. If the operator D is everywhere defined and bounded and C(A −
µ0I)−1B (for some and hence for all µ0 ∈ ρ(A)) is bounded, then S0 can be chosen
to be

S0 = D − C(A− µ0I)−1B.

In particular, under these assumptions, σei(L) 6= ∅, i := 1 . . . 6, if dim(X2) = ∞.

In applications (see Section 5), hypotheses (H3), (H6) and the boundedness of
the operator C(A − µI)−1B are not easy to verify. Now, we give some sufficient
conditions which imply the above assumptions that are easier to check. To this
end, we introduce the following concept.

Definition 4.6. The resolvent of the operator A is said to have a ray of minimal
growth if there exists some θ ∈ [0, 2π) such that

γθ := {λ ∈ C : λ = teiθ, t ∈ R+} ⊂ ρ(A)

and there is a positive constant M such that

‖(A− λI)−1‖ ≤ M

1 + |λ|
holds for all λ ∈ γθ. (4.9)

The domain D(A) of A is equipped with the graph norm topology i.e., ‖x‖1 =
‖x‖ + ‖Ax‖; hence D(A) is a Banach space. Let X1,1 denote (D(A), ‖.‖1). If A
is an operator whose resolvent has a ray of minimal growth, then the intermediate
spaces

X1,θ = D(Aθ), 0 ≤ θ ≤ 1

between X1 and X1,1 = D(A) with the norm ‖x‖θ = ‖x‖+ ‖Aθx‖ are well defined
and the same holds for the intermediate spaces X∗

1,θ between X∗
1,1 = D(A∗) and

X∗
1 .

Proposition 4.7 ([3, Proposition 3.1]). If the operators A and B satisfy properties
(H1), (H2), then the assumption (H3) holds if and only if D(B∗) ⊃ D(A∗).

Theorem 4.8. Let X be a Banach space and let I(X) denote an arbitrary nonzero
two-sided ideal of L(X) contained in F(X). Let T ∈ C(X) be such that ρ(T ) 6= ∅.
Then (λ − T )−1 ∈ I(X) for some λ ∈ ρ(T ) if and only if the embedding of D(T )
into X is in I(X).

Remark 4.9. Note that for I(X) = K(X), Theorem 4.8 is nothing but the classical
spectral theorem for compact operators.

Proof of Theorem 4.8. Let λ ∈ ρ(T ) such that (λ − T )−1 ∈ I(X). The operator
λ − T : D(T ) → X is an isomorphism when the domain, D(T ), of the operator T
is equipped with the graph norm. By using the fact that (λ − T )−1 ∈ I(X) and
writing the embedding j of D(T ) into X as j := (λ−T )−1(λ−T ) with D(j) := D(T )
we deduce that j ∈ I(X).
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Inversely, let λ ∈ ρ(T ). Then we can write (λ − T )−1 = j ◦ (λ − T )−1 where
j : D(T ) → X is in I(X) then (λ−T )−1 is in I(X) as the compose of a continuous
map (λ− T )−1 and a map j in I(X). �

Lemma 4.10. Let conditions (H1), (H2), (H6) be satisfied and assume that the
resolvent of A has a ray of minimal growth. Furthermore, assume that for some
θ ∈ (0, 1) the following inclusions hold:

D(B∗) ⊃ D((A∗)θ) := D((Aθ)∗), (4.10)

D(C) ⊃ D(A1−θ). (4.11)

Then also conditions (H3) and (H7) are fulfilled and the operator C(A − µI)−1B
is bounded for µ ∈ ρ(A).

Proof. It follows from the properties of fractional powers [31, Chapter 4] that X∗
1,θ ⊃

X∗
1,1 = D(A∗) for any θ ∈ [0, 1). Moreover, the embedding of X∗

1,1 into X∗
1,θ is a

Fredholm perturbation since 0 ∈ ρ(A) by (4.9) and A−1 ∈ I(X1) (see Theorem 4.8).
Using Proposition 4.7 we conclude that (H3) holds if and only if D(B∗) ⊃ D(A∗).
Thus, (H3) derives from (4.10).

Now, write the operator CA−1B in the form

CA−1B = CA−(1−θ)A−θB. (4.12)

The operator CA−(1−θ) is bounded on X1 by (4.11). The operator A−θB is bounded
on D(B) by (4.10) and Proposition 4.7. Hence, the boundedness of the operator
CA−1B follows from (4.12). Finally, by writing

CA−2B = CA−(1−θ)A−1(A−θB)

the hypothesis (H7) follows from the fact that A−1 ∈ I(X1) and Proposition 2.2.
�

Let X be a Banach space and let T be a closed operator on X. By ∆0(T ) we
denote the maximal open subset of C where the resolvent (T−λI)−1 is finitely mero-
morphic, i.e., it is meromorphic on ∆0(T ) and all the coefficients in the principal
parts of the Laurent expansions at the poles are of finite rank.

