
TOWARDS A FRAMEWORK FOR AUTOMATING THE WORKFLOW FOR

BUILDING MACHINE LEARNING BASED PERFORMANCE TUNING

MODELS

by

Biplab Kumar Saha

A thesis submitted to the Graduate College of
Texas State University in partial ful�llment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
August 2016

Committee Members:

Apan Qasem, Chair

Michael Ekstrand

Vangelis Metsis

COPYRIGHT

by

Biplab Kumar Saha

2016

FAIR USE AND AUTHOR'S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as de�ned in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgement.
Use of this material for �nancial gain without the author's express written
permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Biplab Kumar Saha, authorize duplication
of this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

I have been exceptionally supported by my Father. It was not possible to pursue

higher studies in the USA without his exceptional support. This thesis is my

greatest achievement to date, and I dedicate this thesis to every individual who

supported me to reach at this stage.

ACKNOWLEDGEMENTS

This thesis would not have been possible without my advisor Dr. Apan Qasem.

He was very passionate in the every step of the thesis. His step by step guidance

and suggestion supported me a lot to �nish the thesis. I would like to especially

thank him for his relentless support and guidance.

I would also like to thank Dr. Michael Ekstrand and Dr. Vangelis Metsis to

support me throughout the thesis whenever I required for any suggestion.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xiv

