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Per-Subject Oculomotor Plant Mathematical Models and the Reliability of Their
Parameters
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The practical value of oculomotor plant mathematical models (OPMMs) has been demonstrated across various domains, including
biometrics and eye movement prediction. To further enhance their utilization, new optimization approaches are commonly developed
and introduced within the research community. In this study, we demonstrate a new integration of a previously developed per-subject
optimization procedure for an Enderle OPMM and introduce methods to evaluate the reliability of OPMM parameters using the
intraclass correlation coefficient (ICC) and Kendall’s Coefficient of Concordance (KCC). We evaluated two per-subject OPMM models,
Bahill and Enderle, using the ’GazeBase’ eye movement dataset. The models differed in accuracy, expressed as the per-sample error in
degrees of visual angle, based on the differences between the actual and predicted saccade trajectories. We found that some of the
parameter estimates for both models were quite unreliable. We discuss the importance of addressing low-reliability issues and suggest
methods to modify the models to enhance reliability and performance.

CCS Concepts: • Computing methodologies→Modeling and simulation; •Human-centered computing→ Empirical studies
in HCI.
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1 INTRODUCTION

The oculomotor system consists of several physiological, anatomical, and neurological components. These components
interact with each other to control specific eye movements. There is current literature that focuses on saccadic eye
movements and attempts to model the basic elements, i.e., the oculomotor plant (OP) and the saccade generation system
in the central nervous system (CNS). The OP consists of the eye globe and three pairs of extraocular muscles. The
muscles are innervated by the saccade generation system in the CNS.

In 1954, Westheimer presented the first quantitative saccadic eye movement model [Westheimer 1954]. This model
was able to fit the eye position data for single horizontal saccades of 20𝑜 but was limited to saccades of that amplitude.
Further development of the eye movement models was slow due to the lack of empirical data on the exact physiological
and anatomical characteristics of the OP components. In 1964, such empirical data was provided by Robinson [Robinson
1964]. During real experiments with a suction contact lens, he was able to investigate more closely the mechanics of the
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eye and test the assumptions made earlier by Westheimer. Robinson created his model which was more complex and
more accurate than Westheimer’s model. More importantly, it produced horizontal saccades over a range of amplitudes
from 5𝑜 to 40𝑜 . Robinson’s model more accurately replicated eye positional signals, but its simulated velocity trajectories,
especially toward the end of each saccade, deviated more from actual velocity signals.

Four years later, a new model for the human eye-movement mechanism was developed by Cook and Stark [Cook and
Stark 1968], and soon after, it was improved by Hsu et al. [Hsu et al. 1976]. This model outperformed Robinson’s model
in two major ways: (1) the neural pulse generation was more realistic, and (2) the antagonist muscle, in addition to the
agonist muscle, was modeled as a separate entity for the first time. In 1980 Bahill [Bahill 1980] presented an improved
linear 4th order model that more accurately fit real horizontal saccade trajectories and velocity profiles. Starting in
2010, Enderle and co-authors introduced a new family of models [Enderle 2010; Enderle and Zhou 2010; Ghahari and
Enderle 2014, 2015]. While using Bahill’s model as a baseline, Enderle et al. developed models for horizontal saccades
and smooth pursuits.

At approximately the same time, Komogortsev and colleagues began to publish and use OP models. In [Komogortsev
and Khan 2008], the OPMM was used for the prediction of eye-movement trajectories. A mechanical model of the
OP was transformed into a Kalman filter form (OPKF) that markedly improved the prediction accuracy of saccades
with various amplitudes. Komogortsev and colleagues were also interested in incorporating these OPMMs into their
biometric work which focused on evaluating individual differences in OP characteristics [Komogortsev et al. 2012a,
2010]. OP characteristics were used for “liveness” detection, i.e., OPMMs were used in the discrimination between
living human eyes and artificial/mechanical eyes. In another study [Karpov et al. 2020], the researchers addressed the
effectiveness of estimating OP characteristics and the applicability of OPMMs for real-time eye movement simulations.

OPMMs were also applied in medical settings. For example, an OPMM was employed for the correction of strabismus
[Hoerantner et al. 2007; Robinson et al. 1969]. Also, OPMMs were used for the automated detection of mild traumatic
brain injury (mTBI) via the application of eye movement biometrics [Komogortsev and Holland 2014]. In 2018 Wadehn
and co-authors [Wadehn et al. 2018] developed a model-based approach to detect and classify different types of eye
movements (fixations, saccades, and smooth pursuit). They based their analysis of saccades on Bahill’s OPMM. They
reported that their algorithm was robust to noise and highly accurate in detecting saccades. In 2019 Wadehn and
co-workers [Wadehn et al. 2019] presented a new approach to the detection and classification of eye movements. For
this, their analysis was based on Enderle‘s OPMM and this approach was somewhat more accurate.

All of the above studies used OPMMs with a common per-saccade optimization design where the parameters are
optimized and fitted for one particular saccade. In 2022, Katrychuk and Komogortsev [Katrychuk and V. Komogortsev
2022] presented a new approach that estimates one set of OPMM parameters (for a version of Bahill’s model) based
on all saccades made by each subject. We refer to the models presented in [Katrychuk and V. Komogortsev 2022] as
per-subject models, to distinguish them from classic per-saccade models.

In the present study, we concentrated on the per-subject baseline approach used by Katrychuk [Katrychuk and
V. Komogortsev 2022] for Bahill‘s model. By applying per-subject optimization to Enderle’s model, we aim to demonstrate
the value of the current approach. By employing distinct models under the same optimization procedure, we can more
precisely evaluate the performance and usefulness of the per-subject optimization approach for utilization in future
studies.

Traditionally, ’fitting accuracy’ has served as the standard metric for evaluating OPMMs. In our study, we aim to
address the issue of the test-retest reliability of model parameter estimates. The temporal persistence of the OPMM
parameters was briefly mentioned in Friedman’s et al. work [Friedman et al. 2017]. However, a detailed analysis of
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physiological measures from the OPMM and the identification of the reasons for their unreliability have not been
explored and discussed thoroughly. We employ two reliability-related metrics (the intraclass correlation coefficient
(ICC) and Kendall’s coefficient of concordance (KCC)). We also employed a one-sample t-test to check if the optimized
set of parameters for every subject was statistically significantly different from the default per-saccade OPMM values.

2 METHODOLOGY

2.1 Subjects

For a detailed description of the subjects and the specific study characteristics, see the “GazeBase Dataset” [Griffith et al.
2021]. Participants were undergraduate students at Texas State University. They were recruited through targeted emails
and in-class announcements. There were 322 participants (151 self-identifying as female, 171 self-identifying as male) in
what we call “Round 1”. For each new round, subjects had to have been recorded in Round 1. Round 2, ≈ 3 months from
Round 1, had 136 subjects since not all subjects from Round 1 were available. All of our analysis was based on these 136
subjects with both Round 1 and Round 2 data. Within each round, there were two sessions, ≈ 20 minutes apart.

