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1 

INTRODUCTION 

 

 

Over the last 25 years, the United States has experienced strong population and 

automobile usage growth.  This, coupled with increased popularity of “big box” 

commercial centers with expansive parking lots has resulted in a large amount of land 

turned into parking lot surfaces.  Parking lot surfaces are routinely coated with a variety 

of sealants for perceived aesthetic and durability benefits.  Unfortunately, some of the 

materials used to seal parking lots can be toxic (Bryer et al., 2006, Scoggins et al., 2007).  

The commonly used coal tar based sealants are especially toxic because the rainwater 

runoff from coal tar surfaces can contain more than 100 times the Probable Effect 

Concentration guideline level for polycyclic aromatic hydrocarbons (PAHs) (Mahler et 

al., 2005).  Before the banning of coal tar sealant application in Austin, the City of Austin 

estimates that about 600,000 gallons of coal tar sealants were applied annually in the 

greater Austin area alone (Van Metre et al., 2006). 

As awareness of the environmental consequences of PAH increases, we can 

expect new government and citizen lead initiatives for remedial actions aimed at reducing 

the sealants’ harmful effects.  As of April 2009, the City of Austin, Wisconsin’s Dane 

County, and Washington D.C. have instituted a ban on coal tar sealant use.  An initial 

step in such a remediation effort is to produce a geographic inventory of seal-coated 

parking lots within an area of interest.  Such an inventory would allow for detection and 

prioritization of hot spots based on objective spatial factors such as aerial coverage,
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distance to nearest stream, and overlap with groundwater recharge zones.  The PAH 

content varies widely from one type of sealant to another (Mahler et al., 2005), therefore, 

a parking lot sealant inventory will need to distinguish among the sealant types if we are 

to accurately identify potential high-level PAH sources.  The traditional way to identify 

parking lot sealant type is to manually scrape off a sample and have the sample 

chemically analyzed.  Although the lab analysis is fairly straight-forward (Kershaw, 

1996, Van Metre et al., 2009), they are expensive and the manual field collection process 

is laborious.  Since a large parking lot may have only a portion of its surface sealed, and 

the sealed portion may have a variety of sealants, it is necessary to sample large parking 

lots in multiple places in order to assess the PAH-rich sealant coverage area accurately.  

Even a medium sized city would involve collecting, analyzing, tracking, and 

georeferencing thousands of samples.   

Remote sensing techniques have the potential to greatly simplify obtaining a 

census of sealed parking lots.  Detecting sealant types by analyzing remotely sensed 

imagery can replace the need for large scale chemical analysis.  In addition, remotely 

sensed imagery can be directly fed to GIS systems for spatial analysis, reducing manual 

data entry effort (Benz et al., 2004, Ward et al., 1999).  Besides simplifying spatial 

analysis, remote sensing analysis can also assist in tracking temporal changes in parking 

lot surfaces by analyzing pixel-by-pixel changes in images of a particular location taken 

at different times (Walsh et al., 2001). 

Two classification techniques, Maximum Likelihood Classification (MLC) and 

Classification Tree Analysis (CTA), are used to differentiate coal tar surfaces from non-

coal tar surfaces in Landsat and Hyperion images.  Of the two classification techniques, 
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MLC is regarded as the more accurate but also more computationally demanding method.  

Of the two remote sensing platforms, Landsat images are far cheaper and more readily 

available than Hyperion images.  Hyperion images, on the other hand, have much greater 

radiometric and spectral resolutions than Landsat images.  

Differentiating dark and relatively small objects such as parking lots is a 

challenging remote sensing application.  To gauge the usefulness of our image 

classification processes, an accuracy assessment of the two methods and the two remote 

sensing platforms will be made.  Comparing the capabilities of the two classification 

methods and the two platforms could help us point the way to an adequately robust set of 

remote sensing tools for our application.
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CHAPTER 1 

 

CONCEPTUAL FRAMEWORK 

 

The environmental and health effects of polycyclic aromatic hydrocarbons 

(PAHs) have been widely documented in the scientific literature (Eisler, 1987, Fabacher 

et al., 1991, O’Conner and Huggett, 1988).  The U.S. Environmental Protection Agency 

(2008) characterizes PAHs as “highly potent carcinogens that can produce tumors in 

some organisms at even single doses… their effects are wide-ranging within an organism 

and have been found in many types of organisms, including non-human animals, birds, 

invertebrates, plants, amphibians, fish, and humans.”  

PAHs are a family of chemicals formed when hydrocarbons and other organic 

substances are burned incompletely.  There are over 100 varieties of PAHs and they 

normally occur as complex mixtures.  In a pure form, PAHs are mostly colorless, white, 

or pale yellow-green.  But unless distilled into a pure form in a laboratory, PAHs are 

almost always found in very dark substances such as coal tar pitch (a byproduct of 

producing coke from coal), asphalt, roofing tar, and crude oil (US Dept. of Health and 

Human Services, 1995).   PAHs with smaller molecular weights are more volatile than 

PAHs with larger molecular weights. 
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Although there are a variety of urban sources of PAHs such as tire dust, motor oil, 

and asphalt, coal tar sealed parking lots may be the dominant source of PAHs in urban 

runoff and streams (Mahler et al., 2005, Van Metre et al., 2009).  The average PAH 

content in runoff from coal tar-sealed surfaces was 65-times higher than from other 

parking lot surface types (Mahler et al., 2005).  The adverse wildlife impact of coal tar 

sealed parking lots raises the need to build an inventory of coal tar sealed surfaces with 

their location, surface area, and if possible, the “quality” of the surface in terms of wear 

and coal tar content.  Remote sensing analysis may be able to play an important role in 

building such an inventory.  Remote sensing techniques can be used to cost-effectively 

survey large geographic areas and is routinely used to classify land cover types on a 

continent-wide scale (Jensen 2005).  Remote sensing analysis is used to identify a wide 

variety of surface materials such as vegetation types, soils, rocks, ice, water, buildings, 

and pavement (Christensen et al., 2000, Dalton et al., 2004).   

To aid remotely sensed mineralogical surveys, the United States Geological Survey 

(USGS) maintains a publicly available spectral library of a large variety of minerals 

(Clark et al., 2007).  A spectral library of parking lot surfaces, similar to the USGS 

spectral library of minerals, can potentially be employed to distinguish different types of 

parking lot surfaces captured in remotely sensed images.  In particular, remote sensing 

techniques may help distinguish coal tar sealed parking lots from non-coal tar sealed 

parking lots. 

Despite the potentially adverse health impact of coal tar sealed parking lots, there 

do not appear to be any published reports describing attempts to identify coal tar sealed 

parking lots by analyzing remotely sensed imagery.  However, astronomers, oil 
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prospectors, and land remediation specialists have attempted to identify coal tar and other 

PAH-bearing molecules through remote sensing techniques.  By analyzing spectral 

absorption bands, astronomers have detected PAH molecules in moons orbiting Jupiter 

and Saturn and in interstellar gas clouds (Bernstein et al., 2005, Cloutis, 1989).  Closer to 

home, oil prospectors have utilized the unique spectral characteristics of coal tar to 

prospect for oil bearing tar sands in the Canadian Rockies (Cloutis, 1989), and to detect 

oil contamination in soils (Winkelmann, 2005).  The sampled wavelength region is 

between 400nm to 2,500nm (Winkelmann, 2005).  In hyperspectral images, the sampled 

spectrum is divided into 100 to 300 bands with a bandwidth of two to ten nm per band 

(Winkelmann, 2005).   

Although PAH-bearing coal tar is very dark over all the spectral bands used in 

remote sensing platforms, coal tar’s reflectance is somewhat higher in the near-UV 

around 350nm (Cloutis, 1989).  Imagery containing near UV-bands is not available via 

satellite based sensors due to severe atmospheric scattering.  However, some airborne 

sensors do include UV-A bands (315nm to 400nm) and are primarily used for imaging oil 

spills on water (Jha et al., 2008).  Therefore, airborne sensors capable of detecting near-

UV radiation may be useful in differentiating coal tar sealed parking lots. 