CHAPTER

I. INTRODUCTION . 1

II. BACKGROUND . 5

III. WORKFLOW COMPARISON . 7

IV. MLMT ABSTRACTIONS . 9

V. DESIGN AND IMPLEMENTATION 11

Model Speci�cation . 11

Training Data Generation . 13

Feature Extraction and Processing 14

Data Labeling . 15

Feature Selection . 15

Model Evaluation and Selection . 15

VI. A MODEL FOR REGISTER ALLOCATION OF CUDA KERNELS 17

VII. EXPERIMENTAL EVALUATION 19

Machine Con�guration . 19

Feature Selection . 19

vi

Univariate Feature Selection 19

Accumulated Feature Selection 22

Incremental Feature Selection 24

Merging Feature Selection Techniques 26

Model Selection . 29

Model Internals . 30

Decision Tree . 30

Principal Component Analysis With Varimax Rotation 31

Portability . 35

Performance Counters . 35

Model Accuracy . 37

Performance Gains . 38

Speedup . 39

Power Gain . 41

Speedup in Di�erent ML Models 43

Power Gain in Di�erent ML Models 47

VIII.CONCLUSION . 53

Contribution . 53

Future Work . 54

REFERENCES . 55

vii

LIST OF TABLES

Table Page

VII.1 Machine Con�guration . 19

VII.2 Prediction accuracy of Di�erent ML models 29

VII.3 Classi�cation metrics . 30

VII.4 Performance counters . 35

viii

LIST OF FIGURES

Figure Page

III.1 Generic ML and MLMT work�ow comparison 7

V.1 MLMT framework overview . 11

VI.1 Register allocation by nvcc for a subset of Parboil benchmarks 17

VII.1 Feature percentile vs cross validation prediction accuracy of Logistic

Regression classi�er . 20

VII.2 Feature percentile vs cross validation prediction accuracy of Naive

Bayes classi�er . 20

VII.3 Feature percentile vs cross validation prediction accuracy of SVM

classi�er . 20

VII.4 Feature percentile vs cross validation prediction accuracy of Decision

Tree classi�er . 21

VII.5 Feature percentile vs cross validation prediction accuracy of

KNeighbors classi�er . 21

VII.6 Features threshold vs cross validation prediction accuracy of Logistic

Regression classi�er . 22

VII.7 Features threshold vs cross validation prediction accuracy of Naive

Bayes classi�er . 22

VII.8 Features threshold vs cross validation prediction accuracy of SVM

classi�er . 23

VII.9 Features threshold vs cross validation prediction accuracy of Decision

Tree classi�er . 23

ix

VII.10 Feature threshold vs cross validation prediction accuracy of

KNeighbors classi�er . 23

VII.11 Features threshold vs cross validation prediction accuracy of Logistic

Regression classi�er . 24

VII.12 Features threshold vs cross validation prediction accuracy of Naive

Bayes classi�er . 24

VII.13 Features threshold vs cross validation prediction accuracy of SVM

classi�er . 25

VII.14 Features threshold vs cross validation prediction accuracy of Decision

Tree classi�er . 25

VII.15 Features threshold vs cross validation prediction accuracy of

KNeighbors classi�er . 25

VII.16 Di�erent feature selection techniques vs cross validation prediction

accuracy . 26

VII.17 Di�erent feature selection techniques vs cross validation prediction

accuracy . 26

VII.18 Di�erent feature selection techniques vs cross validation prediction

accuracy . 26

VII.19 Di�erent feature selection techniques vs cross validation prediction

accuracy . 27

VII.20 Di�erent feature selection techniques vs cross validation prediction

accuracy . 27

VII.21 Di�erent feature selection techniques vs cross validation prediction

accuracy . 27

VII.22 Di�erent feature selection techniques vs cross validation prediction

accuracy . 28

x

VII.23 Di�erent feature selection techniques vs cross validation prediction

accuracy . 28

VII.24 Di�erent feature selection techniques vs cross validation prediction

accuracy . 28

VII.25 Model Internals . 31

VII.26 Varimax rotation: Memory Transaction 32

VII.27 Varimax rotation: Instructions . 32

VII.28 Varimax rotation: Register Usage . 32

VII.29 Varimax rotation: IPC . 33

VII.30 Varimax rotation: Local Memory . 33

VII.31 Varimax rotation: Read Throughput 33

VII.32 Varimax rotation: Global Throughput 34

VII.33 Varimax rotation: Cache Throughput 34

VII.34 Varimax rotation: Store Throughput 34

VII.35 Varimax rotation: DRAM Utilization 35

VII.36 Cross Platform Model Accuracy . 38

VII.37 Speedup over predicted registers: Kepler programs on Kepler models

using forward model checking . 39

VII.38 Speedup over predicted registers: Kepler programs on Kepler models

using reverse model checking . 40

VII.39 Speedup over predicted registers: Kepler programs on Fermi models

using forward model checking . 40

VII.40 Speedup over predicted registers: Kepler programs on Fermi models

using reverse model checking . 41

VII.41 Power gain over predicted registers: Kepler programs on Kepler

models using forward model checking 41

xi

VII.42 Power gain over predicted registers: Kepler programs on Kepler

models using reverse model checking 42

VII.43 Power gain over predicted registers: Kepler programs on Fermi models

using forward model checking . 42

VII.44 Power gain over predicted registers: Kepler programs on Fermi models

using reverse model checking . 43

VII.45 Speedup over predicted registers: Kepler programs on Kepler

models . 44

VII.46 Speedup over predicted registers: Kepler programs on Kepler

models . 44

VII.47 Speedup over predicted registers: Kepler programs on Kepler

models . 44

VII.48 Speedup over predicted registers: Kepler programs on Kepler

models . 45

VII.49 Speedup over predicted registers: Kepler programs on Kepler

models . 45

VII.50 Speedup over predicted registers: Kepler programs on Kepler

models . 46

VII.51 Speedup over predicted registers: Kepler programs on Kepler

models . 46

VII.52 Speedup over predicted registers: Kepler programs on Kepler

models . 46

VII.53 Speedup over predicted registers: Kepler programs on Kepler

models . 47

VII.54 Speedup over predicted registers: Kepler programs on Kepler

models . 47

xii

VII.55 Power gain over predicted registers: Kepler programs on Kepler

models . 48

VII.56 Power gain over predicted registers: Kepler programs on Kepler

models . 48

VII.57 Power gain over predicted registers: Kepler programs on Kepler

models . 49

VII.58 Power gain over predicted registers: Kepler programs on Kepler

models . 49

VII.59 Power gain over predicted registers: Kepler programs on Kepler

models . 50

VII.60 Power gain over predicted registers: Kepler programs on Kepler

models . 50

VII.61 Power gain over predicted registers: Kepler programs on Kepler

models . 51

VII.62 Power gain over predicted registers: Kepler programs on Kepler

models . 51

VII.63 Power gain over predicted registers: Kepler programs on Kepler

models . 52

VII.64 Power gain over predicted registers: Kepler programs on Kepler

models . 52

xiii

ABSTRACT

Recent interest in machine learning-based methods have produced many

sophisticated models for performance modeling and optimization. These models

tend to be sensitive to architectural parameters and are most e�ective when

trained on the target platform. Training of these models, however, is a fairly

involved process and requires knowledge of statistics and machine learning that

the end-users of such models may not possess. This paper presents a framework

for automatically generating machine learning-based performance models.

Leveraging existing open-source software, we provide a tool-chain that provides

automated mechanisms for sample generation, dynamic feature extraction,

feature selection, data labeling, validation and model selection. We describe the

design of the framework and demonstrate its e�ectiveness by developing a

learning heuristic for register allocation of GPU kernels. The results show the

newly created models are accurate and can predict register caps that lead to

substantial improvements in execution time without incurring a penalty in power

consumption.

xiv

I. INTRODUCTION

Machine learning has emerged as an e�ective strategy for performance modeling

and tuning. In this approach, a supervised learning algorithm is trained to learn

the complex relationship between a program and its execution environment. This

learning is then used to guide the application of an optimization or the

allocation of a resource to improve a target objective, such as execution time or

power consumption. Many sophisticated predictive models have been developed,

spanning the domains of HPC (Stock et al., 2012), data centers (Liao et al.,

2009), desktop (Cavazos et al., 2007) and mobile computing (Ge and Qiu, 2011).

Two recent trends suggest that the area of machine learning based performance

modeling and tuning (MLMT)1 will grow in importance in the near future.

1. The availability of large code bases in open software repositories such as

GitHub.

2. The increased number of exposed hardware performance counters on newer

processor architectures.

Both imply greater access to pertinent data, creating new opportunities for

learning application behavior on future architectures.

Inspite of its success and promise, two key limitations can be identi�ed in

current work in MLMT

1. Lack of portability: The state-of-the-practice maintains that learning

algorithms be trained on the developer platform and the pre-built models

be embedded within a software tool, such as a compiler (Fursin et al., 2011)

or an autotuner (Ding et al., 2015), before being shipped to the end-user.

This practice is adopted for two reasons. First, model training is a time

1Although the area is abbreviated MLMT it includes ML applied to resource allocation, com-

piler optimizations and other

1

consuming process and performing the task at the factory relieves the user

of this burden. Second, training requires knowledge of machine learning

and statistics which the practitioners (e.g., programmers,performance

engineers) may lack, making it di�cult for them to carry out this task in

an error-free manner. This practice imposes an inherent limitation on the

models' predictive capabilities, Since program behavior is intimately tied to

characteristics of the target architecture, model accuracy is highly sensitive

to variations in parameters of the underlying platform. Even a small

change in the processor con�guration, such as the number of available P

states, can render a model ine�ective. This issue is further magni�ed with

the growing scale and heterogeneity of HPC architectures. Thus, it is

imperative that the learning occur in the target environment.

2. The black-box treatment: Developed models have mostly been predictive

rather than descriptive. In the few instances, where a descriptive model has

been used, its descriptive properties have not been exploited. Models

by-and-large have been treated as black-boxes. A consequence of this

approach is that we have gained little insight about application behavior

from the many excellent heuristics that have been developed. Another

indirect impact is that this has prevented ML-based techniques from being

adopted more widely as practitioners are often resistant to using a tool

that they do not understand well.

This paper describes the design and implementation of a modular, extensible

software framework that addresses the above issues. The framework consists of a

language interface for MLMT speci�cation, a performance database and software

tool-chain for automating the major steps in an ML work�ow. In addition,

plugins allow integration of open-source ML algorithm libraries. Given the

description of a desired learning outcome, the system can automatically

generates a supervised classi�er for a new target platform. All major steps in an

ML work�ow are automated, including feature extraction, feature selection,

2

training data generation, labeling, validation, hyper-parameter tuning and model

selection. We design the system around a set of abstractions that e�ectively hide

the complexities of the ML work�ow and have a natural correspondence to

entities in performance modeling and tuning. These abstractions are developed

based on the key observation that although the ML work�ow is extensive, many

commonalities can be found when developing performance-related models. For

instance, a requirement in MLMT is that feature values be comparable across

two di�erent program instances. One way to achieve this is to scale each feature

value with respect to the execution time of the program in favor of a standard

normalization. Similar commonalities can be found in data clean-up, feature

selection and other tasks.

In our system, training data is generated on the target platform. This produces a

model customized for a speci�c architecture and execution environment which

implicitly addresses the portability concern. To address the issue of opaque

models, we incorporate in the framework analyses to expose the internals of the

learning algorithm. The techniques are speci�cally customized for learning that

involves performance-related ideas. Among the technique implemented are

clustering, PCA, varimax rotation and decision tree analysis. We also construct

context-speci�c meta features to make model outcome intuitive to practitioners.

The tool-chain has been used to develop heuristics for compiler optimization,

hardware prefetching, thread mapping and migration, and DVFS. In this paper,

we demonstrate its utility by deriving a heuristic for allocation of registers for

GPU code. Based on the runtime behavior of a kernel, the model recommends

the number of registers that should be allocated to it. We analyze the learned

heuristic to understand the reasoning behind the recommendations.

To summarize, the main contributions of this paper are as follows:

� A tool-chain for automating ML work�ow and generating platform-speci�c

performance heuristics

� Analysis techniques to make learned heuristics more insightful to

3

programmers

� The �rst ML heuristic for determining the number of registers to be

allocated to a GPU kernel

4

II. BACKGROUND

In this section, we provide background in Machine-Learning based performance

Modeling and Tuning. (MLMT) techniques1

A study of the application of machine-learning techniques in performance

modeling and tuning during the recent years in the �eld of HPC shows a pattern

of facing challenges and how ML practitioners have tackled these challenges. The

initial application of MLMT emerged as a response to prohibitively long tuning

times for search-based autotuning. As such, some of the earliest work in this area

were aimed at reducing the parameter space and �nding early stopping criteria

(Vuduc et al., 2004). Soon after, di�erent ML techniques were devised to

adjudicate whether a given optimization should be applied or not. (Cavazos

et al., 2007) led the charge in this venture beginning with their work on

identifying optimal compiler optimization sequences using multiple logistic

regression models. The idea of predicting whether an optimization is bene�cial or

not is a reduction of the larger problem of �nding an optimal set of parameters,

and this idea worked well for a multitude of scenarios. However, as the number of

optimization available remains large, the number of classi�ers required to predict

an optimization sequence also remains large. For example, GCC 4.8.2 has 193

optimizations and choosing an optimal sequence essentially means creating an

array of 193 classi�ers. Furthermore, the widely changing architectures in HPC

landscape posed the challenge of adaptability. Fursin et al. turned to

crowdsourcing to address this challenge by gathering collective optimization

knowledge across multiple architectures.

