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CONCENTRATION AND DYNAMIC SYSTEM OF SOLUTIONS
FOR SEMILINEAR ELLIPTIC EQUATIONS

TSUNG-FANG WU

Abstract. In this article, we use the concentration of solutions of the semi-
linear elliptic equations in axially symmetric bounded domains to prove that

the equation has three positive solutions. One solution is y-symmetric and the

other are non-axially symmetric. We also study the dynamic system of these
solutions.

1. Introduction

Consider the semilinear elliptic equation

−∆u+ u = |u|p−2u in Ω,

u ∈ H1
0 (Ω),

(1.1)

where N ≥ 2, 2∗ = 2N
N−2 for N ≥ 3 and 2∗ = ∞ for N = 2, 2 < p < 2∗, Ω is

a domain in RN , and H1
0 (Ω) is the Sobolev space in Ω with dual space H−1(Ω).

Associated with equation (1.1), we consider the energy functionals a, b, and J
defined for each u ∈ H1

0 (Ω) as follows:

a(u) =
∫

Ω

(|∇u|2 + u2), b(u) =
∫

Ω

|u|p,

J(u) =
1
2
a(u)− 1

p
b(u).

By Rabinowitz [9, Proposition B. 10], a, b, and J are of class C1,1. It is well-known
that the solutions of equation (1.1) are the critical points of the energy functional
J . Let z = (x, y) ∈ RN−1 × R. Denote the N -ball BN (z0; s) in RN , the infinite
strip Ar, the upper half strip Ar

0, and the finite strip Ar
s,t as follows:

BN (z0; s) = {z ∈ RN : |z − z0| < s},
Ar = {(x, y) ∈ RN : |x| < r},
Ar

0 = {(x, y) ∈ Ar : 0 < y},
Ar

s,t = {(x, y) ∈ Ar : s < y < t}.
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We should point out here that the precise definition of the finite strip Ar
s,t is the

domain which is symmetric in y−axis and has been smoothed out at the corners of
{(x, y) ∈ Ar : s < y < t}. By the Rellich compactness theorem, there is a positive
solution of equation (1.1) in the finite strip Ar

−t,t for each t > 0. Moreover, Ar
−t,t

is convex in x and in y. Thus, by Gidas-Ni-Nirenberg [6], every positive solution
of equation (1.1) in Ar

−t,t for each t > 0 is radially symmetric in x and axially
symmetric in y. Actually, Dancer [5] proved that the positive solution of equation
(1.1) in Ar

−t,t for each t > 0 in R2 is unique. However, the axially symmetry and
uniqueness of positive solution generally fails if Ω is not convex in the y-direction.
First, we consider a perturbation of the finite strip Ar

−t,t, that is dumbbell type
domain

D = BN ((0;−t), r0) ∪Ar
−t,t ∪BN ((0; t), r0) for BN−1(0; r) ⊂ BN−1(0; r0).

Then the dumbbell domainD is symmetric in y−axis, but not convex in y-direction.
Moreover, the Dancer [5] and Byeon [2], [3] proved that the equation (1.1) in D
has at least three positive solutions, for BN−1(0; r) is sufficiently close to a point
x0 in RN−1. And Chen-Ni-Zhou [4] use computational showed that the equation
(1.1) in some dumbbell-type domains has multiple positive solutions and describe
the concentration of these solutions.

The main purpose of this paper is using the Palais-Smale theory to present
another perturbation. Let ω be a y-symmetric bounded set such that Ar\ω $ Ar

is a domain in RN for some t > 0, consider the finite strip with holes

Θt = Ar
−t,t\ω.

Then there exists a t′ > 0 such that Θt is also symmetric in y−axis, but not
convex in y−direction for each t > t′. We prove that there exists a t0 > 0 such
that for t ≥ t0, the equation (1.1) in Θt has three positive solutions which one is
y-symmetric and the other are non-axially symmetric. Moreover, we describe the
concentration and dynamic system of these solutions. Although, Wang-Wu [10]
used the symmetry of positive solutions showed the same multiple results in a finite
strip with hole Ar

−t,t\BN (0; r′) for t sufficiently large. However, they have not
describe the concentration and dynamic system of solutions.

