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Periodic and almost periodic solutions for
multi-valued differential equations in Banach
spaces *

E. Hanebaly & B. Marzouki

Abstract

It is known that for w-periodic differential equations of monotonous
type, in uniformly convex Banach spaces, the existence of a bounded
solution on R is equivalent to the existence of an w-periodic solution (see
Haraux [5] and Hanebaly [7, 10]). It is also known that if the Banach space
is strictly convex and the equation is almost periodic and of monotonous
type, then the existence of a continuous solution with a precompact range
is equivalent to the existence of an almost periodic solution (see Hanebaly
[8] ). In this note we want to generalize the results above for multi-valued
differential equations.

1 Preliminaries

Let X and Y be Banach spaces, and 2¥ denote the collection of subsets of Y.
For a multi-valued map F : X — 2¥ we define the following conditions:

F is upper semi-continuous (u.s.c.) in X if for every zp in X and every
open set G C Y with Fzy C G there exists a neighborhood U of zy such
that Fxg C G for all x € U. In practice F' is u.s.c. at xyp means that Fx C
Fxo+ B:(0) for all z sufficiently close to z¢ and for e sufficiently small.

F' is bounding if it maps bounded subsets of X into bounded subsets of Y.

F is dissipative if X =Y and

(Fr—Fy,z—y)- <0 VzeeX,VyeX.
This implies that for all 1 € Fx and all y; € Fy,
<J}1 _y17$_y>— < 07

where the lower semi-inner product on X introduced by Lumer [11] is defined

as
Ny + ha| — |yl
_ = |ly| lim P TIR
(@,9)- = llyl lim_ N
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F is accretive if (Fz— F'y,z —y);+ > 0 where the upper semi-inner product
on X is defined as

Ny + ha|| = |yl
x, = lim —— .
(@, )+ = [yl Ao A

We denote by — the convergence for the weak topology o(X, X*). Recall
that  : J C R — X is said to be absolutely continuous (a.c. for short) if for
each € > 0 there is § > 0 such that >_ ||z(¢;) — z(s;)|| < & whenever the finitely
many intervals [s;,t;] C J do not overlap and Y |t; — s;] < §. In particular
every Lipschitzean map is a.c. When X is of finite dimension it is known that
x is a.c. if and only if z is differentiable almost everywhere (a.e. for short) and
x’ € L}(J, X), but if X is of infinite dimension and X is not reflexive, then an
a.c. function need not be differentiable at any point (see e.g Deimling [6] p.138).

By a solution of the Cauchy problem

g’ € F(t,x); x(to) = o (1)

in some interval I (with ¢y € I), we mean a continuous function on I, a.c. in
every compact subset of I, differentiable a.e., and that satisfies (1) a.e. on I.
The collection non-empty compact convex subsets of X will be denoted by

CV(X).
2 Boundedness and periodicity of solutions
We begin by giving a result concerning the existence of a global solutions. Let

(X, ]]-ID) be a real reflexive Banach space. Consider the multi-valued Cauchy
problem

z'(t) € F(t,z(t)) (2)
z(0) = zo, 3)

where F: RT x X — CV(X) is u.s.c. and bounding.

Theorem 1 If for all (t,z,y) € RT x X x X, (F(t,x) — F(t,y),z —y)_ <0,
then the Cauchy problem (2)-(3) has a unique solution defined on RY.

Remark. This theorem is well known for the inclusion of type
¥ e —Az + f(t)

where A is a multi-valued maximal monotone operator on a Hilbert space and
f is a uni-valued map (see Brezis [4]).
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Proof of Theorem 1. Since F is u.s.c. with convex values, by the approx-
imate selection theorem (see Cellina [1]) for each n > 0 there exists a locally
lipschitzean map f,, : RT x X — X such that

falt,z) € F(RT x X N Byp(t,z)) + B.(0) V(tz)e R x X,

where By, (t,2) is a ball in RT x X and By ,,(0) is a ball in X. Since F is u.s.c.
at (t,z), for each € > 0 there exists § > 0 such that

F(R" x X N Bs(t,x)) C F(t,z) + B.(0).
Then for n large we can choose ¢ such that By, (t,z) C Bs(t, z) and
F(RT x X N By, (t,x)) C F(t,x) + B(0).
Consequently, for € = 1/m with m > n we obtain
Jn(t,z) € F(t,2) + By/y(0) + B1/,(0) C F(t, ) + By, (0) .
Now we show that for any a > 0 the uni-valued Cauchy problem
' (t) = fu(t, z(t)) (4)
2(0) = o ()

has a unique solution z,, on [0,a] and the sequence x,, converges uniformly to
the solution of the Cauchy problem (2)-(3).