Similar to many ML problems, success of ML techniques hinges on accurate

input characterization. Researchers have attempted to characterize programs

using program control �ow graph, static program features, and hardware

1although the area is abbreviated MLMT it includes ML applied to resource allocation,compiler

optimization's and others

5

performance counter values. Hardware performance counters have the added

bene�t of being dynamic and able to capture architecture-speci�c system

response. However, there are large in number and it is di�cult to pick e�ective

ones. Many have resorted to hand-picking them, while some have employed

statistical methods to select most varying counters Rahman et al. (2015).

In spite of challenges faced by researchers in applying ML to HPC, the evolution

of ML in HPC has been astounding, primarily because of the success obtained

from it. Kashnikov et al. used four di�erent ML algorithms to select compiler

optimization's �ags for HPC kernels and compared this strategy with

mainstream compilers. Experimental results show that on 38% of cases, the ML

models provide better results than applying -O3 compiler option on

GCC (Kashnikov et al., 2012).

The target objective in these ML-based applications have been diverse, too. For

example, in order to predict optimal loop unroll factors, Monsiftro et al. have

used decision trees and Stephenson and Amara singhe have used support vector

machines a nearest neighbor classi�er. Their models are successful in 80% and

65% cases. Liao et al. develop a supervised learning model to choose among

sixteen di�erent hardware prefetch con�gurations in the context of a data

center (Liao et al., 2009).

As can be seen, the use of MLMT in HPC has garnered much success and also

resulted in a broad spectrum of applications. While this emerging landscape is

exciting and full of potential, it is also di�cult to navigate for non domain

experts. There is a vacuum for a generalist tool chain or approach to HPC

problems and this has motivated us to explore this avenue of research.

6

III. WORKFLOW COMPARISON

Fig. III.1 outlines a typical ML work�ow that may be used in scienti�c or social

studies. The unique aspects of the MLMT work�ow and degree of manual input

required and currently practiced in di�erent steps are also indicated in the �gure.

We elaborate on these distinctions next.

Training data collection In most domains, data collection does not play a major

role in the process of building a model. The data is either already available in

some form (e.g., social network data) or handled in a separate and di�erent

phase (e.g., genome sequencing). In MLMT, training data needs to be explicitly

generated for every new model that is to be created. Training data for an

optimization X, is unlikely to be useful another optimization Y . Developing a

database of performance data is problematic, as it will need to be updated for

each new architectural model. Training data generation is not only the most time

consuming step in the MLMT work�ow but also requires signi�cant manual

involvement. On the other hand, because data needs to be collected explicitly in

many cases there is insu�cient data or the quality of the data is poor.

Clean-up and Processing Standard scaling and normalization, based solely on the

values present in the training data are ine�ective for MLMT. Context-aware

scaling and normalization algorithms need to be developed. Ideally, scaling

should be done not based on the magnitude or range of a an attribute but on

Evaluation and
RefinementTraining

Feature
SelectionLabeling

Inter.
Models

Final
Model

Training
Set

Deployment

program execution;;
explicit generation

deployment as SW;;
runtime invocation

Data Collection
Feature Extraction

Clean-­up and
Processing

relative
perf. measure

reliance on
expert knowledge

context-­specific
scaling and norm.

manual involvement
lowhigh

Figure III.1: Generic ML and MLMT work�ow comparison

7

how it a�ects the performance. For instance, an LLC miss should carry higher

weight than an L1 miss. Normalization should generally be done with respect to

the execution time to obtain attribute values that can be compared across

di�erent programs.

Labeling An advantage in MLMT over other ML work�ow is that domain

expertise is not required to label instances. All that is required to measure

relative performance of the un-optimized and optimized versions of workloads.

The only exception are cases where ML is being used to classify bottlenecks. In

those situations an expert will need to label the instances based on knowledge of

the workload being executed.

Feature selection Standard practice in most domains is to perform feature

selection with the help of domain experts either manually or semi-automatically.

This practice is problematic for MLMT because in most cases what is needed is

a committee of experts, including architects, systems engineers, compiler writers,

programmers and algorithm developers. There is evidence that focusing on

attributes from a particular layer can lead to omission of critical

features (Leather et al., 2014).

Deployment MLMT models are typically deployed as software, either standalone

or embedded inside a performance-enhancement tool. Thus, the models operate

in a dynamic environment and must make decision at runtime. This implies that

model invocation must have very little overhead and the relevant features must

be extractable from the target environment.

8

IV. MLMT ABSTRACTIONS

To build an automated system, we need to establish a set of abstractions that (i)

capture essential elements of a generic ML work�ow; (ii) e�ectively hide

complexities in MLMT that would otherwise prevent automation (e.g.,

divergence in objective metrics) and (iii) are relatable to practitioners (e.g.,

representation of programs). In this section, we describe these abstractions that

serve as the foundation of the proposed software tool-chain. We discuss the

rationale behind their construction and outline the terminology and notation

used for these abstractions in the remainder of the paper.

Decision This is the �nal desired outcome of the learning model. A decision d

is a recommended action about a code transformation, a transformation

parameter or a resource allocation. Multiple decisions can be combined to

create a composite decision and is denoted, D = {d0, ..., dn}. For instance,

predicting a compiler optimization sequence involves composing a series of

atomic decisions involving the application of an individual optimization.

Feature A feature f is a source-level, assembly-level or runtime attribute of a

code variant. A runtime attribute is one that can be measured or estimated

via hardware performance counters. All features are numeric.

fv = {f0, ..., fn} denotes a feature vector.

Variant A variant v is a multi-program workload, a single application, an

accelerator kernel or an extracted code fragment (e.g., a loop-nest). v can

be in either binary or source form and is represented solely in terms of a

feature vector. d(v)→ vd denotes an application of d to v. An application

of d means executing v when d is taken. Applying a sequence of k decisions

produces a new variant, denoted as D(v)→ vD, where D = {d0, ..., dk}.

9

Environment The execution platform in which v is executed is referred to as

the environment E. The environment consists of architectural, compilation

and system parameters. These values are not included in fv but implicitly

incorporated into the model by generating training data and creating

models for each E separately.

Target a target T , is an objective metric such as throughput or energy and

must be readily measurable in the execution environment. Targets can

incorporate multiple objectives in which case a pareto-normal model is

considered.

Based on the above abstractions, the goal of an MLMT model is to learn how

code variants, described by feature vectors, behave in an execution environment

with respect to a speci�c target and use this learning to take a decision that

maximizes (or minimizes) the target for a new and unseen variant. To achieve

this goal, the model needs to learn what happens to v with respect to T when d

is applied. To provide this knowledge, we construct training data with instances

of the form I = {f0, f1, ..., fn, L}, where {fo, f1, ..., fn} are feature values collected

for some v in E when D is not applied and L is a label that captures the e�ects

on t when D is applied to v in the same execution environment. In the simplest

case, L can be derived by taking the ratio of t with respect to the two executions

of v. A ratio of > 1 implies a positive e�ect while < 1 implies a negative e�ect.

