
A JAVA BASED

COST MODELLING TOOL:

STRUCTURE AND INTERFACING

Presented to the Graduate Council of

Southwest Texas State University

in Partial Fulfillment of

the Requirements

For the Degree

Master of SCIENCE

By

Mohammed Rahman, B.E.E.E.

San Marcos, Texas

August, 2000

COPYRIGHT

by

Mohammed Rahman

2000

Acknowledgements

All praise is due to Allah, the most Gracious and most Merciful.

I would like to thank Dr. Michael G. Wahl for his valuable guidance and advice during

the entire thesis work. I also would like to thank my dear wife, Qumrun N esa for her

extreme patience, encouragement and support during the research work.

Mohammed Rahman

Southwest Texas State University

August, 2000

V

TABLE OF CONTENTS

I INTRODUCTION .. 1

1 Thesis Background .. 3

2 Previously Developed Tools ... 8

II ECONOMICS MODELLING .. 10

1 System Hierarchy Levels .. 10

III TOOLREQUIREMENTS .. ; ... 14

1 Flexibility Of The Model .. 14

2 Hardware And Software Environment.. .. 16

3 Distributed Database .. -... 17

4 Abstract Cost Model ... 20

5 Cost Bearing Entities .. 22

6 The Modelling Tool .. 25

IV Java - Programming Language and Development Environment 27

1 Swing/JFC ... 28

2 The Integrated Development Environment ... 28

2.1 }Builder 3.5 ... 28

2.2 Simplicity for Java .. 29

2.3 Forte for Java .. 29

V Evolution of XML .. · ... 31

1 Data Exchange .. 31

2 Tags and Attributes ... 33

3 W ell-formness ... 3 3

4 The XML Pro log ... 34

5 XML Processing Instructions ... 3 5

6 Advantage of XML over HTML. .. 35

6.1 Plain Text .. 35

6.2 Data Identification .. 36

6.3 Stylability .. 36

VI

6.4 Inline Reusabiliy .. 37

6.5 Linkability ... 37

6.6 Easily Processed .. 38

6.7 Hierarchical Structure ... 38

7 Data Type Definition ... 3 8

8 XML Parsers ... 40

9 Breeze XML Tool ... 41

VIII SOFTWARE HIERARCHY ... 42

1 MVC Architecture .. 43

2 Parsing an XML Document ... ··~· 44

2.1 The JAXP APis ... 44

2.2 An Overview of SAX and DOM .. 45

2.3 The SAX APis .. 45

2.4 SAX Packages ... 47

2.5 The Document Object Model (DOM) APis .. 49

2.6 DOM Packages ... 49

2.7 Cost Modelling Tool Implementation ... 50

3 Event Handling ; .. 51

4 User Interface .. 53

IX CONCLUSION .. · .. 55

Appendix A ... : ... 57

Further Implementation .. 57

Appendix B ... 60

The Source code ... 60

Appendix C ... '. 77

DTD Documentation .. 77

Appendix D ... ~················· 88

DTD Example ... 88

Appendix E ... 92

Example: XML Data File .. 92

Appendix F .. 95

vn

Example: File Describing The Cells ... 95

REFERENCES ... 112

VITA ... 115

vm

LIST OF FIGURES

Figure 1 Financial effort over the life time [17] .. 4

Figure 2 A more realistic system ... 6

Figure 3 Hierarchies and time dependencies [17] ... 7

Figure 4 Developer and customer costs ~ .. 12

Figure 5 Columns of maintenance costs [3] .. 12

Figure 6 Two possible hierarchies: digital and mechanical .. 15

Figure 7 Departments with access to the cost model .. 16

Figure 8 Data distributed over the global server and workstations 18

Figure 9 Rights matrix .. ~ .. 20

Figure 10 Basic software concept ... 21

Figure 11 General information .. 22

Figure 12 Cost Bearing Entity ... 23

Figure 13 Top level model ... : .. 24

Figure 14 The cell model with extended functions ... 25

Figure 15 Layer structure of the cost modelling fool .. 26

Figure 16 Cost Model architecture-top-level view : ... 42

Figure 17 Parsing an XML document ... 51

Figure 18 Cost Modelling Tool architecture - detail view ... 52

Figure 19 Cost Model Tool User Interface ... 53

Figure 20 Cost Model Tool Operations ... 54

Figure 21 Access right model .. 59

lX

LIST OF TABLES

Table 1 Packages that define SAX parser .. .4 7

Table 2 Packages that define the Document Object Model.49

X

ACM

API

AWT

CAEc

CBE

CMT

CORBA

COTS

CPU

css
DFT

DOM

DTD

EVEREST

GUI

HTML

IC

JFC

MVC

PCDATA

RAD

SAX

SGML

URI

XML

XSL

GLOSSARY

Abstract Cost Model

Application Process Interface

Abstract Windowing Toolkit

Computer Aided Economic

Cost Bearing Entity

Cost Modelling Tool

Common Object Request Broker Architecture

Components Off The Shelf

Central Processing Unit

Cascading Style Sheets

Design For Testability

Document Object Model

Data Type Definition

European Vanguard Effort on Research of Systems for Testing

Graphical User Interface

Hyper Text Markup Language

Integrated Circuit

Java Foundation Classes

Model View Controller

Parsed Character Data

Rapid Application Development

Simple API for XML

Standard Generalized Markup Language

Universal Resource Identifier

eXtensive Markup Language

eXtensive Style Language

Xl

I INTRODUCTION

Products with long lifetime tend to cause high costs of maintenance and repair.

Often these post purchase expenses outweigh the cost of the product itself. Extensive

research effort went into the optimization of design and manufacturing costs. However,

little has been done to trim down field maintenance and support costs. In order to fill in

this gap, faculty members and students from the University of Texas at Austin, Southwest

Texas State University, and the University of Siegen, Germany started a project called

LCCA (Life Cycle Cost Analysis). The goal of this project is to design a tool that will

allow analyzing lifetime costs of a product during its design phase. This approach will

lead to substantial reduction of costs and thereby increase the profit for the manufacturer

as well as reduce the costs for the users.

Many tools have been developed, but they were either closely linked to a no

longer existing design system or they were spreadsheets[ll]. Both approaches lead to an

inflexible solution that required reprogramming whenever the cost model changed. The

goal of my research was to study the feasibility of developing a tool that is flexi~le,

modular, works in a distributed environment, customisable, and easy to use.

This project progressed in several phases. The first phase of this project required

intensive research encompassing the L~CA project and its goals, DFT (Design For

Testability) and other mathematical models developed after several years of effort by

numerous researchers. I studied a number of dissertations, magazine articles, and

attended several group meetings with Dr. Anthony P. Ambler of the University of Texas

and Dr. Michael Wahl of SWT, two of the leading researchers on LCCA project. The

1

second phase of the work was to study the previously developed tools, their merits, and

come up with a set of requirements for the proposed Cost Modelling Tool.· The third

phase was to study the feasibility of developing a tool based on the concept proposed by

Kaminski [14]. During this phase I studied available web technologies so that we can

develop a tool that will support secured data processing over a distributed network. This

included a thorough analysis of the capabilities of HTML, SGML, XML, and DTD. I also

learnt about various XML tools such as "XML Generator", "Xerces-J", "Breeze XML

Studio", and "Project X". There was a substantial learning curve in this phase of my

research because I downloaded, and installed each of these tools, learnt how to use them

by going through the tutorials, wrote some test code using example XML files and finally

analysed against other tools.

Once we were sure of the possibility of developing a tool based on.XML, DTD,

SAX parser, and W3C DOM, we drew up the Cost Modelling Tool architecture in the

fourth phase of our research. Simultaneously, we developed the Abstract Cost Model and

all its corresponding sub models to create a template for the XML data structures. The

fifth phase was to decide on a suitable Integrated Development Environment (IDE).

During this phase I learnt to use JBuilder 3.5, Visual J++, Simplicity for Java, and Forte

for Java. I made a comparative analysis of these tools and suggested the best IDE for this

project. The following phases were: writing Java code for the CMT, testing the code

against various XML data files, analyse memory usage, and deploying the tool in various

environments.

This thesis consists of seven chapters. Chapter 1 gives a background of the LCCA

project; previous cost modelling tools and their problems. Chapter 2 discusses basics of

2

economics modelling and system hierarchy. Chapter 3 discusses the requirement

specification of the tool, the environment, and· abstract models. Chapter 4 explains the

merits of Java as a programming language and Java IDEs (Integrated Development

Environment). Chapter 5 explores current state of XML, DTD, and XML parsers.

Chapter 6 explains the Cost Modelling Tool architecture and the user interface. Finally,

Chapter 7 concludes this thesis by o·pening doors to further research and enhancement of

this tool.

1 Thesis Background

Design, Test and Economics are topics that are usually not discussed together.

There is the well known wall between design and test which is difficult to cross, although

throughout the years the wall has become significantly smaller. The gap between the

technicians and the white-collar squad is much deeper due to quite different view of the

product. The technicians of all colors at least have in common the view of an electronic

part with electrical and timing specifications. The accountants have a much more abstract

view of the part: 'This part costs $5 each and that is too much.' Obviously, these two

groups speak a different language.

Looking at· the result, the cost issues are essential because they sway the gain or

loss of a company. Nevertheless, it's not so simple to optimize costs. There are many

reasons for that. One reason is the different language spoken in the accounting and

engineering departments. Here only a continuous training can help to overcome the

communication problem.

3

A quite different problem is the size of a project. Even running a single person

project can cause some confusion. The decisions made are often determined by

preconceived ideas, even if all information is at hand. It gets of course worse when the

project grows and many people are involved. As soon as the size of the team gets bigger

than 7, one of the magic numbers, a hierarchy is required for reducing the communication

time and keep people doing their work [2]. On the other hand, many design decisions are

made which can produce only a local optimum, limited by the knowledge and the scope

of the decision-maker.

Most of the products developed have a comparatively short lifetime. Very simple

ones like electronic wristwatches are produced and sold and nobody even thinks about

repairing these devices. High quality goods, e.g. high end stereo equipment, with a long

lifetime are still repaired, although through the quality level we have achieved, repair is

getting less important. In both cases costs occur mostly during the design and

manufacturing stage, for the moment ignoring marketing and sales.