Consider f,, from [0,a] x X to X, then f, satisfies
i) fn is continuous and locally lipschitzean with respect to x.
i) (Falts) — falt,g) 7 — v < Al —y]l.
For proving ii), we take f,(t,z) € F(t,z) + Bs/,(0) and f,(t,y) € F(t,y) +
By/n(0), so that f,(t,z) = a + a, and f,(t,y) = b+ B, with a € F(t,x),b €
F(t,y) and oy, Bn € By/yn(0). Then

<fn(t7x)_fn(t7y)ax_y>f -

a+a, —b—LFn,z—y)_

(
< <(I—b T — >— < n_ﬁnvm_y>+
S <O[n B’f” - >—
< llan = Bullllz =yl
4
< Aoyl

It is well known that by i) the uni-valued Cauchy problem (4)-(5) has a
unique local solution x,,, and that by ii) this solution can be extended on [0, a].
This statement is proven by the standard procedure of bounding the derivative
of x,.

Taking y = 0 in ii) , we obtain

(Flts2) = fult,0,2)- < o],
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Therefore,
(@, (), za() - = (falt,2n(t) = fu(t,0) + fu(t,0),20(t)) -
< <fn(t7xn( )) - fn(t70)v'rn( )> <fn(t 0) xn( )>+
< lan@l + 1t 0 llan()]
< |

(L+ sup [[fa(t, 0)[)]zn(t)]-
te(0,a]

We deduce that (see appendix IT)

D7 [lzn@®)| 1+ sup |fu(t,0)] = kn
t€(0,al

with k, a constant which does not depend on t. This follows because there is
o € [0, a] such that
sup 1t 0)[] = [/n(t5, 0)]]-

te(0,a

consequently, we have a sequence z,, € C([0, a], X) that satisfies

2,(t) € F(t,,(t)) + Ban(0). (6)

Next we show that x,, is a Cauchy sequence. Let @, n,(t) = ||zn(t) — zm(t)]-
Then ®,, ,,(0) = 0 and using the same technique as for proving ii) we deduce
that

Ppm(t)D” P (t) = (27, (1) = 0, (1), B0 (1) — T (1))~
2 2

(ﬁ + E)(I)n,m(t) .

IN

Therefore, @, (t) < (2 + 2)a and then

sup ||zn(t) —zm ()|l =0 asmn,m — +oo
t€(0,a]

Let = be the limit of x,,. Then we have in particular z(0) = xo, now we have to
show that x is a.e. differentiable and satisfies

2'(t) € F(t,z(t)) a.e. in [0,a].
Since F is u.s.c. and z,, — z uniformly on [0, a], we deduce that for n large,
F(t,o(t)) © F(t,a(t)) + B1(0).

Since F' is bounding, by (6) we have ||z} (¢)|| < ¢ uniformly on [0, a] for some
c>0.

Put J = [0,a], then we have z/, € L*>°(J,X) C L?(J, X). Since L?(J,X) is
reflexive (because X is reflexive), there is a subsequence (which we denote by
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the same symbol) such that z/, — y € L?(J, X) so
¢
oalt) = w0t [ ai(s)ds=ant [ xo(s)el(5)ds
0 J
¢
= w0t [ xoa(elus)ds=z0+ [ yls)ds.
J 0

Since zp,(t) — z(t), it follows that x,(t) — x(t). Consequently

z(t) = xg —1—/0 y(s)ds and 2'(t) =y(t) a.e. inJ.