This article is organized as follow. In section 2, we describe various preliminaries.
In section 3, we describe various compactness results. In section 4, we describe some
properties of the large domains in Ar. In section 5 and section 6, we present the
concentration and dynamic system of the solutions.

2. Preliminary

In this article, we focus on the problems on two Hilbert spaces: the whole Sobolev
space H1

0 (Ω) and its closed linear subspace Hs(Ω) defined as follows: Let z =
(x, y) ∈ RN−1 × R and Ω be a domain in RN .

Definition 2.1. (i) Ω is y-symmetric provided z = (x, y) ∈ Ω if and only if
(x,−y) ∈ Ω;

(ii) Let Ω be a y-symmetric domain in RN . A function u : Ω → R is y-
symmetric (axially symmetric) if u(x, y) = u(x,−y) for (x, y) ∈ Ω.

In this article, we let Ω be a y-symmetric domain in RN and Hs(Ω) the H1-
closure of the space {u ∈ C∞0 (Ω) : u is y-symmetric} and let X(Ω) be either the
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whole space H1
0 (Ω) or the y-symmetric Sobolev space Hs(Ω). Then Hs(Ω) is a

closed linear subspace of H1
0 (Ω). Let H−1

s (Ω) be the dual space of Hs(Ω).
We define the Palais-Smale (simply by (PS)) sequences, (PS)-values and (PS)-

conditions in X(Ω) for J as follows.

Definition 2.2. (i) For β ∈ R, a sequence {un} is a (PS)β-sequence in X(Ω)
for J if J(un) = β + o(1) and J ′(un) = o(1) strongly in X−1(Ω) as n→∞

(ii) β ∈ R is a (PS)-value in X(Ω) for J if there is a (PS)β-sequence in X(Ω)
for J

(iii) J satisfies the (PS)β−condition in X(Ω) if every (PS)β-sequence in X(Ω)
for J contains a convergent subsequence.

Now, we consider the Nehari minimization problem

αX(Ω) = inf
u∈M(Ω)

J(u),

where M(Ω) = {u ∈ X(Ω)\{0} : a(u) = b(u)}. Note that M(Ω) contains every
nonzero solution of equation (1.1) in Ω, αX(Ω) > 0, and if u0 ∈ M(Ω) achieves
αX(Ω), then u0 is a positive (or negative) solution of equation (1.1) in Ω (see Wang-
Wu [10] or Willem [11]). We have the following useful lemma, whose proof can be
found in Wang-Wu [10, Lemma 7].

Lemma 2.3. Let {un} be in X(Ω). Then {un} is a (PS)αX(Ω)-sequence in X(Ω)
for J if and only if J(un) = αX(Ω) + o(1) and a(un) = b(un) + o(1). In particular,
every minimizing sequence {un} in M(Ω) for αX(Ω) is a
(PS)αX(Ω)-sequence in X(Ω) for J .

We denote αX(Ω) by α(Ω) for X(Ω) = H1
0 (Ω). We denote αX(Ω) by αs(Ω) for

X(Ω) = Hs(Ω). We denote M(Ω) by M0(Ω) for X(Ω) = H1
0 (Ω). We denote M(Ω)

by Ms(Ω) for X(Ω) = Hs(Ω).

Remark 2.4. By the Principle of symmetric criticality (see Palais [8]), we have a
(PS)β-sequence in X(Ω) for J is a (PS)β-sequence in H1

0 (Ω) for J .