Design

Manufacturing

Figure 1 Financial effort over the life time [18]

Besides the product categories described above there are markets for long living

goods. The first one is public transportation. Aeroplanes are maintained to achieve a

lifetime of more than 25 years. Similar requirements are valid for rail bound systems. The

4

second. category is formed by production facilities like power plants. The lifetime of one

of these systems is quite high - at least 25 years. A third category with growing lifetimes

is formed by military applications, where due to budget cuts the lifetime of existing

goods are extended and new goods have to be planned for an even longer life span. In

addition, all these systems require a high availability and reliability.

· The costs for these long lasting goods have three parts: the design phase, where

high costs occur over a short time period, the manufacturing phase, which is the time the

product is sold on the market and finally the maintenance phase which is much longer.

One of the major cost sources that are usually ignored is testing. On the IC (Integrated

Circuit) level, it can be in the range of 30% - 50% of a component's manufacturing cost.

Thus testing is one of the most crucial parts, strongly influencing the design, the

manufacturing and the maintenance costs until the final end of use.

Testing has to be kept in mind during the specification phase to be able to deliver

a product with sufficient quality. The DPT (Design for Testability) technique can be used

to achieve this goal. Test equipment costs a lot of money (testers for processors are in the

range of $3-5 Million), but we need it. Systems must be tested for preventive

maintenance or because of a failure. The failure may be generated or falsely detected by

using other, non-appropriate test equipment.

Testing is essential because the customer requirements towards quality and

reliability of a product have to be met. For some time the idea of manufacturing a fault

free product was discussed, but the reality showed that testing cannot be avoided.

Looking more into the technical side of a system the hierarchy mentioned for the

human organization is of course part of the system, too. The hierarchy can be found in a

5

wide variety of systems. On the 'small scale' a single chip can consist of a CPU, memory,

1/0 devices, amplifiers, AID and DI A converters and even micro mechanical parts. In the

'medium scale' you can find a system consisting of boards and chips. On the large scale a

system might be an autopilot, consisting electronics and mechanical parts like ailerons,

rudders or elevators.

The following figure shows this typical real life system m more detail as a

collection of linked items. Ideally, the links are all the same type, but in reality many

different views exist. Some of them are logic links, like the computer architecture

hierarchy of CPU, memory, cache and 1/0 system. Other ones represent physical

conducting links between CPU, SRAM, SDRAM - all running on the main board, which

also physically caries them. Looking at the 1/0 again shows different types of modules:

basic human communication elements, devices providing input on the location and the

control elements, linked to the structure of the aeroplane.

u op1 o

Figure 2 A more realistic system

In summary, the structural hierarchy of system, board and chip has to be linked

with the three major phases of the lifetime of a product: Design, manufacturing and

6

maintenance. This leads to the following figure, which illustrates these areas and their

relationships.

System

Design

Figure 3 Hierarchies and time dependencies [18]

In the above diagram, all dimensions influence each other resulting in a set of arcs

linking all levels and all life times. This graph, together with the illustration of a real

system, clearly indicates that the problem of economics of design and test is not a trivial

one. It reminds one of a multihued dragon, changing its colors continuously or, in a more

abstract view, it is a multidimensional time dependent problem. For solving the problem

there are no elf stones available and no silver bullets. From the technical perspective,

there is no consistent cost model covering the wide range from design via manufacturing

to maintenance. Local solutions exist, but still there is a lot of unknown space between

these islands of knowledge and tools permitting cost modelling are simply not available.

The following section examines the merit and the usefulness of the exiting tools.

7

2 Previously Developed Tools

Several tools have been developed during the history of cost modelling. There are

two different approaches that have been followed: a spreadsheet oriented approach and a

C-program based approach.

The previous cost modelling tools have been developed in the framework of a

large project called EVEREST·[?]. It was sponsored by the Commission of the European

Community in the early '90s. The first kind of tool was based on spreadsheets. The idea

behind this implementation was to have an easy to use model with a limited complexity.

The current state of the spreadsheet software allows easy calculations and provides a

huge variety of representations. These properties makes them well suited .for business

applications and better than ad hoc implementations.

The limitations of spreadsheets become obvious whenever the basic model is

changing. A modification of the model requires an update of the spreadsheet.

Unfortunately, the ability for documenting a spreadsheet so that it is easily maintained for

a long time is limited. Besides that, the spreadsheets then too become slow when the

number of variables becomes greater. It was observed that loading a spreadsheet database

with several hundred parameters and some calculations could easily take minutes. Here

the practicability becomes more important than the ease of programming. Besides,

spreadsheets are designed to run on one machine only.

Another approach has been followed in the EVEREST project, too. The cost

model for Asics that had been developed there was closely liked to the in-house CAD

system. The interfaces of the CAD system were available and so the system accessed

8

many of the internal CAD data. The. program was implemented in C language. The cost

model was read in from a file. The model could be modified but due to its close link to

the in-house CAD systems, the tool became useless for other applications.

Moreover, both the hardware and the operating system of the original software are

no longer available. This is one of the key reasons why porting the code turned out to be

really difficult. Another problem with this model was that the CAD system where the tool

was directly linked to is no longer existent.

Part of the program was a simulation rriodule, which allowed generating input

value sets based on a Monte Carlo approach for determining the sensitivity of the

individual parameters. For one analysis step 100,000 runs were performed, obviously a

well suited approach for a tool running in batch mode, but not suited for an interactive

tool.

9

II ECONOMICS MODELLING

Economics modelling is a technique, although seldom used, to deal with the key

issues of a long lasting system. These long lasting systems, which are the focus of our

work, have very high maintenance cost compared to their purchasing cost. For instance,

the maintenance costs for a typical helicopter can be as high as 92% of the total system

costs.

There are areas where costs are effectively optimized, particularly, in production

lines for mass produced goods. This is comparatively easy to achieve because most of the

information is available in house. It gets much more complicated as soon as . the system

consists of different elements, e.g. mechanical and microelectronic parts, which cause

completely different requirements for test and maintenance. Besides, the · information is

far too complex to be handled by a single engineer.

Mechanisms are required for coordinating the work efficiently. System

engineering standards are a basis for effective work, but most standards exist only in

paper and are not really implemented. One of these standards is EIA [6].

1 System Hierarchy Levels

Digital system design constitutes a strict hierarchy of chips, boards and systems.

Looking at the state of the art processors, the manufacturing costs split approximately

half for manufacturing the silicon and half for the test. A set of various DFT methods is

required, otherwise, the chips cannot be tested. Key information for the chip test level

comprise the test pattern for the basic modules, the structure according to the DFT

approach (scan path chains, self test modules, etc.) and the DFT methods for the next

higher level, e.g. the boundary scan (IEEE 1149 .1). The test equipment usually is a

standard digital test system or for analog components - an analog tester.

The board level requires DFT measures, too. From the old times access via test

points is still in use, but due to the continuously growing complexity, boundary scan is a

must today. Self-test is often implemented for the digital part, whereas such methods are

missing for analog components or modules. For system testability, buses are provided,

e.g. according to IEEE 1149.5.

The complete electronic system is usually tested on a special test system,

reflecting the requirements of the digital and the analog parts. Using Components Off

The Shelf (COTS), e.g. VXI components, drastically reduces the costs. Keeping the test

systems running is a crucial point, because maintenance for these systems is not a

marginal cost item.

Looking at a wider range immediately leads to a more general view of a system.

Systems in general can have electronic, mechanical, hydraulic and pneumatic

components, and -all these partial systems can have a hierarchy as described for the

electronic system. Nevertheless, there are significant differences: DFT methods are

mostly used in digital systems, whereas in the other domains DFT is often not possible.

Besides, the requirements for complex systems change drastically. Chips and

boards are usually analyzed for optimal design and production costs. However, the whole

system must survive for a long time. Therefore, test systems must be at hand for the

components over the complete lifetime of the product. The overall costs for a long lasting

11

system are dependent on the complete hierarchy - chip, board, electronic system, all other

system components, as well as the cost of maintenance and repair.

1pevelpper <Ll@YS ... 9f>i!S .. :
··. related toltfiis phase

Iii.

Design + I Production I Operational Phase
Developent

1
+ Test

Figure 4 Developer and customer costs

The cost distribution between the developer and the user of a system is shown

above. We studied the cost dependencies of the maintenance phase itself in more detail.

The structure of the costs related to maintenance is shown in figure 5.

Depot Technical Mainte- Logistic
Support Manual nance Personnel Manage-
Planning and Data Equipmen1 ment

Disposal Cost and Environmental Clean-Up

Figure 5 Columns of maintenance costs [4]

Every one of the five columns in the figure has strong impacts on the operational

costs. In the depot support planning, we face 2 to 3 levels of maintenance dilemma where

a decision of using an intermediate depot or not has to be made. The documentation of

the product has an impact. Detail documentation can decrease the repair time. As for the

maintenance equipment, we have two choices: "high tech equipment and intellectually

disadvantaged people" or "intelligent engineers and less equipment".

The column of personnel decisions is not only a question of how well educated

personnel but also how many personnel are needed to perform the maintenance. Logistic

12

management is a question of how to decrease the downtime of the product. The

equipment maintenance and the personnel columns can not be truly ·separated because

they have strong impact on each other. This makes the problem even more complex. DFT

strategies can have impact on all columns of this figure.

The detailed analysis of the individual columns has shown that the complexity is

extremely high because there are plenty of cyclic references in the cost model. Besides

the pure complexity, there is another problem: the complete analysis would require

information for all layers, starting with the chip level and ending at the system level. The

information is present in most cases, but there are technical difficulties in accessing the

information (a multitude of CAD tool interfaces are required) as well as organizational

problems (who is willing to share his private data?). These two aspects together lead to

the result that the development of an overall cost model is not feasible, at least not with

our limited resources.

To cope with this complexity we have chosen to define a flexible cost model that

can be expanded as necessary during the design, manufacturing and maintenance phase.

Chapter III shows the modelling approach and gives some examples on how to describe a

system with this model.

13

III TOOL REQUIREMENTS

The analysis of the previous tools showed that both approaches were not feasible

for meeting today's requirements. The requirements are quite different, in particular as the

intended use has changed and the view has become broader. The previous tools were

intended for use within a single design · group, whereas the new approach targets the

systems' design flow by collecting information from a wide rage of different sources.

The requirements of the tool have grown significantly. The model cannot be

assumed to be complete. The model will change and grow over the time. The hardware

and software environment will no longer be constant and even differ in a single design

flow. The data will be distributed and since there are different sources, the information

must be protected. These items are discussed in more detail in the rest of this chapter.

1 Flexibility Of The Model

The discussion on economics modelling in the previous chapter clearly showed

that it is difficult to generate a complete model. Thus we have to live with a model that .

will never be complete, but which will obviously not be constant, either. Thus we need a

graphical model editor.

