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Periodic and almost periodic solutions for

multi-valued differential equations in Banach

spaces ∗

E. Hanebaly & B. Marzouki

Abstract

It is known that for ω-periodic differential equations of monotonous
type, in uniformly convex Banach spaces, the existence of a bounded
solution on R+ is equivalent to the existence of an ω-periodic solution (see
Haraux [5] and Hanebaly [7, 10]). It is also known that if the Banach space
is strictly convex and the equation is almost periodic and of monotonous
type, then the existence of a continuous solution with a precompact range
is equivalent to the existence of an almost periodic solution (see Hanebaly
[8] ). In this note we want to generalize the results above for multi-valued
differential equations.

1 Preliminaries

Let X and Y be Banach spaces, and 2Y denote the collection of subsets of Y .
For a multi-valued map F : X → 2Y we define the following conditions:

F is upper semi-continuous (u.s.c.) in X if for every x0 in X and every
open set G ⊂ Y with Fx0 ⊂ G there exists a neighborhood U of x0 such
that Fx0 ⊂ G for all x ∈ U . In practice F is u.s.c. at x0 means that Fx ⊂
Fx0 +Bε(0) for all x sufficiently close to x0 and for ε sufficiently small.

F is bounding if it maps bounded subsets of X into bounded subsets of Y .
F is dissipative if X = Y and

〈Fx− Fy, x− y〉− ≤ 0 ∀x ∈ X, ∀y ∈ X .

This implies that for all x1 ∈ Fx and all y1 ∈ Fy,

〈x1 − y1, x− y〉− ≤ 0 ,

where the lower semi-inner product on X introduced by Lumer [11] is defined
as

〈x, y〉− = ‖y‖ lim
h→0−

‖y + hx‖ − ‖y‖

h
.
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F is accretive if 〈Fx−Fy, x−y〉+ ≥ 0 where the upper semi-inner product
on X is defined as

〈x, y〉+ = ‖y‖ lim
h→0+

‖y + hx‖ − ‖y‖

h
.

We denote by ⇀ the convergence for the weak topology σ(X,X∗). Recall
that x : J ⊂ R → X is said to be absolutely continuous (a.c. for short) if for
each ε > 0 there is δ > 0 such that

∑
‖x(ti)− x(si)‖ ≤ ε whenever the finitely

many intervals [si, ti] ⊂ J do not overlap and
∑
|ti − si| ≤ δ. In particular

every Lipschitzean map is a.c. When X is of finite dimension it is known that
x is a.c. if and only if x is differentiable almost everywhere (a.e. for short) and
x′ ∈ L1(J,X), but if X is of infinite dimension and X is not reflexive, then an
a.c. function need not be differentiable at any point (see e.g Deimling [6] p.138).

By a solution of the Cauchy problem

x′ ∈ F (t, x) ; x(t0) = x0 (1)

in some interval I (with t0 ∈ I), we mean a continuous function on I, a.c. in
every compact subset of I, differentiable a.e., and that satisfies (1) a.e. on I.

The collection non-empty compact convex subsets of X will be denoted by
CV (X).

2 Boundedness and periodicity of solutions

We begin by giving a result concerning the existence of a global solutions. Let
(X, ‖.‖) be a real reflexive Banach space. Consider the multi-valued Cauchy
problem

x′(t) ∈ F (t, x(t)) (2)

x(0) = x0 , (3)

where F : R+ ×X → CV (X) is u.s.c. and bounding.

Theorem 1 If for all (t, x, y) ∈ R+ ×X ×X, 〈F (t, x) − F (t, y), x − y〉− ≤ 0,
then the Cauchy problem (2)-(3) has a unique solution defined on R+.

Remark. This theorem is well known for the inclusion of type

x′ ∈ −Ax+ f(t)

where A is a multi-valued maximal monotone operator on a Hilbert space and
f is a uni-valued map (see Brezis [4]).
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Proof of Theorem 1. Since F is u.s.c. with convex values, by the approx-
imate selection theorem (see Cellina [1]) for each n ≥ 0 there exists a locally
lipschitzean map fn : R

+ ×X → X such that

fn(t, x) ∈ F (R
+ ×X ∩B1/n(t, x)) +B 1

n
(0) ∀(t, x) ∈ R+ ×X ,

where B1/n(t, x) is a ball in R
+×X and B1/n(0) is a ball in X . Since F is u.s.c.

at (t, x), for each ε > 0 there exists δ > 0 such that

F (R+ ×X ∩Bδ(t, x)) ⊂ F (t, x) +Bε(0) .