3. Palais-Smale Conditions

In this section, we present several (PS)αX(Ω)−conditions in X(Ω) for J which are
used to prove our main results in section 4 and section 5. Since for each (PS)αX(Ω)-
sequence {un} in X(Ω) for J , there exists a subsequence {un} and u in X(Ω) such
that un ⇀ u weakly in X(Ω). Then u is a solution of equation (1.1) in Ω. Moreover,
we have the following result, whose proof can be found in Bahri-Lions [1] and in
Wang-Wu [10].

Lemma 3.1. For each (PS)αX(Ω)-sequence {un} in X(Ω) for J , there exists a
subsequence {un}and a nonzero u in X(Ω) such that un ⇀ u weakly in X(Ω) if and
only if the (PS)αX(Ω)−condition holds in X(Ω) for J .

Let Ω be any unbounded domain and ξ ∈ C∞([0,∞)) such that 0 ≤ ξ ≤ 1 and

ξ(t) =

{
0, for t ∈ [0, 1]
1, for t ∈ [2,∞).

Let

ξn(z) = ξ(
2|z|
n

). (3.1)

Then we have the following results.
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Proposition 3.2. The equation (1.1) in Ω does not admit any solution u0 such
that J(u0) = αX(Ω) if and only if for each (PS)αX(Ω)-sequence {un} in X(Ω) for
J , there exists a subsequence {un} such that {ξnun} is also a (PS)αX(Ω)-sequence
in X(Ω) for J .

Proof. Let {un} be a (PS)αX(Ω)-sequence in X(Ω) for J . Then there exist a subse-
quence {un} and u0 ∈ X(Ω) such that un ⇀ u0 weakly in X(Ω). Since the equation
(1.1) in Ω does not admit any solution u0 such that J(u0) = αX(Ω), by Lemma
3.1, we have u0 = 0. Let vn = ξnun. First, we need to show

a(un − vn) = o(1). (3.2)

Note that
a(un − vn) = a(un) + a(vn)− 2 〈un, vn〉H1 .

Thus, it suffices to show that 〈un, vn〉H1 = a(un) + o(1) = a(vn) + o(1). Since

〈un, vn〉H1 =
∫

Ω

∇un∇vn + unvn

=
∫

Ω

ξn
[
|∇un|2 + u2

n

]
+

∫
Ω

un∇un∇ξn.

Note that |∇ξn| ≤ c
n and {un} is a (PS)αX(Ω)-sequence in X(Ω) for J , so∫

Ω

ξq
nun∇un∇ξn = o(1) for q > 0. (3.3)

Hence,

〈un, vn〉H1 =
∫

Ω

ξn
[
|∇un|2 + u2

n

]
+ o(1). (3.4)

Similarly, we have

a(vn) =
∫

Ω

ξ2n
[
|∇un|2 + u2

n

]
+ o(1). (3.5)

For r ≥ 1. Since {ξr
nun} is bounded in X(Ω), we have

o(1) = 〈J ′(un), ξr
nun〉

=
∫

Ω

(ξr
n|∇un|2 + rξr−1

n un∇ξn∇un + ξr
nu

2
n)−

∫
Ω

ξr
n|un|p.

By (3.3), we conclude that∫
Ω

ξr
n(|∇un|2 + u2

n) =
∫

Ω

ξr
n|un|p + o(1). (3.6)

Since un ⇀ 0 weakly in H1
0 (Ω), there exists a subsequence {un} such that un → 0

strongly in Lp
loc(Ω), or there exists a subsequence {un} such that∫

Q(n)

|un|p = o(1),

where Q(n) = Ω ∩BN (0;n). Clearly,∫
Ω

ξr
n|un|p =

∫
Ω

|un|p + o(1). (3.7)

By (3.4), (3.5), (3.6) and (3.7), we have

〈un, vn〉H1 = a(un) + o(1) = a(vn) + o(1).
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Moreover, by the compact imbedding theorem, we obtain

b(vn) = b(un) + o(1). (3.8)

Since a(un) = b(un) + o(1). Thus, from (3.2) and (3.8), we obtain

a(vn) = b(vn) + (1) , J(vn) = αX(Ω) + o(1) .