Ethics and Privacy Statement: All subjects provided informed consent under a protocol approved by the Institutional
Research Board at Texas State University before each round of recording. As part of the consent process, subjects
acknowledged that the resulting data may be disseminated in a de-identified form. No subject-identifying information
is not included in the “GazeBase Dataset”.

2.2 Eye-Movement Recordings

For a detailed description of the recording details, see the report on the “GazeBase Dataset” [Griffith et al. 2021]. Briefly,
monocular (left) eye movements were recorded with an EyeLink 1000 at 1000 Hz, and scaled in degrees of visual angle
(dva). Subjects performed seven tasks during each session of the recording. For the present study, only 3 tasks were of
interest: (1) the Horizontal Saccade Task (HSS), (2) the Random Saccade Task (RAN), and (3) the Reading Task (TEX).
For the HSS task, subjects were presented with a target that was regularly displaced between two positions: a left
position (−15𝑜 ) for 1 second followed by a right position (+15𝑜 ) for another second. During each HSS task, there were
one hundred 30𝑜 transitions. The RAN task was designed to elicit visually guided oblique saccades of variable amplitude
through the periodic displacement of a peripheral target. The target was displaced at random locations across the
monitor, ranging from ±15𝑜 and ±9𝑜 in the horizontal and vertical directions, respectively. During the TEX task subjects
were instructed to read a poem. Overall, the dataset used for this study contains saccades from 136 subjects, performing
3 tasks, each recorded for 2 rounds and 2 consecutive sessions per round.

For eye movement classification, we employed an improved version of the previously published method [Friedman
et al. 2018]. The saccade trajectories we employed were based on the saccades classified by this algorithm. To be included
in our study, we only employed saccades with a horizontal amplitude ≥ 2𝑜 and a duration between [10..200] ms. The
minimum number of saccades found for any subject, in any round, during any session, was 83. The maximum number
of saccades found for any subject, in any round, during any session, was 462. The median number of saccades per
subject, per round, per session, was 255.

2.3 Bahill’s Model

The base per-saccade Bahill model consists of the 18 physiological parameters [Bahill 1980; Bahill and Stark 1977]:
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• 𝐾
𝐴𝐺,𝐴𝑁𝑇
𝑆𝐸

— series elasticity [Levin and Wyman 1927], which is an element that characterizes the change in
muscle length in response to a change in force, and it is measured in 𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒 -

𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛
𝑜 .

• 𝐾
𝐴𝐺,𝐴𝑁𝑇
𝐿𝑇

— length-tension. It represents the maximum contractile force that a muscle can generate and is
expressed in 𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝑜 .
• 𝐵𝐴𝐺 , 𝐵𝐴𝑁𝑇 — force-velocity of the agonist and antagonist muscles. This is the muscular force at a speed of

shortening when the muscle length is near the rest length and it is stimulated, measured in 𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛−𝑠𝑒𝑐
𝑜 [Fenn

and Marsh 1935].
• 𝐶𝐴𝐺 , 𝐶𝐴𝑁𝑇 , 𝐶𝐹𝐼𝑋 — tension slopes and tension intercept.
• 𝐽 — the inertial mass of the eye globe, and is expressed in 𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛−𝑠𝑒𝑐2

𝑜 .
• 𝐵𝑝 — passive viscosity of the tissue surrounding the eye globe, it is expressed in 𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛−𝑠𝑒𝑐

𝑜 .
• 𝜏

𝐴𝐺,𝐴𝑁𝑇
𝑎𝑐𝑡 , 𝜏𝐴𝐺,𝐴𝑁𝑇

𝑑𝑒𝑎𝑐𝑡
— activation and deactivation time, they are typically measured in milliseconds (𝑚𝑠𝑒𝑐).

• 𝑃𝐻𝐴𝐺,𝐴𝑁𝑇 , 𝑃𝑊𝐴𝐺,𝐴𝑁𝑇 — neural pulse height and width [Bahill and Stark 1975]. Neural pulse height is typically
expressed in 𝑠𝑝𝑖𝑘𝑒𝑠

𝑠𝑒𝑐 . Neural pulse width is expressed in𝑚𝑠𝑒𝑐 .

This is a 6th order model, which means we require six differential equations to describe the OP system. Each
differential equation describes the particular state of the system and can be written in a convenient way using the
matrix notation:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢. (1)

The square matrix 𝐴 is a matrix of coefficients, 𝑢 is an input vector and 𝐵 is a matrix of the weights applied to the
inputs. This model is a linear time-invariant (LTI) system. Therefore, it can be described in the form of a state-space
representation. There was a vector of 6 state variables 𝑥 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}:

• 𝑥1 — position of the eye;
• 𝑥2, 𝑥3 — position of the agonist and antagonist node;
• 𝑥4 — eye velocity, such that 𝑥4 = ¤𝑥1;
• 𝑥5, 𝑥6 — the agonist and antagonist active-state tension.

Following Komogortsev‘s strategy [Komogortsev and Khan 2008], by using the approximation of the derivative
¤𝑥 (𝑡) = 𝑥 (𝑡+1)−𝑥 (𝑡 )

Δ𝑡 we can present OPMM in a state transition (1) form such that:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝑢. (2)

2.4 Per-Subject Bahill’s Model

As mentioned earlier, Bahill’s original model is designed to simulate one saccade at a time and comprises a total of 18
parameters. Subject-specific models base their fits on many saccades (generally hundreds). Because the parameters of
these models account for many saccades, and because all parameters are fit for each subject, these models are more
general and should be more useful in the evaluation of individual differences.

It is logical to propose that the neuronal control signal should be a function of saccade amplitude. This was a
fundamental modification in the development of the per-subject optimization approach [Katrychuk and V. Komogortsev
2022]. For the per-subject OPMM, both 𝑃𝐻 and 𝑃𝑊 for agonist muscle are considered as functions of saccade amplitude
for large (> 5𝑜 ) and small (<= 5𝑜 ) saccades, separately. This added 9 new parameters:

• 1 separation parameter 𝑆𝐿𝑇𝐻 — a threshold between small and large saccades;
• 8 neurological parameters 𝑃𝐻𝑆