Since parking lots are found mainly in urban areas, the mapping and discrimination of 

parking lot surface types is an urban application.  Urban mapping presents unique 

challenges for remote sensing analysis because of small features (<10m) and also due to 

large variations in materials and textures (Herold et al., 2004).  Various studies suggest a 

spatial resolution of 5m or better for accurate mapping of urban land cover (Herold et al., 

2003).  Adequate spectral resolution and wide spectral coverage are also essential.  
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Herold (2003) indicates that wavelengths around 498nm (AVIRIS channel 14), 538nm 

(AVIRIS channel 18), 580nm (AVIRIS channel 22), 640nm (AVIRIS channel 28), 

740nm (AVIRIS channel 41), and 2330nm (AVIRIS channel 207) describe 99% of the 

spectral variability in all datasets.  While AVIRIS and Hyperion sensors’ band centers are 

within 5nm of each of the six wavelengths mentioned above, the Ikonos and Landsat TM 

bands lie outside or near the edge of the suitable bands.  Herold (2003) also shows that 

natural surfaces require less spectral resolution than urban landscapes.  

Within an urban setting, dark asphalt and parking lot surfaces present their own 

set of remote sensing challenges.  Producer’s accuracies for parking lots are uniformly 

low at just under 40% for AVIRIS, Ikonos, and Landsat TM (Herold et al., 2003).  

Producer’s accuracy for dark asphalt road is slightly better for AVIRIS at 55% (Herold et 

al., 2003).  Ikonos and Landsat TM show modest improvements in user’s accuracies for 

both parking lot and dark road asphalt (Herold et al., 2003).  However, AVIRIS shows 

marked improvements for parking lot and dark asphalt user’s accuracies at 95% and 85% 

respectively (Herold et al., 2003).  The markedly higher AVIRIS user’s accuracies for 

mapping dark asphalt (roads and parking lots) suggest the usefulness of higher spectral 

and spatial resolutions.  The uniformly low reflectance of parking lot surfaces point to the 

need for high radiometric resolution.  We would therefore expect Landsat TM scenes, 

with 8-bit radiometric resolution, to perform poorly when compared to Ikonos (11-bit), 

AVIRIS (16-bit), and Hyperion (16-bit) scenes.  Another complication in discriminating 

urban surfaces is introduced by changes in spectral properties over time.  Asphalt 

surfaces (and perhaps sealed parking lot surfaces) become more reflective across all 

bands as they age (Herold and Roberts, 2005).  Due to parking lot size and reflectance 
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properties, differentiating coal tar sealed parking lots from other kinds of parking lots will 

likely require high spatial, spectral, and radiometric resolutions.
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CHAPTER 2 

 

DATA AND METHODOLOGY 

 

The process of distinguishing coal tar from other kinds of paved surfaces in 

remotely sensed imagery begins with collecting spectral samples of coal tar and non-coal 

tar parking lot surfaces.  The spectral samples are used as pure-pixel training data to 

classify pixels in a remotely sensed image as either “coal tar” or “non-coal tar.”  Finally, 

a portion of a classified image is compared against known surface types to assess the 

accuracy of the classification process.  The entire methodology can be summarized into 

six basic steps (Table 2.1). 

 

Surface type spectroscopy 

Spectral signatures of coal tar sealed and non-coal tar sealed parking lots are the 

only primary data that will be collected.  A minimum of 15 coal tar sites and at least 

another 15 non-coal tar sites will be sampled.  Sampling will occur across a wide swath 

of Austin.  The spectral device used is FieldSpec Pro, a backpack held instrument 

manufactured by Analytical Spectral Devices, Inc.  To keep lighting conditions 

consistent, all sampling will take place within a period of two weeks on sunny to mostly 

sunny days.  To correct for changing light conditions, the spectrometer will be 

recalibrated by retaking White Reference Measurement (WRM) at least every five 
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minutes.  The spectrometer will be set to take one reading per sample.  To increase 

sampling accuracy, 20 readings will be taken for each WRM.  The spectrometer’s sensor 

will be held approximately 1m above ground (Figure 2.1).  Notes associated with each 

sampling will include time, location address, and surface type.  Sampling locations and 

their surface types will be provided by the City of Austin based on their lab analysis of 

parking lot surfaces.  Spectral signatures of coal tar sealed surfaces, surfaces sealed with 

non-coal tar based sealants, plain asphalt and concrete will be sampled.  Since sealed 

surfaces erode significantly within three years after application, sealed surfaces with a 

wide range of wear will be sampled. 

The software provided with FieldSpec Pro produces two kinds of output files: an 

image file (JPEG, TIFF, and BMP formats) showing graphs of spectral values and a 

delimited text file listing user-specified mnemonic for the sampled location, band, and 

reflectance value. The text file is formatted in way that can be conveniently imported into 

a database or spreadsheet for further analysis.  

FieldSpec Pro measures spectral irradiance with wavelengths from 350nm to 

1050nm.  The spectral resolution is 1nm.  The radiometric values are recorded to a 

precision of 3 decimal places and range from 0.000 to 1.000.  The fiber optic cable has a 

25 degree field-of-view (FOV).  Thus at 1m height, the FOV has a 22 cm radius.   

 

Image and ancillary data 

Besides spectral signatures, the data sets needed for the study include Landsat and 

EO-1 Hyperion scenes covering all or most of Austin, a list of parking lots and their 
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characteristics provided by the City of Austin, and a GIS polygon layer that describes the 

taxable structures (in particular, parking lots) within Austin’s city limits. 

The Landsat scene for Austin, provided by the US Geological Survey (USGS) National 

Map Seamless Server was acquired on October 12, 2007.  The EO-1 Hyperion scene for 

Austin, provided by USGS Earth Resources Observation and Science (EROS) Center, 

was acquired on March 30, 2003.  Both scenes have a spatial resolution of 30m.  The 

spectral overlap with FieldSpec Pro’s range (350nm to 1050nm) is somewhat broader for 

Hyperion (from 430nm to 1050nm, with no gaps) when compared to Landsat (from 

450nm to 900nm, with 10nm, 20nm, and 90nm gaps between four bands).  While the 

spatial resolution and spectral coverage for the two platforms are comparable, Hyperion’s 

spectral and radiometric resolutions are far greater than Landsat’s.  Hyperion bands are 

9nm wide with 69 bands overlapping FieldSpec Pro’s spectral range.  The corresponding 

number of bands for Landsat is just four and each band is much wider (450nm - 520nm, 

530nm - 610nm, 630nm - 690nm, and 780nm – 900nm).  Hyperion has a 16-bit 

radiometric resolution with 65,536 possible values while Landsat has an 8-bit resolution 

with 256 possible values.  Hyperion is currently regarded as an experimental platform. 

In addition to the Hyperion and Landsat datasets, a City of Austin TCAD 2003 

GIS layer will be acquired.  This layer contains polygons for taxable structures within the 

Austin metropolitan area.  Each polygon has a set of associated attributes including the 

type of structure represented by the polygon.  One of the structure types is “parking lot.”  

Thus the TCAD 2003 layer can be used to clip just the parking lots in a scene and greatly 

reduce the amount of data that would need to be processed. 
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Another dataset acquired for this project is a list of parking lot locations and their 

surface characteristics.  This dataset is provided by the City of Austin’s Watershed 

Protection Department and is used to identify coal tar sealed surfaces in an accuracy 

assessment.  The Watershed Protection Department determined the parking lot 

characteristics by chemically analyzing the parking lots’ surface samples. 

 

Methodology 

Once data acquisition is complete, the data will be processed in four steps: data 

reduction, spectral signature band convolution, spectral classification training, and 

accuracy analysis. 

 

Data reduction  

Data reduction decreases the amount of data that need to be processed.  In this 

application, data reduction will be accomplished in three ways: scene filtering, band 

exclusion, and Principle Component Analysis (PCA).  Remotely sensed scenes are 

typically measured in gigabytes and data reduction makes the processing of large scenes 

more manageable by reducing disk space and computing requirements.  Apart from 

reducing the quantity of data, data reduction also reduces the number of data processing 

steps.  For example, the exclusion of each Hyperion band also eliminates the tasks 

associated with processing the band’s data. 

Scene filtering removes the parts of a scene that are not relevant to the 

application.  For our application, the goal is to distinguish coal tar parking lots from non-

coal tar parking lots.  Therefore all non-parking lot surfaces can be ignored.  The City of 
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Austin TCAD 2003 polygons attributed as parking lots are used to clip the parking lot 

surfaces from a scene. 