We deduce that 2/, — 2’ in L2(.J, X) for the weak topology o(L?(J, X), L?(J, X*)).
Let € > 0 and put

A. ={z€ L*(J,X): 2(t) € F(t,z(t)) + B:(0) ae. }

Then A, is nonempty (because z,(t) — x(t) and F is u.s.c., so z,, € A, for n
large), A. is closed and convex, hence A, is weakly closed. Since z!, € A, and
x, — ' we deduce that

2'(t) € F(t,z(t)) = F(t,z(t)) a.e.

So x is a solution of the Cauchy problem (2)-(3). Since a > 0 is arbitrary we
deduce that the sequence x,, converges in the Banach space C(R™, X) equipped
with the topology of uniform convergence in compact subsets of R¥.

That z is unique follows from the dissipativeness of F'. Indeed let x and y
be two solutions of the Cauchy problem (2)-(3), then we have

(@'(t) =o' (), 2(t) —y(t))- <0 and %Dfllx(t) —y®*<o0.

Hence the map t — ||z(t) — y(¢)||? is non increasing, and consequently

lz(t) =y < [l2(0) — y(0)]]. (7)

Now we present a result that gives us the relationship between the existence
of bounded solution and the existence of an w-periodic solution of (2) when F'
is w-periodic. Observe that under the hypothesis of Theorem 1 the condition:
There exists a positive R such that

< F(t,z),z >_<0 for ||z >R

ensures the existence of a bounded solution on [0, +o0o[ (see Browder [3] and
Hanebaly [8]).

Theorem 2 Under the hypothesis of Theorem 1, assuming that X is uniformly
convez, and F(t + w,z) = F(t,x) (w > 0), the equation (2) has an w-periodic
solution if and only if it has a bounded solution on [0, +oo].
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Proof. The necessity condition is obvious because a continuous periodic map
is bounded. Conversely we consider the Poincaré map P : X — X defined by
Pzy = z(w) where xg is given in X and z is a solution of (2) which satisfies
x(0) = x9. The map P is well defined because of the uniqueness of solutions for
the Cauchy problem (2)-(3). Now let « be the solution of (2) which is bounded
on [0, +o0[ and put

x1 = Pxo=2z(w)
o = Pz =z(2w)
Tn = Pxp_1=2z(nw)

Note that the solution x is bounded, so the sequence x,, is bounded, and that P
is non-expansive. Indeed, let y and z be two solutions of (2) such that y(0) =y
and z(0) = zo so by dissipativeness of F' and the inequality (7) we have

ly(®) — 2@ < [[y(0) = 2(0)[| = llyo — 2ol-
Taking ¢t = w we deduce that
[Pyo — Pzoll < [lyo — 20l|-

So by the Browder-Petryshyn’s fixed point theorem (see Petryshyn [2]), P has
a fixed point. So there is a solution = of (2) which satisfies 7(0) = Z(w) and &
is w-periodic. Indeed, put y(t) = Z(¢ + w) then

Y(t) =2/(t+w) € F(t +w, Bt +w)) = F(t, (1))
Now since §(0) = Z(w) = Z(0), by (7) we deduce that
z(t) = y(t) = z(t + w)
hence 7 is w-periodic. &
Remark. Let x be an w-periodic solution of (2), if y is another w-periodic
solution (respectively an T-periodic solution with 2 ¢ Q) then [z(t) —y(t)| is
constant for all ¢ € RT. From the dissipativeness of F' it follows that the map

t — ||z(t) —y(t)| is decreasing. Since it is continuous and periodic (respectively
almost-periodic) we conclude that it is constant.

Example. Consider (R™, ||.||) with ||.|| the Euclidean norm and (.,.) the asso-
ciated inner product. We consider the differential equation

o'+ z|jz)|* + Bsgn(z) = f(t)
where a > 0, 8 >0, f : RT — R" is continuous and w-periodic, and

(@) ﬁ ifx#0
SgN(r) = —
& B(0,1) ifz =0



EJDE-2000/24 E. Hanebaly & B. Marzouki 7

Then the above equation becomes z’ € F(t,z) where F(t,z) = f(t) — z||z|* —
Osgn(z) is a bounding multi-valued map with compact and convex values. To
conclude that the inclusion has an w-periodic solution, we have to prove the
following lemma.