Thus, the model construction and invocation can be summarized as follows

TRAIN({I})→ME
T ; ME

T (v = fv)→ {D} (IV.1)

Given the above formulation, we observe that it is possible to develop a model

automatically as long necessary information is provided with respect to

generating the training instances. In Section V, we explain what information is

necessary and how it is processed by our framework.

10

V. DESIGN AND IMPLEMENTATION

Fig. V.1 gives an overview of our framework. Starts with a speci�cation of an

MLMT model. Based on this speci�cation a set of scripts are generated

customized for the execution environment for which the model is to be

developed. These scripts drive the tasks of feature extraction, feature selection,

training data generation, model training, evaluation, selection. The newly

created is then presented to the user to be invoked on unseen programs. All of

these steps can be done one go or they can be done separately (i.e., only

generate training data). We highlight the key modules in the framework next.

Model Speci�cation

We developed a simple language interface to allow users to fully describe an

abstract MLMT model, as de�ned in Section IV. An MLMT speci�cation is

comprised of two sections: (i) a set of model parameters and (ii) a sequence of

action blocks. Parameter values control di�erent aspects of model construction.

Each action block contains a pair of action statements. Each statement describes

a sequence of actions that need to be taken to apply a decision to a variant.

Actions can be build or execute commands. A build command denotes that a

decision is taken at some stage prior to execution (e.g., source-to-source

transformation) while an execute command denotes that the decision is taken at

aaa a Training
m(fv)
→ d0

m(fv)
→ dn

Training
Data M(fv) →D

Feature
Extraction

Feature
Selection

Labeling

Variant
Generation

user
apps.

ft.
vec

benchmark
database

Validation

Evaluation

Composition

Training Data Generator ML Engine

Evaluator

model spec
{d(v) → v’}

ConfigTool

crowd

user

Analyzer

weka

custom

scikit

algm
plugins

Invocation

Analysis

Visualization

Model
Formulation

Script
Generation

Input
Processing custom

scripts

proglist

Figure V.1: MLMT framework overview

11

runtime (e.g., resource allocation).

A build can be a series of compilation and link command, a make command or a

script. An execute command is the command used to execute a variant or a

script. Each action block must contain a trivial action that shows the absence of

a decision. One action block must be speci�ed for each elementary decision in

the �nal outcome.

MLMTSPEC : <info> <instructions>

<info> : user training program location

| training time limit

| other

<instructions> | <instruction>

| <instruction> <instructions>

<instruction> | <meta> ;; <action> ;; <action>

<meta> :

| build

| exec

<action> : compilation command

| make command

| shell script

user training programs

path to training programs

time to train

;; make -f make.no.decision v; make -f make.decision v

The con�gurer parses the speci�cation �le and generates a set of scripts for

training data generation. For each action block, the tool determines the

di�erence between the trivial action and applied actions in each action block and

uses this information to generate build and execute scripts including feature

selection, training and validation.

For each action block do

for each program in database

generate makefile(trivial, applied action)

build <- generate build command

exec <- generate exec command

The con�gurer parses the speci�cation �le and parameterizes the execution of

each task marked with a green rectangle in Fig. III.1. For instance, if the user

speci�es

12

1. feature extraction [model parameters: user-supplied, generic,

combination]

2. feature selection [aggressiveness] model

3. training data generation [generate proglist - build ;; execute

training data generation]

Build scripts are created for each program in the benchmark database. Make�les

for user-supplied training programs are also adjusted.

Training Data Generation

Instructions for generating training data is supplied to the system via a �le called

proglist. Proglist follows a simple syntax where each line takes the following form

<meta_data> ;; <build> ;; <execute>

meta data and <build> are optional. meta data contains information about the

speci�c model being trained. <build> are the build instructions for a workload

w, which can be a make�le, a sequence of compilation directives or a shell script

that encapsulates all build instructions. The <execute> is a set of commands for

invoking w, which can be a shell script or a direct invocation command. <build>

or <execute> may contain instructions for generating alternate variants w′. For

instance, a compiler optimization �ag may be embedded in the make�le or a

resource allocation scheme may be Incorporated in <execute>. Our system

executes each proglist command, collects feature values and relevant targets. The

data is split into di�erent sets based on the <meta data> that is supplied.

A requirement is that the training programs follow the

train/benchmarks/prog/src structure as in the Parboil benchmark suite.

execute scripts are directly inserted into the training data script (next section).

To create more extensive data sets the framework includes an autotuner. The

tuning capabilities are not used. Rather the autotuner is only used to generate

13

di�erent code variants. The tuning framework is able to expose control knobs

from source code and compilation �ags, giving it the ability to create many

di�erent variants from the same program.

The framework comes with a pre-de�ned proglist for some common and

important decisions, including (i) GCC optimization sequence (ii) nvcc

optimization sequence (iii) GPU register allocation (iv) GPU thread

con�guration (v) CPU thread a�nity (vi) DVFS (vii) tiling and loop interchange

and (viii) function inlining. These pre-de�ned proglists operate on standard

benchmarks (e.g., Parboil, Rodinia, SPEC, PARSEC, HPCC), synthetic

benchmarks and other applications. All dependencies are resolved at install time

and the only user involvement in generating the training data is selecting the

decision around which a model needs to be constructed.

The framework also provides a tool for generating proglist �les. In this case, the

user needs to specify the <buid> and <execute> command that describes how

to get from w to w′. If D is composite then a seperate <buid> and <execute>

command needs to be supplied for each di. From this information, the tool will

infer all of the necessary proglist commands for the target platform.

Feature Extraction and Processing

The framework can extract any dynamic feature supported by the target

platform. We leverage the perf module which is standard on Linux kernels ≥

3.0. At install time, the framework determines the number of measurable events

that can be used as features. When a new model is to be built all measurable

events are probed and these serve as the initial feature set. Measuring one event

per program run can be time consuming given that there are hundreds of events

and potentially millions of program runs. To address this issue, we include in the

framework, a module that takes advantage of multiplexing to automatically

determine subsets of performance events that can be measured during a single

program run without causing con�icts in hardware counters.

14

Centering and scaling also play a crucial role in MLMT. The di�erence in the

range of features values can be many orders of magnitude. For instance, the

number of executed FP instructions per unit time can be in the billions, while

number of page faults can be ins single digits. Both can be equally important for

performance and must be included in the feature vector.

Data Labeling

Labeling can be a tedious and time consuming process. The framework

implements an algorithm that performs this task automatically. The roo�ine

model (Williams et al., 2009) is used to establish upper and lower bounds for

performance on the target architecture of a given code variant. The relative

performance of each entry in the training data is then determined and ranked. A

histogram is created based on the ranking and adjusted for the distribution of

values. The buckets in the adjusted histogram form the classes for the target

model and each entry in the training data is labeled accordingly.

Feature Selection

Selecting the right features is an extremely important step in MLMT. In most

ML-based tuning work, features are typically selected by hand by performance

experts (Liao et al., 2009; Stephenson and Amarasinghe, 2005). Although

e�ective in some situations, this ad-hoc approach can be limiting because not all

attributes that in�uence the outcome vector may be known to experts. The

framework employs the following series of automated feature selection techniques:

(i) eliminating low variance (ii) leave-one-out and (iii) univariate. In each case,

how aggressively the pruning is done can be controlled via a parameter.

Model Evaluation and Selection

Generally, it is not known a priori which model is most suitable for a particular

instance. The choice of a model often depends on the characteristics of the

15

training data. In the given framework, the generated training data is analyzed

and a set of learning algorithms is selected based on the properties of the data.