Band exclusion removes unusable portions of a scene’s spectral data.  An EO-1 

Hyperion image has 220 bands ranging from 430nm to 2400nm.  Since the FieldSpec Pro 

spectral range is from 350nm to 1050nm, all bands in a Hyperion image from 1050nm to 

2400nm can be ignored.  Thus, a 220 band Hyperion image is reduced to sixty-nine 9nm 

wide bands between 430nm and 1051nm. 

Some of the 69 bands of a Hyperion image between 430nm and 1050nm are likely 

to be highly correlated with each other.  Highly correlated bands are redundant in that any 

one band contains nearly all the information present in the other bands it is highly 

correlated with.  One of the outputs of PCA analysis is a correlation matrix among the 

image bands.  This matrix will be used to identify Hyperion bands that are the least 

correlated with each other.  The set of bands selected for analysis will have at most a 

correlation coefficient of 0.96 from any of the other selected bands. 

 

DN to reflectance conversion 

The pixel values of Landsat and Hyperion imagery is a digital number (DN) 

representing the amount of light energy received by the remote sensing device when the 

scene was captured.  The values are scaled to the minimum and maximum values that can 

be recorded by the receiving device.  Landsat values range from 0 to 255 and Hyperion 

values range from 0 to 65,535.  The DN values must be converted to reflectance values 

between 0 and 1 before they can be compared to the training site reflectance values 

collected by the spectrometer.  The DN to reflectance conversion is a two-step process.  



14 

 

The DN values are first converted to radiance values which are in turn converted to 

reflectance values.  The obtained Hyperion and Landsat images appear free of clouds and 

haze, so no haze reduction was performed.  The standard atmospheric model was used to 

calculate reflectance.  There are no units associated reflectance values.  A zero value 

denotes full absorption and one denotes full reflectance. 

Radiance is a measure of the incoming light’s energy intensity.  The radiance 

units are W/(m²*Sr*µm) or watts per square meter per steradian per micrometer.  To 

convert Hyperion DN values to radiance, DN values in bands 15 – 56 are divided by 40 

and DN values in bands 78 – 89 are divided by 80.  For Landsat, the following formula 

was used to convert DN values to radiance (provided by USGS EROS): 

 

  Radianceλ= Biasλ+ (Gainλ * DNλ) 

where λ is the Landsat band number.   

The gain and bias for each band are: 

  band 1:  gain: 0.762824,   bias: -1.52 

  band 2:  gain: 1.442510,   bias: -2.84 

  band 3:  gain: 1.039880,   bias: -1.17 

  band 4:  gain: 0.872588,   bias: 1.51 

 

The formula to convert radiance to reflectance is (provided by USGS EROS): 

  ρ = (π * L λ * d²) / (ESUN λ * cosθs) 

where ρ is reflectance value (unitless) 

  L is radiance value 
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  λ is band number 

  d is the earth to sun distance in astronomical units (based on scene’s date) 

  ESUN is the solar irradiance in W/(m² * µm) 

  s is solar zenith angle in degrees (based on scene’s date and time). 

 

d and s were obtained from published astronomical charts.  ESUN values for each band 

were obtained from USGS web site for Hyperion and Landsat FAQ sheet. 

 

Spectral signature band convolution 

The Fieldspec Pro spectral reflectance values, recorded with 1nm resolution, are 

convolved to relevant Hyperion or Landsat bands.  Variations in a signature’s reflectance 

values within a band are lost.  A large number of narrow bands will result in smaller 

information loss than fewer, wider bands.  Therefore, Hyperion’s finer spectral 

resolution, compared to Landsat, will likely result in greater classification accuracy for 

Hyperion data.  For example, a signature’s spike followed by a dip of similar amplitude 

spanning 450nm to 520nm (Landsat’s blue band) would be lost in a Landsat image but 

would be largely preserved in a Hyperion image.  

 

Scene values bias correction 

 The reflectance values of a sample obtained from Fieldspec Pro are for a 

homogenous surface type.  The sample values are used as training sites representing 

“pure pixels” for scene classification.  For a variety of reasons, scene pixel values may 

not match sample values.  One reason for the mismatch may be due to inherent bias in the 
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instruments.  Another cause for mismatch is a 30m by 30m patch of an actual parking lot 

is almost never a homogenous surface.  Parking lots typically contain cars, concrete 

curbs, and stripe markings.  Since most things are more reflective than asphalt and 

parking lot sealants, we would expect pixel values of parking lot scenes to be higher than 

the values for pure asphalt or sealants.   

For scene classification to work properly, the sample and scene values for a 

particular class need to match.  If sample and scene values do not match, then a 

correction must be applied either to the sample values or to the scene pixel values.  A 

correction can be applied by either adding or multiplying values by some factor.  

Multiplication is preferable to addition because multiplication preserves key distribution 

curve characteristics such as mean to SD ratio.  Preservation of mean to SD ratio of the 

distribution curve is necessary for some classification techniques. 

For this application, we choose to adjust samples values rather than a scene’s 

pixel values since sample images are smaller than scene images.  The adjustment ratio is 

calculated by dividing the median value for a scene’s band with the corresponding 

median value for the samples.  If the variation in adjustment factors among the bands is 

small, the process can be simplified by multiplying all sample values by an equal amount.  

Some possible extensions and refinements of this process are explored in the Discussion 

section. 

 

Spectral classification training and analysis 

Two classification methods will be applied on the Landsat and Hyperion scenes: 

Decision Tree (also known as Classification Tree Analysis, or CTA) and Maximum 
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Likelihood Classification (MLC).  Both methods are known as “hard” classifiers because 

all pixels are categorized into exactly one class. 

Classification Tree Analysis is a rule based classification process where each 

pixel is subject to a set of rules that classify a pixel to a specific surface category.  The 

training data define the category set.  The training data are also used to derive the 

classification rules.  A notable advantage of CTA is it does not depend on sample values 

to be distributed in any particular way (Jensen 2005).  Specifically, sample values need 

not be normally distributed. 

The Maximum Likelihood Classification is based on Bayesian probability theory.  

This classification method assumes the training data values for each category have a 

normal (Gaussian) distribution (Jensen 2005).  The mean and standard deviation (SD) of 

pixel values for each category within training sites are computed.  The mean and SD 

values are used to estimate the probability of a scene’s pixel belonging to each class 

category.  Each pixel in the scene is then classified to the category with the maximum 

probability of belonging.  When sample values are distributed normally, MLC is often 

more accurate than other classification methods (Shafri et al., 2007), but the accuracy 

comes at a high (O(N²)) computational cost (Tso and Mather 2001, 273).  The high 

computation cost can become particularly cumbersome when classifying hyperspectral 

images because of their large number of bands. 

For our application, there are two surface categories or classes: “coal tar” and 

“non-coal tar.”  Our training data are the spectral signatures collected using the FieldSpec 

Pro spectrometer.  Each training data pixel represents a contiguous set of Fieldspec Pro 

reflectance values for a site that has been convolved to a Hyperion or Landsat band.  The 
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scene classifications will be executed using IDRISI Andes.  IDRISI Andes expects 

training data as raster images and does not support importing spectral data directly from a 

spectrometer.  Thus, the usual classification methodology will be altered to use training 

images created from the spectral signatures instead of pixels representing “pure class” 

training areas. 

 

Accuracy Assessment 

Classification of a remotely sensed scene is rarely error-free.  Errors may be 

introduced in a variety of ways: imperfect optics of the remote sensing platform, poor 

atmospheric conditions during data capture, scene creation processing errors, and errors 

introduced by the classification process itself.  As discussed in the Conceptual 

Framework section, differentiating different kinds of parking lot surfaces demands high 

spatial, spectral, and radiometric resolutions.  The resolutions available in Landsat and 

Hyperion datasets may not be adequate for our application.  In addition, the probabilistic 

nature of both CTA and MLC methods is likely to introduce some number of 

misclassified pixels.  Accuracy assessment quantifies the correctness of the scene and the 

classification process.  A scene’s pixel may be misclassified in two ways: error of 

commission and error of omission.  For our application, an error of commission occurs 

when a non-coal tar area is classified as coal tar.  Conversely, an error of omission occurs 

when a coal tar area is not classified as coal tar. 