The core part of the model editor is the . handling of . the system hierarchy.

Complex systems imply a hierarchy of chip, board, digital subsystem, and system.

Linking other domains to the hierarchy leads to different paths toward a system. An

14

example is given in the following figure, where the hierarchy of digital system and a

mechanical system are lined out.

qigital system'
:f/":C:;:

m.eg,hanical system
··;.,

gate screw

Figure 6 Two possible hierarchies: digital and mechanical

Obviously there are many more hierarchies possible, with a varying depth of

hierarchy and mixed objects, even with objects having properties common to more than

one hierarchy.

This leads to the development of a model, which is based on a generic entity,

called cell. The name is borrowed from the IC design domain where a cell always is the

basic block for the current level of hierarchy, independent of the complexity. A cell can

have one or more properties, reflecting the different characteristic. This cell concept gives

a high flexibility given the number of hierarchy levels and a mixture of properties of one

cell. This concept also allows the dynamic extension of the model.

15

2 Hardware And Software Environment

The tool will be used within the system design flow. Therefore, different

departments will have access to it - some will fill in specific information while others will

refer to the information contained in the system. In the ideal case, a company-wide

unified IT system is used, which could be the platform for implementing the cost

modelling tool. However, this situation is usually not the case. The tool itself must be

able to cope with a distributed user community.

Figure 7 Departments with access to the cost model

Concerning the hardware there is only a very small probability that all

departments use the same hardware. Usually Wintel PCs are used in the office domain,

whereas in the design environment, quite often Unix workstations are in use. The

operating system also varies in the same way: Windows and all its different

implementations, Unix and its derivatives, MacOS and others. This variety led to the

decision to use Java as the implementation language. Currently this is the language of the

choice if multiple platforms must be dealt with and the development of separate versions

is not possible.

16

The use of Java also allows the creation of a cost modelling applet that is

downloaded on demand by the user. This concept has many advantages. The most

important one is that a browser handles the user interface. Browsers are available on all

platforms and when the tool is used via a web page, the page and the applet is

downloaded. No installation of the tool is required at all and everybody will use the same

version. Software updates will take place only on the central tool server.

3 Distributed Database

In the same way as the user community, the data itself is distributed. The data will

not be available at one site and having a distributed database system as the foundation is

not feasible for this project. Fortunately, the web makes it easy to deal with distributed

data and the application is not time-critical.

The simple version is that the data is stored on the local server, together with the

tool itself. The data can be accessed from the remote servers via the Intranet. The model

is stored in ·a standardized file format, which supports links ·to external files. These

external files can reside on the server, but they can be located on the local workstations,

too. The link is established by using the URL of the file.

17

Figure 8 Data distributed over the global server and workstations

Restrictions to the data file nesting are that there must be exactly one file that

represents the entry point to the model and of course there are no circular references

allowed.

Up to now we have assumed that all information is owned by one organization

and that the network is available in an Intranet. We have assumed, too, that the data

connections are secure and that everybody who has access to the data is allowed to deal

with it. However, for a real world application, we have to make sure that the access to the

data is restricted. For increasing the security two mechanism have been introduced:

explicit control of ownership and encryption.

The protection is not bound to the complete data set but linked to individual cells.

The cell, as the core point of protection, allows fine-tuning of access control by keeping

parts of the model protected while other cells are made available.

At the current state of the development, encryption has been introduced into the

data model, but the encryption algorithm has not been decided on. Encrypted cells can be

18

accessed if owner identification matches the decryption key. The ownership control and

the access right have been implemented.

We have defined three different categories of ownership: owner, user, and world.

The owner of the model is a person or organization that has generated the data. A user is

someone who must identify himself or herself by a name and password/ decryption key.

World is anybody reading the file but do not have to identify themselves. Each category

has certain access rights: locked, evaluate, read, and modify.

Locked means that the cell is not accessible at all. As soon as the program reaches

such a cell the construction of the tree is stopped and the cell referring to this cell

becomes a leaf cell.

Evaluate means that the cell goes into the cell tree and that the program can

evaluate the cost functions of this cell. The cell itself and all its contents remain invisible

to the user.

Read.means· that the complete contents of the cell is visible and can be displayed

by the cost modelling tool. A cell that is readable can always be evaluated. This mode

opens all information to the user, but still the user cannot modify the model.

Modify means that the cell can be modified. This· right includes reading and

evaluating of the model. Cells can be changed and deleted from the cell tree and new

cells can be linked to the current cell.

The owner of a data set always has the right to modify the cells and the model.

The default values for user and world are locked. All access requires an explicit action

from the owner. The following figure gives the right matrix.

19

Figure 9 Rights matrix

4 Abstract Cost Model

The abstract cost model is an initial attempt to develop a general cost model. It

covers system costs over the various levels of hierarchy (chip, board, and system) as well

as the product life phases (design, manufacturing, maintenance, and disposal). The target

of the model is the cost optimization of long lasting systems.

The meta language used is XML, a mark-up language that allows describing the

model. This language is also one of the key web languages and thus ideal, because

today's tools are based on distributed data sources and applications distributed over the

web.

The approach we are following is based on cost information modelling, followed

by the evaluation of the model to determine the cost relevant parameters. The previously

implemented approaches lack flexibility. As has been shown in the previous chapters, the

modelling of a complex system requires a flexible solution. So we decided to develop a

concept that is not based on a specific cost model but provides the means to describe a

general cost model. The concept is depicted in the following figure.

20

Figure 10 Basic software concept

Developing the abstract cost model (ACM) is a tedious work. It must allow the

description of the general information about ownership and rights, the cost model itself,

as well as information for the modelling tool so that the appearance of the data remains

the same after save and restore. To describe the ACM, we used a style similar to

Express-G [1 O] notation.

General information is required for 'housekeeping'. We need to know who is the

generator of the data set, model version, which software and which software version, etc.

The graph for this part is contained in the following figure. A key is provided since the

data set can be protected.

21

information

key

q i"!stitution I
history

'software

Figure 11 General information

5 Cost Bearing Entities

Cost Bearing Entities (CBE) are those entities that are associated with costs. To

be able to collect information about different views of the model the entity can have one

of five attributes: electronic, electric, mechanic, hydraulic and pneumatic. This set of

attributes allows searching the cost tree for each category.

The costs themselves are separated in four different classes: design,

manufacturing, maintenance, and disposal. The first two are the costs usually carried out

by the designer and the last two are usually carried out by the users.

22

;· - -o 9ost Bearing Entity

11 I I II I II

11 I I II I I I

Design p II I I

I I I

111119

11 I I
electronic I

I I I 11 I I

IManufacfur~ _ I I I
11 I'. -q elecfnc

I I 11 I

I I 11 I

1Mamfenanc1> _ ~: :: '. -9 mechanic
I 11

Disposal ~ - _: : : --q fiyarauhc

I

•---tj pneumaf1c I

Figure 12 Cost Bearing Entity

A cost function is associated to each cost type. It may be that there are no costs at

all associated at that level, but it may be a constant, too. Usually the costs will be

described by an equation. The equation consists of global constants, e.g. the number of

systems that are taken into account as well as constants like e and .

The functions themselves are described in postfix notation. The elements of the

terms can be global constants, numbers, or other CBE's referenced by name. All standard

arithmetic functions are supported. Following is the top-level graph of the model

described above:

23

model history

[1 .. n]

unitdefinition

[1 .. n]

unit

unit name

identifier

number

scaling factor

[O .. n]

:~UQ,QeJ~~riabl~ ,r

model name ------
SCMXML identifier

scmheader

documentation

[1 .. n]1L--------------

1-----n dataorigin_. __ __.

system

company

author

department

street

city

zip code

country

programname

version

Comment [1 .. n] t . t k s nng o en

Figure 13 Top level model

1 .. n

Following is the cell model with extended cost functions:

24

cell cell name identifier

cell readable cellencryped
electrical

electronic

9 mechanical

celldisptay" cellcontents celltype pneumatic

9 hydraulic
a;;;;.;..:.=____;,____;,=~ [O .. n)1

reliability · p--J cellcost
undefined

celldesigncost cellmanufacturingcost celldisposalcost

manufacturingcos maintenancecost

testcost maintenancetestcost

Figure 14 The cell model with extended functions

Appendix 3 provides definition of the terms used in figure 13 and 14.

6 The Modelling Tool

The cost modelling tool has several layers. The basic level is the file 1/0 level

where the XML file is read and the data structure is created. The second layer is the

25

model management layer, where general data and CBEs can be graphically defined. The

data including the information on how to visualize them can be stored back in the XML

file.

Figure 15 Layer structure of the cost modelling tool

The third layer is the model evaluation layer. Here a sensitivity analysis of the

cost parameters can be performed. The visualization of the results will be performed in

the fourth layer.

26

IV Java - Programming Language and Development
Environment

The Java language developed and supported by Sun Microsystems is available on

many platforms and because it is a virtual machine based language, the program itself as

well as most parts of the libraries are the same on binary level on each system. This

reduces portability problems and avoids the need to provide specific binaries for each

platform a program should run on.

With the Swing-AP!, a platform independent, powerful, and modem graphical

user interface library is available and with its pluggable look-and-feel it reduces the

problems of platform independent programs for the user.

With its portability especially with Swing, Java is the language· of choice for this

project. The dynamic binding and eventually JavaBeans can be used for the Cost

Modelling Tool to provide the dynamic addition of new objects for the modelling engine.

Another important point for Java is that an XML-Parser is becoming part of Java's

libraries, because of Sun's role in XML. Also Java has its benefits in development time,

maintenance and reliability. These benefits outweigh the cost involved in requiring faster

and better hardware, because it results in shorter implementation times. This is highly

recommended related to the kind of this project with its very restricted development

capacities.

Although it could not be assumed to be as stable as Java 1. 1 with its several

maintenance releases, the new Java 2 will be used. The necessary tool support is given by

IDEs, such as, Borland's JBuilder 3.5, Sun's Forte for Java and Data Representation's

27

· Simplicity for Java. Java 2 brings in several benefits like new basic classes, a just-in-time

compiler on all platforms, CORBA, and enhanced Swing support.

1 Swing/JFC

The Swing API contained in the Java Foundation Classes is a platform

independent, powerful, and modem graphical user interface library with a pluggable

look-and-feel. Swing is written natively in Java and built on the JavaBeans technology.