𝐼𝑁𝑇
, 𝑃𝐻𝑆

𝑆𝐿
, 𝑃𝑊 𝑆

𝐼𝑁𝑇
, 𝑃𝑊 𝑆

𝑆𝐿
, 𝑃𝐻𝐿

𝐼𝑁𝑇
, 𝑃𝐻𝐿

𝑆𝐿
, 𝑃𝑊 𝐿

𝐼𝑁𝑇
, 𝑃𝑊 𝐿

𝑆𝐿
.
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For Bahill’s per-subject model [Katrychuk and V. Komogortsev 2022], it is assumed that 𝐾𝑆𝐸 and 𝐾𝐿𝑇 have the
same values for agonist and antagonist muscles as well as 𝑃𝐻 and 𝑃𝑊 which reduced the number of parameters. This
approach was proposed by Komogortsev in 2007 [Komogortsev and Khan 2008]. Additionally, the two activation and
deactivation timings are fixed to their defaults. This decreases the number of parameters without a significant reduction
in the model performance. As a result in [Katrychuk and V. Komogortsev 2022], Bahill’s per-subject model has 18
parameters as well: 𝐾𝑆𝐸 , 𝐾𝐿𝑇 , 𝐵𝐴𝐺 , 𝐵𝐴𝑁𝑇 , 𝐶𝐴𝐺 , 𝐶𝐴𝑁𝑇 , 𝐶𝐹𝐼𝑋 , 𝐽 , 𝐵𝑝 , 𝑃𝐻𝑆,𝐿𝑆𝐿 , 𝑃𝐻𝑆,𝐿

𝐼𝑁𝑇
, 𝑃𝑊 𝑆,𝐿

𝑆𝐿
, 𝑃𝑊 𝑆,𝐿

𝐼𝑁𝑇
, 𝑆𝐿𝑇𝐻 . And it is

designed to simultaneously fit all the saccades from a single subject.
To illustrate per-subject Bahill‘s OPMM, we will use 𝐾 , 𝐾2 and 𝐾3 as defined by:

𝐾 =
𝐾𝑆𝐸

𝐾𝑆𝐸 + 𝐾𝐿𝑇
, 𝐾2 =

𝐾2
𝑆𝐸

𝐾𝑆𝐸 + 𝐾𝐿𝑇
, 𝐾3 = −(2 · 𝐾𝑆𝐸 + 𝐾𝑝 ).

Using the previous notations the system state transition form is:



𝑥𝑡+11
𝑥𝑡+12
𝑥𝑡+13
𝑥𝑡+14
𝑥𝑡+15
𝑥𝑡+16


=



1 0 0 Δ𝑡 0 0

Δ𝑡𝐾2
𝐵𝐴𝐺

1 − Δ𝑡𝐾𝑆𝐸

𝐵𝐴𝐺
0 0 Δ𝑡𝐾

𝐵𝐴𝐺
0

Δ𝑡𝐾2
𝐵𝐴𝑁𝑇

0 1 − Δ𝑡𝐾𝑆𝐸

𝐵𝐴𝑁𝑇
0 0 − Δ𝑡𝐾

𝐵𝐴𝑁𝑇

Δ𝑡𝐾3
𝐽

Δ𝑡𝐾𝑆𝐸

𝐽
Δ𝑡𝐾𝑆𝐸

𝐽
1 − Δ𝑡𝐵𝑝

𝐽
0 0

0 0 0 0 1 − Δ𝑡
𝜏𝐴𝐺

0

0 0 0 0 0 1 − Δ𝑡
𝜏𝐴𝑁𝑇



·



𝑥𝑡1
𝑥𝑡2
𝑥𝑡3
𝑥𝑡4
𝑥𝑡5
𝑥𝑡6


+



0
0
0
0

Δ𝑡𝑁𝐴𝐺

𝜏𝐴𝐺
Δ𝑡𝑁𝐴𝑁𝑇

𝜏𝐴𝑁𝑇


,

where Δ𝑡 is the OPMM internal sampling clock [Komogortsev and Khan 2008], 𝑁𝐴𝐺 and 𝑁𝐴𝑁𝑇 are the neuronal control
signals of the agonist and antagonist muscles, and 𝜏𝐴𝐺 and 𝜏𝐴𝑁𝑇 are functions that define the low pass filtering process.
These latter 2 parameters are defined by the activation and deactivation time constants.

2.5 Enderle’s Model

In 1995 Enderle and co-authors described a key difference between the Enderle model and Bahill’s OPMM:

The only structural difference between this model and the previous oculomotor muscle model is the
addition of viscous element 𝐵2 and the removal of passive elasticity 𝐾𝑝𝑒 . As will be described, the
viscous element 𝐵2 is vitally important to describe the nonlinear force-velocity characteristics of the
muscle, and the elastic element 𝐾𝑝𝑒 is unnecessary (page 121, [Enderle 2010]).

After all changes, the order of the model was reduced from 6th to 4th order. In 2009, Zhou and Enderle [Enderle and
Zhou 2010] reconsidered the previous solution and presented an updated version of OPMM where they removed one of
the Voigt elements added in 2010 [Enderle 2010]. The Voight elements pertain to the visco-elasticity of an extraocular
muscle. The presence of this particular Voigt element did not affect the simulation results. After the removal of this
element, the order of the model was reduced from 4th to 3rd.

While there are some parameters common to both the Bahill and Enderle per-saccade models, each model also has
its unique set of parameters. The parameters for the per-saccade Enderle model that were not mentioned before are:

• 𝐵1, 𝐵2 — viscous elements in the muscle model. They are measured in 𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛−𝑠𝑒𝑐
𝑜 .

• 𝐵𝑏 — the orbital viscoelastic element connected to the eyeball sphere. It is measured in 𝑔𝑚𝑡𝑒𝑛𝑠𝑖𝑜𝑛−𝑠𝑒𝑐
𝑜 .
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• 𝐾𝑘 — a constant determined by steady-state analysis of the model.
• 𝑇𝐴𝐺1 , 𝑇𝐴𝑁𝑇3 — the initial start time of the saccade for the agonist and antagonist muscles, measured in𝑚𝑠𝑒𝑐 .
• 𝐹𝑔0, 𝐹𝑡0 — the initial firing rate of the agonist and antagonist muscles. They are expressed in Newtons (𝑁 ).
• 𝐹𝑔𝑠 , 𝐹𝑡𝑠 — the firing rate of the agonist and antagonist muscles at the end of the saccade, expressed in 𝑁 .

Enderle‘s OPMM [Enderle and Zhou 2010] can be presented in the state transition matrix form (1) as well. To present
Enderle‘s OPMM more concisely, we will use the following notations. Let 𝐵12, 𝐾𝑠𝑡 and 𝐾𝑘 be equal to:

𝐵12 = 𝐵1 + 𝐵2, 𝐾𝑠𝑡 = 𝐾𝑆𝐸 + 𝐾𝐿𝑇 , 𝐾𝑘 =
𝐾𝑝

𝑟
· 5.2087 · 103,

where 𝐵1 and 𝐵2 are viscous elements, 𝐾𝑝 — is the passive elasticity for muscles, 𝑟 — is the radius of the eyeball.
In addition, in the interest of simplification, we will use the following notations from Zhou and Enderle‘s book

[Enderle and Zhou 2010]:

𝑃0 =
𝐾𝑠𝑡𝐾𝑘 + 2𝐾𝐿𝑇𝐾𝑆𝐸

𝐽𝐵12
, 𝑃1 =

2(𝐵1𝐾𝑆𝐸 + 𝐵2𝐾𝐿𝑇 ) + 𝐵12𝐾𝑘 + 𝐾𝑠𝑡𝐵𝑏
𝐽𝐵12

,

𝑃2 =
𝐽𝐾𝑠𝑡 + 𝐵12𝐵𝑏 + 2𝐵1𝐵2

𝐽𝐵12
, 𝜎 =

5208.7
𝐽𝐵12

,

where 𝐵𝑏 — is the voigt element.
With these substitutions, Enderle‘s OPMM [Enderle and Zhou 2010] for simulation of the horizontal saccades in

state transition form is:


𝑥𝑡+11
𝑥𝑡+12
𝑥𝑡+13

 =


1 Δ𝑡 0
0 1 Δ𝑡

−Δ𝑡𝑃0 −Δ𝑡𝑃1 1 − Δ𝑡𝑃2



𝑥𝑡1
𝑥𝑡2
𝑥𝑡3

 +


0
0

Δ𝑡𝜎 (𝐾𝑆𝐸 (𝐹𝐴𝐺 − 𝐹𝐴𝑁𝑇 ) + 𝐵2 ( ¤𝐹𝐴𝐺 − ¤𝐹𝐴𝑁𝑇 ))


where 𝐹𝐴𝐺 and 𝐹𝐴𝑁𝑇 are active state tensions for the agonist and antagonist muscles.

To obtain a per-subject version of Enderle‘s model, we used the same strategy as in [Katrychuk and V. Komogortsev
2022] for the simulation of the neural control signal parameters, and modeled both 𝑃𝐻 and 𝑃𝑊 as functions of saccade
amplitude. It’s important to note that one of the primary differences between the per-subject versions of the Bahill and
Enderle models is the way we simulate the 𝑃𝐻 and 𝑃𝑊 functions for them. In the per-subject Bahill model, neural pulse
parameters were simulated separately for large and small saccades. For the per-subject Enderle model, this separation
does not apply. However, in the per-subject Enderle model, neural pulse parameters were simulated separately for
agonist and antagonist muscles: 𝑃𝐻𝐴𝐺,𝐴𝑁𝑇

𝑠𝑙
, 𝑃𝐻𝐴𝐺,𝐴𝑁𝑇

𝑖𝑛𝑡
, 𝑃𝑊𝐴𝐺,𝐴𝑁𝑇

𝑠𝑙
, 𝑃𝑊𝐴𝐺,𝐴𝑁𝑇

𝑖𝑛𝑡
.

To speed up Enderle model simulation time, we simplified the neural control signal. In Enderle’s original work, he
simulated the neural control signal using two peak magnitudes, 𝐹𝑝1 and 𝐹𝑝2. We simplified it by using only the first
peak magnitude, 𝐹𝑝1, and removing all components related to the second peak magnitude, 𝐹𝑝2. By applying all the
aforementioned changes, we express the neural pulse height (𝑃𝐻𝐴𝐺 ) and neural pulse (𝑁𝐴𝐺 ) for agonist muscle in the
per-subject Enderle model as follows:

𝑃𝐻𝐴𝐺 = 𝑃𝐻𝐴𝐺𝑖𝑛𝑡 + 𝑃𝐻𝐴𝐺
𝑠𝑙

· |𝑎𝑚𝑝 |, 𝑇 2 = 𝑇 1 + 𝑃𝑊𝐴𝐺 ,

𝑁𝐴𝐺 = 𝐹𝑔0 · (𝑢 (𝑡) − 𝑢 (𝑡 −𝑇1)) + 𝑃𝐻𝐴𝐺 · (𝑢 (𝑡 −𝑇1) − 𝑢 (𝑡 −𝑇2)) + 𝐹𝑔𝑠 · 𝑢 (𝑡 −𝑇2),

where 𝑢 (·) is the Heaviside step function. We applied the same changes to the antagonist muscle functions as well.
This significantly reduced computation time and improved simulation accuracy. As a result, this model in total has
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25 parameters: 𝐾𝑆𝐸 , 𝐾𝐿𝑇 , 𝐾𝑘 , 𝐵𝑏 , 𝐵1, 𝐵2, 𝐽 , 𝑇𝐴𝐺1 , 𝑇𝐴𝑁𝑇3 , 𝐹𝑔0, 𝐹𝑔𝑠 , 𝐹𝑡0, 𝐹𝑡𝑠 , 𝜏𝐴𝐺,𝐴𝑁𝑇𝑎𝑐𝑡 , 𝜏𝐴𝐺,𝐴𝑁𝑇
𝑑𝑒𝑎𝑐𝑡

, 𝑃𝐻𝐴𝐺,𝐴𝑁𝑇
𝑠𝑙

, 𝑃𝐻𝐴𝐺,𝐴𝑁𝑇
𝑖𝑛𝑡

,
𝑃𝑊

𝐴𝐺,𝐴𝑁𝑇

𝑠𝑙
, 𝑃𝑊𝐴𝐺,𝐴𝑁𝑇

𝑖𝑛𝑡
.

2.6 Comparing the Performance of Different OPMM versions

2.6.1 Per-Saccade Models. Per-saccade models test model performance by comparing a simulated saccade trajectory
with an actual saccade trajectory. For each fitted saccade, an error is computed as the sum of the absolute value of each
per-sample difference between the predicted and recorded saccade trajectory. This sum is normalized by dividing by the
saccade duration, yielding an error per sample (in our case, error per msec). Different per-saccade models may perform
better for some saccade amplitudes than others. Therefore, it may be important to do several comparisons for sets
of saccades of particular amplitudes. This is true, in part, because different models used different saccade amplitudes
during model development.

2.6.2 Per-Subject Models. The total number of saccades per subject was divided into a series of folds in a cross-validation
manner. Every fold is consecutively chosen as a test set, while the rest represents a training set. Each per-subject model
results in 5 simulation error estimates (1 per fold, 5 folds) for each subject. Error estimates were compared between
each model, and within each model, training versus testing sets were also compared. We visualized the differences in
the distributions of these errors by employing violin plots, which are a hybrid of a box plot and a kernel density plot.
Differences in per-subject error distribution were tested with a Friedman test. A statistically significant 𝜒2 was followed
by a multiple comparison procedure using a Tukey HSD test at 𝛼 < 0.05.

2.7 Test-Retest Reliability of our parameter estimates

We have parameter estimates for each round of data (Round 1 vs. Round 2) and for each session (sessions 1 and 2).
We employed both the intraclass correlation coefficient (ICC) and the Kendall Coefficient of Concordance (KCC) to
estimate the test-retest reliability. We can think of these numbers as indices of temporal persistence. We compute these
statistics on a matrix with 4 columns (Round 1 Session 1; Round 1 Session 2; Round 2 Session 1 and Round 2 Session
2). According to Cicchetti [Cicchetti 1994], ICCs above 0.75 are considered excellent, between 0.6 and 0.74 are good,
between 0.4 and 0.59 are fair, and below 0.4 the ICCs are poor. According to Landis and Koch [Landis JRKoch 1977],
KCCs values above 0.81 are considered almost perfect, between 0.61 and 0.80 are substantial, between 0.41 and 0.60 are
moderate, between 0.21 and 0.40 are fair, between 0.00 and 0.20 are slight and below 0.0 the KCCs are poor.