Then for n large we can choose δ such that B1/n(t, x) ⊂ Bδ(t, x) and

F (R+ ×X ∩B1/n(t, x)) ⊂ F (t, x) +Bε(0) .

Consequently, for ε = 1/m with m ≥ n we obtain

fn(t, x) ∈ F (t, x) +B1/n(0) +B1/n(0) ⊂ F (t, x) +B2/n(0) .

Now we show that for any a > 0 the uni-valued Cauchy problem

x′(t) = fn(t, x(t)) (4)

x(0) = x0 (5)

has a unique solution xn on [0, a] and the sequence xn converges uniformly to
the solution of the Cauchy problem (2)-(3).
Consider fn from [0, a]×X to X , then fn satisfies

i) fn is continuous and locally lipschitzean with respect to x.
ii) 〈fn(t, x)− fn(t, y), x− y〉− ≤

4
n‖x− y‖.

For proving ii), we take fn(t, x) ∈ F (t, x) + B2/n(0) and fn(t, y) ∈ F (t, y) +
B2/n(0), so that fn(t, x) = a + αn and fn(t, y) = b + βn with a ∈ F (t, x), b ∈
F (t, y) and αn, βn ∈ B2/n(0). Then

〈fn(t, x)− fn(t, y), x− y〉− = 〈a+ αn − b− βn, x− y〉−

≤ 〈a− b, x− y〉− + 〈αn − βn, x− y〉+

≤ 〈αn − βn, x− y〉−

≤ ‖αn − βn‖‖x− y‖

≤
4

n
‖x− y‖.

It is well known that by i) the uni-valued Cauchy problem (4)-(5) has a
unique local solution xn, and that by ii) this solution can be extended on [0, a].
This statement is proven by the standard procedure of bounding the derivative
of xn.
Taking y = 0 in ii) , we obtain

〈fn(t, x)− fn(t, 0), x〉− ≤
4

n
‖x‖.



4 Periodic and almost periodic solutions EJDE–2000/24

Therefore,

〈x′n(t), xn(t)〉− = 〈fn(t, xn(t)) − fn(t, 0) + fn(t, 0), xn(t)〉−

≤ 〈fn(t, xn(t)) − fn(t, 0), xn(t)〉− + 〈fn(t, 0), xn(t)〉+

≤
4

n
‖xn(t)‖ + ‖fn(t, 0)‖‖xn(t)‖

≤ (1 + sup
t∈[0,a]

‖fn(t, 0)‖)‖xn(t)‖.

We deduce that (see appendix II)

D−‖xn(t)‖ ≤ 1 + sup
t∈[0,a]

‖fn(t, 0)‖ = kn

with kn a constant which does not depend on t. This follows because there is
tn0 ∈ [0, a] such that

sup
t∈[0,a]

‖fn(t, 0)‖ = ‖fn(t
n
0 , 0)‖.

consequently, we have a sequence xn ∈ C([0, a], X) that satisfies

x′n(t) ∈ F (t, xn(t)) +B2/n(0) . (6)

Next we show that xn is a Cauchy sequence. Let Φn,m(t) = ‖xn(t) − xm(t)‖.
Then Φn,m(0) = 0 and using the same technique as for proving ii) we deduce
that

Φn,m(t)D
−Φn,m(t) = 〈x′n(t)− x

′
m(t), xn(t)− xm(t)〉−

≤ (
2

n
+
2

m
)Φn,m(t) .

Therefore, Φn,m(t) ≤ (
2
n +

2
m )a and then

sup
t∈[0,a]

‖xn(t)− xm(t)‖ → 0 as n,m→ +∞

Let x be the limit of xn. Then we have in particular x(0) = x0, now we have to
show that x is a.e. differentiable and satisfies

x′(t) ∈ F (t, x(t)) a.e. in [0, a].

Since F is u.s.c. and xn → x uniformly on [0, a], we deduce that for n large,

F (t, xn(t)) ⊂ F (t, x(t)) +B1(0) .