The selected models are passed through a battery of cross-validation tests.

Con�dence levels (based on t-test) is computed for the cross-validation results.

Only the highest performing ones are presented to the user for testing.

16

VI. A MODEL FOR REGISTER ALLOCATION OF CUDA

KERNELS

The shared register space is su�ciently large on current GPUs such that the

compiler can often make an allocation without incurring too many spills.

However, the problem lies in the fact that the number of registers allocated is

directly linked with the thread block size. Allocating su�cient registers to avoid

spills might enforce a smaller thread block size, which can lead to reduced

occupancy and loss of performance. On the other hand, selecting a larger block

size might enforce an implicit constraint on the number of registers to be

allocated per thread. Moreover, since the launch con�guration is determined at

runtime it is di�cult for the compiler to make a good decision. As an example,

consider Fig. VI.1 that shows how the the register allocation scheme adopted by

the nvcc compiler can force many of the Parboil benchmark to operate at less

the 100% occupancy.

We used the framework to develop a learning model that when given a new

kernel (source or binary) will predict the number of registers that should be

allocated to maximize performance. Thus, in terms of the MLMT abstractions

explained in Section V, the model can be expressed as follows

ch:design and implementation

ME
T ({F})→ {D}

0
20
40
60
80
100
120
140
160

al
lo
ca
te
d
re
gi
st
er
s/
th
re
ad

base
optimized
unconstrained

Figure VI.1: Register allocation by nvcc for a subset of Parboil benchmarks

17

where E represents two Nvidia GPUs based on the Fermi and Kepler

architecture, respectively. T is kernel execution time. D is the number of

registers that should be allocated which is a composite decision with an outcome

between {16..MAXREG}, where MAXREG is environment dependent. To

reduce training time and make the model less cumbersome we use expert

knowledge to eliminate some outcomes and de�ne

D = {ddef , d16, d24, d32, d40, d48, d64, d512}, where dn indicates a register allocation

of n per kernel and ddef is the default allocation.

F initially includes all dynamic metrics and events measurable in each target

GPU. These are obtained via nvprof using the �query-metrics and

�query-events �ags respectively. F goes through the selection process described

in Section IV.

Training set: The base set includes 26 kernels taken from the Parboil, CUDA

SDK Samples, SLAM and Rodinia benchmark suites. Each kernel was fed into

the code variant generator to generate di�erent variants. The parameters that

were changed in the code variant generator include (i) nvcc optimizations �ags,

e.g., O1, O3 etc. (ii) number of registers allocated and (iii) thread block size.

These variants created a total of 1230 training instances per model.

18

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the register allocation model developed with

MLTUNE. We also demonstrate the utility of di�erent aspects of the tool. To

evaluate the MLTUNE tool, we have generated 9 training data sets.

Machine Con�guration

The Table VII.1 lists the con�guration o� each machine where we have

conducted the experiments. We name the machines as Knuth and Shadowfax.

Table VII.1: Machine Con�guration

Knuth Shadowfax

Kernel Version Linux 3.13.0-29-generic Linux 3.16.0-36-generic

Bit Supported 64 64

No of Processors/Cores 12 16

GPU Generation Kepler Fermi

Memory 4 GB 8 GB

Feature Selection

I have performed three di�erent feature selection techniques: Univariate feature

selection, Accumulated feature selection and incremental feature selection. In

this section, I will discuss feature selection techniques and how feature selection

impacts the prediction accuracy. We predict the performance of any unseen

program in terms of execution time, power and energy. For example, if any

unseen program predicts top in terms of time, then we expect that this unseen

program will show speedup if we execute the program.

Univariate Feature Selection

Univariate feature selection technique uses the univariate statistical tests to �nd

out the best selected features. I used a term, feature percentile, in the �gures, it

19

means that percentage of top features selected by the univariate feature selection

technique. For example, 10% feature percentile on 44 features is, top 4 features

have been selected to generate the prediction accuracy by applying cross

validation tests.

Figure VII.1: Feature percentile vs cross validation prediction accuracy of Logistic Re-

gression classi�er

Figure VII.2: Feature percentile vs cross validation prediction accuracy of Naive Bayes

classi�er

Figure VII.3: Feature percentile vs cross validation prediction accuracy of SVM classi�er

20

Figure VII.4: Feature percentile vs cross validation prediction accuracy of Decision Tree

classi�er

Figure VII.5: Feature percentile vs cross validation prediction accuracy of KNeighbors

classi�er

If we look at Figure VII.1, we see that selecting less number of features can give

highest prediction accuracy. But on the other hand, Figure VII.2 shows

decreasing trend in prediction accuracy with less number of features. If we

observe the �gures VII.1, VII.2 and VII.3, we see that if we choose 20% feature

percentile, then it always shows highest prediction accuracy. Figure VII.4 shows

that selecting fewer features steadily increases the prediction accuracy, so, we get

highest prediction accuracy with 5% best features. But the �gure VII.5 shows a

sharp increase and decrease with decreasing feature percentile. Overall, all of the

ML classi�ers shows good prediction accuracy of above 90%.

21

Accumulated Feature Selection

Accumulated feature selection techniques select the features where prediction

accuracy increases by 0%, 2% and 5% from base prediction accuracy. Here,

feature threshold means the set of features which are selected by comparing with

the base prediction accuracy, so if prediction accuracy increases by greater than

0%, 1% and 2% from previous accuracy, then we keep that feature in the feature

threshold in a hashtable data structure. Then we apply each set of features to

check the prediction accuracy.

Figure VII.6: Features threshold vs cross validation prediction accuracy of Logistic Re-

gression classi�er

Figure VII.7: Features threshold vs cross validation prediction accuracy of Naive Bayes

classi�er

22

Figure VII.8: Features threshold vs cross validation prediction accuracy of SVM classi�er

Figure VII.9: Features threshold vs cross validation prediction accuracy of Decision Tree

classi�er

Figure VII.10: Feature threshold vs cross validation prediction accuracy of KNeighbors

classi�er

Here we see, In most of the cases, �gure VII.6, VII.7, VII.9 and VII.10 shows

higher feature threshold have lower prediction accuracy, whereas only SVM

classi�er, �gure VII.8, shows higher prediction accuracy with higher feature

threshold. Here, KNeighborsClassi�er shows higher prediction accuracy among

all the Machine Learning classi�ers.

23

Incremental Feature Selection

Incremental or Leave-one-out feature selection techniques drops one feature at a

time and then gets the prediction accuracy, and compares with the base

prediction accuracy to measure the feature strength. This technique only selects

the feature where there is an increase in prediction accuracy by 0%, 1%, 2%, and

5% from base prediction accuracy. So, Here, feature thresholds are 0%, 1%, 2%,

and 5%. Each feature threshold lists a set of features.

Figure VII.11: Features threshold vs cross validation prediction accuracy of Logistic Re-

gression classi�er

Figure VII.12: Features threshold vs cross validation prediction accuracy of Naive Bayes

classi�er

24

Figure VII.13: Features threshold vs cross validation prediction accuracy of SVM classi-

�er

Figure VII.14: Features threshold vs cross validation prediction accuracy of Decision Tree

classi�er

Figure VII.15: Features threshold vs cross validation prediction accuracy of KNeighbors

classi�er

In terms of incremental feature selection techniques, we see, all of the

�gures VII.11, VII.12, VII.13, VII.14, and VII.15 show lower prediction accuracy

with higher feature threshold. In all of the cases, feature threshold with >=0%

shows highest prediction accuracy except in Decision tree classi�er.