The original windowing toolkit, the abstract · windowing toolkit (A WT), of the Java

platform was just a thin wrapper around a platform specific GUI library. Thus, the

programs always inherit the look and feel of that platform. This caused a lot of trouble for

programmers to get their program run and look fine on different platforms.

For this project we used the latest Java 2 standard edition with JDK/JRE 1.2.2 and

JFC/Swing 1.1.1.

2 The Integrated Development Environment

For developing a graphical user interface in Java an integrated development

environment must be chosen·. Several IDEs are available today: Borland's JBuilder, Sun's

Forte for Java and Data Representation's Simplicity for Java are the most commonly used

tools.

2.1 JBuilder 3.5

Borland's JBuilder 3.5 supports a variety of technologies including Java 2

platform, JFC/swing, JavaBeans, and CORBA. The JBuilder development environment

28

provides a single view for a variety of functions, such as file and project management,

editing files, visual designing, compiling and debugging application. It consists of a

window named AppBrowser that contains several panes and panels for performing these

functions. JBuilder provides a variety of time saving wizards for application

development. Code template and Codelnsight helps writing code. The UI designer is also

quite powerful. Although JBuilder takes a while to load for the first time, compile and

debug is quite fast. The Deployment wizard collects all the files needed to distribute a

program. It can also archive them into a JAR file.

2.2 Simplicity for Java

Data Representation's Simplicity for Java is also a 100% Pure Java Rapid

Application Development (RAD) tool for developing applications and applets using Java

2 Technology. With Simplicity for Java, developers can build Java software interactively

through a visual model that is instantaneously updated to reflect any changes made to the

program's source code without compiling. This lets developers create Java source code

faster and with fewer errors. While coding, Simplicity executes Java source code on-the

fly, which allows developers to see their code in operation without lengthy code-compile

test cycles. Bugs and syntax errors instantly show themselves to.the developer. The Code

Sourcerer has a repertoire exceeding 50,000 different Java statements that can be chosen

with a few mouse clicks.

2.3 Forte for Java

Sun Microsystems's Forte for Java IDE, formerly NetBeans Developer, is based

on an open source code framework, is a new class of Java development tools. It is open,

29

modular, and easily extensible. It is written in the Java programming language and based

on Swing components, and also cross-platform compatible. The core IDE can be

extended to a complex and customized enterprise IDE. Sun has released Forte for Java

just recently in June 5, 2000. Therefore, its capabilities and acceptability among the Java

developers are yet to be seen.

There are many other IDEs exist but are not as popular or may be in the

developing stage. JBuilder 3.5 is the IDE choice for our project because it has all the

features we need, it is readily available at SWT, and it is widely used among the Java

developers.

30

V Evolution of XML

The W3C consortium has developed a set of languages aimed at web applications.

The best known is the HTML (Hyper Text Markup Language). This language allows

describing a text format, but does not allow keeping any semantic meaning. That was the

reason why SGML (Standard Generalized Markup Language) was developed. SGML is a

meta language, designed for the specification of your own language. Since SGML is very

general and it israther difficult to use. Subsequently, XML (eXtensive Markup Language)

was defined as a subset of SGML and is the appropriate language for describing a data

model.

1 Data Exchange

XML is a text-based markup language that is fast becoming the standard for data

interchange on the Web. As with HTML, data is identified using tags (identifiers

enclosed in angle brackets like this: < ... >). Collectively, the tags are known as

"markup". But unlike HTML, XML tags also informs what the data means, rather than

how to display it. Where an HTML tag says something like "display this data in bold

font" (...), an XML tag acts like a field name in a program. It puts a label on

a piece of data that identifies it (for example: <message> ... </message>).

In the same way that the field names are defined for a data structure, any XML

tags may be used for a given application. Naturally, though, for multiple applications to

use the same XML data, they have to agree on the tag names that they intend to use.

31

Here is an example of some XML data for a messaging application:

<message>

<to>you@yourAddress.com</to>

<from>me@myAddress.com</from>

<subject> XML Is Really Cool</subject>

<text>

How many ways is XML cool? Let me count the ways ...

</text>

</message>

The tags in this example identify the message as a whole, the destination and

sender addresses, the subject, and the text of the message. As in HTML, the <to> tag

has a matching end tag: </to>. The data between the tag and its matching end tag

defines an element of the XML data. Note, too, that the content of the <to> tag is

entirely contained within the scope of the <message> ... </message> tag. It is this

ability for one tag to contain others that give XML its ability to represent hierarchical

data structures.

Once again, as with HTML, white space is essentially irrelevant, so the data can

be formatted for readability and yet still be processed easily with a program. Unlike

HTML, however, data can be easily searched in XML, because the XML tags identify the

content of the data, rather than specifying its representation.

32

2 Tags and Attributes

Tags can also contain attributes - additional information included as part of the

tag itself, within the tag's angle brackets. The following example shows an email message

structure that uses attributes for the "to", "from", and "subject" fields:

<message to="you@yourAddress.com" from="me@myAddress.com"

subject="XML Is Really Cool">

<text>

How many ways is XML cool? Let me count the ways ...

</text>

</message>

As in HTML, the attribute name is followed by an equal sign and the attribute

value, and multiple attributes are separated by spaces. Unlike HTML, however, in XML

commas between attributes are not ignored - if present, they generate errors.

3 Well-formness

One really big difference between XML and HTML is that an XML document is

always constrained to be ·well-formed. There are several rules that ·determine when a

document is well-formed, but one of the most important is that every tag has a closing

tag. So, in XML, the </to> tag is not optional. The <to> element is never terminated

by any tag other than </to>. Another important aspect of a well-formed document is

that all tags are completely nested. So you always must have nesting like this

<message> ... <to> ... </to> ... </message>,

but never unbalanced tags like

33

<message> .. ~<to> ... </message> ... </to>.

A complete list of requirements is contained in the list of XML Frequently Asked

Questions (FAQ) on the w3c "Recommended Reading" list at http://www.w3.org/XML/.

4 The XML Prolog

An XML file always starts with a prolog. The minimal prolog contains a

declaration that identifies the document as an XML document, like this:

<?xml version="l.0"?>

The declaration may also contain additional information, like this:

<?xml version="l.0" encoding="ISO-8859-1" standalone="yes"?>

The XML declaration is essentially the same as the HTML header, <html>,

except that it uses<? .. ?> and it may contain the following attributes:

Version identifies the version of the XML markup language used in the data.

This attribute is not optional.

Encoding identifies the character set used to encode the data. "IS0-8859-1" is

"Latin-I" the Western European and English language character set. (The default is

compressed Unicode: UTF-8.)

Standalone tells whether or not this document references an external entity or

an external data type specification. If there are no external references, then "yes" is

appropriate

34

5 XML Processing Instructions

An XML file can also contain processing instructions that give commands or

information to an application that is processing the XML data. Processing instructions

have the following format:

<?target instructions?>

where the target is the name of the application that is expected to do the processing, and

instructions is a string of characters that embodies the information or commands for the

application to process.

Since the instructions are application specific, an XML file could have multiple

processing instructions that tell different applications to do similar things, though in

different ways. The XML file for a slideshow, for example, could have processing

instructions that let the speaker specify a technical or executive-level version of the

presentation. If multiple presentation programs were used, the program might need

multiple versions of the processing instructions.

6 Advantage of XML over HTML

There are a number of reasons for XML's surging acceptance. The following

sections lists a few of the most prominent advantages of XML over_ HTML.

6.1 Plain Text

Since XML is not a binary format, it makes it easy to create and edit files with

anything from a standard text editor to a visual development environment. That makes it

35

easy to debug programs, and makes it useful for storing small amounts of data. At the

other end of the spectrum, an XML front end to a database makes it possible to efficiently

store large amounts of XML data as well. So XML provides scalability for anything from

small configuration files to a company-wide data repository.

6.2 Data Identification

XML identifies what kind of data there is, not how to display it. Because the

markup tags identify the information and break up the data into parts, an email program

can process it, a search program can look for messages sent to particular people, and an

address book can extract the address information from the rest of the message. In short,

because the different parts of the information have been identified, they can be used in

different ways by different applications.

6.3 Stylability

When display is important, the stylesheet standard, XSL, gives the ability to

dictate how to portray the data. For example, the stylesheet for:

<to>you@yourAddress.com</to>

can say:

1. Start a new line.

2. Display "To:" in bold, followed by a space

3. Display the destination data.

Which produces:

To: you@yourAddress

36

Of course, the same thing can be done in HTML, but it will not allow processing

the data with search programs and address-extraction programs and the like. More

importantly, since XML is inherently style-free, one can use a completely different

stylesheet to produce output in postscript, TEX, PDF, or some new format that hasn't

even been invented yet. That flexibility amounts to what one author described as "future

proofing" your information. The XML documents authored today can be used in future

document-delivery systems that haven't even been imagined yet.

6.4 Inline Reusabiliy

One of the nicer aspects of XML documents is that they can be composed from

separate entities. This can be done with HTML, but only by linking to other documents.

Unlike HTML, XML entities can be included "in line" in a document. The included

sections look like a normal part of the document - the whole document can be searched at

one time or downloaded in one piece. That provides the ability to modularize documents

without resorting to links. Additionally, a section can be single-sourced so that an edit to

it is reflected everywhere the section is used, and yet a document composed from such

pieces looks for all the world like a one-piece document.

6.5 Linkability

Thanks to HTML, the ability to define links between documents is now regarded

as a necessity. This initiative lets XML files define two-way links, multiple-target links,

"expanding" links (where clicking a link causes the targeted information to appear inline),

and links between two existing documents that are defined in a third.

37

6.6 Easily Processed

Regular and consistent notation makes it easier to build a program to process

XML data. For example, in HTML a <dt> tag can be delimited by </dt>, another <dt>,

<dd>, or </ dl>. That makes for some difficult programming. But in XML, the <dt> tag

must always have a </dt> terminator, or else it will be defined as a <dt/> tag. That

restriction is a critical part of the constraints that make an XML document well formed.

Otherwise, the XML parser won't be able to read the data. And since XML is a vendor

neutral standard, one can choose among several XML parsers, any one of which takes the

work out of processing XML data.

6. 7 Hierarchical Structure

Finally, XML documents benefit from their hierarchical structure. Hierarchical

document structures are, in general, faster to access· because you can drill down to the

part you need, like stepping through a table of contents. They are. also easier to rearrange,

because each piece is delimited. In a document, for example, you could move a heading

to a new location and drag everything under it along with the heading, instead of having

to page down to make a selection, cut, and then paste the selection into a new location

[22].