Since F is bounding, by (6) we have ‖x′n(t)‖ ≤ c uniformly on [0, a] for some
c > 0.
Put J = [0, a], then we have x′n ∈ L

∞(J,X) ⊂ L2(J,X). Since L2(J,X) is
reflexive (because X is reflexive), there is a subsequence (which we denote by
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the same symbol) such that x′n ⇀ y ∈ L2(J,X) so

xn(t) = x0 +

∫ t
0

x′n(s) ds = x0 +

∫
J

χ[0,t](s)x
′
n(s) ds

⇀ x0 +

∫
J

χ[0,t](s)y(s) ds = x0 +

∫ t
0

y(s)ds .

Since xn(t)→ x(t), it follows that xn(t)⇀ x(t). Consequently

x(t) = x0 +

∫ t
0

y(s)ds and x′(t) = y(t) a.e. inJ.

We deduce that x′n ⇀ x′ in L2(J,X) for the weak topology σ(L2(J,X), L2(J,X∗)).
Let ε > 0 and put

Aε =
{
z ∈ L2(J,X) : z(t) ∈ F (t, x(t)) +Bε(0) a.e.

}
Then Aε is nonempty (because xn(t) → x(t) and F is u.s.c., so x′n ∈ Aε for n
large), Aε is closed and convex, hence Aε is weakly closed. Since x

′
n ∈ Aε and

x′n ⇀ x′ we deduce that

x′(t) ∈ F (t, x(t)) = F (t, x(t)) a.e.

So x is a solution of the Cauchy problem (2)-(3). Since a > 0 is arbitrary we
deduce that the sequence xn converges in the Banach space C(R

+, X) equipped
with the topology of uniform convergence in compact subsets of R+.
That x is unique follows from the dissipativeness of F . Indeed let x and y

be two solutions of the Cauchy problem (2)-(3), then we have

〈x′(t)− y′(t), x(t) − y(t)〉− ≤ 0 and
1

2
D−‖x(t)− y(t)‖2 ≤ 0 .

Hence the map t 7→ ‖x(t)− y(t)‖2 is non increasing, and consequently

‖x(t)− y(t)‖ ≤ ‖x(0)− y(0)‖. (7)

Now we present a result that gives us the relationship between the existence
of bounded solution and the existence of an ω-periodic solution of (2) when F
is ω-periodic. Observe that under the hypothesis of Theorem 1 the condition:
There exists a positive R such that

< F (t, x), x >−≤ 0 for ‖x‖ > R

ensures the existence of a bounded solution on [0,+∞[ (see Browder [3] and
Hanebaly [8]).

Theorem 2 Under the hypothesis of Theorem 1, assuming that X is uniformly
convex, and F (t + ω, x) = F (t, x) (ω > 0), the equation (2) has an ω-periodic
solution if and only if it has a bounded solution on [0,+∞[.
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Proof. The necessity condition is obvious because a continuous periodic map
is bounded. Conversely we consider the Poincaré map P : X → X defined by
Px0 = x(ω) where x0 is given in X and x is a solution of (2) which satisfies
x(0) = x0. The map P is well defined because of the uniqueness of solutions for
the Cauchy problem (2)-(3). Now let x be the solution of (2) which is bounded
on [0,+∞[ and put

x1 = Px0 = x(ω)

x2 = Px1 = x(2ω)

...

xn = Pxn−1 = x(nω)

Note that the solution x is bounded, so the sequence xn is bounded, and that P
is non-expansive. Indeed, let y and z be two solutions of (2) such that y(0) = y0
and z(0) = z0 so by dissipativeness of F and the inequality (7) we have

‖y(t)− z(t)‖ ≤ ‖y(0)− z(0)‖ = ‖y0 − z0‖.

Taking t = ω we deduce that

‖Py0 − Pz0‖ ≤ ‖y0 − z0‖.

So by the Browder-Petryshyn’s fixed point theorem (see Petryshyn [2]), P has
a fixed point. So there is a solution x̃ of (2) which satisfies x̃(0) = x̃(ω) and x̃
is ω-periodic. Indeed, put ỹ(t) = x̃(t+ ω) then

ỹ′(t) = x̃′(t+ ω) ∈ F (t+ ω, x̃(t+ ω)) = F (t, ỹ(t)) .