Lemma 1 1) F is upper semi-continuous on RT x R™.
2) There exist a positive c, and o > 2 such that for all (t,z) € RT x R™,

(F(t,z) = F(t,y),z —y) < —callz —y|I™.

In particular F' is dissipative with respect to x
3) Every solution of the inclusion z' € F(t, ) is bounded.

Proof of 1) We have to show that for every closed A C R", the set
FYA) ={(t,z) e Rt xR": F(t,z) N A # 0}

is closed in RT x R™. Let (t,,x,) € RT x R™ be such that (¢,,z,) — (t,z) and
F(tn,zn)NA # (. We have to show that F(¢t,z)NA # 0. Let y, € F(ty,xn)NA,
then y, = f(tn) — znl|zn||* — Byn with ||vn]| < 1, v, has a subsequence (which
we denote by the same) such that v, — v with (||v]] < 1), so

Yn = f(tn) — zpllzn || — By — v := f(t) — z||z||* — By € F(t,z) N A.
Hence F(t,z) N A # () and F is upper semi-continuous on RT x R™.

Proof of 2) Tt is easy to see that for all z,y € R™, (sgn(z)—sgn(y),z—y) > 0.
Now let z,y € R™, then

{@l|z|* = ylly[[*, = —y)
= (lzlI* =yl + 2lyl® = yllyll* + yllz|* = 2[yl* z - y)
lz =yl Izl + Iyll*) + lal* = 2lly]*,z - y)

1 1
= sle=ulPdlzl* + lyl1*) + S (@ + 9l = @ + 9yl 2 — v)

1 1
= gle=ylPdl=l* + lyl1*) + S =l = lyl*) Al = ly]*)

Y

1
sllz =yl + llyl*)

The last inequality comes from the fact that the map ¢(¢) = t* is increasing on
RF, so ([lz]|* = lyl*)(lzll = [lyll) = 0. Hence for o =0,

(@lz]® = yllyll* z —y) > |z —y|*.

If0 <o <1 then [[z]|* + [ly|* = (=]l + lylD* > [l= — y[|*, (because the map
o(t) =1+t — (1+t)* is positive on RT), so

1
(@l = yllyl® = - y) > 5llz - y[**
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If @ > 1 then the map ¢(t) = t* is convex on R, so

1 1
1 +1lyll* = o= Uzl + ylD)* = = lle = ylI*-

Hence

1
@l = yllyl* = - y) > ol -yl >+

Proof of 3) From 2) we deduce that
<F(t,$) - F(t’0)7m> < _COth”ra )

where
cq=1and r, =2 fa=0
ce =1/2and r, = a+2 f0<a<l1
ca=1/2%andro =a+2 ifa>1

Let z be a solution of «’ € F(t,z), and let a € F(¢,0). Then a = f(t) — B,
(Il7]l €1), and we have

(@' (1), z(t))

(@'(t) — a+a,x(t)
(@'(t) — a,2(t)) + (a, z(t))
—callz@)]" + (M + B)[|=(B)]]

where M = sup || f(¢)||. Therefore,
teR

IN

d 2 M+ B\1/(ra-1)
< > (—F .
512017 <0 for [[z(t)]| = ( p )

Consequently
M + /8)1/(7@71)]

(6%

sup ||z(t)]| < maX[Hx(O)H,(
teR

MJrﬁ)l/(ra—l)).

Ca

because the map ¢ — [|z(t)||? is decreasing outside B (0, (

3 Almost periodic solutions

Let (E,|.]|) be a uniformly convex Banach space with E* uniformly convex. We
consider the problem

a'(t) € —Ax(t) + £(2), (8)
where f : R — F is a continuous almost periodic function (see appendix I for
the definition of almost periodicity) and A : E — 2F\ ) is a hyper-accretive
multi-valued map which means that for all A > 0, Im(I + AA) = F and (Az —
Ay,x —y); >0 for all z,y € E.

Theorem 3 Problem (8) has a solution on [to,+oo[ (to € R), which is uni-
formly continuous with precompact range if and only if it has a weak almost
periodic solution.
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Remark. Since a continuous almost periodic map is uniformly continuous
with precompact range, it is convenient to relate the existence of a solution to
that of uniformly continuous with the precompact range.