25

Merging Feature Selection Techniques

This section compares the di�erent feature selection techniques discussed above.

Here we will see, how prediction accuracy varies for di�erent feature selection

techniques and with di�erent Machine Learning algorithms.

Figure VII.16: Di�erent feature selection techniques vs cross validation prediction accu-

racy

Figure VII.17: Di�erent feature selection techniques vs cross validation prediction accu-

racy

Figure VII.18: Di�erent feature selection techniques vs cross validation prediction accu-

racy

26

Figure VII.19: Di�erent feature selection techniques vs cross validation prediction accu-

racy

Figure VII.20: Di�erent feature selection techniques vs cross validation prediction accu-

racy

Figure VII.21: Di�erent feature selection techniques vs cross validation prediction accu-

racy

27

Figure VII.22: Di�erent feature selection techniques vs cross validation prediction accu-

racy

Figure VII.23: Di�erent feature selection techniques vs cross validation prediction accu-

racy

Figure VII.24: Di�erent feature selection techniques vs cross validation prediction accu-

racy

If we observe all of the �gures, we see that prediction accuracy varies with

number of features which shows we need feature engineering which can give us a

better prediction accuracy. For Example, if we observe �gure VII.16, we see that

decreasing number of features collected by univariate feature selection shows

good prediction accuracy with all of the Machine Learning algorithms. On the

28

other hand, incremental feature selection techniques shows decreasing trend in

prediction accuracy as feature threshold increases. If we also observe the

�gure VII.17, we see not all of the Machine Learning shows increased prediction

accuracy with lower univariate feature selection threshold. So, it can not be

easily determined which feature selection techniques would be appropriate to get

higher prediction accuracy.

Model Selection

I performed 10-fold cross validation to get the prediction accuracy. MLTUNE

selects the model with the highest prediction accuracy to predict result for any

unseen program.

Table VII.2: Prediction accuracy of Di�erent ML models

ML Models Scikit-Learn Weka

Logistic Regression 93.65 92.50

Naive Bayes 90.96 71.53

KNeighborClassi�ers 91.53 94.61

SVM 93.26 85.00

If we observe the table VII.2, we see KNeighbors Classi�er has the best

prediction accuracy over other classi�er, whereas, Naive Bayes shows very poor

performance.

To understand the quality of the model, precision and recall have chosen as

classi�cation metrics.

29

Table VII.3: Classi�cation metrics

ML Models scikit-learn weka

Precision Recall Precision Recall

Logistic Regression 92.00 94.00 93.00 92.00

Naive Bayes 90.00 91.00 93.00 72.00

KNeighborClassi�ers 92.00 92.00 94.50 94.60

SVM 91.00 93.00 72.30 85.00

If we observe the table VII.3, we see KNeighbors Classi�er has the better

prediction quality in terms of classi�cation metrics over other classi�er, whereas,

Naive Bayes shows very poor performance in terms of recall metrics.

Model Internals

This section discuss the feature importance and model internals described by

decision tree �gure.

Decision Tree

Figure VII.25 shows that performance counter local_replay_overhead,

text_cache_throughput, and local_store_throughput are the deciding features

for the next branches to explore and to decide the prediction.

30

local_replay_overhead <= -0.9975
gini = 0.26125
samples = 520

tex_cache_throughput <= 0.5823
gini = 0.0964491339988

samples = 459

local_store_throughput <= -0.9947
gini = 0.23434560602

samples = 61

gini = 0.0770
samples = 453

value = [6. 12. 435.]

gini = 0.2778
samples = 6

value = [5. 0. 1.]

gini = 0.6250
samples = 8

value = [2. 2. 4.]

gini = 0.0726
samples = 53

value = [0. 51. 2.]

Figure VII.25: Model Internals

Principal Component Analysis with Varimax Rotation

Principal Component Analysis(PCA) converts multi-dimensional data sets into a

set of orthogonal components that explain a maximum amount of variance in the

dataset.

Datasets converted by PCA can have dense data which is sometimes hard to

interpret. Varimax rotation transforms the data into explainable format which

makes it easy to analyze the important factors of the dataset.

I have done PCA with varimax rotation on Kepler dataset. I have considered the

components which have standard deviation greater than 1.0. I have found out

there are 10 factors which correspond the performance counters most. For

example, Figure VII.26 shows that local_load_transactions,

local_store_transactions,dram_read_transactions,

dram_write_transactions,l2_read_transacriotions and l2_write_transactions

highly loads together for a factor. I name this factor as Memory Transactions.

31

Figure VII.26: Varimax rotation: Memory Transaction

Figure VII.27: Varimax rotation: Instructions

Figure VII.28: Varimax rotation: Register Usage

32

Figure VII.29: Varimax rotation: IPC

Figure VII.30: Varimax rotation: Local Memory

Figure VII.31: Varimax rotation: Read Throughput

33

Figure VII.32: Varimax rotation: Global Throughput

Figure VII.33: Varimax rotation: Cache Throughput

Figure VII.34: Varimax rotation: Store Throughput

34

Figure VII.35: Varimax rotation: DRAM Utilization

Portability

Performance Counters

MLTUNE tool can automatically extract the performance counters of the

respective system. The performance counters can vary system to system. To

check the portability of the MLTUNE tool, Performance counters have been

extracted from Fermi and Kepler.

Table VII.4 shows the performance counters in Kepler and Fermi. There is a one

performance counter global_replay_overhead which exist in Kepler, but not in

Fermi.

Table VII.4: Performance counters

Features in Kepler Features in Fermi

l1_cache_local_hit_rate l1_cache_local_hit_rate

ipc ipc

gld_requested_throughput gld_requested_throughput

gst_requested_throughput gst_requested_throughput

ipc_instance ipc_instance

global_replay_overhead tex_cache_throughput

35

tex_cache_throughput dram_read_throughput

dram_read_throughput gst_throughput

gst_throughput gld_throughput

gld_throughput local_replay_overhead

local_replay_overhead l2_l1_read_hit_rate

l2_l1_read_hit_rate l2_l1_read_throughput

l2_l1_read_throughput l2_texture_read_throughput

l2_texture_read_throughput local_memory_overhead

local_memory_overhead issued_ipc

issued_ipc issue_slot_utilization

issue_slot_utilization local_load_transactions_per_request

local_load_transactions_per_request local_store_transactions_per_request

local_store_transactions_per_request local_load_transactions

local_load_transactions local_store_transactions

local_store_transactions dram_read_transactions

dram_read_transactions dram_write_transactions

dram_write_transactions l2_read_transactions

l2_read_transactions l2_write_transactions

l2_write_transactions local_load_throughput

local_load_throughput local_store_throughput

local_store_throughput l2_read_throughput

l2_read_throughput sysmem_write_throughput

sysmem_write_throughput ldst_issued

ldst_issued ldst_executed

ldst_executed stall_inst_fetch

36

stall_inst_fetch stall_data_request

stall_data_request stall_texture

stall_texture stall_other

stall_other l2_utilization

l2_utilization tex_utilization

tex_utilization dram_utilization

dram_utilization ldst_fu_utilization

ldst_fu_utilization alu_fu_utilization

alu_fu_utilization inst_issued

inst_issued inst_compute_ld_st

inst_compute_ld_st inst_misc

inst_misc

Model Accuracy

To test the trained model and the model accuracy, 99 unseen programs have

been invoked to the model.