An error matrix (Table 3.4) shows errors of commission and omission for each 

classification category in a tabular format.  The numbers on the diagonal represent the 

count of correctly categorized pixels for each category.  The off-diagonal numbers are 
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counts of misclassified pixels for each true-category/classified-category pair.  

Additionally, an error matrix may also provide a statistical measure of overall accuracy 

(for example, the kappa index of agreement).  To assess the accuracy of our Landsat and 

Hyperion scenes, along with the accuracy of our CTA and MLC methods, an error matrix 

for each classification method and platform combination (CTA/Landsat, CTA/Hyperion, 

MLC/Landsat, and MLC/Hyperion) will be computed.  To produce an error matrix, the 

classified image created for each method/platform combination is compared against a 

truth image (also known as a reference image).  The truth image contains a polygon for 

each parking lot whose location and surface type is provided by the City of Austin.  Each 

polygon in the truth image is digitized over an USGS DOQQ image and categorized as 

either “coal tar” or “non-coal tar.”  The truth image will be in raster format to enable a 

pixel-for-pixel comparison with the classified images.  IDRISI Andes ERRMAT facility 

will be used to produce the error matrices. 

The classification and error assessment methodology is shown in a graphical form 

below (Figures 2.2 through 2.6). 
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Table 2.1  Methodology outline.  The methodology used to distinguishing coal tar from 

other kinds of paved surfaces in remotely sensed imagery can be summarized into six 

basic steps. 

Step number Process summary 

1 Collect a statistically meaningful number of spectral signatures of coal 

tar and non-coal tar paved surfaces. 

2 Use the collected signatures to define training data for coal tar and non-

coal tar surfaces.  The convolved reflectance values based on the 

training data signatures are used instead of identifying “pure” image 

pixels to classify paved surfaces. 

3 Obtain the latest available Landsat and Hyperion images of the Austin, 

Texas Metropolitan area. 

4 Classify paved surfaces using the Classification Tree Analysis (CTA) 

and Maximum Likelihood Classification (MLC) methods.  Use the two 

classification methods on the Landsat and Hyperion imagery. 

5 Obtain a list of known coal tar and non-coal tar paved surfaces from the 

City of Austin.  The paved surfaces must be located within the classified 

area. 

6 Assess the accuracy of the two classification methods (CTA and MLC) 

and the two platforms (Landsat and Hyperion) by comparing the 

classified images against known parking lot surfaces and creating an 

error matrix for each classified image. 
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Figure 2.1   Taking a spectrometer reading.  The sensor is held about 1m above ground 

(center).  The spectrometer is controlled via the laptop computer (left).  The note taker 

(right) is recording the parking lot’s location and surface characteristics. 
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Data

(part 1)
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Figure 2.2  Data and methodology in a graphical form.  Rectangles represent either an 

input or an output file.  Ovals represent a process.  Numbered circles are continuation 

labels to Figure 2.4. 
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Figure 2.3  Data and methodology in a graphical form.  Rectangles represent either an 

input or an output file.  Ovals represent a process. 
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Figure 2.4   Data and methodology in a graphical form.  Rectangles represent either an 

input or an output file.  Ovals represent a process.  Numbered circles 1 through 4 are 

continuation labels from Figure 2.2.  Numbered circles 5 through 8 are continuation 

labels to Figure 2.6. 
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Figure 2.5  Data and methodology in a graphical form.  Rectangles represent either an 

input or an output file.  Ovals represent a process.  Numbered circles are continuation 

labels to Figure 2.6. 
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Figure 2.6  Data and methodology in a graphical form.  Rectangles represent either an 

input or an output file.  Ovals represent a process.  Numbered circles 5 through 8 are 

continuation labels from Figure 2.4.  Numbered circles 9 and 10 are continuation labels 

from Figure 2.5.
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CHAPTER 3 

 

RESULTS 

 

Hyperion band selection 

Ten Hyperion spectral bands are selected for performing the classification based 

on the band exclusion and principal components analyses (Table 3.1).  The correlation 

coefficients among the selected bands are less than 0.95.  Since neighboring Hyperion 

bands are typically highly correlated with each other, there is generally a spectral gap 

between the selected bands.  However, the consecutive bands 35, 36, and 37 are included 

because their correlation coefficients are smaller than 0.95.  VNIR band 56 (920 – 

929nm) and SWIR band 78 (929 – 938nm) are also selected despite being spectral 

neighbors since their correlation coefficient falls below the 0.95 threshold. 

 

Reflectance values 

The reflectance values of the Hyperion image (Table 3.1) and the Landsat image 

(Table 3.2) are closely matched.  The distributions of reflectance values for the Hyperion 

(Figure 3.1) and the Landsat (Figure 3.2) images have a positive skew.  The positive 

skew is progressively stronger in both platforms for shorter wavelengths.  The reflectance 

values along the right tail (the exceptionally bright pixels) for all bands in both platforms 

are similar to the reflectance values of worn asphalt and concrete samples measured by 
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Fielspec Pro.  The median reflectance values for all bands in both platforms average 

about three times the corresponding Fieldspec Pro values (Table 3.3).  Therefore, 

Fieldspec Pro reflectance values cannot be compared to Hyperion and Landsat image 

values without a correction process that matches the training site sample values to the 

scene values.  This correction process is described in the Methodology section.   

 

Parking lot reflectance values measured by Fieldspec Pro 

Compared to concrete and weathered asphalt, fresh asphalt and parking lot sealed 

surfaces are consistently dark across Fieldspec Pro’s spectral range (Figure 3.4).  

Concrete’s reflectance is 0.21 at 350nm and rises gradually to 0.35 at 600nm and stays 

between 0.35 and 0.36 between 600nm and 1050nm.  Weathered asphalt’s reflectance 

ranges from 0.12 at 350nm to 0.30 at 1050nm.  Sealed surfaces’ reflectance values vary 

from 0.05 and 0.06 for the entire Fieldspec Pro’s spectral range. 

Parking lot surface wear and weathering increase surface reflectance (Figure 3.5).  

Unworn Carbonplex sealed surface reflectance ranges from 0.07 at 350nm to 0.04 at 

1050nm.  But a highly worn Carbonplex spectral curve resembles the spectral curve of 

the underlying asphalt.  Foreign substances on parking lots can significantly change 

surfaces characteristics (Figure 3.6).  Wet algae atop Carbonplex decrease reflectance 

from 0.07 to 0.01 at 410nm and increase reflectance from 0.06 to 0.14 at 1050nm. 

Fresh dark asphalt is increasingly reflective at longer wavelengths (Figure 3.7).  

In comparison, coal tar sealant’s spectral profile (Figure 3.9) is flat across Fieldspec Pro’s 

spectral range.  Although sealants are consistently dark from 350nm to 1050nm, there are 

variations in their spectral profiles (Figure 3.8).  Coal tar sealant’s spectral profile has a 
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distinctive dip centered somewhere between 480 and 500nm (Figure 3.9).  On average, 

the reflectance and SD values for coal tar surfaces (Figure 3.9) are lower than for non-

coal tar surfaces (Figure 3.10). 

 

Accuracy assessment 

The Hyperion and Thematic Mapper images were classified as coal tar or non-

coal tar using classification tree and maximum likelihood algorithms (Figures 3.11 and 

3.12).  The accuracies of these classification techniques are assessed using ground 

reference data provided by the City of Austin. 

Based on the ground reference data, a Hyperion raster image representing the 

known (or true) parking lots is constructed.  The image contains 899 pixels classified as 

“coal tar” and 340 pixels classified as “non-coal tar.”  Of the 899 true “coal tar” pixels, 

the CTA technique classified 776 pixels (86.3%) in the Hyperion image as “coal tar” and 

123 pixels (13.68%) as “non-coal tar.”  Of the 340 true “non-coal tar” pixels in the 

reference image, the CTA technique classified 269 pixels (79.1%) as “non-coal tar” and 

71 pixels (20.88%) as “coal tar” (Table 3.4).  Omission and commission error rates for 

“coal tar” pixels are 0.137 and 0.084 respectively.  Omission and commission error rates 

for “non-coal tar” pixels are 0.209 and 0.314 respectively.  The overall error rate is 0.157.  