Proof of Theorem 3. The proof will be divided into four steps.

Step 1. The Cauchy problem

'(t) € —Ax(t) + f(t) (9)
z(to) = o (10)

has a unique weak solution on [tg, +oo[. (weak solution means that there are
sequences x, and f, where x, is a strong solution and x,, — z uniformly in
every compact subset J of [tg, +oo[ and f, — f in L!(J, E) ). Indeed, Since E
and E* are uniformly convex, the Cauchy problem

x'(t) € —Ax(t)

Z‘(to) =20

has a unique strong solution on [tg, +00[ (see Deimling [6]). Since f is almost
periodic, f € L1(J, E) for every compact J C [tg, +0oo[, with tg € J, so there is
a sequence f, of stairs functions which converges uniformly to f, hence f,, — f
in L'(J, E). On the other hand for every f,, there is x,, such that

zl (t) € —Axn (t) + fult)

xn(to) =20 -

Because if ¢ is a stair function defined ona =by <b1 < ... <b,=T (T >a)
by g(t) = y; on [b;—1, b;[ the Cauchy problem

x'(t) € —Az(t) + g(¢)

:E(t()) = 20

has also a unique strong solution z defined by z(t) = S;(t — b;—1).x(b;—1) for
t € [bi—1,b;] and z(ty) = zo where S;(t) is the semigroup generated by the
hyper-accretive operator —(A4 — ;).

Let us show that (z,,) is a Cauchy sequence in the Banach space C([to, +o0[, E)
equipped with the topology of uniformly convergence in compact subsets. Since
—A is dissipative, we have

(@, (1) = fu(t) = 2,(t) + fp(t), zn(t) — 2p(t))- <0,

E* is uniformly convex, (.,.)_ = (.,.)+, and (.,.)_ is linear on the first argument.
Then
d-

317 (®) =2 (O]
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= () — 25, (t), 20 (t) — zp(1)) -
= (@n(t) = fu(t) =2 (1) + fp(t) + fu(t) = fp(t), 2 (t) — 2p(1))
= (2h(t) = falt) — 2, (t) + fp(t), T (t) — zp(1)) -
+(fn(t) = fp(t), zn(t) — 2p(2)) -
< (fa(@) = fp(t), zn(t) — 2p(2)) -
< fn(®) = fr@)llen(t) — zp(@)]]
Hence
[zn(t) —2p(®)l < llzn(to) — zp(to)ll +/ [/n(s) = fp(s)llds

|| fn(s) = fp(s)llds = 0 asn,p — +o00.

Without loss of generality, we can assume that the Cauchy problem (9)-(10) has
a strong solution. Let z : [tg, +00[— E be the uniformly continuous solution of
the Cauchy problem (9)-(10) with x([to, +oo[) precompact. Since f is almost
periodic, there is ¢, — 400 such that f(t + ¢,) — f(t) uniformly on R (see
appendix I). Consider the sequences of translated functions

xn(t):x(t+tn) and fn(t):f(t+tn)

which are defined on the real interval [a, +00[ when n > n(a). Since z([tg, +00])
is precompact, we deduce that {z,(¢),t > a,n > n(a)} is also precompact. On
the other hand that {z,,n > n(a)} is equi-continuous follows from the following
lemma which is easy to proof.

Lemma 2 Let E be a Banach space, J C R be an interval and M a bounded
subset of the Banach space Cy(J, E) of continuous bounded functions. Then
M is uniformly equi-continuous if and only if the mapping (Y,t) — ¥(t) of
M x J C Cy(J,E) x R into E is uniformly continuous on M x J.

Now applying Ascoli’s theorem in the intervals [-N,N], N = 1,2,... and
using the diagonal procedure (see Zaidman [13]) it is possible to find a subse-
quence which converges uniformly in every compact subset J of R. But f, is
almost periodic, so f, — f in L'(J, E). Therefore, we obtain a weak solution
x* of (8) defined on R which is uniformly continuous with range contained in
the closure of x([tg, +00[), hence with precompact range.