2.8 Comparing Fitted Parameters to Default Values for Saccade-Specific OPMMs

For each subject, we have two rounds, two sessions (i.e., four occasions), and five folds. This means that we have 20
parameter estimates per parameter per subject. We then statistically compared these 20 parameter estimates to a default
parameter value obtained from prior saccade-specific models [Bahill 1980; Enderle 2010]. For this, we employed a
one-sample t-test. We then counted the number of subjects (of a total of 136) which were significantly different from the
default value (𝑝 < 0.05, 2-tailed). It is important to note that there is a 60% overlap between any two training folds, and
therefore folds are not independent. This is a formal violation of the assumptions of a one-sample t-test. Nonetheless,
we still thought that with 20 folds, our results would be interesting, informative, and useful to report.
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2.9 Optimization

We used the same optimization strategy as was used for the baseline per-subject model described in [Katrychuk and
V. Komogortsev 2022]. The chosen optimization method was the Nelder-Mead simplex method [Nelder and Mead 1965].
For both the Bahill and Enderle per-subject models, we divided the data from each subject into 5 non-overlapping test
folds, conducting evaluations using K-Fold cross-validation, as detailed in [Katrychuk and V. Komogortsev 2022]. All
calculations were conducted separately for each subject, round, and session. In the training set for each fold, the median
number of saccades was 204, while in each test fold, it was 51. The average time to optimize 18 parameters for the Bahill
model was 11 minutes and 40 seconds, whereas for the Enderle model with 25 parameters, it was 35 minutes and 20
seconds.

3 RESULTS

3.1 Optimized Parameter Estimates and Comparison to Default Parameters from Per-Saccade OPMMs

3.1.1 Percent Change. In Table 1 we present the default parameter values for the Bahill model as well as our optimized
values. The range of change from default to optimized was from -30.5% for 𝐵𝐴𝐺 to 27.68% for𝐶𝐹𝐼𝑋 . The median percent
change was ≈ 1% and the median of the absolute value change was 5.2%. In Table 2 we present the same information
for the Enderle model. The range of change from default to optimized was from -21.82% for 𝑃𝑊𝐴𝑁𝑇

𝐼𝑁𝑇
to 17.42% for 𝐽 .

The median percent change was ≈ 0.65% and the median of the absolute value change was 2.5%.

3.1.2 Number of Subjects Different from Default. In Table 1 and Table 2 we also present counts (and percentages) of the
number of subjects whose parameter estimates were significantly different (𝑝 < 0.05) from the per-saccade default
value for each model-type and parameter. For the Bahill model, subjects had parameter estimates that were significantly
different from defaults for a median of 83.1% of subjects. For the Enderle model, subjects had parameter estimates that
were significantly different from defaults for a median of 94.1% of subjects. For the Bahill model, there were three
parameters (all related to the neural pulse height or width for small saccades) that were significantly different from the
default less than 50% of the time. For the Enderle model, there were two parameters (both related to the antagonist
pulse width) that were significantly different from the default less than 50% of the time.

3.2 Comparison of the Performance of the Enderle OPMM with Bahill OPMM

3.2.1 Simulation Error. To visualize the simulation accuracy achieved by each model, we present the violin and the
box-and-whisker diagrams of the mean training and test errors across 5 folds. In Fig. 1 you can find the distribution
plots for both Enderle and Bahill models.

The Friedman test produced at 𝜒2 = 6, 516, 𝑑 𝑓 = 3, 𝑝 = 0.0. Multiple comparison testing found that, for both
models, the train and test data were not statistically significantly different. This supports the claim that both models are
generalizable [Katrychuk and V. Komogortsev 2022]. All other comparisons were statistically significant with p-values
effectively at 0.0.

3.2.2 Change in simulated trajectory accuracy over saccade duration. To provide additional insight into the difference in
performance between the two models, we plot the statistics of change in simulated trajectory accuracy over saccade
duration. This information is computed in the following manner. First, all saccades are grouped into 4 bins according to
their amplitude in degrees: (0, 5]; (5, 10]; (10, 20]; (20, +∞). Second, within each bin, all saccade sample timestamps
are normalized to be in the range of [0..1]. Then, every saccade is resampled via one-dimensional piece-wise linear
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Parameter Number Percent Default Optimized Percent
Significant Value Value Change

𝐾𝑆𝐸 117 86.03 2.5 2.726 9.04
𝐾𝐿𝑇 107 78.68 1.2 1.212 1.02
𝐵𝑝 136 100 0.06 0.046 -23.98
𝐵𝐴𝐺 131 96.32 0.046 0.032 -30.52
𝐵𝐴𝑁𝑇 135 99.26 0.022 0.016 -27.97
𝐶𝐴𝐺 98 72.06 0.8 0.823 2.87
𝐶𝐴𝑁𝑇 127 93.38 0.5 0.526 5.20
𝐽 132 97.06 0.000046 0.000039 -14.63
𝐶𝐹𝐼𝑋 136 100 14 17.876 27.68
𝑃𝐻𝑆

𝐼𝑁𝑇
47 34.56 10 10.016 0.16

𝑃𝐻𝐿
𝐼𝑁𝑇

112 82.35 10 10.318 3.18
𝑃𝐻𝑆

𝑆𝐿
56 41.18 2 1.996 -0.20

𝑃𝐻𝐿
𝑆𝐿

128 94.12 2 2.213 10.65
𝑃𝑊 𝑆

𝐼𝑁𝑇
49 36.03 10 9.949 -0.51

𝑃𝑊 𝐿
𝐼𝑁𝑇

130 95.59 10 10.797 7.97
𝑃𝑊 𝑆

𝑆𝐿
53 38.97 1 0.993 -0.71

𝑃𝑊 𝐿
𝑆𝐿

136 100 1 1.132 13.22
𝑆𝐿𝑇𝐻 79 58.09 2 2.009 0.47

Table 1. Percent of subjects with estimates statistically different from defaults for the Bahill model.

interpolation at 51 sample points equally spaced on a grid within this normalized range. Finally, the per-sample error
between a simulated and a corresponding recorded saccade trajectory is computed at the resampled grid points.

In Fig. 2, you can find the resulting plots summarizing Round 1, Session 2 data for both Enderle and Bahill models.
This data shows that the baseline Bahill per-subject model provided better simulation accuracy than the recent Enderle
per-subject model. Although we only show the simulation error plots for the test set, the plots for the training set
looked identical, as would be expected. The simulation error plot for the largest saccades (Fig. 2(D)) is distinctive. To
offer a more comprehensive comparative analysis of the performance of the two per-subject OPMM models, we include
in the Appendix section plots depicting original saccade trajectories alongside simulated saccades from both OPMMs.