The overall Kappa Index of Agreement (KIA) is 0.625. 

Applying the MLC technique on the Hyperion image, 7.7% of the 899 reference 

“coal tar” pixels were classified as “coal tar” and 92.3% were classified as “non-coal tar.”  

Of the 340 “non-coal tar” pixels in the reference image, 78.2% were classified as “non-

coal tar” and 21.8% were classified as “coal tar” (Table 3.5).  Omission and commission 
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error rates for “coal tar” pixels are 0.923 and 0.517 respectively.  Omission and 

commission error rates for “non-coal tar” pixels are 0.218 and 0.757 respectively.  The 

overall error rate is 0.730.  The overall KIA is -0.083. 

The Landsat raster image representing the known (or true) parking lots contains 

88 pixels classified as “coal tar” and 33 pixels classified as “non-coal tar.”  Of the 88 true 

“coal tar” pixels, the CTA technique classified 31 pixels (35.2%) in the Landsat image as 

“coal tar” and 57 pixels (64.8%) as “non-coal tar.”  Of the 33 true “non-coal tar” pixels in 

the reference image, the CTA technique classified 25 pixels (75.8%) as “non-coal tar” 

and 8 pixels (24.2%) as “coal tar” (Table 3.6).  Omission and commission error rates for 

“coal tar” pixels are 0.648 and 0.205 respectively.  Omission and commission error rates 

for “non-coal tar” pixels are 0.242 and 0.695 respectively.  The overall error rate is 0.537.  

The overall Kappa Index of Agreement (KIA) is 0.075. 

Applying the MLC technique on the Landsat image yields only 5 “coal tar” pixels 

and none of the 5 pixels overlap one of the reference parking lots.  No error matrix is 

produced. 

 

Spatial analysis 

Only the areas of Austin with parcels attributed as “parking lot” in the TCAD 

2003 layer were classified.  Not surprisingly, the densest cluster of parking lots is in the 

downtown area.  Parking lot parcel density in Austin’s periphery and in the lower-income 

areas east of IH-35 is lower than in downtown.  It is important to note that the peripheral 

areas of the city do not necessarily have a lower density of parking lot surfaces.  Parking 

lots serving shopping malls and office complexes are not designated as parking lot 
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parcels and are thus not included in this study.  This study, therefore, only considers a 

subset of all parking lots in the Austin area. 

The Hyperion (Figure 3.13) and Landsat (Figure 3.14) CTA classified images 

reveal a greater concentration of coal tar sealed parking lots west of IH-35 than east of 

the highway.  Assuming parking lot parcels’ distribution and surface type is 

representative of the overall parking lot population in Austin, the CTA classified images 

show that not only is the density of parking lots higher west of IH-35, but the proportion 

of coal tar sealed parking lots is also higher west of the highway. 

The error/residual maps of classified scenes do not reveal any glaring geographic 

patterns.  However, the Hyperion (Figure 3.15) and Landsat (Figure 3.16) error maps for 

CTA classification do show that a large proportion of classification errors occur along 

parking lot edges.  The edge errors are likely due to mixed pixels covering a portion of a 

parking lot’s edge and some of the surrounding area.  The low accuracy of MLC 

classification of the Hyperion image is reflected in the corresponding error map (Figure 

3.17). 
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Table 3.1  Selected Hyperion bands.  Ten Hyperion bands were selected for this study.  

Each band is about 10nm wide.  The darkest and brightest pixel values for each band are 

shown.  The numbers in parenthesis in the rightmost column are standard deviation 

values. 

Hyperion 

band 

number 

Wavelength 

range (nm) 

Minimum value Maximum value Mean (SD) 

17 524 - 533 0.101 0.451 0.162 (0.046) 

22 574 - 583 0.097 0.453 0.157 (0.05) 

35 707 - 716 0.096 0.542 0.175 (0.067) 

36 717 - 726 0.099 0.524 0.191 (0.062) 

37 727 - 736 0.104 0.532 0.205 (0.06) 

42 779 - 788 0.107 0.572 0.238 (0.064) 

56 920 - 929 0.081 0.437 0.203 (0.057) 

78 929 - 938 0.077 0.469 0.218 (0.063) 

81 958 - 967 0.031 0.326 0.152 (0.044) 

89 1040 - 1049 0.061 0.580 0.276 (0.081) 
 

 

 

Table 3.2  Selected Landsat bands.  Four Landsat bands were selected for this study.  The 

darkest and brightest pixel values for each band are shown.  The numbers in parenthesis 

in the rightmost column are standard deviation values. 

Landsat 

band 

Wavelength 

range (nm) 

Minimum 

value 

Maximum 

value 

Mean (SD) 

1 (blue) 450 - 520 0.084 0.350 0.131 (0.038) 

2 (green) 530 - 610 0.073 0.476 0.127 (0.046) 

3 (red) 630 - 690 0.052 0.548 0.123 (0.056) 

4 (near IR) 780 - 900 0.120 0.607 0.236 (0.056) 
 

 

 

Table 3.3  Hyperion and Landsat mean and median values.  Scene mean and median 

reflectance values for four selected Hyperion bands followed by mean and median 

parking lot sample reflectance values for the band’s wavelength range.  The rightmost 

column is the ratio of Hyperion scene against sample median values. 

Hyperion 

band 

number 

Scene 

mean 

value 

Scene 

median 

value 

Spectral 

sample 

mean 

Spectral 

sample 

median 

Band median 

divided by spectral 

sample median 

17 0.162 0.147 0.080 0.054 2.72 

35 0.175 0.151 0.092 0.058 2.60 

42 0.238 0.216 0.095 0.062 3.48 

89 0.276 0.245 0.102 0.061 4.02 

 



33 

 

Table 3.4  Error matrix for CTA classification of Hyperion image.  The bolded numbers 

represent correctly classified pixels representing coal tar sealed and non-coal tar sealed 

parking lot surfaces. 

 Non-coal tar Coal tar Total (mapped) Error of Commission 

Non-coal tar 269 123 392 0.3138 

Coal tar 71 776 849 0.0838 

Total (true) 340 899 1239  

Error of Omission 0.2088 0.1368  Overall error: 0.1566 

 

 

 

Table 3.5  Error matrix for MLC classification of Hyperion image.  The bolded numbers 

represent correctly classified pixels representing coal tar sealed and non-coal tar sealed 

parking lot surfaces. 

 Non-coal tar Coal tar Total (mapped) Error of Commission 

Non-coal tar 266 830 1096 0.7573 

Coal tar 74 69 143 0.5175 

Total (true) 340 899 1239  

Error of Omission 0.2176 0.9232  Overall error: 0.7296 

 

 

 

Table 3.6  Error matrix for CTA classification of Landsat image.  The bolded numbers 

represent correctly classified pixels representing coal tar sealed and non-coal tar sealed 

parking lot surfaces. 

 Non-coal tar Coal tar Total (mapped) Error of Commission 

Non-coal tar 25 57 82 0.6951 

Coal tar 8 31 39 0.2051 

Total (true) 33 88 121  

Error of Omission 0.2424 0.6477  Overall error: 0.5372 



34 

 

       
(a)  Hyperion Band 17        (b)  Hyperion Band 22 

 

       
(c)  Hyperion Band 35       (d)  Hyperion Band 36 

 

       
(e)  Hyperion Band 37       (f)  Hyperion Band 42 

 

       
(g)  Hyperion Band 56       (h)  Hyperion Band 78 

 

       
(i)  Hyperion Band 81        (j)  Hyperion Band 89 

 

Figure 3.1  Histogram of pixel values of the Hyperion scene for the 10 selected bands.  

The distribution curves for bands 17, 22, and 35 have a positive skew. 
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(a)  Landsat Band 1         (b)  Landsat Band 2 

 

       
(c)  Landsat Band 3        (d)  Landsat Band 4 

 

Figure 3.2  Histogram of pixel values of the Landsat scene for the four selected bands.  

The distribution curves for bands 1, 2, and 3 have a positive skew.  Band 3 is bimodal. 

 

 

 

 
Figure 3.3  Detail from reflectance raster image derived from Hyperion scene’s band 35.  