Step 2. Put K, = Co(z*(R)), so that Ky is a compact convex subset of E.
Let
Q={z:R— Elz(R) C Ko}
with z a uniformly continuous solution of (8) and J : Q@ — RT defined by
Jx = sup ||z(¢)|]. Put p = Helg Jx, so there is x,, € Q such that J(z,) — . By
teR z

Lemma 2 and Ascoli’s theorem there is a subsequence of x,, which converges
uniformly in every compact subset of R, let  be this limit, then z € € and
Jr=yp
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Step 3. We show that Z is unique. Assume that there are z; and x5 in €2 such
that Jz; = Jxo = p. Since f is almost periodic, there is t,, — —oo such that
f(t+t,) — f(t) uniformly on R. By Ascoli’s theorem, we can extract from t,
a subsequence (which we denote by the same symbol) such that x1(¢ + ¢,) and
x2(t + t5,) converge uniformly in every compact subset of R. Let

y1 =limaxi(t +t,) and yo =limas(t+ty.)

Then y; and y, are weak solutions of (8), and y1,y2 € Q with J(y1) = J(y2) = p.
Now since

it +tn) € —Axi(t+tn) + f(t+tn)
and
h(t+tn) € —Axa(t +t,) + f(t +tn)

and —A is dissipative, we deduce that
(i (t+tn) — bt +tn), 21 (t+ tn) —22(t+ t0))— <0

So

d
Sl ta) = oa(t + )P <0

Consequently the map t — ||z1(t + tn) — x2(t + t,)|| is non increasing. Since
z;(R) C Ky for i=1,2, we deduce that

Iy (8) =) = lm_fan(t+tn) = 22t +ta))|
= lim i (7) —a2(7)]] (11)

= supllzi(t) —22(t)]|
teR

= a constant
To continue, we need the following lemma.

Lemma 3 Let E be a strictly convexr Banach space, C' a closed convexr subset
of E. Let T : C — C be a non expansive map and xg,yo in C such that

[Tzo = Tyoll = llzo = ol -

Then
ZTo + Yo

2

_ Txzo+Tyo

T( 5

)

Let the operator T; : E — E be defined by by Tix(0) = x(t) where z(.) is a
weak solution of (8). Then Tiy1(0) = y1(¢) and Tiy2(0) = y2(t) where y; and yo
are in Q. By (11),

1Ty1(0) = Tey2(0) ]| = [ly2(t) — y2())[| = [ly2(0) — y2(0) |-
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So that by Lemma 3,

Tt(yl(O) + yz(o)) _ Tiy1(0) +92(0) _ 31(t) +w2(t)

2 2 o 2

and y(t) = M is also a solution of (8) satisfying y(0) = M.
Since K is convex, y(R) C Ky and y € Q. We have

Jyr = Jy2 = p

So, u = ing2 Jz and % € Q. We deduce that
xE

ety Jn Jve

nsJ( 2 2

- 2
and consequently Jy = . Since J(LFH2) = % + % we have

yi(t) +y2(t) 1 1
sup || === || = 2 sup [l (8)]| + 5 sup [ly2(8)]
teR teR teR

So there is s, € R such that

1 1(Sn Sn
/‘_ﬁ < Hy( );‘y2( )H
< ||y1(25n)|| n HyQ(;n)H
<

and since y1(sn) € Ko; y2(sn) € Ko there is a subsequence (which we denote by
the same symbol) such that y1(s,) — I3 and y2(s,) — l2. Then

||l1+lz|| ]| +M:ﬂ

9 1779 Ty

On the other hand ||y;(s,)|| < w implies ||I;]] < p and @ + @ = p implies
Il;]] > w for i = 1,2. Hence ||l1|| = ||l2]] = . Since the norm of E is strictly
convex, we deduce that Iy = [ and consequently

[l =loll = [lya(t) — ya(t)]l
— TEIPOO |z1(7) — 22(7)]]
|21 (—00) — x2(—00)||
= sup |lz1(¢) — z2(¢)]]
teR

So 1 (t) = z2(t) for every ¢t € R.