By Lemma 2.3, we can conclude that {ξnun} is a (PS)αX(Ω)-sequence in X(Ω) for
J. Conversely, assume that the equation (1.1) in Ω admits a solution u0 such that
J(u0) = αX(Ω). We may assume that u0 is a positive solution. Let un = u0 for
each n ∈ N, then {un} is a (PS)αX(Ω)-sequence in X(Ω) for J . By hypothesis, we
have {ξnu0} is also a (PS)αX(Ω)-sequence in X(Ω) for J . We obtain∫

Ω

|ξnu0|p =
2p
p− 2

αX(Ω) + o(1).

Thus, there exist n0 and d > 0 such that∫
Ω

|ξnu0|p > d for each n ≥ n0. (3.9)

However, u0 ∈ Lp(Ω). Hence∫
Ω

|ξnu0|p ≤
∫
[BN (0; n

2 )]c
|u0|p = o(1) as n→∞,

this contradicts to (3.9). �

Proposition 3.3. J does not satisfy the (PS)αX(Ω)−condition in X(Ω) for J if
and only if there exists a (PS)αX(Ω)-sequence {un} in X(Ω) for J such that {ξnun}
is also a (PS)αX(Ω)-sequence in X(Ω) for J .

The proof of this proposition is similar to the proof of Proposition 3.2 and there-
fore, it is omitted.

Let Ω1 $ Ω2, clearly αX(Ω1) ≥ αX(Ω2). Then we have the following useful
results.

Lemma 3.4. Let Ω1 $ Ω2 and J : X(Ω2) → R be the energy functional. Suppose
that αX(Ω1) = αX(Ω2). Then

(i) The equation (1.1) in Ω1 does not admit any solution u0 such that J(u0) =
αX(Ω1)

(ii) J does not satisfy the (PS)αX(Ω2)−condition.

The proof of this lemma can be found in Wang-Wu [10, Lemma 13]. By the
Rellich compact theorem, J satisfies the (PS)αX(Ω)−condition in X(Ω) if Ω is a
bounded domain.

Lemma 3.5. Let Ω be a bounded domain in RN . Then the (PS)αX(Ω)−condition
holds in X(Ω) for J . Furthermore, the equation (1.1) in Ω has a positive solution
u0 such that J(u0) = αX(Ω).



6 TSUNG-FANG WU EJDE–2003/81

4. Large Domains in Ar

Definition 4.1. A domain Ω in Ar is large if for any m > 0, there exist s < t such
that t− s = m and Ar

s,t ⊂ Ω.

Lemma 4.2. If Ω is a large domain in Ar, then α(Ω) = α(Ar). Furthermore, if
Ω is a proper large domain in Ar, then the equation (1.1) in Ω does not admit any
solution u0 such that J(u0) = α(Ω).

The proof of this lemma follows by Lien-Tzeng-Wang [7, Lemma 2.5] and Lemma
3.4.

We need the following symmetric result to assert our main result.

Lemma 4.3. Suppose that Ω is a y-symmetric large domain in Ar. Then αs(Ω) ≤
2α(Ar).

Proof. Since Ω is a y-symmetric large domain in Ar. Thus, there exist t0 > 0, Ω1

and Ω2 are large domains in Ar such that Ω\Ar
−t0,t0 = Ω1 ∪ Ω2. Let

{
u1

n

}
be a

(PS)α(Ω1)-sequence in H1
0 (Ω1) for J and let u2

n(x, y) = u1
n(x,−y). Clearly,

{
u2

n

}
is a (PS)α(Ω2)-sequence in H1

0 (Ω2) for J . Take vn = u1
n + u2

n, then vn ∈ Hs(Ω),
a(vn) = b(vn) + o(1) and

J(vn) = α(Ω1) + α(Ω2) + o(1).