Figure VII.36 shows the model accuracy over cross platform. Here K-K means

unseen programs generated on Kepler and tested in Kepler Model and K-F

means unseen programs generated on Kepler and tested on Fermi model. Even

though prediction accuracy is high for Logistic Regression, Naive Bayes and

Decision Tree, but the accuracy score does not show a match with the prediction

accuracy. We are investing that why the model accuracy and prediction accuracy

di�ers.

37

Figure VII.36: Cross Platform Model Accuracy

Performance Gains

This section discuss the speedup over predicted registers. I have trained �ve

models for each dataset so I have total 45 models for Kepler and 40 models for

Fermi. I have employed 99 unseen programs to see the prediction and the

speedup over those predicted registers. MLTUNE employs forward checking and

reverse checking to predict the top performed register for the unseen program.

For example, If we perform forward model prediction checking, an unseen

program with 16 registers may be predicted to run on 24 registers to get good

performance. On the other hand, if we perform reverse model prediction

checking, the same program may be predicted to perform good on 512 registers.

All of the �gures in this section show the experiment results with ten di�erent

applications: depthvertex, halfsample, integrate, raycast, reduce, renderdepth,

rendertrack, rendervolume, track and vertexnorm with four di�erent register

variants: default, 16, 20, and 24 registers. For example, If we look at

�gure VII.37, we gathered execution time of halfsample application with four

di�erent number of registers: default, 16, 20 or 24 registers. And then we run the

same program with the predicted registers. Then we plot the graph to show the

speedup. So, here, for example, halfsample application with 16 registers perform

better with predicted registers. We follow the same behavior with all the

38

experiments in this section.

Speedup

Figure VII.37 shows that prediction of unseen programs generated in kepler and

its speedup on the predicted register generated from the models trained on

kepler. It shows a generous speedup for several unseen programs over predicted

registers, but there are some programs where performance downgrades over

predicted registers. For example, If we invoke rendervolume application with 16

registers, then we see a speedup.

Figure VII.39 shows that unseen programs generated on kepler performs worst

on fermi model when applied forward model checking. For example, halfsample

application with 20 and 24 registers shows degraded performance. On the other

hand Figure VII.40 shows speedup for several unseen programs when predicting

using reverse model checking. For example, reduce application with 16 registers

shows double speedup.

Figure VII.37: Speedup over predicted registers: Kepler programs on Kepler models using

forward model checking

39

Figure VII.38: Speedup over predicted registers: Kepler programs on Kepler models using

reverse model checking

Figure VII.39: Speedup over predicted registers: Kepler programs on Fermi models using

forward model checking

40

Figure VII.40: Speedup over predicted registers: Kepler programs on Fermi models using

reverse model checking

Power Gain

I have analyzed power gain over predicted registers. As we see from the �gure,

For example Figure VII.41, Unseen programs does not show much improvement

over predicted registers. For example, if we run depthvertex application with the

predicted registers instead of 16, 20 or 24 registers, it shows no power gain. The

same scenario is for all the �gures related to power gain.

Figure VII.41: Power gain over predicted registers: Kepler programs on Kepler models

using forward model checking

41

Figure VII.42: Power gain over predicted registers: Kepler programs on Kepler models

using reverse model checking

Figure VII.43: Power gain over predicted registers: Kepler programs on Fermi models

using forward model checking

42

Figure VII.44: Power gain over predicted registers: Kepler programs on Fermi models

using reverse model checking

Speedup in Di�erent ML Models

In this section, I discuss how speedup di�ers over predicted registers in di�erent

models using forward/in order model checking and reverse model checking.

In order Model Invocation

In this process of in order model invocation, I invoked unseen programs to the

models sequentially from 16 registers to 512 registers. Here, as soon as the

work�ow get good prediction, it suggest to use that register.

Figure VII.45 shows that halfsample programs have degraded performance in

Decision tree model. But we see stable performance of halfsample programs in

other models. If we observe all the �gures VII.45, VII.46, VII.47, VII.48 and

VII.49, we see that every model show equal or better performance in predicted

registers except decision tree.

43

Figure VII.45: Speedup over predicted registers: Kepler programs on Kepler models

Figure VII.46: Speedup over predicted registers: Kepler programs on Kepler models

Figure VII.47: Speedup over predicted registers: Kepler programs on Kepler models

44

Figure VII.48: Speedup over predicted registers: Kepler programs on Kepler models

Figure VII.49: Speedup over predicted registers: Kepler programs on Kepler models

Reverse order Model Invocation

In this process of reverse order model invocation, I invoked unseen programs to

the models sequentially from 512 registers to 16 registers. Here, as soon as the

work�ow get good prediction, it suggest to use that register.

We see that �gures VII.50, VII.51, VII.52, VII.53, VII.54 show better or equal

performance improvement if we run the program with the predicted registers.

For example, In all of the models, reduce application shows double speedup if we

run a program with the predicted register instead of 16 registers.

45

Figure VII.50: Speedup over predicted registers: Kepler programs on Kepler models

Figure VII.51: Speedup over predicted registers: Kepler programs on Kepler models

Figure VII.52: Speedup over predicted registers: Kepler programs on Kepler models

46

Figure VII.53: Speedup over predicted registers: Kepler programs on Kepler models

Figure VII.54: Speedup over predicted registers: Kepler programs on Kepler models

Power Gain in Di�erent ML Models

In order Model Invocation

If we observe all the �gures, we see that usage of number of registers have no

impact in power. It shows equal or no improvement. For example, �gure VII.55

shows that all of the application have mostly same power gain.

47

Figure VII.55: Power gain over predicted registers: Kepler programs on Kepler models

Figure VII.56: Power gain over predicted registers: Kepler programs on Kepler models

48

Figure VII.57: Power gain over predicted registers: Kepler programs on Kepler models

Figure VII.58: Power gain over predicted registers: Kepler programs on Kepler models

49

Figure VII.59: Power gain over predicted registers: Kepler programs on Kepler models

Reverse order Model Invocation

We also see the same pattern in reverse order model invocation as we see in

forward order model invocation. If we observe the �gures VII.60, VII.61,

VII.62, VII.63 and VII.64, we see that there is no improvement in power if we

run the program with the predicted registers. For example, �gure VII.60 shows

that, track application with the predicted registers take more power.

Figure VII.60: Power gain over predicted registers: Kepler programs on Kepler models

50

Figure VII.61: Power gain over predicted registers: Kepler programs on Kepler models

Figure VII.62: Power gain over predicted registers: Kepler programs on Kepler models

51

Figure VII.63: Power gain over predicted registers: Kepler programs on Kepler models

Figure VII.64: Power gain over predicted registers: Kepler programs on Kepler models

52

VIII. CONCLUSION

This section summarizes the contribution and the work done in this thesis, and

indicates the direction this work can take in the future.

Contribution

This thesis presents a tool, MLTUNE, which can automatically build a model by

extracting the performance counters on the target platform. I have used parboil

benchmark to generate training data which is needed to extract performance

event values to train Machine Learning Models. I have analyzed di�erent feature

selection techniques and how prediction accuracy di�ers over feature selection. I

have looked into the insight of the performance counters using Principal

component analysis with varimax rotation. I have analyzed GPU thread

con�guration with di�erent ML models. I also analyzed cross platform model

accuracy in kepler and fermi.