Now since ỹ(0) = x̃(ω) = x̃(0), by (7) we deduce that

x̃(t) = ỹ(t) = x̃(t+ ω)

hence x̃ is ω-periodic. ♦

Remark. Let x be an ω-periodic solution of (2), if y is another ω-periodic
solution (respectively an T -periodic solution with ω

T
/∈ Q) then ‖x(t) − y(t)‖ is

constant for all t ∈ R+. From the dissipativeness of F it follows that the map
t 7→ ‖x(t)− y(t)‖ is decreasing. Since it is continuous and periodic (respectively
almost-periodic) we conclude that it is constant.

Example. Consider (Rn, ‖.‖) with ‖.‖ the Euclidean norm and 〈., .〉 the asso-
ciated inner product. We consider the differential equation

x′ + x‖x‖α + β sgn(x) = f(t)

where α ≥ 0, β ≥ 0, f : R+ → Rn is continuous and ω-periodic, and

sgn(x) =

{
x
‖x‖ if x 6= 0

B(0, 1) if x = 0
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Then the above equation becomes x′ ∈ F (t, x) where F (t, x) = f(t)− x‖x‖α −
β sgn(x) is a bounding multi-valued map with compact and convex values. To
conclude that the inclusion has an ω-periodic solution, we have to prove the
following lemma.

Lemma 1 1) F is upper semi-continuous on R+ × Rn.
2) There exist a positive cα and rα ≥ 2 such that for all (t, x) ∈ R+ × Rn,

〈F (t, x) − F (t, y), x− y〉 ≤ −cα‖x− y‖
rα .

In particular F is dissipative with respect to x
3) Every solution of the inclusion x′ ∈ F (t, x) is bounded.

Proof of 1) We have to show that for every closed A ⊂ Rn, the set

F−1(A) = {(t, x) ∈ R+ × Rn : F (t, x) ∩A 6= ∅}

is closed in R+×Rn. Let (tn, xn) ∈ R+×Rn be such that (tn, xn)→ (t, x) and
F (tn, xn)∩A 6= ∅. We have to show that F (t, x)∩A 6= ∅. Let yn ∈ F (tn, xn)∩A,
then yn = f(tn)− xn‖xn‖α − βγn with ‖γn‖ ≤ 1, γn has a subsequence (which
we denote by the same) such that γn → γ with (‖γ‖ ≤ 1), so

yn = f(tn)− xn‖xn‖
α − βγn → y := f(t)− x‖x‖α − βγ ∈ F (t, x) ∩A.

Hence F (t, x) ∩A 6= ∅ and F is upper semi-continuous on R+ × Rn.

Proof of 2) It is easy to see that for all x, y ∈ Rn, 〈sgn(x)−sgn(y), x−y〉 ≥ 0.
Now let x, y ∈ Rn, then

〈x‖x‖α − y‖y‖α, x− y〉

= 〈x‖x‖α − y‖x‖α + x‖y‖α − y‖y‖α + y‖x‖α − x‖y‖α, x− y〉

= ‖x− y‖2(‖x‖α + ‖y‖α) + 〈y‖x‖α − x‖y‖α, x− y〉

=
1

2
‖x− y‖2(‖x‖α + ‖y‖α) +

1

2
〈(x+ y)‖x‖α − (x + y)‖y‖α, x− y〉

=
1

2
‖x− y‖2(‖x‖α + ‖y‖α) +

1

2
(‖x‖α − ‖y‖α)(‖x‖2 − ‖y‖2)

≥
1

2
‖x− y‖2(‖x‖α + ‖y‖α)

The last inequality comes from the fact that the map ϕ(t) = tα is increasing on
R+, so (‖x‖α − ‖y‖α)(‖x‖ − ‖y‖) ≥ 0. Hence for α = 0,

〈x‖x‖α − y‖y‖α, x− y〉 ≥ ‖x− y‖2 .

If 0 < α ≤ 1 then ‖x‖α + ‖y‖α ≥ (‖x‖ + ‖y‖)α ≥ ‖x − y‖α, (because the map
ϕ(t) = 1 + tα − (1 + t)α is positive on R+), so

〈x‖x‖α − y‖y‖α, x− y〉 ≥
1

2
‖x− y‖α+2
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If α ≥ 1 then the map ϕ(t) = tα is convex on R+, so

‖x‖α + ‖y‖α ≥
1

2α−1
(‖x‖ + ‖y‖)α ≥

1

2α−1
‖x− y‖α .