3.3 Test-retest Reliability

Recall that the Enderle model has 25 parameters and the Bahill model has 18 parameters. ICC and KCC values are
estimates of the test-retest reliability of each parameter. The ICCs and KCCs for the per-subject Bahill OPMM are listed
in Table 3a (ICCs and KCCs were correlated at 0.998). Two of the ICCs were “excellent”, four were “good”, four were
“fair” and eight were “poor”. Of the eight poor ICCs, six were related to either neural pulse height or width. The four
with the lowest ICCs were related to the pulse height and width of small saccades specifically.

The ICCs and KCCs for the per-subject Enderle OPMM are listed in Table 3b (ICCs and KCCs were correlated at
0.993). Only one ICC value was “excellent”, three were “good”, four were “fair” and seventeen were “poor”. We compared
the set of Bahill ICCs (median ICC = 0.44) to the set of Enderle ICCs (median = 0.36) with a Mann-Whitney U-test and
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Parameter Number Percent Default Optimized Percent
Significant Value Value Change

𝐾𝑆𝐸 136 100 124.958 105.516 -15.56
𝐾𝐿𝑇 123 90.44 60.687 62.082 2.30
𝐾𝑘 78 57.35 16.36 16.264 -0.59
𝐵𝑏 104 76.47 0.327 0.332 1.60
𝐵1 117 86.03 5.722 5.622 -1.75
𝐵2 118 86.76 0.502 0.526 4.81
𝐽 122 89.71 0.002 0.002 17.42
𝑇𝐴𝐺1 96 70.59 0.004 0.004 10.86
𝑃𝑊𝐴𝐺

𝐼𝑁𝑇
136 100 0.024 0.025 3.31

𝑃𝑊𝐴𝐺
𝑆𝐿

136 100 -0.0001120 -0.0001122 0.18
𝑇𝐴𝑁𝑇3 136 100 0.003 0.003 -2.45
𝑃𝑊𝐴𝑁𝑇

𝐼𝑁𝑇
136 100 0.002 0.002 -21.82

𝑃𝑊𝐴𝑁𝑇
𝑆𝐿

136 100 -5.799 -5.817 0.31
𝐹𝑔0 136 100 0.4 0.415 3.70
𝑃𝐻𝐴𝐺

𝐼𝑁𝑇
136 100 1.305 1.303 -0.14

𝑃𝐻𝐴𝐺
𝑆𝐿

136 100 -0.009 -0.009 -3.02
𝐹𝑔𝑠 136 100 0.4 0.412 2.98
𝐹𝑡0 108 79.41 0.4 0.394 -1.46
𝑃𝐻𝐴𝑁𝑇

𝐼𝑁𝑇
114 83.82 0.391 0.395 0.97

𝑃𝐻𝐴𝑁𝑇
𝑆𝐿

136 100 -0.001000 -0.001014 1.36
𝐹𝑡𝑠 136 100 0.4 0.369 -7.64
𝜏𝐴𝐺𝑎𝑐𝑡 136 100 0.0110 0.0111 1.14
𝜏𝐴𝐺
𝑑𝑒𝑎𝑐𝑡

136 100 0.0050 0.0049 -1.07
𝜏𝐴𝑁𝑇𝑎𝑐𝑡 136 100 0.0090 0.0094 4.20
𝜏𝐴𝑁𝑇
𝑑𝑒𝑎𝑐𝑡

136 100 0.0050 0.0048 -3.19
Table 2. Percent of subjects with estimates statistically different from defaults for the Enderle model.

found that the two sets were not statistically significantly different. Of the parameters with the bottom 10 ICCs (all
“poor”), six were related to either pulse height or pulse width.

4 DISCUSSION

In this report, we demonstrate how to apply a per-subject optimization approach for an Enderle OPMM and assess the
test-retest reliability of parameter estimates in detail. The per-subject approach, previously developed to the Bahill
OPMM [Katrychuk and V. Komogortsev 2022], was applied to the Enderle model. This involved adapting the pulse-width
and pulse-height functions to the model. In this report, we found that the Bahill per-subject OPMM outperforms the
per-subject Enderle OPMM in terms of overall simulation error and simulation error as a function of saccade duration.
This suggests that there may be room for improvement to enhance the accuracy of the per-subject Enderle model.
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Fig. 1. Box-and-whisker plots of the mean train and test errors for both models with the outliers removed. The boxplots are presented
in a standard way. The median is the red horizontal line. The mean is at the green dot. The bottom of the box is at the 25th percentile
and the top of the box is at the 75th percentile. Outliers are determined using Tukey hinges. The actual drawn whisker is to the first
and last point in the data that are not outliers. Outliers are not shown.

In the current study, we introduce the "test-retest" reliability as a metric for evaluating model performance. While
model accuracy is a central focus in OPMM research, another crucial aspect that holds interest for many researchers is
the temporal persistence (i.e., reliability) of model parameters.

4.1 Reliability of OPMM Parameters

A statistical test comparing the set of ICCs for the Bahill parameters versus the Enderle parameters was not statistically
significant. However, given the very small number of parameters, this test is a very weak statistical comparison. With
18 parameters for the Bahill model and 25 parameters for the Enderle model, this test has a statistical power of 0.35 to
find a moderate effect size (Cohen’s d — 0.5). Typically, a 0.8 power is considered acceptable.

After analysis of the ICC values for OPMMs, we can draw a couple of interesting conclusions about both models. In
Table 3a, we see that the four parameters with the lowest ICCs were related to the pulse height (PH) and width (PW) of
small saccades. In the Enderle model, the PH and PW are estimated for both agonist and antagonist muscles (Table
3b). These parameters were also among the least reliable. Since the relationship between saccade amplitude and 𝑃𝐻 or
𝑃𝑊 is a central feature of both per-subject models, one possibility is that these specific per-subject models may need
improvement in the estimation of 𝑃𝑊 and 𝑃𝐻 .