7 Data Type Definition

· Data Type Definitions (DTDs) are a means of establishing a schema for XML

documents. DTDs originated in SGML and serve as the standard schema mechanism for

validating SGML documents. A big benefit of using DTDs as schemas is that existing

38

SGML tools can be easily modified to support XML because they already support DTDs

in SGML. Following is an example of a DTD for an XML addressbook:

<!ELEMENT addressbook (contact)+>

<!ELEMENT contact (name, address+, city, state, zip, phone, email, web, company)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT phone (voice, fax?)>

<!ELEMENT voice (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT web (#PCDATA)>

<!ELEMENT company (#PCDATA)>

The above DTD reveals just the basic mechanics of how a document model . is

defined using DTD syntax. The content model for the contact element is provided as a list

of elements enclosed in parentheses. The plus sign (+) following the address book element

indicates that it can occur more than once. The phone element also includes a. content

model that lists the child elements qf phone. In this case the question mark (?) indicates

that the fax element is optional, but if appears it must appear only once. All of the

remaining elements in the DTD are listed as containing #PCDATA. PCDATA stands for

parsed character data.

It is important to note that data type constraining is not supported in DTDs. To

use data type constraining, we must create a schema that adhere·s to the XML-Data

specification, such as XML Schema.

39

8 XML Parsers

An XML parser is a program that reads or interprets XML documents. There are a

wide variety of XML parsers available today. Most XML parsers can operate as either

validating or non-validating parsers, depending ·On whether or not a document requires

validation. Additionally, most of the available XML parsers are designed as software

components that can be plugged into an application. The following is a list of some of the

more popular XML parsers available as of this writing [13]:

• Sun's Project X Parser for Java

• The Lark and Larval XML Parsers for Java

• Datachannel's XML Parser for Java

• IBM's XML Parser for Java

• The Oracle XML Parser for Java

• Microsoft's Aelfred XML Parser for Java

• IBM's XML Parser for C++

• The XML Parser for C++ Builder

Cost Modelling Tool uses Sun's Project X Parser (JAXP). It has several

advantages over other parsers. It allows parsing of XML 1.0 documents, supports

optional validation for "well-formed" of "valid" XML code, supports SAX 1.0 API and

XML's Namespaces. Sun's XML parser is the fastest parser available to date that has

passed over 500 industry benchmark tests [22]. Additionally, this program offers support

40

for building and manipulating XML tree-structured data. It conforms to W3C DOM

Level 1 recommendations with enhancements.

9 Breeze XML Tool

Breeze is an alternative to the DOM. It creates Java classes that encapsulate XML

parsing and validation and which · have methods that map to XML data elements and

attributes. Basically, Breeze creates a custom API for an application-specific XML

structure and gives a toolkit for transporting files. In other words, Breeze allows creating

Java objects that encapsulate the parsing and loading of an XML document into Java

classes. In order for us to use Breeze, these classes then have to be accessed to populate

the JTree. Subsequently, the toXML() and fromXML() methods can be used on the

Breeze object to get streams of XML into and out of these objects. First we liked this

approach, but after a through evaluation of the tool, this approach turned out to be quite

cumbersome.

Breeze may be good for application that uses specific data model. However, our

data model is flexible, therefore, the DOM approach as described in the following chapter

will work better for us.

41

VIII SOFTWARE HIERARCHY

The CMT software is based on MVC (model-view-controller) architecture. The

data model, the tree view, and the menu operations are three separate entities. Changes in

one will not affect the other. Data is extracted from the XML file and stored in the

memory as a DOM. A JTreeModel is created from this DOM. The view is based on

JTree, a swing component of Java. The following figure depicts the hierarchy.

Figure 16 Cost Model architecture - top-level view

Users can change the tree using various menu operations. These changes are then

propagated to the model and to the data. Now if the new tree is saved, a new XML file

42

will be generated that reflects the changes made by the user. The following sections will

explain the operations in detailed.

1 MVC Architecture

The Cost Model Tool was designed usmg MVC (Model-View-Controller)

architecture. The program creates and manages an association between three

collaborating elements:

• View: This comprises the visible GUI that the user sees

• Model: This is the abstraction used in the application logic to represent the nature and

state of the visual objects that are presented on the screen to the user.

• Controller: This component enables the model and view components to communicate.

It also allows the model to be updated to reflect changes incurred by interaction with

the user.

The job of the view object is to manage GUI issues such as rendering of the

display components, layout, redrawing, event handling, and so on. These tasks are

heavily focused on presenting a meaningful representation of the internal state of the

application to the user.

The application model has a different job. It must create and maintain the internal

application logic state associated with whatever entities the program represents or

simulates. The GUI represents a visual analogy of the nature and internal state of the

model.

43

The controller is really the part of the application that forms a communication

path between the model and view. It allows the view and model to communicate changes

in their state to one another.

An external entity other than the GUI can initiate a change to the state of the

model. In that case, the model makes a request to update the view object. Another

scenario is that the user performs some action that requires a change to the model's state.

The GUI reflects this change, but it is really the model that tracks the change.

In either case, the controller is the medium through which the model and view

communicate. The view translates the abstraction employed by the model into a form

suitable for the user. The model, therefore, is the heart of the application logic and state.

2 Parsing an XML Document

The CMT program parses XML document usmg Sun's JAXP parsers. The

following sections describe the technologies that JAXP is built on.

2.1 The JAXP APis

The JAXP APis, contained in the jaxp.jar file, are comprised of the javax.xml.parsers

package. This package contains two factory classes: SAXParserFactory and

DocumentBuilderFactory that create a, SAX parser and a DocumentBuilder, respectively.

The DocumentBuilder, in tum, creates DOM-compliant Document object. The remainder

of this section shows how those APis relate to each other in the Cost Model application.

44

2.2 An Overview of SAX and DOM

SAX and DOM APis are defined by XML-DEV group and by the W3C,

respectively. The libraries that define those APis are included in the parser.jar file. The

"Simple API" for XML (SAX) is the event-driven, serial-access mechanism that does

element-by-element processing. The API for this level reads and writes XML to a data

repository or the Web. The DOM API provides a relatively familiar tree structure of

objects. The DOM API can be used to manipulate the hierarchy of application objects it

encapsulates. The DOM API is ideal for interactive applications because the entire object

model is present in memory, where it can be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML

structure and holding the object tree in memory, so it is much more CPU and memory

intensive. For that reason, the SAX API will tend to be preferred for server-side

applications and data filters that do not require an in-memory representation of the data.

2.3 The SAX APis

The SAXParserFactory generates an instance of the parser, which parses the XML

text. As the data is parsed, the parser invokes one of several callback methods defined by

the interfaces DocumentHandler, ErrorHandler, DTDHandler, and EntityResolver.

Here is a summary of the key SAX APis:

SAXParserFactory

A SAXParserFactory object creates an instance of the parser determined by the

system property, javax.xml. parsers.SAXParserFactory.

45

Parser

The org.:xml.sax.Parser interface defines methods like setDocumentHandler to set up event

handlers and parse(URL) to actually do the parsing. This interface is implemented by

the Parser and ValidatingParser classes in the com.sun.xml.parser package.

DocumentHandler

Methods like startDocument, endDocument, startElement, and endElement are invoked when

an XML tag is recognized. This interface also defines methods characters and

processinglnstruction, which are invoked when the parser encounters the text in an XML

element or an inline processing instruction, respectively.

ErrorHandler

Methods error,fatalError, and warning are invoked in response to various parsing errors.

The default error handler throws an exception for fatal errors and ignores other errors

(including validation errors). Sometimes, the application may be able to recover from

a validation error. Other times, it may need to generate an exception. To ensure the

correct handling, the application needs to supply its own error handler to the parser.

DTDHandler

Methods defined in this interface are invoked when processing definitions in a DTD.

This interface is extended by the com.sun.java.xml interface DtdEventListener, which adds

methods like startDtd and endDtd.

Entity Resolver

46

The resolveEntity method is invoked when the parser must identify data identified by' a

URI. In most cases, a URI is simply a URL, which specifies the location of a

document, but in some cases the document may be identified by a URN -a public

identifier, or name, that is unique in the web space. The public identifier may be

specified in addition to the URL. The EntityResolver can then use the public identifier

instead of the URL to find the document, for example to access a local copy of the

document if one exists.

A typical application provides a DocumentHandler, at a minimum. Since the default

implementations of the interfaces ignore all inputs except for fatal errors, a robust

implementation may want to provide an ErrorHandler to report more errors or report

them differently.

2.4 SAX Packages

Table 1 shows how the SAX parser is defined by different packages.

Package

org.xml.sax

Table 1 Packages that define SAX parser

Description

Defines the SAX interfaces. The name "org.xml" is the

package prefix that was settled on by the group that

defined the SAX APL This package also defines

BandlerBase - a default implementation of a base class

for the various "handlers" defined by the interfaces, as

well as an InputSource class, which encapsulates

information that tells where the XML data is coming

47

org.xml.sax.helpers

j avax.xml. parsers

com.sun.xml.parser

from.

This package 1s part of SAX. It defines the

ParserFactory class, which lets us acquire an instance of

a parser either by specifying a name string or by using

the value defined by the org.xml.sax.parser system

property.

Defines the SAXParserFactory class, which returns the

SAXParser. Also defines the ParserConfigurationException

class for reporting errors.

Contains the Java

(com.sun.xml.parser.Parser),

XML

validating

parser

parser

(com.sun.xml.parser.ValidatingParser), and entity resolver.

The fully qualified name of either parser can be sent to

the parser factory to obtain an instance of that parser.

The nonvalidating parser generates errors if a

document 1s not well formed, and does some

processing of the DTD (if present) but does not check

to make sure that the document obeys all of the

constraints defined by the DTD. The validating parser,

on the other hand, checks to make sure that the

document obeys all such constraints.

48

2.5 The Document Object Model (DOM) APis

The javax.xml.parsers.DocumentBuilderFactory class can be used to get a

DocumentBuilder instance, and thereby produce a Document (a DOM) that conforms to

the DOM specification. The builder, in fact, is determined by the System property,

javax.xml.parsers.DocumentBuilderFactory, which selects the factory implementation that is

used to produce the builder. The platform's default value can be overridden from the

command line.

The builder's newDocumentO method can create an empty Document that

implements the org.w3c.dom.Document interface. Alternatively, the builder's parse

methods can be used to create a Document from the existing XML data.

