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BIFURCATION OF POSITIVE SOLUTIONS FOR A SEMILINEAR
EQUATION WITH CRITICAL SOBOLEV EXPONENT

YUANJI CHENG

Abstract. In this note we consider bifurcation of positive solutions to the

semilinear elliptic boundary-value problem with critical Sobolev exponent

−∆u = λu− αup + u2∗−1, u > 0, in Ω,

u = 0, on ∂Ω.

where Ω ⊂ Rn, n ≥ 3 is a bounded C2-domain λ > λ1, 1 < p < 2∗ − 1 =
n+2
n−2

and α > 0 is a bifurcation parameter. Brezis and Nirenberg [2] showed

that a lower order (non-negative) perturbation can contribute to regain the
compactness and whence yields existence of solutions. We study the equation

with an indefinite perturbation and prove a bifurcation result of two solutions

for this equation.

1. Introduction and main result

It is well known that the following equation with a critical exponent has no
solution on the star-shaped domains, [12],

−∆u = u
n+2
n−2 , in Ω,

u = 0, on ∂Ω,
(1.1)

due to the lack of compactness in the embedding H1
0 (Ω) ↪→ L 2n

n−2
(Ω). In their

seminal work [2], Brezis and Nirenberg show that perturbation by a lower order
term suffices to regain the compactness and hence existence of a solution. Consider
particularly for the following equation

−∆u = λu+ u
n+2
n−2 , u > 0 in Ω,

u = 0, on ∂Ω,
(1.2)

where λ is considered as a bifurcation parameter, let λ1 > 0 be the first eigenvalue
of Laplacian with a Dirichlet boundary, then they show the following result.

Theorem 1.1 ([2]). There is a constant λ∗ ∈ [0, λ1), such that (1.2) has a solution
if λ ∈ (λ∗, λ1) and has no solution, if λ ≥ λ1.
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Thereafter, there are many papers devoted to study of problems with critical
Sobolev exponent (see [9, 14] and references therein). Effects of concave and convex
combination on bifurcation have been studied in [1, 4, 5, 6, 15]. In this paper we
consider the equation with an indefinite lower order perturbation. For simplicity
consider the prototype equation

−∆u = λu− αup + u
n+2
n−2 , u > 0, in Ω,

u = 0, on ∂Ω,
(1.3)

where λ is a fixed positive constant, and α > 0 is considered as a bifurcation
parameter. The main result of this note is the the following theorem showing the
existence of two solutions.

Theorem 1.2. If λ > λ1 and 3 ≤ n ≤ 5, 1 < p < 4/(n − 2), then there is a
constant α0 > 0 such that (1.3) has at least two solutions for α > α0 and has no
solution if α < α0

1 2 3 4 5 6 7
5

5.5

6

6.5

7

7.5

8

8.5

9

 max{u(x)}

 α

 Bifurcation

Figure 1. Bifurcation diagram of (1.3)

2. Auxiliary lemmas

In this section we establish some estimates which are needed in the proof of
Theorem 1.2. Without loss of generality, we assume that the domain Ω contains
the origin and choose R > 0 small enough so that {x : |x| ≤ 2R} ⊂ Ω. Let ψ(x) be
a cut-off function such that

ψ(x) ≡

{
1, |x| ≤ R,

0, |x| ≥ 2R,

and N =
√
n(n− 2). Also let

uε(x) = ψ(x)u0ε(x), u0ε(x) =
( Nε

ε2 + |x|2
)(n−2)/2

.
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Then ‖∇u0ε‖22 = Sn/2 = ‖u0ε‖2
∗

2∗ for all ε > 0. The following estimates will be
needed in the proof of Theorem 1.2.

Lemma 2.1. The following estimates hold for some constant K = K(q) > 0
(a) ‖∇uε‖22 = Sn/2 +O(εn−2)
(b) ‖uε‖2

∗

2∗ = Sn/2 +O(εn)
(c) 1 ≤ q < 2∗,

‖uε‖q
q


= Kε

2n−(n−2)q
2 +O(ε

(n−2)q
2 ), q > n/(n− 2)

= εn/2(K| ln ε|+O(1)), q = n/(n− 2)
≈ ε(n−2)q/2, q < n/(n− 2).