For the Bahill model, one solution might be to use the same neural-pulse relationship for both small and large
saccades. The same suggestion can be made about the separate neural-pulse simulation for agonist and antagonist
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Fig. 2. Plots that summarize the change in saccade trajectory simulation accuracy over the saccade duration time (Round 1, Session 2
data) for the test dataset. The data shown in blue is the simulation error for the Bahill model, and the data shown in orange is the
simulation error for the Enderle model. The lower border for each model represents the 25 percentile. The upper border for each model
represents the 75 percentile. The solid line is the median. Data in a subplot (A) is for saccades with amplitude in the [0, 5) range. (B) is
the same as (A) but for data in the [5, 10) range, (C) — for the data in the [10, 15) range, and (D) — for the data in the [20, inf) range.

muscles in the per-subject Enderle model. The proposed model simplifications may enhance the accuracy and reliability
of the OPMM parameters, while also reducing computation time for the modified models.
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Table 3. ICC values for the per-subject OPMMs

Parameter ICC KCC
𝐵𝐴𝐺 0.87 0.9
𝐵𝐴𝑁𝑇 0.822 0.858
𝐾𝑆𝐸 0.757 0.802
𝐵𝑝 0.743 0.8
𝐽 0.649 0.736
𝑃𝑊 𝐿

𝐼𝑁𝑇
0.648 0.692

𝐾𝐿𝑇 0.598 0.712
𝐶𝐹𝐼𝑋 0.522 0.64
𝑃𝐻𝐿

𝑆𝐿
0.47 0.616

𝑃𝐻𝐿
𝐼𝑁𝑇

0.419 0.551
𝐶𝐴𝐺 0.334 0.507
𝑃𝑊 𝐿

𝑆𝐿
0.244 0.426

𝑆𝐿𝑇𝐻 0.212 0.411
𝐶𝐴𝑁𝑇 0.208 0.408
𝑃𝑊 𝑆

𝐼𝑁𝑇
0.024 0.257

𝑃𝐻𝑆
𝑆𝐿

0.02 0.259
𝑃𝐻𝑆

𝐼𝑁𝑇
0.02 0.269

𝑃𝑊 𝑆
𝑆𝐿

0.013 0.26
(a) ICC values for the per-subject Bahill 18 parameters model.

Parameter ICC KCC
𝐽 0.8 0.868
𝐵2 0.668 0.766
𝐵1 0.651 0.689
𝑃𝐻𝐴𝐺

𝐼𝑁𝑇
0.65 0.725

𝐹𝑔𝑠 0.559 0.596
𝐵𝑏 0.45 0.6
𝜏𝐴𝑁𝑇𝑎𝑐𝑡 0.441 0.546
𝐾𝐿𝑇 0.43 0.522
𝜏𝐴𝐺𝑎𝑐𝑡 0.399 0.534
𝐹𝑡𝑠 0.398 0.524
𝑃𝑊𝐴𝐺

𝐼𝑁𝑇
0.384 0.514

𝜏𝐴𝑁𝑇
𝑑𝑒𝑎𝑐𝑡

0.379 0.519
𝐾𝑆𝐸 0.357 0.522
𝐹𝑡0 0.351 0.497
𝑇𝐴𝑁𝑇3 0.223 0.418
𝐹𝑔0 0.175 0.379
𝑃𝐻𝐴𝑁𝑇

𝐼𝑁𝑇
0.132 0.352

𝑇𝐴𝐺1 0.055 0.304
𝑃𝐻𝐴𝑁𝑇

𝑆𝐿
0.05 0.294

𝜏𝐴𝐺
𝑑𝑒𝑎𝑐𝑡

0.029 0.27
𝐾𝐾 0.026 0.257
𝑃𝑊𝐴𝑁𝑇

𝑆𝐿
0.013 0.258

𝑃𝑊𝐴𝐺
𝑆𝐿

0.007 0.25
𝑃𝐻𝐴𝐺

𝑆𝐿
0 0.249

𝑃𝑊𝐴𝑁𝑇
𝐼𝑁𝑇

0 0.246
(b) ICC values for the per-subject Enderle 25 parameters model.

It is logical and reasonable to expect that certain parameters should be more reliable than others. For example,
physiological parameters related to muscle elasticity and maximum contractile force (𝐾𝑆𝐸 and 𝐾𝐿𝑇 ) might be highly
reliable as they refer to observable physical entities. This is also true of the inertia of the globe, 𝐽 . On the other hand,
parameters related to the neural pulse characteristics are more difficult to observe and therefore might be less reliable.
However, this distinction is only partially born out by our results.

For example, for the Bahill model 𝐾𝑆𝐸 is one of the three most reliable parameters (0.757, just below the “excellent”
level reliability), however for the Enderle model the reliability of the 𝐾𝑆𝐸 is very poor (0.357). For both models 𝐾𝐿𝑇 has
only fair reliability. 𝐽 is the most reliable parameter for the Enderle model (0.803, excellent reliability), however for the
Bahill model 𝐽 (“eyeball inertia”) is only within the range of good reliability (0.649).
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Additionally, the most unreliable parts of the model may be built on incorrect or oversimplified assumptions, as they
fail to explain patterns found in real data. Our least reliable parameters correspond to the neural pulse, which is indeed
modeled assuming a simplistic linear relationship to saccade amplitude. Trying to fit a linear function to data exhibiting
non-linear relationships may have created a loss surface with many local minima of a similar error, any of which can be
a point of convergence but neither of which affords a good real data fit. The future work should be concerned with
reassessing the validity of linear neural pulse models.

Another useful evaluation procedure we propose in this study involves examining the differences between the
optimized parameters for the OPMM models and the parameter values initially presented in the original papers where
these models were first introduced. As reported above, the parameter estimates for the per-subject models differed
significantly from the default values of the per-saccade models in most cases. Perhaps, in such cases, it might be useful
to compare the accuracy of models where some of these parameters are replaced by default values with the current
models. In future research, we plan to compare various additional strategies for dealing with the issue of unreliable
parameters.

We would also like to highlight several issues on the estimation of OPMM parameters from recorded gaze signals.
The most important issue is an inability to directly assess the parameter estimation error due to the lack of appropriate
ground truth. Certain OPMM parameters were designed to be simplified abstract representations of phenomena within
the OP. Those are mostly related to the neural control signal, and their ground-truth values do not exist. For those
parameters that do explain actual anatomical properties, such as eyeball inertia (J), complex studies that involve surgery
are required to recover their true values. Therefore, we think that the only feasible way is for the quality of the estimated
parameters to be assessed indirectly, through the gaze signal fit or their reliability, as it was done in our study.

The next major challenge in parameter estimation is related to the choice of the optimization method. Our utilization
of Nelder-Mead is carried over from the prior work on OPMMs. It is a very convenient method, as it can be applied
without any assumptions on the underlying function to be optimized. However, we are not aware of any studies that
evaluate other methods against it in the context of OPMM parameter optimization. Exploring other alternatives, such as
Bayesian optimization, genetic algorithms, or gradient-based methods, especially in regard to their resulting parameter
reliability, should be done in future work. Note that in such an experiment it is still essential to consider the quality of
data fit, as it is trivial to design a method with perfect reliability that simply always returns the default parameter list.
Additionally, we can circumvent the lack of ground-truth parameter values by fitting the synthetic saccade trajectories
produced with the OPMM itself in a controlled experiment with known parameters. This avoids the aforementioned
complexity of evaluating parameters purely on the data fit they provide and allows to benchmark different optimization
methods based on the quality of their ground-truth parameters retrieval, which is unfeasible for real data.