2.6 DOM Packages

The Document Object Model implementation is defined in the following packages listed

in table 2:

Table 2 Packages that define the Document Object Model

Package

org. wc3 .dom

javax.xml. parsers

Description

Defines the DOM programmmg interfaces for

XML (and, optionally, HTML) documents, as

specified by the W3C.

Defines the DocumentBuilderFactory class and the

DocumentBuilder class, which returns an object

that implements the W3C Document interface. The

49

com.sun.xml.tree

factory that 1s used to create the builder 1s

determined by the javax.xml.parsers system property,

which can be set from the command line or

overridden when invoking the newlnstance method.

This package also defines the

ParserConfigurationException class for reporting

errors.

Sun's Java XML implementation of the DOM

libraries, including the Xm!Document,

XmlDocumentBuilder, and TreeWalker classes.

2.7 Cost Modelling Tool Implementation

This section shows how the Cost Modelling Tool implementation combines the

SAX and DOM APis. In this implementation, the DOM API builds on the SAX API as

shown in figure 17. The Cost Modelling Tool uses the SAX libraries to read-in XML data

and constructs the tree of data objects that constitutes the DOM.

The section of the diagram inside the wavy lines shows what Cost Modelling Tool

implementation does when it parses existing XML data. The default DocumentBuilder

creates an object, which implements the SAX DocumentHandler interface. It then hands

that object to the SAX parsers. When the input source is parsed, the DocumentHandler

creates a Document object. This object is then converted to a TreeModel by using an

adapter called: DomToTreeMode!Adapter

50

XM

SAX
Parser

3 Event Handling

(DOM)

Figure 17 Parsing an XML document

After creating a model, a JTree object is instantiated. This object uses the model

by invoking the JTree (TreeModel) constructor. Then the program registers event listeners

with the JTree component to handle the events it is interested in. When the program

handles a user event, it makes two calls: one to the underlying data structure to make the

change, and another to the TreeModel-adapter to report the change. The TreeModel

object then notifies the JTree of the change.

51

The diagram below shows the steps needed to create a JTree object. They work

like this:

I Report
Change

Delegate
Request

I Change Data

Register Listener

Notify I
JTree

Request■
Data •

I Return
Result

Figure 18 Cost Modelling Tool architecture - detail view

52

4 User Interface

Cost Model user interface is simple. It demonstrates the capabilities of the model.

Based on the needs of the users, this interface should be customized. Figure 19 shows the

user interface after it is invoked for the first time. The left pane displays the XML data in

a view similar to Windows file explorer. The tree may be expanded or collapsed using the

mouse. If any of the nodes is selected on the left pane, the corresponding data or text is

displayed on the right editor panel.

Figure 19 Cost Model Tool User Interface

The "File" menu has two options: "Save" and "Exit". "Save" operation generates

a new Xm!Document from the current DOM document. This new document is then used

to overwrite the old XML file. Note that writing a DOM is not standard until W3C DOM

53

level 3 which is at this moment being reviewed as a draft. Therefore, we have used Sun's

ProjectX functions for demonstration purposes. Once DOM level 3 standard is approved,

these functions should be replaced by their new counterparts. "Exit" menu closes the

program thus frees up the memory used by the DOM and JTreeModel.

The "Tree" menu offers four operations: "Add", "Insert", "Reload", and

"Remove". "Add" and "Insert" operations have not been implemented. "Reload" action

serves as refreshing the tree's view to the underlying data model. Finally, "Remove"

action removes the currently selected node from the tree, updates the DOM and informs

the model of change.

The following figure shows the expanded tree created from Example.xml data:

~Cost Model Rlilf.3

File

Add

Insert
Re.;;atf

Remove

company

author

country

Jgram

---""'"""'C==:1 programname
0- E:j unitdefinition

f ~ system
<p e:1 globalvariable

D identifier
0-[::] value

0- c:] globalvariable
<p ~ globalvariable

D identifier

E>- IE::l value
0-lc] unitref

D comment

f E:j cellref
f IE:] cellrefexternal

[) identifier

D identifier
D 11'1"c""'o"m- m""""""'en-t

Figure 20 Cost Model Tool Operations

54

IX CONCLUSION

The CMT (Cost Modelling Tool) developed during the course of this project is a

breakthrough for the LCCA (Life Cycle Cost analysis) project. It bridges the gap between

the cost modelling concept and its actual implementation in the real world. It allows

maintaining a gradually growing model so that the model itself can be adapted to the

evolving technology and the increasing level of detail. Additionally, this tool will be able

to analyze costs and thereby help finding the right directions to meet the aim of optimal

costs.

XML was used as the carrier of data for the eventual web application for several

reasons. XML is relatively simple, and very flexible. It has many uses yet to be

discovered - we are just beginning to scratch the surface of its potential. It is the

foundation for great many standards yet to come, providing a common language that

different computer systems can use to exchange data with one another. As each industry

group devise standards for what they want to say, computers will begin to link to each

other in ways previously unimaginable [17].

Although this thesis project has made a significant contribution to the

development of the Cost Modelling Tool, the work is not complete. For the time being

we have decided to define the data types according to the DTD but not dynamically. Not

all editing functions are implemented because the intent of this thesis was to investigate

the viability of core implementation of a concept and to provide a basis for further

development into a final product. Appendix A contains a list of items that need to be

implemented in the next phase of the project.

55

This project builds a very solid foundation by bringing together the new ideas of

Java as a programming language, XML as the format for describing the data, DTD as the

way for defining the data entities and the concept of a distributed web based Computer

Aided Economic (CAEc) tool. The state of the art tool environment is a breakthrough in

the commercial application of LCCA concept. The thesis also demonstrated that it is

possible to perform software development in parallel to the data definition and even

across the Atlantic.

56

Appendix A

Further Im.plementation

The following features need to be implemented in the Cost Modelling Tool in

order to get a fully functional tool:

Editing the tree

The "Add" operation under "Tree" menu is not implemented. It can be

implemented in different ways. The user selects a node and then chooses "Add" menu

item. The program should then open a dialog box with list boxes, radio buttons, and text

fields relevant to the node selected. Upon entering the input, the program will add the

node to the tree and update the DOM. Other editing operations can also be added such as:

cut a node, paste a node, move a node, rename a node, edit the content of a node, etc.

Converting the application to an applet

In order for the CMT to be deployed in the web environment, the application must

be converted into a Java applet. However, in Java-enabled browsers, untrusted applets

cannot read or write files at all. By default, downloaded applets are considered untrusted

[1]. There are two ways for an applet to be considered trusted: Firstly, if the applet is

installed on the local hard disk, in a directory on the CLASSPATH used by the program

that runs the applet. Usually, this is a Java-enabled browser, but it could be the

57

appletviewer, or other Java programs that know how to load applets. Secondly, if the

applet is signed by an identity marked as trusted in the identity database.

Customizing the User Interface

The UI needs to be designed based on the uses. The CMT should be used as an

SDK and the UI will be designed according to the need of the users. The MVC

architecture of CMT already allows such implementation. For example, the CMT UI for

the manager, architect, and developer may be different due to the nature of their use of

CMT.

Using XML Schema instead of DTDs

One of the big complaints about DTDs is that they rely on a specialized syntax for

describing the structure of XML vocabularies. Furthermore, data type constraining in not

supported in DTDs. On the other hand, XML schemas are more powerful and provide

advanced features such as open content models, namespace integration, and rich data

typing. Therefore, using XML Schemas instead of DTDs will be preferred for further

development.

Implement the password protection

A model for password protection is already discussed in the "Distributed

Database" section in chapter III. The following figure shows a more detailed access right

model:

58

accessng ts

I ·--------·

accessowner access user

ownername

Figure 21 Access right model

Open an XML from a URL

It will be appropriate to replace the menus in CMT with buttons on an applet.

Then clicking an "open" button should display a text box where a desired URL of an

XML file may be entered.

Display Properties

Display properties are e.g. top left comer co-ordinates, size, scalability of a box,

. background color, box color, text location, text size, text style, font. The customer should

be able to define all colors, but there should be only few core fonts: helvetica, courier &

times.

59

Appendix B

The Source code

Following is the complete source code the Cost Modelling tool.

I*

* CostModel.java Last modified: 7/24/00

*
* Author: Mohammed Rahman

*
* Project: Cost Modelling Tool: User Interface and Edit Functons

*

* Description: This is a standalone java program that takes an XML file

* as a command line argument. The XML file and all corresponding DTD

* are then validated and parsed using SUN's SAX parser. This parsed object

* is a DOM {Document Object Model) level 2 document. An AdapterNode class

* is created to wrap the DOM nodes. The DomToTreeModelAdapter class

* implements the TreeModel using the AdapterNode objects. Now a JTree is

* is created using this TreeModel as its data model. An HTML pane is also

* created to display corresponding values of tree node elements. Both the

* JTree and HTML pane are then displayed to the user using a JSplitPane

* GUI component. Any of the tree items excluding the root can be selected

* and deleted using the "Delete" tree menu option. Once changes are made,

* the new model can be saved as a new toXML.xml file by selecting "Save"

* option from the file menu"

*/

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.FactoryConfigurationError;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;

import org.w3c.dom.DOMException;

60

II For write() operation

import com.sun.xml.tree.XmlDocument;

import java.io.*;

import java.io.File;

import java.io.IOException;

II Basic GUI components

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTree;

II Menu bar

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuitem;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

II GUI components for right-hand side

import javax.swing.JSplitPane;

import javax.swing.JEditorPane;

II GUI support classes

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.Toolkit;

import java.awt.event.WindowEvent;

import java.awt.event.WindowAdapter;

II For creating borders

import javax.swing.border.EmptyBorder;

import javax.swing.border.BevelBorder;

import javax.swing.border.CompoundBorder;

II For creating a TreeModel

import javax.swing.tree.*;

import javax.swing.event.*;

import java.util.*;

public class CostModel extends JPanel

61

// Global value so it can be ref'd by the tree-adapter

static Document document;

//Setup the tree

protected JTree tree;

protected TreeModel treeModel;

// Possible to set this with a command-line argument

boolean compress true;

static final int windowHeight = 460;

static final int leftWidth = 300;

static final int rightWidth = 340;

static final int windowWidth = leftWidth + rightWidth;

public CostModel()

// Make a nice border

EmptyBorder eb

BevelBorder bb

new EmptyBorder(S,5,5,5);

new BevelBorder(BevelBorder.LOWERED);

CompoundBorder cb = new CompoundBorder(eb,bb);

this.setBorder(new CompoundBorder(cb,eb));

//Setup the tree

treeModel = new DomToTreeModelAdapter();

tree= new JTree(treeModel);

tree.setEditable(false);

// Need to iterate over the tree and make nodes visible.