Proof. The estimate in (a) and (b) are known. Estimate (c) can be shown similarly
as in [9, 14]. �

Lemma 2.2. There are constants β, β1, β2 > 0 such that the following inequalities
hold for all a, b ≥ 0

(1) p ≥ 2, β1(ap−1b+ abp−1) ≥ (a+ b)p − ap − bp ≥ β2(ap−1b+ abp−1).
(2) p ∈ (1, 2), (a+ b)p − ap − bp ≤ βap−1b.

Proof. The inequalities follow from the facts that h(t) = (1+t)p−1−tp

t+tp−1 → p as either

t → 0+ or t → +∞; h0(t) = (1+t)p−1−tp

t → p as t → 0+ and h0(t) → 0 as
t→ +∞. �

We would like to point out here that if 1 < p < 2 then there is no constant β > 0
such that the following estimate holds for all a, b ≥ 0,

(a+ b)p ≥ ap + bp + βap−1b.

3. Proof of Theorem 1.2

Now we consider

−∆u = λu− αup + u
n+2
n−2 , u > 0, in Ω,

u = 0, on ∂Ω,
(3.1)

We first observe that for small α > 0 there is no solution for (3.1) by comparison,
because f(u) := λu−αup +u

n+2
n−2 satisfies the inequality f(u) > λ1u on (0,∞). On

the other hand, if α is big enough, then f(u) vanishes somewhere on (0,∞) and
whence a constant u+(x) = M suffices for a super-solution. To find a sub-solution,
we can take u−(x) = tφ1(x) > 0, where φ1(x) > 0 is the normalized eigenfunction
associated to λ1, because

−∆(tφ1)− λ(tφ1) + α(tφ1)p − (tφ1)2
∗−1 = t(λ1 − λ)φ1 + α(tφ1)p − (tφ1)2

∗−1 < 0.
(3.2)

Thus by the sub- and super-solution method, there is a solution for (3.1). Further-
more for given α0 > 0 if the problem (3.1) has a solution uα0 , we shall show then
for any α > α0 the problem (3.1) has also a solution. Clearly uα0 is a super-solution
for (3.1), because

−∆uα0 − λuα0 + αup
α0
− u2∗−1

α0
= (α− α0)up

α0
> 0, (3.3)

and moreover tφ1(x) still suffices as a sub-solution. Further, by the Hopf’s lemma
∂uα0
∂ν > 0 on ∂Ω, we deduce that tφ1(x) < uα0(x) on the whole domain Ω and
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thus again via sub- and super-solution method we obtain a solution uα(x) for (3.1),
where uα(x) is a minimizer of

J(u) =
∫

Ω

1
2
|∇u|2 − λ

2
u2 +

α

p+ 1
|u|p+1 +

1
2∗
|u|2

∗
dx

over the convex set K = {u ∈ H1
0 (Ω) : tφ1(x) ≤ u(x) ≤ uα0(x) a. e. in Ω}.

Furthermore, since tφ1, uα0 are not solutions of (3)α, we deduce that tφ1(x) <
u(x) < uα0(x) on Ω. If we choose k > 0 large then (λ+ k)u− αup + u

n+2
n−2 will be

increasing on (0,∞) and whence we deduce from [3, Theorem 2] that uα is a local
minimizer for J in H1

0 (Ω)-topology.
We now define α0 to be the infimum of all α > 0 such that (3.1) has a solution,

then we infer that α0 > 0 is an finite number, and it remains to show that for all
α > α0 there are two solutions for (3.1).

Let α > α0 be given, and uα be the solution of (3.1) obtained by the sub- and
super-solution method. To establish the second solution we exploit the truncation
and translation technique and define v = u− uα and

g(x, v) =

{
λv − α((v + uα)p − up

α) + (v + uα)2
∗−1 − u2∗−1

α v ≥ 0
0 v < 0.

In the sequel we shall study the boundary-value problem

−∆v = g(x, v) in Ω
v = 0 on ∂Ω.

(3.4)

First we notice that any nontrivial solution v of (3.4) must be non-negative and
then by the strong maximal principle it should be strictly positive on Ω. Whence
if v 6= 0 is a solution of (3.4), then u = v + uα will be a positive solution to the
problem (3.1), which is bigger than uα.