Hence

〈x‖x‖α − y‖y‖α, x− y〉 ≥
1

2α
‖x− y‖α+2

Proof of 3) From 2) we deduce that

〈F (t, x)− F (t, 0), x〉 ≤ −cα‖x‖
rα ,

where
cα = 1 and rα = 2 if α = 0
cα = 1/2 and rα = α+ 2 if 0 < α ≤ 1
cα = 1/2

α and rα = α+ 2 if α ≥ 1

Let x be a solution of x′ ∈ F (t, x), and let a ∈ F (t, 0). Then a = f(t) − βγ,
(‖γ‖ ≤ 1), and we have

〈x′(t), x(t)〉 = 〈x′(t)− a+ a, x(t)〉

= 〈x′(t)− a, x(t)〉+ 〈a, x(t)〉

≤ −cα‖x(t)‖
rα + (M + β)‖x(t)‖ ,

where M = sup
t∈R
‖f(t)‖. Therefore,

d

2dt
‖x(t)‖2 ≤ 0 for ‖x(t)‖ ≥

(M + β
cα

)1/(rα−1)
.

Consequently

sup
t∈R
‖x(t)‖ ≤ max

[
‖x(0)‖, (

M + β

cα
)1/(rα−1)

]
because the map t 7→ ‖x(t)‖2 is decreasing outside B

(
0, (M+βcα )

1/(rα−1)
)
.

3 Almost periodic solutions

Let (E, ‖.‖) be a uniformly convex Banach space with E∗ uniformly convex. We
consider the problem

x′(t) ∈ −Ax(t) + f(t) , (8)

where f : R → E is a continuous almost periodic function (see appendix I for
the definition of almost periodicity) and A : E → 2E \ ∅ is a hyper-accretive
multi-valued map which means that for all λ > 0, Im(I + λA) = E and 〈Ax −
Ay, x− y〉+ ≥ 0 for all x, y ∈ E.

Theorem 3 Problem (8) has a solution on [t0,+∞[ (t0 ∈ R), which is uni-
formly continuous with precompact range if and only if it has a weak almost
periodic solution.
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Remark. Since a continuous almost periodic map is uniformly continuous
with precompact range, it is convenient to relate the existence of a solution to
that of uniformly continuous with the precompact range.

Proof of Theorem 3. The proof will be divided into four steps.

Step 1. The Cauchy problem

x′(t) ∈ −Ax(t) + f(t) (9)

x(t0) = x0 (10)

has a unique weak solution on [t0,+∞[. (weak solution means that there are
sequences xn and fn where xn is a strong solution and xn → x uniformly in
every compact subset J of [t0,+∞[ and fn → f in L1(J,E) ). Indeed, Since E
and E∗ are uniformly convex, the Cauchy problem

x′(t) ∈ −Ax(t)

x(t0) = x0

has a unique strong solution on [t0,+∞[ (see Deimling [6]). Since f is almost
periodic, f ∈ L1(J,E) for every compact J ⊂ [t0,+∞[, with t0 ∈ J , so there is
a sequence fn of stairs functions which converges uniformly to f , hence fn → f
in L1(J,E). On the other hand for every fn there is xn such that

x′n(t) ∈ −Axn(t) + fn(t)

xn(t0) = x0 .

Because if g is a stair function defined on a = b0 < b1 < ... < bp = T ( T > a )
by g(t) = yi on [bi−1, bi[ the Cauchy problem

x′(t) ∈ −Ax(t) + g(t)

x(t0) = x0

has also a unique strong solution x defined by x(t) = Si(t − bi−1).x(bi−1) for
t ∈ [bi−1, bi] and x(t0) = x0 where Si(t) is the semigroup generated by the
hyper-accretive operator −(A− yi).
Let us show that (xn) is a Cauchy sequence in the Banach spaceC([t0,+∞[, E)

equipped with the topology of uniformly convergence in compact subsets. Since
−A is dissipative, we have