// Otherwise, the tree shows up fully collapsed

//TreePath nodePath = ???;

//tree.expandPath(nodePath);

//Menu bar

JMenuBar menuBar constructMenuBar();

// Build left-side view

JScrollPane treeView = new JScrollPane(tree);

treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight)) ;

// Build right-side view

62

// must be final to be referenced in inner class

final JEditorPane htmlPane = new JEditorPane("text/html", 1111
);

htmlPane.setEditable(false);

JScrollPane htmlView = new JScrollPane(htmlPane);

htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight)) ;

/ / Wire the two views together. Use a selection liste.ner

// created with an anonymous inner-class adapter.

tree.addTreeSelectionListener(

new TreeSelectionListener() {

public void valueChanged(TreeSelectionEvent e) {

TreePath p = e.getNewLeadSelectionPath();

if (p ! = null) {

AdapterNode adpNode

(AdapterNode) p.getLastPathComponent();

htmlPane.setText(adpNode.content());

) ;

// Build split-pane view

JSplitPane splitPane =

new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

treeView,

html View) ;

splitPane.setContinuousLayout(true);

splitPane.setDividerLocation(leftWidth);

splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+l0));

// Add GUI components

this.setLayout(new BorderLayout());

this. add ("North 11
, menuBar) ;

this.add("Center", splitPane);

// constructor

public static void main (String argv [])

if (argv.length != 1)

System.err.println ("Usage: java CostModel XmlFilename");

63

System.exit (1);

DocumentBuilderFactory factory=

DocumentBuilderFactory.newinstance();

try {

DocumentBuilder builder= factory.newDocumentBuilder();

document= builder.parse(new File(argv[0])) ;

makeFrame();

catch (SAXParseException spe) {

II Error generated by the parser

System.out.println (11 \n** Parsing error"

+" line"+ spe.getLineNumber ()

+ 11 uri" + spe.getSystemid ());

System.out.println(" 11 + spe. getMessage ()) ;

II Use the contained exception, if any

Exception x = spe;

if (spe.getException() != null)

x = spe.getException();

x.printStackTrace();

catch (SAXException sxe) {

II Error generated by this application

II (or a parser-initialization error)

Exception x = sxe;

if (sxe.getException() != null)

x = sxe.getException();

x.printStackTrace();

catch (ParserConfigurationException pee)

II Parser with specified options can't be built

pce.printStackTrace();

catch (IOException ioe) {

II IIO error

ioe.printStackTrace();

} II main

64

//Construct a menu

private JMenuBar constructMenuBar()

JMenu

JMenuBar

JMenuitem

menu;

menuBar

menuitem;

menu= new JMenu("File");

menuBar.add(menu);

new JMenuBar();

menuitem = menu.·add(new JMenuitem("Save"));

menuitem.addActionListener(new SaveAction());

menuitem = menu.add(new JMenuitem("Exit"));

menuitem.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent e)

System.exit(O);

} }) ;

/* Tree related stuff. */

menu= new JMenu("Tree");

menuBar.add(menu);

menuitem = menu.add(new JMenuitem("Add"));

//menuitem.addActionListener(new AddAction());

menuitem = menu.add(new JMenuitem("Insert"));

//menuitem.addActionListener(new InsertAction());

menuitem = menu.add(new JMenuitem("Reload"));

menuitem.addActionListener(new ReloadAction());

menuitem = menu.add(new JMenuitem("Remove"));

menuitem.addActionListener(new RemoveAction());

return menuBar;

//Returns the TreeNode instance that is selected in the tree.

//If nothing is selected, null is returned.

protected AdapterNode getSelectedNode()

65

TreePath selPath

I
if(selPath != null)

tree.getSelectionPath();

return (AdapterNode)selPath.getLastPathComponent();

return null;

//SaveAction saves changes to the tree.

class SaveAction extends Object implements ActionListener {

//Saves the changes to the tree

public void actionPerformed(ActionEvent e) {

try {

XmlDocument xdoc = (XmlDocument) document;

FileOutputStream file= new FileOutputStream("toXml.xml");

//FileOutputStream file= new FileOutputStream(argv[1]);

xdoc.write (file);

//SaveAction

catch (IOException ioe)

// I/O error

ioe.printStackTrace();

//RemoveAction removes the selected node from the tree. If

//The root or nothing is selected nothing is removed.

class RemoveAction extends Object implements ActionListener

// Removes the selected item as long as it isn•t root.

public void actionPerformed(ActionEvent e)

AdapterNode lastitem = getSelectedNode();

if(lastitem
(AdapterNode)treeModel.getRoot()) {

!= null && lastitem !=

//treeModel.removeNodeFromParent(lastitem);

org.w3c.dom.Node parent= lastitem.domNode.getParentNode();

parent.removeChild(lastitem.domNode);

Object newRoot = null;

TreePath path= tree.getSelectionPath();

TreePath parentPath = null;

if (path!= null) {

66

parentPath = path.getParentPath();

newRoot = parentPath.getLastPathComponent();

//TreeModelEvent(Object source, TreePath path, int[]
childindices, Object[] children);

//TreeModelEvent evnt
new int[] {childindex},new Object[] {newRoot});

new TreeModelEvent(treeModel, path,

//treeModel.valueForPathChanged(parentPath, newRoot);

//treeModel.valueForPathChanged(path, newRoot);

TreeModelEvent evnt = null;

evnt = new TreeModelEvent(this, parentPath);

//((DomToTreeModelAdapter)treeModel) .fireTreeNodesRemoved(evnt);

((DomToTreeModelAdapter)treeModel) .fireTreeStructureChanged(evnt);

//RemoveAction

class ReloadAction extends Object implements ActionListener

public void actionPerformed(ActionEvent e)

//How do I get path to the root?

//AdapterNode rootNode = (AdapterNode)treeModel.getRoot();

TreeModelEvent evnt = null;

TreePath rootPath = tree.getSelectionPath();

if (rootPath != null) {

evnt = new TreeModelEvent(this, rootPath);

((DomToTreeModelAdapter)treeModel) .fireTreeStructureChanged(evnt);

} // ReloadAction

public static void makeFrame()

//Setup a GUI framework

JFrame frame= new JFrame("Cost Model");

frame.addWindowListener(

new WindowAdapter() {

public void windowClosing(WindowEvent e) {system.exit(0);}

) ;

67

//Setup the tree, the views; and display it all

final CostModel echoPanel

new CostModel () ;

frame.getContentPane() .add("Center", echoPanel) ;

frame.pack();

Dimension screenSize

Toolkit.getDefaultToolkit() .getScreenSize();

int w

int h

windowWidth + 10;

windowHeight + 10;

frame.setLocation(screenSize.width/3 - w/2,

screenSize.height/2 - h/2);

frame.setSize(w, h);

frame.setVisible(true);

// makeFrame

// An array of names for DOM node-types

static final String[] typeName = {

"none",

"Element",

11 Attr 11 ,

"Text",

"CDATA",

"EntityRef",

"Entity",

"Procinstr",

"Comment",

"Document",

"DocType",

11 DocFragment 11
,

"Notation",

} ;

static final int ELEMENT TYPE

static final int ATTR TYPE

static final int TEXT TYPE

static final int CDATA TYPE =

static final int ENTITYREF TYPE

static final int ENTITY TYPE =

static final int PROCINSTR TYPE

static final int COMMENT TYPE =

static final int DOCUMENT TYPE

static final int DOCTYPE TYPE

static final int DOCFRAG TYPE

1;

2;

3;

4;

5;

6;

7;

8;

= 9;

10;

11;

68

static final int NOTATION TYPE 12;

II The list of elements to display in the tree

II Would be nice to read from a DTD instead of hardcoding.

static String[] treeElementNames = {

11 slideshow 11 ,

"slide",

"title",

"slide-title",

II For slideshow #1

II For slideshow #10

"item",

ll"integertoken",

"identifier",

"realtoken",

ll"stringtoken",

"accesskey",

"accessowner",

"accessuser",

"accessuserident",

11 accessworld 11
,

11 add 11 ,

"author",

11 backgroundcolor 11 ,

11 bordercolor 11
,

11 borderwidth 11
,

"cell",

"cellcontents",

"cellcost",

11 celldesigncost 11 ,

11 designcost 11 ,

11 dftcost 11
,

"celldisplay",

"celldisposalcost",

"cellencrypted", ·

"cellmaintenancecost",

"cellmanufacturingcost",

11 cellreadable 11 ,

"cellref",

"cellrefexternal",

"celltype",

"city",

"color",

"comment",

69

"company",

"country",

11 dataorigin 11
,

"department",

"differential",

"displayposition",

"documentation",

"div",

"exp",

"faculty",

"fp",

"globalvariable",

"increment",

"integral",

"log",

"maintenancecost",

"maintenancetestcost",

"manufacturingcost",

"minomaxvalue",

"modelhistory",

"modelhistoryelement",

"modelversion",

11 mtbf 11
,

"mttr",

"mult",

"neg",

"number",

"program",

"prograinname",

"reliability",

"reliabilityfunction",

"rights",

"root",

"scmheader",

"scmversion",

"scmXML",

"state",

"street",

"sub",

"system",

"term",

"testcost",

70

} ;

"timestamp",

11 unitdefinition 11 ,

"unit",

11 unitbase 11
,

11 unitref 11 ,

"value",

"variable",

"version",

"written",

11 zipcode 11
,

boolean treeElement(String elementName) {

for (int i=0; i<treeElementNames.length; i++)

//System.out.println("Element name 11 + i + 11
:

11 +treeElementNames[i]);

if (elementName.equals(treeElementNames[i])

return true;

return false;

// This class wraps a DOM node and returns the text we want to

// display in the tree. It also returns children, index values,

// and child counts.

public class AdapterNode

org.w3c.dom.Node domNode;

// Construct an Adapter node from a DOM node

public AdapterNode(org.w3c.dom.Node node) {

domNode = node;

// Return a string that identifies this node in the tree

public String toString() {

Strings= typeName[domNode.getNodeType()];

if (s != "Document")

S = II II i

String nodeName = domNode.getNodeName();

if (! nodeName. startsWith (11 # 11
))

s += nodeName;

71

if (compress)

String t = content() .trim();

int x = t.indexOf(11 \n 11
);

if (x >= 0) t = t.substring(0, x);

//s += II II+ t;

returns;

if (domNode.getNodeValue() != null)

if (s.startsWith(11 Procinstr 11
))

S += II II i

else

S += II: II i

// Trim the value to get rid of NL's at the front

String t = domNode.getNodeValue() .trim();

int x = t.indexOf(11 \n 11
);

if (x >= 0) t = t.substring(0, x);

s += t;

returns;

//toString

public String content()

Strings= 1111
;

org.w3c.dom.NodeList nodeList = domNode.getChildNodes();

for (int i=0; i<nodeList.getLength(); i++) {

org.w3c.dom.Node node= nodeList.item(i);

int type= node.getNodeType();

AdapterNode adpNode = new AdapterNode(node); //inefficient, but works

if (type ELEMENT_TYPE) {

// System.out.println(11 Element tag name= 11 + node.getNodeName());

// Skip subelements that are displayed in the tree.

if (treeElement(node.getNodeName())) continue;

s += 11 < 11 + node.getNodeName() + 11 >";

s += adpNode.content();

s += 11 </ 11 + node.getNodeName() + 11 > 11
;

else if (type== TEXT_TYPE)

s += node.getNodeValue();

else if (type== ENTITYREF_TYPE) {

// The content is in the TEXT node under it

s += adpNode.content();

72

else if (type== CDATA_TYPE)

// The "value" has the text, same as a text node.