Moreover, there exists sn > 0 such that snvn ∈ Ms(Ω) and

J(ssvn) = α(Ω1) + α(Ω2) + o(1).

From Lemma 4.2 and the definition of Nehari minimization problem, we can con-
clude αs(Ω) ≤ 2α(Ar). �

Then we have the following symmetric compactness.

Proposition 4.4. Suppose that Ω is a y-symmetric large domain in Ar. Then J
satisfies the (PS)αs(Ω)−condition in Hs(Ω) if and only if αs(Ω) < 2α(Ar).

Proof. Suppose that J satisfies the (PS)αs(Ω)−condition in Hs(Ω). By Lemma 4.3,
we have αs(Ω) ≤ 2α(Ar). Suppose that αs(Ω) = 2α(Ar). By the definition of
domain in RN , we may take a domain Ω̃ = Ω\BN (0; r̃) for some r̃ > 0 such that
Ω̃ $ Ω and Ω̃ is a proper y-symmetric large domain in Ar. By Lemma 3.4, we have
2α(Ar) = αs(Ω) < αs(Ω̃). This contradicts to Lemma 4.3. Conversely, suppose
that J does not satisfy the (PS)αs(Ω)−condition. By Proposition 3.3, there exists
a (PS)αs(Ω)-sequence {un} in Hs(Ω) for J such that {ξnun} is also a (PS)αs(Ω)-
sequence in Hs(Ω) for J , where ξn is as in (3.1). Let vn = ξnun, we obtain

J(vn) = αs(Ω) + o(1),

J ′(vn) = o(1) in H−1(Ω).
(4.1)

Since Ω is a y-symmetric large domain in Ar, there exists a n0 ∈ N such that vn = 0
in Ωn0 for n > 2n0, and two disjoint subdomains Ω1 and Ω2 such that

(x, y) ∈ Ω2 if and only if (x,−y) ∈ Ω1,

Ω \ Ωn0 = Ω1 ∪ Ω2,
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where Ωn = {z ∈ Ω : −n < y < n}. Note that Ω1 and Ω2 are also large domains in
Ar. Moreover, vn = v1

n + v2
n and for i = 1, 2,

vi
n(z) =

{
vn(z), for z ∈ Ωi

0, for z /∈ Ωi,

this implies vi
n ∈ H1

0 (Ωi). By (4.1), we obtain

J ′(vi
n) = o(1) strongly in H−1(Ωi) for i = 1, 2.

We have v1
n(x, y) = v2

n(x,−y), J(v1
n) = J(v2

n) and

αs(Ω) + o(1) = J(vn) = J(v1
n) + J(v2

n) = 2J(vi
n) for i = 1, 2,

or

J(vi
n) =

1
2
αs(Ω) + o(1) for i = 1, 2.

Therefore, 1
2αs(Ω) is a positive (PS)-value in H1

0 (Ωi) for J . By the definition of
Nehari minimization problem and Lemma 4.2, we have

1
2
αs(Ω) ≥ α(Ωi) = α(Ar),

which is a contradiction. �

Corollary 4.5. Suppose that Ω is a y-symmetric large domain in Ar. Then α(Ω) =
αs(Ω) if and only if the equation (1.1) in Ω has a y-symmetric solution u0 such that
J(u0) = α(Ω).

Proof. By Lemma 4.2, we have

α(Ar) = α(Ω) = αs(Ω) < 2α(Ar).

By Proposition 4.4, J satisfies the (PS)αs(Ω)−condition in Hs(Ω). Thus, there
exists a y-symmetric positive solution u0 such that

J(u0) = αs(Ω) = α(Ω).

Conversely, use the definition of the Nehari minimization problem. �

Proposition 4.6. Suppose that Ω is a y-symmetric large domain in Ar such
that αs(Ω) = 2α(Ar). If Ω̃ $ Ω is also y-symmetric large domain in Ar, then
αs(Ω̃) = 2α(Ar) and the equation (1.1) in Ω̃ does not admit any solution u0 such
that J(u0) = αs(Ω̃).