We will exploit the critical point method and whence will study the associated
functional to the problem (3.4),

E(v) =
∫

Ω

1
2
|∇v|2 −G(x, v), G(x, v) =

∫ v

0

g(x, t) dx.

Given any v ∈ H, decomposed into positive part v+, and negative part v−, then
we test the equation (3.1) for the solution uα by v+ and obtain∫

Ω

∇uα · ∇v+ =
∫

Ω

(λuα − αup
α + u

n+2
n−2
α )v+ .

Furthermore we obtain the relation

E(v) = J(v+ + uα)− J(uα) +
1
2
‖v−‖2, (3.5)

which shows that zero is even a local minimizer for E.

Lemma 3.1. The equation (3.4) satisfies the Palais-Smale condition (P.S.)c for
any c ∈ (0, 1

nS
n/2).

Proof. Arguments in [14, Lemma 2.3] works also here. �

By the min-max principle, if we can find v > 0 such that

c = inf
φ∈Γ

max{E(φ(t)) : t ∈ [0, 1]}
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is finite and E satisfies the local Palais-Smale condition (P.S.)c, where

Γ = {φ ∈ C([0, 1],H) : φ(0) = 0, φ(1) = v} (3.6)

then there is a critical point u of E at level c. It follows from (3.5) that c ≥ 0. If
c > 0, then we will have a nontrivial solution u. If c = 0, then by [7, Theorem 5.10],
see also [8, 10], we deduce that there is a continua of minimizers uε(x), ε ∈ (0, ε0)
such that E(uε) = E(uα). So we are also done even in this case.

To find the function v in (3.6), we shall test v = tuε. For n = 3, we may assume
p ∈ (2, 3) then we have 2∗ = 6, n

n−2 = 3 and by Lemma 2.2 we obtain

(v + uα)2
∗−1 − u2∗−1

α ≥ v5 + 4v4uα,

(v + uα)p − up
α ≤ vp + β1(vp−1uα + vup−1

α )

and consequently

G(x, v) ≥ λ

2
v2 − α(

1
p+ 1

vp+1 + β(
1
2
v2up−1

α +
1
p
vpuα)) +

1
6
v6 +

β2

5
v5uα.

Since uα is strictly positive on Ω, so there are constants C1 ≥ C2 > 0 such that
C1 ≥ uα(x) ≥ C2, for all x ∈ Ω, |x| ≤ 2R. We deduce that for some constants
C3, C4 > 0,

E(tuε) ≤
∫

Ω

t2

2
|∇uε|2 + C4(t2u2

ε + tpup
ε + tp+1up+1

ε )− C3t
5u5

ε −
t6

6
u6

ε.

In view of lemma 2.1, we obtain

‖uε‖22 ≤ Aε, ‖uε‖p
p ≤ Aεp/2, ‖uε‖p+1

p+1 = K(p+ 1)ε(5−p)/2 +O(ε(p+1)/2),

‖uε‖55 = K(3.3)
√
ε+O(ε5/2), ‖uε‖66 = S3/2 +O(ε3)

thus

E(tuε) ≤
t2

2
(S3/2 +O(ε)) + C4(t2Aε+ tpAεp/2 + tp+1(K(p+ 1)ε

5−p
2 +O(ε

p+1
2 )))

− t5C3(K(5)
√
ε+O(ε5/2))− t6

6
(S3/2 +O(ε3)) := h3(t).

The function h3(t) attains its maximum on (0,∞) at tmax3 := 1 − 5K(3.3)C3

4S3/2

√
ε +

o(
√
ε). Moreover h3(tmax3) = 1

3S
3/2−C3K(3.3)

√
ε+ o(

√
ε). Therefore, we deduce

that for ε > 0 enough small

c = inf
φ∈Γ

max{E(φ(t)) : t ∈ [0, 1]} ≤ h3(tmax3) <
1
3
S3/2

and obtain via the mountain pass theorem that (3.4) admits a positive solution u.
The proof is complete for the case of dimension 3.