The thesis shows that the number of features have a substantial impact in

prediction accuracy of the model. Di�erent feature selection techniques show

di�erent prediction accuracy, so its not possible to build a model with good

prediction accuracy for a �xed set of features. We see that program variant

shows performance improvement in terms of execution time with the predicted

registers, which makes it easy for the programmer or performance engineer to

optimize the application or program performance before deploying into live

system. MLTUNE framework also show the internal mechanism of feature

importance through decision tree. The thesis also see that varying number of

registers have less impact in power gain. Overall, the thesis show the importance

of an automated machine learning based performance tool which can

exhaustively employs and veri�es the internals of machine learning utilities as an

abstraction to the user and easy use of such tools in application.

53

Future Work

There are several directions I would like to extend this work. First, I would like

to do automatic parameter tuning to generate complex models, for example

tuning learning parameter for logistic regression. Second, I would like to check

cross platform model accuracy, for example, how the speedup/power gain varies if

we test the program on the models trained on di�erent platform. Third, I would

like to check the applicability of MLTUNE in general purposes such as to predict

stock price. I believe MLTUNE can be used as a generalized tool for many other

purposes as this framework support manual and automatic model generation.

54

REFERENCES

Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O'Boyle, M.,
Thomson, J., Toussaint, M., and Williams, C. (2006). Using machine learning
to focus iterative optimization. In International Symposium on Code
Generation and Optimization, 2006. (CGO 2006)., New York, NY.

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O'Boyle, M. F. P., and Temam,
O. (2007). Rapidly Selecting Good Compiler Optimizations using Performance
Counters. In Proceedings of the International Symposium on Code Generation
and Optimization (CGO '07), pages 185�197, Washington, DC, USA. IEEE
Computer Society.

Cavazos, J. and Moss, J. E. B. (2004). Inducing heuristics to decide whether to
schedule. In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation 2004, Washington, DC,
USA, June 9-11, 2004, pages 183�194.

Cochran, R., Hankendi, C., Coskun, A. K., and Reda, S. (2011). Pack & cap:
Adaptive DVFS and thread packing under power caps. In MICRO, pages
175�185.

Curtis-Maury, M., Shah, A., Blagojevic, F., Nikolopoulos, D. S., de Supinski,
B. R., and Schulz, M. (2008). Prediction models for multi-dimensional
power-performance optimization on many cores. In Proc. of the 17th
international conference on Parallel architectures and compilation techniques.

Ding, Y., Ansel, J., Veeramachaneni, K., Shen, X., O'Reilly, U.-M., and
Amarasinghe, S. (2015). Autotuning algorithmic choice for input sensitivity.
In PLDI, pages 379�390.

Emani, M. K. and O'Boyle, M. (2015). Celebrating diversity: A mixture
of experts approach for runtime mapping in dynamic environments. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015, pages 499�508, New York,
NY, USA. ACM.

Fursin, G., Kashnikov, Y., Memon, A. W., Chamski, Z., Temam, O., Namolaru,
M., Yom-Tov, E., Mendelson, B., Zaks, A., Courtois, E., Bodin, F., Barnard,
P., Ashton, E., Bonilla, E., Thomson, J., Williams, C., and O'Boyle, M.
(2011). Milepost GCC: Machine Learning Enabled Self-Tuning Compiler.
International Journal of Parallel Programming, 39.

Ge, Y. and Qiu, Q. (2011). Dynamic thermal management for multimedia
applications using machine learning. In Proceedings of the 48th Design
Automation Conference, DAC '11, pages 95�100, New York, NY, USA. ACM.

Jain, N., Bhatele, A., Robson, M. P., Gamblin, T., and Kale, L. V. (2013).
Predicting application performance using supervised learning on
communication features. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC '13,
pages 95:1�95:12, New York, NY, USA. ACM.

55

Jayasena, S., Amarasinghe, S., Abeyweera, A., Amarasinghe, G., De Silva, H.,
Rathnayake, S., Meng, X., and Liu, Y. (2013). Detection of false sharing using
machine learning. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC '13, pages
30:1�30:9, New York, NY, USA. ACM.

Kashnikov, Y., Beyler, J. C., and Jalby, W. (2012). Compiler optimizations:
Machine learning versus O3. In Languages and Compilers for Parallel
Computing, 25th International Workshop, LCPC 2012, Tokyo, Japan,
September 11-13, 2012, Revised Selected Papers, pages 32�45.

Kulkarni, S. and Cavazos, J. (2012). Mitigating the compiler optimization
phase-ordering problem using machine learning. In Proceedings of the ACM
international conference on Object oriented programming systems languages
and applications, OOPSLA '12, pages 147�162.

Leather, H., Bonilla, E. V., and O'Boyle, M. F. P. (2014). Automatic feature
generation for machine learning-based optimising compilation. TACO,
11(1):14.

Liao, S.-w., Hung, T.-H., Nguyen, D., Chou, C., Tu, C., and Zhou, H. (2009).
Machine Learning-Based Prefetch Optimization for Data Center Applications.
In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC '09, pages 56:1�56:10.

Moore, R. W. and Childers, B. R. (2013). Automatic generation of program
a�nity policies using machine learning. In Proceedings of the 22Nd
International Conference on Compiler Construction, CC'13, pages 184�203,
Berlin, Heidelberg. Springer-Verlag.

Pusukuri, K. K., Vengerov, D., Fedorova, A., and Kalogeraki, V. (2011). Fact: A
framework for adaptive contention-aware thread migrations. In Proceedings of
the 8th ACM International Conference on Computing Frontiers, CF '11, pages
35:1�35:10, New York, NY, USA. ACM.

Rahman, S., Burtscher, M., Zong, Z., and Qasem, A. (2015). Maximizing
hardware prefetch e�ectiveness with machine learning. In 17th IEEE
International Conference on High Performance Computing and
Communications (HPCC15).

Seo, S., Lee, J., Jo, G., and Lee, J. (2013). Automatic opencl work-group size
selection for multicore cpus. In Proceedings of the 22Nd International
Conference on Parallel Architectures and Compilation Techniques.

Shen, H., Lu, J., and Qiu, Q. (2012). Learning based dvfs for simultaneous
temperature, performance and energy management. In Quality Electronic
Design (ISQED), 2012 13th International Symposium on, pages 747�754.

Stephenson, M. and Amarasinghe, S. (2005). Predicting Unroll Factors Using
Supervised Classi�cation. In CGO, San Jose, CA, USA.

56

Stock, K., Pouchet, L.-N., and Sadayappan, P. (2012). Using Machine Learning
to Improve Automatic Vectorization. ACM Trans. Archit. Code Optim.,
8(4):50:1�50:23.

Tournavitis, G., Wang, Z., Franke, B., and O'Boyle, M. F. (2009). Towards a
holistic approach to auto-parallelization: integrating pro�le-driven parallelism
detection and machine-learning based mapping. In Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and
implementation.

Vuduc, R., Demmel, J., and Bilmes, J. (2004). Statistical Models for Empirical
Search-Based Performance Tuning. International Journal of High Performance
Computing Applications, 18(1):65�94.

Williams, S., Waterman, A., and Patterson, D. (2009). Roo�ine: an insightful
visual performance model for multicore architectures. Commun. ACM, 52.

57