〈x′n(t)− fn(t)− x
′
p(t) + fp(t), xn(t)− xp(t)〉− ≤ 0 ,

E∗ is uniformly convex, 〈., .〉− = 〈., .〉+, and 〈., .〉− is linear on the first argument.
Then

d−

2dt
‖xn(t)− xp(t)‖

2



10 Periodic and almost periodic solutions EJDE–2000/24

= 〈x′n(t)− x
′
p(t), xn(t)− xp(t)〉−

= 〈x′n(t)− fn(t)− x
′
p(t) + fp(t) + fn(t)− fp(t), xn(t)− xp(t)〉−

= 〈x′n(t)− fn(t)− x
′
p(t) + fp(t), xn(t)− xp(t)〉−

+〈fn(t)− fp(t), xn(t)− xp(t)〉−

≤ 〈fn(t)− fp(t), xn(t)− xp(t)〉−

≤ ‖fn(t)− fp(t)‖‖xn(t)− xp(t)‖

Hence

‖xn(t)− xp(t)‖ ≤ ‖xn(t0)− xp(t0)‖+

∫ t
t0

‖fn(s)− fp(s)‖ds

=

∫ t
t0

‖fn(s)− fp(s)‖ds→ 0 as n, p→ +∞ .

Without loss of generality, we can assume that the Cauchy problem (9)-(10) has
a strong solution. Let x : [t0,+∞[→ E be the uniformly continuous solution of
the Cauchy problem (9)-(10) with x([t0,+∞[) precompact. Since f is almost
periodic, there is tn → +∞ such that f(t + tn) → f(t) uniformly on R (see
appendix I). Consider the sequences of translated functions

xn(t) = x(t+ tn) and fn(t) = f(t+ tn)

which are defined on the real interval [a,+∞[ when n ≥ n(a). Since x([t0,+∞[)
is precompact, we deduce that {xn(t), t ≥ a, n ≥ n(a)} is also precompact. On
the other hand that {xn, n ≥ n(a)} is equi-continuous follows from the following
lemma which is easy to proof.

Lemma 2 Let E be a Banach space, J ⊂ R be an interval and M a bounded
subset of the Banach space Cb(J,E) of continuous bounded functions. Then
M is uniformly equi-continuous if and only if the mapping (ψ, t) 7→ ψ(t) of
M× J ⊂ Cb(J,E)× R into E is uniformly continuous onM× J .

Now applying Ascoli’s theorem in the intervals [−N,N ], N = 1, 2, . . . and
using the diagonal procedure (see Zaidman [13]) it is possible to find a subse-
quence which converges uniformly in every compact subset J of R. But fn is
almost periodic, so fn → f in L1(J,E). Therefore, we obtain a weak solution
x∗ of (8) defined on R which is uniformly continuous with range contained in
the closure of x([t0,+∞[), hence with precompact range.

Step 2. Put K0 = Co(x∗(R)), so that K0 is a compact convex subset of E.
Let

Ω =
{
x : R→ E|x(R) ⊂ K0

}
with x a uniformly continuous solution of (8) and J : Ω → R+ defined by
Jx = sup

t∈R
‖x(t)‖. Put µ = inf

x∈Ω
Jx, so there is xn ∈ Ω such that J(xn)→ µ. By

Lemma 2 and Ascoli’s theorem there is a subsequence of xn which converges
uniformly in every compact subset of R, let x̃ be this limit, then x̃ ∈ Ω and
Jx̃ = µ.
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Step 3. We show that x̃ is unique. Assume that there are x1 and x2 in Ω such
that Jx1 = Jx2 = µ. Since f is almost periodic, there is tn → −∞ such that
f(t+ tn)→ f(t) uniformly on R. By Ascoli’s theorem, we can extract from tn
a subsequence (which we denote by the same symbol) such that x1(t+ tn) and
x2(t+ tn) converge uniformly in every compact subset of R. Let

y1 = limx1(t+ tn) and y2 = limx2(t+ tn .)