High reflectance areas are shown in red hues and low reflectance areas are shown in 

yellow.  The black background’s pixel values are 0. 
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Figure 3.4  Reflectance values obtained from Fieldspec Pro for selected surfaces.  The 

top line is for concrete, the middle line is for weathered asphalt, and the remaining lines 

are for dark surfaces found in parking lots.   The reflectance ranges for the dark surfaces 

are narrow compared to concrete and weathered asphalt. 

 

 

 

 

 

 

 

 
Figure 3.5  Reflectance values obtained from Fieldspec Pro for selected surfaces.  

Reflectance curves for dark unsealed asphalt (top), highly worn CarbonPlex sealant 

(middle), and “fresh” CarbonPlex sealant (bottom).  As sealant surfaces erode, their 

spectral reflectance curves start to resemble the reflectance curves of underlying layers. 
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Figure 3.6  Reflectance values obtained from Fieldspec Pro for selected surfaces.  

Reflectance curves for debris-free CarbonPlex surface (solid line) and for CarbonPlex 

surface partially covered with wet algae (dashed line). 
 

 

 

 

 

 
Figure 3.7  Reflectance values obtained from Fieldspec Pro for selected surfaces.  

Reflectance curves for coal tar sealant (green) and dark asphalt (diagonal line).  The two 

surfaces look nearly identical to the untrained eye. 
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Figure 3.8  Reflectance values of various parking lot sealant surfaces.  The curve 

characteristics show a greater variety in the 350nm to 500nm part of the spectrum. 
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Figure 3.9  Reflectance values of two coal tar sealed surfaces (Sample 1 and Sample 2).  

Coal tar sealants have a distinctive dip centered around 480nm to 500nm.  The four 

yellow triangles represent the average reflectance values of all coal tar samples for the 

four Landsat bands.  The yellow open diamonds represent the standard deviation (SD) 

values of all coal tar samples for the four Landsat bands.  The ten blue Xs represent the 

average reflectance values of all coal tar samples for the ten Hyperion bands.  The blue 

solid diamonds represent the standard deviation (SD) values of all coal tar samples for the 

ten Hyperion bands. 
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Figure 3.10  Reflectance values of two non-coal tar surfaces (Sample 1 and Sample 2).  

The spectral characteristics of most non-coal tar surfaces are closer to Sample 1 than 

Sample 2.  The four yellow triangles represent the average reflectance values of all non-

coal tar samples for the four Landsat bands.  The yellow open diamonds represent the 

standard deviation (SD) values of all non-coal tar samples for the four Landsat bands.  

The ten blue Xs represent the average reflectance values of all non-coal tar samples for 

the ten Hyperion bands.  The blue solid diamonds represent the standard deviation (SD) 

values of all non-coal tar samples for the ten Hyperion bands. 
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Figure 3.11  Detail from Hyperion classified scenes and “truth” or reference image. The 

reference image is derived from reference parking lot data.  The scenes have two possible 

classes: “coal tar” (yellow) or “non-coal tar” (red).  From left to right: scene classified by 

the Classification Tree Analysis technique, reference image where the two parking lots 

shown here are known non-coal tar, and scene classified by the Maximum Likelihood 

Classification technique. 

 

 

 

 

   
Figure 3.12  Detail from Landsat classified scene and “truth” or reference image.  The 

reference image is derived from reference parking lot data.  The scenes have two possible 

classes: “coal tar” (yellow) or “non-coal tar” (red).  The scene on the left is classified by 

the Classification Tree Analysis technique.  The scene on the right is the reference image 

where the larger parking lot in the lower right is a known coal tar and the smaller parking 

lot in the upper left is a known non-coal tar. 

 

 



41 

 

      
Figure 3.13  Detail from CTA classification of the Hyperion image.  There are two 

possible classes: “coal tar” (yellow) or “non-coal tar” (red).  The scene on the left is for 

downtown Austin west of IH-35 and the scene on the right is for an area directly east of 

downtown and east of IH-35.  Both scenes have similar areal coverage. 

 

 

 

      
Figure 3.14  Detail from CTA classification of the Landsat image.  There are two 

possible classes: “coal tar” (yellow) or “non-coal tar” (red).  The scene on the left is for 

downtown Austin west of IH-35 and the scene on the right is for east of downtown and 

east of IH-35.  Both scenes have similar areal coverage. 
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Figure 3.15  CTA/Hyperion error map.  Detail from the CTA/Hyperion classified image 

(left) and the error map for the same area.  Yellow pixels represent coal tar surface and 

red pixels represent non-coal tar surface.  Black pixels in the error map represent 

misclassified areas.  The misclassified areas are mostly along the parking lot edges. 

 

 

 

      
Figure 3.16  CTA/Landsat error map.  Detail from the CTA/Landsat classified image 

(left) and the error map for the same area.  Yellow pixels represent coal tar surface and 

red pixels represent non-coal tar surface.  Black pixels in the error map represent 

misclassified areas.  The misclassified areas are mostly along the parking lot edges. 
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Figure 3.17  MLC/Hyperion error map.  Detail from the MLC/Hyperion classified image 

(left) and the error map for the same area.  Red pixels represent non-coal tar surface and 

green pixels represent coal tar surface.  Black pixels in the error map represent 

misclassified areas.  The coal tar sealed parking lot is almost entirely misclassified. 
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CHAPTER 4 

 

DISCUSSION 

 

As mentioned in the Conceptual Framework section, distinguishing different 

types of parking lot surfaces is a challenging remote sensing application.  The uniformly 

low reflectance of parking lot sealants and the relatively small areal extents of parking 

lots require high spatial, spectral, and radiometric resolutions.  Not surprisingly, 

classification of Hyperion imagery, with far greater spectral and radiometric resolutions 

than Landsat imagery, yielded the most accurate results.  More surprisingly, CTA clearly 

outperformed MLC on both Hyperion and Landsat imagery.  CTA classification of 

Hyperion imagery (CTA/Hyperion) yielded an overall accuracy of 84.34%, or 

conversely, an error rate of 15.66%.  In comparison, MLC/Hyperion overall accuracy was 

just 27.04%, even lower than CTA/Landsat’s overall accuracy of 46.28%.  MLC/Landsat 

did not classify a single pixel in the reference parking lots (parking lots with known 

surface types) as coal tar.  The preponderance of error in MLC classification is due to 

coal tar being classified as non-coal tar (false-negatives).  A partial explanation for 

MLC’s poor performance compared to CTA may be due to pixel value distributions.  

Histograms of Hyperion (Figure 3.1) and Landsat (Figure 3.2) scenes show positive skew 

distribution curves.  The positive skew is especially pronounced for the shorter 

wavelength bands.  In addition, several bands are multi modal.  For example, the 
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distribution of Landsat’s band three (Figure 3.2(c)) has two peaks and MLC requires that 

data be at least unimodal, if not normally distributed.   

A number of uncontrollable factors can lower classification accuracy.  For 

example, parking lot wear and aging change surface characteristics.  Coal tar and other 

sealant materials erode relatively quickly, especially in highly trafficked areas.  While a 

reference parking lot might be classified as coal tar sealed, some sections of the parking 

lot could have eroded to bare asphalt.  Therefore, pixels that have been correctly 

classified as non-coal tar might be incorrectly assessed as false-negatives.  Another 

source of confusion can occur when a coal tar sealed lot is covered by a non-coal tar 

sealant (such re-topping is common in Austin, perhaps to comply with local ordinances 

prohibiting coal tar sealants).  Tire wear can eventually expose the underlying coal tar in 

some areas.  In this case, pixels that are correctly classified as coal tar would be assessed 

as false-positives.   

Uncontrollable factors like the ones mentioned above point out the need to have 

an intimate knowledge of the reference parking lots, both in terms of the lots’ current 

condition and their history.  It is at least necessary to know the type of surface a reference 

parking lot had when the remotely sensed scene was captured.  Fortunately, the City of 

Austin’s Watershed Protection and Development Review Department was kind enough to 

furnish such information.  To the extent possible, the reference parking lot 

categorizations match the surface types of the actual lots when the images were acquired.  