Remark 4.11. The set ∆0(T ) is the union of all components w of ΦT for which
w ∩ ρ(T ) 6= ∅ [11, Lemma 2.1].

Using representation (4.4) we can prove the following result.

Corollary 4.12. Under assumptions (H1)–(H6), the set ∆0(L) is the union of all
components w of ΦS0 such that for some µ ∈ w the operator S(µ) − µI maps X2

bijectively onto itself.

We give now, a sufficient condition for the fact that ∆0(L) contains the un-
bounded component of ∆(S0), denoted by ∆0

ext(S0).

Corollary 4.13. Let conditions (H1), (H2, (H6) hold. Assume that the resolvent
of A has a ray of minimal growth. Assume, in addition, that for some θ ∈ (0, 1)
the inclusions (4.10) and (4.11) hold and the operator D is bounded. Then the
inclusion

∆0(L) ⊃ ∆0
ext(S0)

holds. In particular, if ∆(S0) is simply connected, then the equality ∆0(L) = ∆0(S0)
holds.
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Proof. Let λ ∈ γθ, 0 < θ < 1, and consider the identity:

S(λ)− λI = −λI + S(0) + [CA−(1−θ)][λ(A− λ)−1]
[
A−θB

]
.

By Lemma 4.10 the operators S(0), CA−(1−θ) and A−θB are everywhere defined
and bounded. Hence the operator S(λ) − λI has a bounded inverse for all λ ∈ γθ

with |λ| sufficiently large. By Corollary 4.12 the unbounded component ∆0
ext(S0)

of ∆(S0) is a component of ∆0(L). �

5. An Example

The aim of this section is in the analysis of the essential spectra of the operator
defined in (3.1) where A, B, C are ordinary differential operators in spaces of
vector functions and D is a multiplication operator defined as follows: The operator
A : D(A) ⊂ X1 → X1 is defined on D(A) = {ϕ ∈ (H l

p)
n : Uϕ = 0}, as

ϕ 7→ Aϕ(x) =
l∑

k=0

ak(x)ϕ(l−k)(x)

where X1 := (Lp(0, 1))n, p > 1, n ∈ N, l > 0, and ai, 0 ≤ i ≤ l are n × n matrix
functions with sufficiently smooth entries and det a0(x) 6= 0; (H l

p)
n := (H l

p(0, 1))n

is a Sobolev space of n-vector functions. The domain D(A) is supposed to be given
by general boundary conditions

U(ϕ) := U0


ϕ(0)
ϕ′(0)

...
ϕ(l−1)(0)

 + U1


ϕ(1)
ϕ′(1)

...
ϕ(l−1)(1)

 = 0 (5.1)

where U0 and U1 are nl × nl matrices.
The operator B : D(B) ⊂ X2 → X1 is defined on D(B) = {ϕ ∈ (Hs

p)m : Ûϕ =
0}, as

ϕ 7→ Bϕ(x) =
s∑

k=0

bk(x)ϕ(s−k)(x).

where X2 := (Lp(0, 1))m, m ∈ N, 0 ≤ s ≤ l; bi, 0 ≤ i ≤ s are n×m matrix functions
with sufficiently smooth entries. The system of boundary conditions U∗(v) = 0
(v ∈ Hs

q with q = p
p−1 ) is the adjoint of the system (5.1). We take all boundary

conditions of order ≤ s − 1 in the system of boundary conditions U∗(v) = 0 and
denote the corresponding subsystem of linear forms by Û∗(·). The domain D(B) is
chosen, on the one hand, to satisfy the condition D(B∗) ⊃ D(A∗) and, on the other
hand, to be as large as possible in order to cover examples which are interesting in
applications.

The operator C : D(C) ⊂ X1 → X2 is defined on D(C) = {ϕ ∈ (Hh
p )n : Uϕ = 0},

as

ϕ 7→ Cϕ(x) =
h∑

k=0

ck(x)ϕ(h−k)(x),

where 0 ≤ h ≤ l, s + h = l and ci, 0 ≤ i ≤ h are m × n matrix functions with
sufficiently smooth entries.