Then y1 and y2 are weak solutions of (8), and y1, y2 ∈ Ω with J(y1) = J(y2) = µ.
Now since

x′1(t+ tn) ∈ −Ax1(t+ tn) + f(t+ tn)

and

x′2(t+ tn) ∈ −Ax2(t+ tn) + f(t+ tn)

and −A is dissipative, we deduce that

〈x′1(t+ tn)− x
′
2(t+ tn), x1(t+ tn)− x2(t+ tn)〉− ≤ 0

So
d−

2dt
‖x1(t+ tn)− x2(t+ tn)‖

2 ≤ 0

Consequently the map t 7−→ ‖x1(t + tn) − x2(t + tn)‖ is non increasing. Since
xi(R) ⊂ K0 for i=1,2, we deduce that

‖y1(t)− y2(t)‖ = lim
n→+∞

‖x1(t+ tn)− x2(t+ tn)‖

= lim
τ→−∞

‖x1(τ) − x2(τ)‖ (11)

= sup
t∈R
‖x1(t)− x2(t)‖

= a constant

To continue, we need the following lemma.

Lemma 3 Let E be a strictly convex Banach space, C a closed convex subset
of E. Let T : C → C be a non expansive map and x0, y0 in C such that

‖Tx0 − Ty0‖ = ‖x0 − y0‖ .

Then

T (
x0 + y0
2
) =

Tx0 + Ty0
2

.

Let the operator Tt : E → E be defined by by Ttx(0) = x(t) where x(.) is a
weak solution of (8). Then Tty1(0) = y1(t) and Tty2(0) = y2(t) where y1 and y2
are in Ω. By (11),

‖Tty1(0)− Tty2(0)‖ = ‖y1(t)− y2(t)‖ = ‖y1(0)− y2(0)‖ .
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So that by Lemma 3,

Tt(
y1(0) + y2(0)

2
) =

Tty1(0) + y2(0)

2
=
y1(t) + y2(t)

2

and y(t) := y1(t)+y2(t)
2 is also a solution of (8) satisfying y(0) = y1(0)+y2(0)

2 .
Since K0 is convex, y(R) ⊂ K0 and y ∈ Ω. We have

Jy1 = Jy2 = µ

So, µ = inf
x∈Ω

Jx and y1+y22 ∈ Ω. We deduce that

µ ≤ J(
y1 + y2)

2
) ≤

Jy1

2
+
Jy2

2
= µ

and consequently Jy = µ. Since J(y1+y22 ) = Jy1
2 +

Jy2
2 we have

sup
t∈R

∥∥y1(t) + y2(t)
2

∥∥ = 1
2
sup
t∈R
‖y1(t)‖ +

1

2
sup
t∈R
‖y2(t)‖

So there is sn ∈ R such that

µ−
1

n
<
∥∥y1(sn) + y2(sn)

2

∥∥
≤
‖y1(sn)‖

2
+
‖y2(sn)‖

2
≤ µ

and since y1(sn) ∈ K0; y2(sn) ∈ K0 there is a subsequence (which we denote by
the same symbol) such that y1(sn)→ l1 and y2(sn)→ l2. Then∥∥ l1 + l2

2

∥∥ = ‖l1‖
2
+
‖l2‖

2
= µ .

On the other hand ‖yi(sn)‖ ≤ µ implies ‖li‖ ≤ µ and ‖l1‖2 +
‖l2‖
2 = µ implies

‖li‖ ≥ µ for i = 1, 2. Hence ‖l1‖ = ‖l2‖ = µ. Since the norm of E is strictly
convex, we deduce that l1 = l2 and consequently

‖l1 − l2‖ = ‖y1(t)− y2(t)‖

= lim
τ→−∞

‖x1(τ) − x2(τ)‖

= ‖x1(−∞)− x2(−∞)‖

= sup
t∈R
‖x1(t)− x2(t)‖

So x1(t) = x2(t) for every t ∈ R.

Remark. In the case of a Hilbert space, by the parallelogram formula and by
(11), we deduce directly that x1(t) = x2(t) for all t ∈ R.
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Step 4. Finally we show that x̃ the unique element of Ω which satisfies
Jx̃ = infx∈Ω Jx is almost periodic. For this purpose, we use the 2

nd Bochner’s
characterization of almost periodicity (see appendix I). Let tn and sn be two
real sequences, then by Ascoli’s theorem there is a subsequence of tn (which
we denote by the same symbol) such that x̃(t + tn) → y(t) uniformly in every
compact subset of R. Then y(.) is a weak solution of

x′ ∈ −Ax+ g(t) , (12)