However, the reference parking lots are assumed to belong to a single class and no 

attempt was made to identify and re-class worn areas.  Though difficult to quantify, this 

simplification may result in overstating classification errors. 
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Perhaps the biggest source of confusion is parked cars.  Cars are typically far 

more reflective than parking lots, so even a single car can significantly change a pixel’s 

reflectance value.  The Hyperion image was captured at 10:46am (local time) on a 

Sunday (March 30, 2003).  The Landsat image was captured at 11:57am (local time) on a 

Wednesday (April 25, 2007).  Except for church parking lots, Hyperion likely captured 

the scene when parking lots were generally empty.  In contrast, the Landsat scene was 

collected when many cars were likely within the sensor’s field of view.  For readily 

available Landsat data, a future refinement to our methodology could partially get around 

the parked car problem by analyzing multiple images of a particular parking lot and re-

compose a new image by mosaicing the darkest (and hence the most car-free) pixels.  

This assumes that at some point or another, a 30m x 30m patch of parking lot would be 

largely empty, even if the scenes are always captured at the same time of the day (both 

Landsat and Hyperion have sun-synchronous orbits). 

Even with cars, more than half of a parking lot’s surface likely remains exposed 

in an overhead image.  There is always space between cars and aisle sections are largely 

empty.  Thus, assuming an identical car configuration, a dark parking lot reflects less 

light than a lighter parking lot.  The cars in effect introduce a positive bias to reflectance 

values and are the likely cause for higher median values in remotely sensed imagery 

when compared to “pure” sample values.  Pixels with high reflectance values, perhaps 

due to concrete structures or highly worn aisle areas where cars do not contribute a 

positive bias, are similar to the reflectance values of concrete obtained from Fieldspec 

Pro.  But the bulk of the scene pixels have values that are about three times higher than 

Fieldcpec Pro values for dark surfaces.  The remotely sensed scenes do have a handful of 
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pixels that match the dark surface Fieldspec Pro values.  These values may be due to the 

occasional 30m x 30m patches of parking lots that are free of cars.  These “dark” pixels 

suggest there was no inherent bias in either the spectrometer or the remote sensing 

platforms.  To remove what appears to be a car-induced bias, the Fielspec Pro values in 

training sites were multiplied by three to closely match scene pixel median values.  This 

bias-reduction technique could be made more robust by introducing a goal-seeking 

iterative approach whose goal is to find the multiplication factor that yields the highest 

classification accuracy.  A further refinement could obtain different multiplication factors 

for each band.  Another way to potentially improve accuracy would be to obtain 

spectrometer values atop a ladder with one or more cars occupying varying proportions 

of the field of view. 

Three hardware limitations are worth mentioning.  The Fieldspec Pro 

spectrometer used for this project has a spectral range from 350nm to 1050nm.  Hyperion 

and Landsat gather data up to 2,400nm and 2,350nm respectively at 30m resolution.  But 

we removed potentially valuable bands beyond 1050nm from the scenes for lack of 

training data.  At the other end of the spectrum, we had to discard Fieldspec Pro data 

from 350nm to 430nm because neither Hyperion nor Landsat provide data for 

wavelengths shorter than 430nm and 450nm respectively.  This spectral gap is 

unfortunate since coal tar sealants have a distinctive decrease in reflectivity from 350nm 

to 480nm (Figure 3.9).  Hyperion’s spectral data does in fact nominally start at 350nm, 

but the platform’s first eight bands (350nm – 430nm) are un-calibrated and contain no 

data.  Hyperion is still considered an experimental platform and it is possible the data 

from the first eight bands become available in the future.  Finally, 30m spatial resolution 
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probably makes achieving accuracies much above what has been obtained in this study 

impossible.  If the mixed pixels around the edges are discarded, few parking lots would 

have more than just a handful of “pure” pixels.  In fact, a large proportion of 

classification errors are near parking lot edges (Figure 3.15 and Figure 3.16). These errors 

are likely due to the mixed pixels along a parking lot’s perimeter.  Also, few parking lots 

have large patches without foreign objects such as cars, trees, and concrete structures.  

Images with greater spatial resolution would be better suited for this application. 

Despite various limitations, the CTA/Hyperion classification accuracy appears 

promising.  Our goal was to distinguish coal tar sealed parking lots from other types of 

parking lots.  To that end, we set out to develop a remote sensing tool to help us guide 

our search for coal tar sealed surfaces.  The CTA classification of the Hyperion image has 

a false-positive rate of 0.1368 and a false-negative rate of 0.2088.  Such accuracies can 

help guide us to large clusters of coal tar sealed parking lots for further on-ground 

analysis while skipping over areas with few coal tar sealed lots.  The resulting CTA 

classified image can be input into a GIS tool for further analysis to help prioritize on-

ground verification.  Even the CTA/Landsat image can be of use.  Although the CTA 

classification of the Landsat image has an unacceptably high false-negative rate (0.6477), 

the false-positive rate is low (0.2424).  Therefore, the Landsat images can be used as an 

initial screen, where significant clusters of pixels classified as coal tar guide us to areas 

where more expensive Hyperion imagery could be obtained. 
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CONCLUSIONS 

 

Coal tar based sealants are widely used in the United States to resurface parking 

lots.  Although the sealant industry’s marketing literature tout the aesthetic appeal of 

freshly coated parking lots, in recent years, a number of studies have cataloged the 

potential environmental and health dangers of coal tar sealed surfaces.  Polycyclic 

aromatic hydrocarbons (PAHs) are a major component of coal tar and have been 

classified as a carcinogen by the Environmental Protection Agency.  Recent hydrological 

studies have implicated coal tar sealants as the major source of PAHs in some urban 

streams.  Despite the potential environmental hazards of coal tar sealants, the high cost of 

on-ground cataloging has prevented a nationwide census of parking lot surface types.  We 

explore the feasibility of using relatively inexpensive satellite imagery to identify and 

locate coal tar sealed surfaces.  The goal is to classify parking lots in a remotely sensed 

image as either “coal tar” or “not coal tar.”  The study area is Austin, Texas. 

 Differentiating parking lot surface types is a challenging remote sensing 

application that requires fine spatial, spectral, and radiometric resolutions.  The remote 

sensing platforms chosen for this study are Landsat and Hyperion.  Landsat images are 

inexpensive and are readily available, but the platform’s spectral and radiometric 

resolutions are course when compared to hyperspectral imagery.  On the other hand, 

Hyperion imagery, while more expensive than Landsat’s, has much higher spectral and 

radiometric resolutions.  The spatial resolution for the two platforms is 30m.  Although 
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satellite imagery with finer spatial resolution is available, they are either more expensive 

than Landsat, or have coarser spectral and radiometric resolutions than Hyperion. 

 Pixel values for the two platforms were delivered as digital numbers (DNs).  The 

DNs were transformed into reflectance values using the standard USGS EROS 

atmospheric models.  To make such transformations practical, imagery data was reduced 

in a number of ways.  Bands that do not overlap the spectrometer’s spectral range were 

discarded, and all image files were transformed into integers.  The real to integer 

transformation alone reduced IDRISI Andes file sizes by a factor of four.  Finally, highly 

correlated Hyperion bands were discarded, which reduced the number of bands from 69 

to 10. 

Two classification techniques, Classification Tree Analysis (CTA) and Maximum 

Likelihood Classification (MLC) were employed.  Training data were collected with a 

field spectrometer capable of measuring reflectance values at 1nm interval from 350nm 

to 1050nm.  Spectral samples from 14 coal tar parking lots and 19 non-coal tar parking 

lots were collected from various sites across Austin.  The median pixel values in 

Hyperion and Landsat imagery for parking lots (with cars and other bright objects on 

them) were three times greater than the “pure parking lot” training sample median values.  

For the CTA and MLC classifications to work properly, the training sample values were 

adjusted to match the image pixel values by multiplying the sample values by three.   

The accuracy of the classified images is assessed against reference data provided 

by the City of Austin.  CTA classification of the Hyperion image provides the most 

accurate results with an overall accuracy of 84.34%.  The overall accuracy of CTA 

classification of the Landsat image is 46.28%.  MLC classification of the Hyperion image 
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has an overall accuracy of just 27.04%.  MLC classification of the Landsat image yields 

only five pixels classified as “coal tar.”  CTA classification clearly outperforms MLC 

classification for both platforms.   