// Convert angle brackets and ampersands for display

StringBuffer sb = new StringBuffer(node.getNodeValue()) ;

for (int j=0; jcsb.length(); j++) {

if (sb.charAt(j) == '<')

sb. setCharAt (j , • & ,) ;

sb. insert (j+l, "lt; ");

j += 3;

else if (sb.charAt(j)

sb. setCharAt (j, • & •) ;

sb. insert (j+l, "amp; 11
);

j += 4;

I & I) {

s += "cpre>" + sb + 11 \nc/pre>";

// Ignoring these:

II ATTR TYPE -- not in the DOM tree, but can be accessed

II - - through getAttribute()

II ENTITY TYPE does not appear in the DOM

II PROCINSTR TYPE not "data"

II COMMENT TYPE not "data"

II DOCUMENT TYPE Root node only. No data to display.

II DOCTYPE TYPE Appears under the root only

II DOCFRAG TYPE equiv. to "document" for fragments

II NOTATION TYPE nothing but binary data in here

returns;

//content

// Return children, index, and count values

public int index(AdapterNode child)

//System.err.println("Looking for index of"+ child);

int count= childCount();

for (int i=0; iccount; i++)

AdapterNode n = this.child(i);

if (child.domNode == n.domNode) return i;

return -1; // Should never get here~

73

function call

public AdapterNode child(int searchindex)

//Note: JTree index is zero-based.

org.w3c.dom.Node node=

domNode.getChildNodes() .item(searchindex);

if (compress) {

// Return Nth displayable node

int elementNodeindex = 0;

for (int i=0; i<domNode.getChildNodes() .getLength(); i++) {

node= domNode.getChildNodes() .item(i);

if (node.getNodeType() == ELEMENT_TYPE

&& treeElement(node.getNodeName())

&& elementNodeindex++ == searchindex)

break;

return new AdapterNode(node);

public int childCount()

if (!compress) {

return domNode.getChildNodes() .getLength();

int count= 0;

for (int i=0; i<domNode.getChildNodes() .getLength(); i++) {

org.w3c.dom.Node node= domNode.getChildNodes() .item(i);

// Note: Have to check for proper type.

// The DOCTYPE element also has the right name

if (node.getNodeType() == ELEMENT TYPE

&& treeElement(node.getNodeName())) {

++count;

return count;

//AdapterNode

// This adapter converts the current Document (a DOM) into

// a JTree model.

public class. DomToTreeModelAdapter implements TreeModel

74

// Basic TreeModel operations

public Object getRoot() {

//System.err.println("Returning root: "+document);

return new AdapterNode(document);

public boolean isLeaf(Object aNode)

// JTree determines whether the icon shows up to the left.

// Return true for any node with no children

AdapterNode node= (AdapterNode) aNode;

if (node.childCount() > 0) return false;

return true;

public int getChildCount(Object parent)

AdapterNode node= (AdapterNode) parent;

return node.childCount();

public Object getChild(Object parent, int index)

AdapterNode node= (AdapterNode) parent;

return node.child(index);

public int getindexOfChild(Object parent, Object child) {

AdapterNode node= (AdapterNode) parent;

return node. index ((AdapterNode) child) ;

public void valueForPathChanged(TreePath path, Object newValue) {

//Update the user object.

AdapterNode node= (AdapterNode)path.getLastPathComponent();

//SampleData sampleData = (SampleData)node.getUserObject();

node.domNode.setNodeValue((String)newValue);

//sampleData.setColor(Color.green);

//nodeChanged(aNode);

private Vector listenerList = new Vector();

public void addTreeModelListener(TreeModelListener listener) {

if listener != null

&& listenerList.contains(listener))

listenerList.addElement(listener);

public void removeTreeModelListener(TreeModelListener listener) {

if (listener !=null) {

75

	Rahman_Mohammed_2000_0001
	Rahman_Mohammed_2000_0002
	Rahman_Mohammed_2000_0003
	Rahman_Mohammed_2000_0004
	Rahman_Mohammed_2000_0005
	Rahman_Mohammed_2000_0006
	Rahman_Mohammed_2000_0007
	Rahman_Mohammed_2000_0008
	Rahman_Mohammed_2000_0009
	Rahman_Mohammed_2000_0010
	Rahman_Mohammed_2000_0011
	Rahman_Mohammed_2000_0012
	Rahman_Mohammed_2000_0013
	Rahman_Mohammed_2000_0014
	Rahman_Mohammed_2000_0015
	Rahman_Mohammed_2000_0016
	Rahman_Mohammed_2000_0017
	Rahman_Mohammed_2000_0018
	Rahman_Mohammed_2000_0019
	Rahman_Mohammed_2000_0020
	Rahman_Mohammed_2000_0021
	Rahman_Mohammed_2000_0022
	Rahman_Mohammed_2000_0023
	Rahman_Mohammed_2000_0024
	Rahman_Mohammed_2000_0025
	Rahman_Mohammed_2000_0026
	Rahman_Mohammed_2000_0027
	Rahman_Mohammed_2000_0028
	Rahman_Mohammed_2000_0029
	Rahman_Mohammed_2000_0030
	Rahman_Mohammed_2000_0031
	Rahman_Mohammed_2000_0032
	Rahman_Mohammed_2000_0033
	Rahman_Mohammed_2000_0034
	Rahman_Mohammed_2000_0035
	Rahman_Mohammed_2000_0036
	Rahman_Mohammed_2000_0037
	Rahman_Mohammed_2000_0038
	Rahman_Mohammed_2000_0039
	Rahman_Mohammed_2000_0040
	Rahman_Mohammed_2000_0041
	Rahman_Mohammed_2000_0042
	Rahman_Mohammed_2000_0043
	Rahman_Mohammed_2000_0044
	Rahman_Mohammed_2000_0045
	Rahman_Mohammed_2000_0046
	Rahman_Mohammed_2000_0047
	Rahman_Mohammed_2000_0048
	Rahman_Mohammed_2000_0049
	Rahman_Mohammed_2000_0050
	Rahman_Mohammed_2000_0051
	Rahman_Mohammed_2000_0052
	Rahman_Mohammed_2000_0053
	Rahman_Mohammed_2000_0054
	Rahman_Mohammed_2000_0055
	Rahman_Mohammed_2000_0056
	Rahman_Mohammed_2000_0057
	Rahman_Mohammed_2000_0058
	Rahman_Mohammed_2000_0059
	Rahman_Mohammed_2000_0060
	Rahman_Mohammed_2000_0061
	Rahman_Mohammed_2000_0062
	Rahman_Mohammed_2000_0063
	Rahman_Mohammed_2000_0064
	Rahman_Mohammed_2000_0065
	Rahman_Mohammed_2000_0066
	Rahman_Mohammed_2000_0067
	Rahman_Mohammed_2000_0068
	Rahman_Mohammed_2000_0069
	Rahman_Mohammed_2000_0070
	Rahman_Mohammed_2000_0071
	Rahman_Mohammed_2000_0072
	Rahman_Mohammed_2000_0073
	Rahman_Mohammed_2000_0074
	Rahman_Mohammed_2000_0075
	Rahman_Mohammed_2000_0076
	Rahman_Mohammed_2000_0077
	Rahman_Mohammed_2000_0078
	Rahman_Mohammed_2000_0079
	Rahman_Mohammed_2000_0080
	Rahman_Mohammed_2000_0081
	Rahman_Mohammed_2000_0082
	Rahman_Mohammed_2000_0083
	Rahman_Mohammed_2000_0084
	Rahman_Mohammed_2000_0085
	Rahman_Mohammed_2000_0086
	Rahman_Mohammed_2000_0087
	Rahman_Mohammed_2000_0088
	Rahman_Mohammed_2000_0089
	Rahman_Mohammed_2000_0090
	Rahman_Mohammed_2000_0091
	Rahman_Mohammed_2000_0092
	Rahman_Mohammed_2000_0093
	Rahman_Mohammed_2000_0094
	Rahman_Mohammed_2000_0095
	Rahman_Mohammed_2000_0096
	Rahman_Mohammed_2000_0097
	Rahman_Mohammed_2000_0098
	Rahman_Mohammed_2000_0099
	Rahman_Mohammed_2000_0100
	Rahman_Mohammed_2000_0101
	Rahman_Mohammed_2000_0102
	Rahman_Mohammed_2000_0103
	Rahman_Mohammed_2000_0104
	Rahman_Mohammed_2000_0105
	Rahman_Mohammed_2000_0106
	Rahman_Mohammed_2000_0107
	Rahman_Mohammed_2000_0108
	Rahman_Mohammed_2000_0109
	Rahman_Mohammed_2000_0110
	Rahman_Mohammed_2000_0111
	Rahman_Mohammed_2000_0112
	Rahman_Mohammed_2000_0113
	Rahman_Mohammed_2000_0114
	Rahman_Mohammed_2000_0115
	Rahman_Mohammed_2000_0116
	Rahman_Mohammed_2000_0117
	Rahman_Mohammed_2000_0118
	Rahman_Mohammed_2000_0119
	Rahman_Mohammed_2000_0120
	Rahman_Mohammed_2000_0121
	Rahman_Mohammed_2000_0122
	Rahman_Mohammed_2000_0123
	Rahman_Mohammed_2000_0124