where g(t) = lim f(t + tn). Now consider x̃(t + tn + sn) and y(t + sn), then
by Ascoli’s theorem we can extract from tn and sn sub-sequences such that
x̃(t+ tn + sn)→ z1(t) and y(t+ sn)→ z2(y), but f(t+ tn + sn) and g(t+ sn)
have the same limit which we denote by h(t). Then z1(.) and z2(.) are weak
solutions of

x′ ∈ −Ax+ h(t) (13)

so µ = Jf (K0) = Jh(K0) ≤ Jzi i = 1, 2 where

Jf (K0) = inf
{
Jx : xis a weak solution of (8), x(R) ⊂ K0

}
and

Jh(K0) = inf
{
Jx : xis a weak solution of (13), x(R) ⊂ K0

}
.

We have µ = Jz1 = Jz2, but the equation (13) has the same property as the
equation (8) because the map h(.) is almost periodic. Therefore, there is a
unique solution which satisfies

Jh(K0) = inf
{
Ju : u is a weak solution of (13), u(R) ⊂ K0

}
.

Consequently z1 = z2. Also x̃(t + tn + sn) and y(t + sn) have the same limit,
hence x̃ is almost periodic. ♦

Example. Let E = (Rn, ‖.‖) with the Euclidean norm ‖.‖, and let ϕ(x) = ‖x‖.
Consider

Ax = ∂ϕ(x) + kx

where k > 0 and ∂ϕ is the sub-differential of ϕ. Since ϕ is continuous and
convex,

◦︷ ︸︸ ︷
Dom(ϕ) ⊂ Dom(∂ϕ) so Dom(A) = Rn.

The problem

x′ ∈ −Ax+ f(t) ,

with f : R→ Rn continuous and almost periodic, has a strong solution defined
on [t0,+∞[ ( t0 ∈ R ) (see Brezis [4]). Now since 0 ∈ ∂ϕ(0) we have

〈f(t)− kx− x′(t), x(t)〉 ≥ 0 .
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Therefore,

〈x′(t), x(t)〉 ≤ 〈f(t), x(t)〉 − k‖x(t)‖2

≤ (M − k‖x(t)‖)‖x(t)‖

where M = sup
t∈R
‖f(t)‖. We deduce that

D−‖x(t)‖ ≤M

and
d

2dt
‖x(t)‖2 ≤ 0 for ‖x(t)‖ ≥

M

k
.

The first inequality shows that x is lipschitzean, hence uniformly continuous
and the second one shows that the map t 7−→ ‖x(t)‖ is non increasing outside
of the ball B(0, Mk ). Consequently

‖x(t)‖ ≤ sup(‖x(t0)‖,
M

k
) ∀t ≥ t0.

So that the problem x′ ∈ −Ax+f(t) has a uniformly continuous solution which
is bounded, hence with precompact range, so it has an almost periodic solution.
♦

Appendix I

Let E be a real Banach space, a map f : R→ E is said to be almost periodic if
for each ε > 0 there exists lε such that for all a ∈ R there exists τ ∈ [a, a+ lε]
such that

‖f(t+ τ) − f(t)‖ ≤ ε ∀t ∈ R.

If f is almost periodic then there exist tn → +∞ and sn → −∞ such that
f(t+ tn)→ f(t) and f(t+ sn)→ f(t) uniformly on R. In practice, we use the
following Bochner’s characterizations of almost periodicity (Yoshisawa [12]).

First characterization. f ∈ C(R, E) is almost periodic if and only if from
every real sequence t′n one can extract a subsequence tn such that lim f(t+ tn)
exists uniformly on the real line, furthermore the limit is also almost periodic.

Second characterization. f ∈ C(R, E) is almost periodic if and only if for
every pair of real sequences h′n and k

′
n there are sub-sequences hn and kn such

that f(t+ hn) has a pointwise limit g(t) on R, and f(t+ hn+ kn) and g(t+ kn)
have a same limit h(t) on R, and h is also almost periodic.
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Appendix II

Let E be a real Banach space and x : [a, b] ⊂ R → E differentiable, and put
Φ(t) = ‖x(t)‖. Then

Φ(t)D−Φ(t) =< x′(t), x(t) >−

where

D−Φ(t) = lim sup
h→0−

Φ(t+ h)− Φ(t)

h

is the upper Dini’s derivative of Φ (see e.g Deimling [6]).
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