Factors that contribute to classification errors include less-than-optimal spatial 

resolutions of Hyperion and Landsat imagery, parked cars, lack of data from some key 

spectral regions, and changes in parking lot characteristics due to wear and aging.  

However, we believe the CTA classification of the Hyperion image is accurate enough to 

guide us to significant expanses of coal tar sealed surfaces.  As an initial screen, even the 

CTA classification of Landsat imagery can be useful since only 24.24% of non-coal tar 

pixels were incorrectly classified as coal tar.  Thus, a cluster of coal tar pixels in a CTA 

classified image likely signifies a true concentration of coal tar surfaces.  For the Austin 

area, the classified images show a substantially higher concentration of coal tar sealed 

parking lots west of IH-35 than in the east.



 

52 

REFERENCES 
 

 

Benz, U., P. Hofmann, G. Willhauck, I. Lingenfelder, and I. Heynen.  2004.  Multi-

resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready 

information.  ISPRS Journal of Photogrammetry and Remote Sensing, no. 58: 

239-258. 

 

Bernstein, M. P., S. A. Sandford, and L. J. Allamandola.  2005.  The Mid-Infrared 

Absorption Spectra of Neutral Polycyclic Aromatic Hydrocarbons in Conditions 

Relevant to Dense Interstellar Clouds.  The Astrophysical Journal Supplement 

Series 161, no. 1: 53-64. 

 

Bryer, P. J., J. N. Elliot, and E. J. Willingham.  2006.  The effects of coal tar based 

pavement sealer on amphibian development and metamorphosis.  Ecotoxology 15, 

no. 3: 241-247. 

 

Christensen, P. R., J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. D. Lane, J. L. 

Piatek, S. W. Ruff, and W. L. Stefanov.  2000.  A thermal emission spectral 

library of rock-forming minerals.  Journal of Geophysical Research 105, no. E4: 

9735–9739. 

 

Clark, R. N., G. A. Swayze, R. Wise, E. Livo, T. Hoefen, R. Kokaly, and S. J. Sutley.  

2007.  USGS digital spectral library splib06a: U.S. Geological Survey, Digital 

Data, no. 231. 

 

Cloutis, E. A.  1989.  Spectral reflectance properties of hydrocarbons: remote sensing 

implications.  Science 245, no. 4914:165-168. 

 

Dalton, J. B., D. J. Bove, C. S. Mladinich, and B. W. Rockwell.  2004.  Identification of 

Spectrally similar materials using the USGS Tetracorder algorithm: the calcite-

epidote-chlorite problem.   Remote Sensing of Environment 89, no. 4: 455-466. 

 

Eisler, R.  1987.  Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and 

invertebrates: a synoptic view.  U.S. Fish and Wildlife Service Biological Report 

85, no. 1.11. 

 

Fabacher, D. L., J. M. Besser, C. J. Schmitt, J. C. Harshbarger, P. H. Peterman, and J. A. 

Lebo.  1991.  Contaminated sediments from tributaries of the Great Lakes: 

chemical characterization and cancer-causing effects in medaka (Oryzias latipes).  

Archives of Environmental Contamination and Toxicology, no. 20: 17-35. 



53 

 

Herold, M., M. E. Gardner, and D. A. Roberts.  2003.  Spectral resolution requirements 

for mapping urban areas.  IEEE Transactions on Geoscience and Remote Sensing 

41, no. 9: 1907-1919. 

 

Herold, M., D. A. Roberts, M. E. Gardner, and P. E. Dennison.  2004.  Spectrometry for 

urban area remote sensing –Development and analysis of a spectral library from 

350 to 2400nm.  Remote Sensing of Environment 91, no. 3: 304 -319. 

 

Herold, M. and D. Roberts.  2005.  Spectral characteristics of asphalt road aging and 

deterioration: implications for remote-sensing applications.  Applied Optics 44, 

no. 20: 4327-4334. 

 

Jensen, John R.  2005.  Introductory Digital Image Processing 3
rd

 Edition.  Pearson 

Prentice Hall. 

 

Jha, M. N., J. Levy, and Y. Gao.  2008.  Advances in remote sensing for oil spill disaster 

management: state-of-the-art sensors technology for oil spill surveillance.  

Sensors 8, no. 1: 236-255. 

 

Kershaw, J. R.  1996.  Fluorescence spectroscopic analysis of benzo[a]pyrene in coal tar 

and related products.  Fuel 75, no. 4: 522-524. 

 

Mahler, B. J., P. C. Van Metre, T. J. Bashara, J. T. Wilson, and D. A. Johns.  2005.   

Parking lot sealcoat: an unrecognized source of polycyclic aromatic 

hydrocarbons.  Environmental Science and Technology 39, no. 15: 5560-5566. 

 

O’Conner, J. M. and R. J. Huggett.  1988.  Aquatic pollution problems, North Atlantic 

coast, including Chesapeake Bay.  Aquatic Toxicology 11, no. 2: 163-190. 

 

Scoggins, M., N. L. McClintock, and L. Gosselink.  2007.  Occurrence of polycyclic 

aromatic hydrocarbons below coal-tar-sealed parking lots and effects on stream 

benthic macroinvertebrate communities.  Journal of North American 

Benthological Society 26, no. 4: 694-707. 

 

Shafri, H., A. Suhaili, and S. Mansor.  2007.  The performance of Maximum Likelihood, 

Spectral Angle Mapper, Neural Network and Decision Tree classifiers in 

hyperspectral Image Analysis.  Journal of Computer Science, June issue. 

 

Tso, B. and P. Mather.  2001.  Classification methods for remotely sensed data 1
st
 

Edition.  Taylor and Francis. 

 

U.S. Environmental Protection Agency. 2008.  Ecological Toxicity Information.  

Available online: 

http://www.epa.gov/R5Super/ecology/html/toxprofiles.htm#pahs. 

 



54 

 

Van Metre, P. C. and B. J. Mahler.  2003.  The contribution of particles washed from 

rooftops to contaminant loading to Urban streams.  Chemosphere 52, no. 10: 

1727-1741. 

 

Van Metre, P. C., B. J. Mahler, M. Scoggins, and P. A. Hamilton.  2006.  Parking lot 

sealcoat: A major source of polycyclic aromatic hydrocarbons (PAHs) in urban 

and suburban environments.  U.S. Geological Survey, Fact Sheet, no. 2005-3147. 

 

Van Metre, P. C., B. J. Mahler and J. T. Wilson.  2009.  PAHs underfoot: contaminated 

dust from coal-tar sealcoated pavement is widespread in the United States.  

Environmental Science & Technology 43, no. 1: 20-25. 

 

Walsh, S. J., T. W. Crawford, W.F. Welsh, and K. A.  Crews-Meyer.  2001.  A multiscale 

analysis of LULC and NDVI variation in Nang Rong district, northeast Thailand.   

Agriculture, Ecosystems and Environment  85, no. 1: 47-64. 

 

Ward, M. H., J. R. Nuckols, S. J. Weigel, S. K. Maxwell, K. P. Cantor, and R. S. Miller.   

2000.  Identifying populations potentially exposed to pesticides using remote 

sensing and Geographic Information System.  Environmental Health Perspectives 

108, no. 1: 5-12. 

 

Winkelmann, K. H.  2005.  On the applicability of imaging spectrometry for the detection 

and investigation of contaminated sites with particular consideration given to the 

detection of fuel hydrocarbon contaminants in soil.  Ph. D. diss., Brandenburg 

University at Cottbus. 

 



 

 

VITA 

 

 Mohan Rao was born in New Delhi, India.  At age 10, he and his family moved to 

Lima, Peru.  At age 18, he moved to Austin, Texas to attend the University of Texas at 

Austin and graduated with a B.A. in Computer Science in 1980.  Subsequently, he 

worked as a software developer for 13 years and helped develop, among other things, a 

high-performance database management system tailored for use in supercomputers.  He 

worked for another 12 years as an IT consultant, principally as a database performance 

specialist.  In 2006, he joined the Masters of Applied Geography program at Texas State 

University-San Marcos.  He currently works as a Geographer at the U.S. Geological 

Survey’s Texas Water Science Center in Austin, Texas. 

 

 

Permanent Address: mvr@grandecom.net 

 

This thesis was typed by Mohan Rao.



 

 

 