Remark. In the case of a Hilbert space, by the parallelogram formula and by
(11), we deduce directly that x1(t) = z2(t) for all t € R.
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Step 4. Finally we show that T the unique element of 2 which satisfies
JZ = inf,cq Jo is almost periodic. For this purpose, we use the 2"¢ Bochner’s
characterization of almost periodicity (see appendix I). Let t,, and s, be two
real sequences, then by Ascoli’s theorem there is a subsequence of t, (which
we denote by the same symbol) such that Z(¢t + t,,) — y(¢) uniformly in every
compact subset of R. Then y(.) is a weak solution of

¥ € —Ax +g(t), (12)

where ¢(t) = lim f(t + ¢,,). Now cousider Z(t + t,, + s,) and y(t + s,), then
by Ascoli’s theorem we can extract from ¢, and s, sub-sequences such that
T(t+tn + sn) = 21(t) and y(t + s,) = 22(y), but f(t +¢n + s,) and g(¢ + sp)
have the same limit which we denote by h(¢). Then z(.) and z2(.) are weak
solutions of

z' € —Ax + h(t) (13)
so pu=Jf(Ko) = Jun(Ko) < Jz; i=1,2 where
Jf(Ko) = inf {Jz : zis a weak solution of (8),z(R) C Ko}
and
Jn(Ko) = inf {Jz : zis a weak solution of (13),z(R) C Ko} .

We have y = Jz; = Jza, but the equation (13) has the same property as the
equation (8) because the map h(.) is almost periodic. Therefore, there is a
unique solution which satisfies

Jn(Ko) = inf {Ju : u is a weak solution of (13),u(R) C Ko}.

Consequently z; = z3. Also Z(t + t, + sn) and y(t + s,) have the same limit,
hence 7 is almost periodic. &

Example. Let E = (R",|.||) with the Euclidean norm ||.||, and let p(x) = ||z].
Consider
Az = 0p(z) + kx

where £ > 0 and Oy is the sub-differential of ¢. Since ¢ is continuous and

convex,
[e]

——
Dom(p) C Dom(d¢) so Dom(A) =R".

The problem
¥ € —Az+ f(t),

with f: R — R" continuous and almost periodic, has a strong solution defined
on [tg, +0o[ (to € R ) (see Brezis [4]). Now since 0 € d¢(0) we have

(f(t) — kx — 2/ (t),z(t)) > 0.
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Therefore,

(£(),2(1)) — Kll=()]*
(M = Elz@®)Dl=@)]l

(@' (1), z(t))

<
<

where M = sup || f(¢)||. We deduce that
teR

D7 [lz@)] < M

and

M
g T <0 for a@®)] = —.
The first inequality shows that x is lipschitzean, hence uniformly continuous

and the second one shows that the map ¢ — ||z(t)|| is non increasing outside
of the ball B(0, %) Consequently

o0l < suplatto) ) ¥ = to

So that the problem ' € —Ax 4+ f(t) has a uniformly continuous solution which
is bounded, hence with precompact range, so it has an almost periodic solution.

o

Appendix I

Let E be a real Banach space, a map f : R — E is said to be almost periodic if
for each £ > 0 there exists . such that for all a € R there exists 7 € [a,a + []
such that

|ft+7)—f@)| <e VteR.

If f is almost periodic then there exist ¢, — 4+o00 and s, — —oo such that
ft+1t,) — f(t) and f(t+ sn) — f(t) uniformly on R. In practice, we use the
following Bochner’s characterizations of almost periodicity (Yoshisawa [12]).

First characterization. f € C(R,F) is almost periodic if and only if from
every real sequence t/, one can extract a subsequence t,, such that lim f (¢ + ¢,,)
exists uniformly on the real line, furthermore the limit is also almost periodic.

Second characterization. f € C(R,E) is almost periodic if and only if for
every pair of real sequences h], and k!, there are sub-sequences h,, and k,, such
that f(¢+ h,) has a pointwise limit ¢g(¢) on R, and f(t + h,, + k) and g(t + k)
have a same limit A(t) on R, and h is also almost periodic.
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Appendix II

Let E be a real Banach space and z : [a,b] C R — E differentiable, and put
®(t) = ||z(t)]. Then

D(t) D™ B(t) =< z'(t), z(t) >_

where Bt o B — Bt
D~ ®(t) = limsup 2(t+h) - 2()
h—0— h

is the upper Dini’s derivative of ® (see e.g Deimling [6]).
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