4.2 Comparative Analysis of Bahill and Enderle Per-subject Models

For this, we focus on specific instances where one model may outperform the other. In the Appendix, we present
12 figures, each depicting actual trajectories and simulated trajectories generated by the two OPMM models. Two
generalizations emerge from an examination of these trajectories. In six of the twelve cases, the Enderle model’s
saccades move in the wrong direction for some period before changing direction. The peak of the "wrong" direction
movement occurs between 9 and 12 milliseconds. In five of the twelve saccades, the Bahill model trajectory reaches
the final endpoint sooner than the real or the Enderle trajectory. An idea for a future study would be to fit individual
per-saccade-based models to these trajectories and try to determine which parameters predict these characteristics.
This might help elucidate the reasons behind these differences.
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4.3 Future Work

The primary objectives of previous OPMM studies were to improve the ability to accurately recreate horizontal saccade
trajectories. However, to improve the usability of physiologically inspired models, two main issues require attention
in future research. One is the enhancement of the existing level of reliability in OPMM parameters. Achieving an
adequate level of reliability is crucial for OPMM models to become valuable additions to biometrics or eye-movement
prediction studies. Without this improvement, unreliable parameters increase the risk of false positives or false negatives,
compromising the security and effectiveness of the system they are employed in.

One approach to the low reliability would be to try models where certain constraints on individual parameters were
employed or tightened. In the extreme case, rather than fitting an unreliable parameter, this parameter could be set
to the default value. The analysis of trajectory errors would allow us to determine if such a procedure improves the
predictive power of the model. We plan to perform such an analysis in future studies.

The other issue is simulating the 2D saccadic trajectories using OPMMs. It is not a trivial task due to the nature of
saccades and how desynchronized the vertical and horizontal components can be across saccadic trajectories [Bahill
and Stark 1977]. Previously, OPMMs were applied to simulate 2D movements by using two separate 1D models for
vertical and horizontal channels [Komogortsev et al. 2012b, 2013]. However, we believe that it is necessary to adapt the
existing horizontal saccade model to accommodate vertical saccades for more accurate results.

To sum up, we think that addressing the low reliability of current OPMM parameter estimates highlighted in our
study should be a focus of future OPMM developments. Whether it can be achieved by using a simplified model with a
reduced number of parameters (or tightened constraints on specific parameters), an alternative optimization method, or
an extra loss function component not based on the gaze signal fit is an open research question.

5 CONCLUSION

In this study, we successfully applied the per-subject optimization approach to the Enderle model and established a
new metric for evaluating OPMMs. We found that the current implementation of the baseline per-subject Bahill model
was better than the baseline per-subject Enderle model in terms of accuracy. For each model, we have provided the
test-retest reliability (ICC) for each parameter. Some of the unreliable OPMM parameters were associated with neural
pulse characteristics, while others were related to different physiological properties of OP.

In summary, our study provides detailed guidelines on how to work with OPMM models, adapt the new optimization
procedure to different OPMMs, and assess their performance. This assessment goes beyond mere accuracy, as it takes
into account each parameter’s value and its temporal persistence. The results for the current versions of per-subject
models revealed significant differences between the optimized parameter estimates and the default parameter values
reported for the per-saccade models. This implies that there is room for further improvements in the optimization
procedure in future research.

More generally, OPMM-inspired models have been applied across various domains, including gaze-contingent tech-
niques [Guenter et al. 2012; Patney et al. 2016], cybersecurity [Komogortsev 2017], and health assessment [Komogortsev
and Holland 2014; Wadehn 2019]. However, numerous unresolved questions remain, offering scientists an opportunity
to make meaningful contributions to the advancement of OPMMs that can be practically useful in eye tracking driven
applications.
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A A COMPARISON OF THE SIMULATED SACCADIC TRAJECTORIES

We have decided to include several comparative graphs of real and predicted saccade trajectories in this Appendix.
These graphs will illustrate cases where one model outperforms the other in simulation accuracy, as well as cases where
their simulation accuracy is nearly identical. We randomly selected one subject from the available set and presented
instances from all 5 test folds.

Let’s examine examples (A) and (B). In Fig. (A), the trajectory predicted by the Enderle model begins a movement
away from the target, with a peak at 9 msec before changing direction towards the target. As a result, for most of the
trajectory, the Enderle saccade is distant from the real saccade. Overall, the Bahill trajectory is closer to the real in
this case. However, the Bahill saccade overshoots the target, assuming that the real saccade is accurate. In Fig. (B), the
tendency for the Enderle trajectory to move in the wrong direction is minimal but present, and overall the Enderle
saccade is more similar to the real saccade than the Bahill saccade which undershoots more the target.

Figures (C) and (D) provide examples of how OPMMs generate trajectories for saccades with amplitudes less than 5𝑜 .
In Figure (C), both predicted saccades are a poor fit for this small real saccade. The Bahill model produces a better fit
than the Enderle model over the interval [0, 19]. However, the landing point of the saccade from Enderle’s model was
closer to the original. Figure (D) demonstrates a case where the performance of both models is similar. However, at the
end, Enderle’s model overshoots the target.

Figures (E) and (F) illustrate examples where OPMMs generate trajectories for saccades with absolute amplitude
values in the range [5, 10]. Figure (E) demonstrates an instance where the Bahill model produces a saccade more
identical to the original one. However, the Enderle model outputs the trajectory which undershoots the real one. Figure
(F) illustrates a case where both models yield the same simulated trajectory with very similar simulation errors and
trajectory paths.

Figures (G) and (H) illustrate examples where OPMMs generate very similar trajectories with slightly different
simulation errors. Figure (G) illustrates a case where both models yield the same simulated trajectory with very similar
simulation errors and trajectory paths. Figure (H) presents a case where both models exhibit different behavior in
simulation. Once again, the Enderle saccade starts in the wrong direction but reverses at about 10 ms.
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Figures (I) and (J) depict examples of saccades with amplitudes exceeding 12𝑜 . Figure (I) demonstrates a scenario
where both models exhibit poor simulation scores. In Figure (J), it is evident how differently the models simulate the
trajectory for the first half of the saccade. The Bahill trajectory is more similar to the real one. As the trajectories
progress, both simulated trajectories undershoot the real saccade.

Figures (K) and (L) illustrate cases where models can produce trajectories that deviate significantly from the original.
In Fig. (K), both modeled trajectories are very badly formed. We see that for the first 10 ms, the Enderle saccade moves
in the wrong direction, then moves in the correct direction but moves too quickly and overshoots the real saccade.
The Bahill trajectory is simply incorrect. It dramatically overshoots the target 20 ms before the end and then reverses
direction. Real saccades never do this. Moving on to Fig. (L), a notable difference is observed. Enderle’s model generated
a saccade with a significantly lower amplitude, approximately 9𝑜 less, which is also shifted at the beginning. In contrast,
Bahill’s model achieved simulation accuracy 2 times better.
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Fig. 3. Real Saccadic Trajectories Simulated by Bahill and Enderle OPMMs
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Fig. 4. Real Saccadic Trajectories Simulated by Bahill and Enderle OPMMs
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