The operator D : X2 → X2 is defined as

ϕ 7→ Dϕ(x) = d(x)ϕ(x),
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where d is an m × m matrix function which is assumed to be measurable and
essentially bounded (hence D is a bounded operator on X2).

For more details we refer the reader to [3]. The next proposition contains con-
ditions that we need in the sequel.

Proposition 5.1. With the above notation, we have the following:
(i) [3, Proposition 4.1] B is closable and the inclusion D(B∗) ⊃ D((A∗)

s
l )

holds.
(ii) [3, Proposition 4.2] C is closable and D(C̄) ⊃ D((A∗)

h
l )

(iii) [3, Theorem 4.3] For µ ∈ ρ(A) the operator D − C(A − µI)−1B which is
defined on D(B), admits a bounded closure S(µ) = S0 + K(µ), where S0

is the operator of multiplication by the function d − c0a
−1
0 b0 and K(µ) a

compact operator in X2.

Theorem 5.2. Let L0 the operator defined as above and let L denote the closure
of L0. Then

σei(L) = {λ ∈ C : ess inf |det[d(x)− c0(x)a−1
0 (x)b0(x)− λI]| = 0} i = 1, . . . , 6.

(5.2)
Moreover, if the complement of this set is connected, then this complement coincides
with the domain of finite meromorphy of the operator function (L− λI)−1.

Proof. Using Theorem 4.3 and Proposition 5.1 (iii) we deduce that σei(L) = σei(S0),
i = 1, . . . , 6 where S0 is the operator of multiplication by the matrix function
d − c0a

−1
0 b0. On the other hand, it is shown in [17] that the spectrum of S0 is

purely continuous and is given by the expression on the right-hand side of (5.2).
Now the result follows from Remark 2.13. �

References

[1] J. A. Adam, Physics reports (Review section of Physics Letters), 142, 5, 263-356 (1986).
[2] S. Agmon, A. Douglis, R. Mennicken and L. Nirenberg, Estimates near the boundary for

solutions of elliptic partial differential equations satisfying general boundary conditions. II,

Comm. Pure Appl. Math., 17, 35-92 (1964).
[3] F. V. Atkinson, H. Langer, R. Mennicken and A. A. Shkalikov, The essential spectrum of

some matrix operators, Math. Nachr., 167, 5-20 (1994).

[4] S. R. Caradus, Operators of Riesz type, Pacific J. Math., 18, 61-71 (1966).
[5] M. Damak, On the spectral theory of dispersive N-Body Hamiltonians, J. Math. Phys., 40,

35-48 (1999).

[6] J. Diestel, Geometry of Banach spaces-Selected topics Lecture Notes in Mathematics, 485,
Springer, New-York (1975).

[7] N. Dunford and Pettis, Linear operations on summable functions, Tran. Amer. Math. Soc.,
47, 323-392 (1940).

[8] N. Dunford and J. T. Schwartz, Linears operators. Interscience Publishers Inc. New-York,
Part 1 (1958).

[9] J. P. Goedbloed, Lecture note on ideal magnetohydrodynamics, in: Rijnhiuzen Report, From-
Instituut voor Plasmafysica, Nieuwegein 83-145 (1983).

[10] I. C. Gohberg, A. S. Markus, and I. A. Feldman, Normally solvable operators and ideals
associated with them, Amer. Math. Soc. Transl. ser. 2, 61, 63-84 (1967).

[11] I. C. Gohberg and E. Sigal, An operator Generalization of the logarithmic residue theorem
and the theorem of Rouch, Mat. Sbornik., 84, 126 (1971). Engl. Transl. in Math. USSR
Sbornik, 13, 603-625 (1971).

[12] S. Goldberg, Unbounded Linear Operators. McGraw-Hill, New-York,(1966).

[13] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192,
17-32 (1971).



EJDE-2007/11 ON THE ESSENTIAL SPECTRA 15

[14] A. Grothendieck, Sur les applications linaires faiblement compactes d’espaces du type C(K),

Canad. J. Math., 5, 129-173 (1953).

[15] G. Grubb and G. Geymonat, The Essential Spectrum of Elliptic Systems of Mixed Order,
Math. Anal. Ann. 227, 245-276 (1977).

[16] K. Gustafson and J. Weidmann, On the essential spectrum., J. Math. Anal. Appl. 25, 6,

121-127 (1969).
[17] V. Hardt, Uber ein im eigenwertparameter rationales randeigenwertproblem bei differential-

gleichungssystemen zweiter ordnung. Dissertation, Regensburg, (1992).

[18] A. Jeribi, Quelques remarques sur les opérateurs de Frédholm et application à l’équation de
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