If n = 4 or 5, then by the assumption p < 4/(n− 2) ≤ 2 and thus it follows from
the lemma 2.2 that

(v + uα)p − up
α ≤ vp + βvuα; (v + uα)2

∗−1 − u2∗−1
α ≥ v2∗−1 + β2v

2∗−2uα,

g(x, v) ≥ λv − α(vp + βvup−1
α ) + v2∗−1 + β2v

2∗−2uα
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and consequently

G(x, v) ≥ λ

2
v2 − α(

1
p+ 1

vp+1 +
β

2
v2up−1

α ) +
1
2∗
v2∗ +

β2

2∗ − 1
v2∗−1uα,

E(v) ≤
∫

Ω

1
2
|∇v|2 − (

λ

2
v2 − α(

1
p+ 1

vp+1 +
β

2
v2up−1

α ) +
1
2∗
v2∗ +

β2

2∗ − 1
v2∗−1uα).

In analogy as the case n = 3, we deduce that for some constants C3, C4 > 0.

E(tuε) ≤
∫

Ω

t2

2
|∇uε|2 + C4(t2u2

ε + tp+1up+1
ε )− C3t

2∗−1u2∗−1
ε − t2

∗

2∗
u2∗

ε .

For n = 4, we have

E(tuε) ≤
t2

2
(S2 + 0(ε2)) + C4(t2(ε2(K(2)| ln ε|+O(1)) + tp+1(K(p+ 1)ε3−p

+O(εp+1)))− t3C3(K(3)ε+O(ε3))− t4

4
(S2 +O(ε4)) := h4(t) .

Then h4(t) attains its maximum on (0,∞) at tmax4 := 1− 3K(3)C3
2S2 ε+ o(ε), which

satisfies

S2 +O(ε2) + C4(2ε2(K(2)| ln ε|+O(1)) + tp−1(p+ 1)(K(p+ 1)ε3−p +O(εp+1)))

= t3C3(K(3)ε+O(ε3)) + t2(S2 +O(ε4))

and moreover h4(tmax4) = 1
4S

2 −C3K(3)ε+ o(ε) < 1
4S

2, for sufficient small ε > 0.
So we are done in this case.

If n = 5, we obtain in a similar way that

E(tuε) ≤
t2

2
(S5/2 +O(ε3)) + C4(t2(ε2K(2) +O(ε3)) + tp+1(K(p+ 1)ε(7−3p)/2

+O(ε
3(p+1)

2 )))− t
7
3C3(K(

7
3
)ε

3
2 +O(ε

7
2 ))− 3t

10
3

10
(S

5
2 +O(ε5)) := h5(t).

Because p < 4/3, we see that (7 − 3p)/2 > 3/2 and whence h5(t) attends its
maximum on (0,∞) at tmax5 := 1− 7K(7/3)C3

4S5/2 ε3/2 + o(ε3/2), which satisfies

S5/2 + C4(2ε2K(2) +O(ε3) + (p+ 1)tp−1(K(p+ 1)ε3−p +O(εp+1)))

=
7
3
C3t

1/3(K(7/3)ε3/2 +O(ε7/2)) + t4/3(S5/2 +O(ε5)) .

Moreover h5(tmax5) = 1
5S

5/2−C3K(7/3)ε3/2 +o(ε3/2) < 1
5S

5/2, for sufficient small
ε > 0. So the proof is complete in this case.

4. An example

In this part we show a numerical result of solutions for an equation on the the
unite ball in R3. we consider an equation with a critical exponent Ω = {x ∈ R3 :
‖x‖ < 1},

−∆u(x) = 4πu(x)− αu2(x) + u5(x), ‖x‖ < 1,

u(x) = 0, ‖x‖ = 1.
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By Gidas, Ni and Nirenberg [11], any positive solution must be radial symmetric,
i.e. u(x) = u(r), r = ‖x‖ and thus satisfies ordinary differential equation

−(r2u′(r))′ = r2(4πu(r)− αu2(r) + u5(r)), r ∈ (0, 1),

u′(0) = 0, u(1) = 0.

By a numerical simulation for α = 7.5, we find two positive solutions, where their
maxima of the solutions are u1(0) = 0.575 and u2(0) = 3.44.
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Figure 2. Numerical simulation of solutions on unit ball in R3
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