The proof of this proposition follows from Lemma 3.4 and Lemma 4.3.

Remark 4.7. From Lemma 4.3, Proposition 4.4 and Proposition 4.6, the y-symmetric
large domains in Ar can be classify into three kinds. If Ω is a y-symmetric large
domain in Ar, then it satisfies one of the following conditions:

(1) αs(Ω) < 2α(Ar)
(2) αs(Ω) = 2α(Ar) and the equation (1.1) in Ω has a solution u0 such that

J(u0) = αs(Ω)
(3) αs(Ω) = 2α(Ar) and the equation (1.1) in Ω does not admit any solution

u0 such that J(u0) = αs(Ω).
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5. Concentration of Solutions

For the rest of this article, let ω be a y-symmetric bounded set such that Ar\ω
is a y-symmetric proper large domain in Ar. We need the following notation:

S = Ar\ω;

Sk,l = {(x, y) ∈ S : k < y < l} ;

S+
−l = {(x, y) ∈ S : y ≥ −l} ;

S−l = {(x, y) ∈ S : y ≤ l} .

Note that S,S+
−l and S−l are proper large domains in Ar for all l ≥ 0. By Lemma

4.2, we have α(S) = α(Ar) and the equation (1.1) in S does not admit any solution
u0 such that J(u0) = α(S). We need the following lemmas to show our main results.

Lemma 5.1. For each positive number ε( p
p−2 )α(Ar) and l ≥ 0, there exists a

δ(ε, l) > 0 such that if u ∈ M0(S) and J(u) ≤ α(Ar)+δ(ε, l), then either
∫
S+
−l
|u|p <

ε or
∫
S−l
|u|p < ε.

Proof. We divide the proof into the following steps:
Step 1: Suppose that there exist c > 0, l0 ≥ 0 and {un} ⊂ M0(S) such that

J(un) = α(Ar) + o(1) , (5.1)∫
S+
−l0

|un|p ≥ c , (5.2)∫
S−l0

|un|p ≥ c . (5.3)

From Lemma 2.3, {un} is a (PS)α(Ar)-sequence in H1
0 (S) for J . Since S is a proper

large domain in Ar, by Proposition 3.2 and Lemma 4.2, there exists a subsequence
{un} such that {ξnun} is also a (PS)α(S)-sequence in H1

0 (S) for J , where ξn is as
in (3.1). Let vn = ξnun, we obtain

J(vn) = α(Ar) + o(1),

J ′(vn) = o(1) in H−1(S),
(5.4)

and there exists a n0 > l0 such that vn = 0 in A(n0) for n > 2n0, where A(n) =
S−n,n. Moreover, vn = v+

n + v−n and

v±n (z) =

{
vn(z) for z ∈ S±∓l0

,

0 for z /∈ S±∓l0
.

Then v±n ∈ H1
0 (S±∓l0

) and a(v±n ) = b(v±n ) + o(1). By (5.4), we obtain

J ′(v±n ) = o(1) strongly in H−1(S±∓l0
).

Thus,
α(Ar) + o(1) = J(vn) = J(v+

n ) + J(v−n ).

Assume that J(v±n ) = c± + o(1). Then

c+ + c− = α(Ar). (5.5)
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Since c± are (PS)-values in H1
0 (S±∓l0

) for J , they are nonnegative. Moreover, the
half strips S+

−l0
and S−l0 are proper large domains in Ar, From Lemma 4.2, we have

α(Ar) = α(S+
−l0

) = α(S−l0). (5.6)

Thus, by (5.5), (5.6) and the definition of Nehari minimization problem, we may
assume that c+ = α(S+

−l0
) = α(Ar) and c− = 0. Next, for n > 2n0,∫

S

|un|p =
∫
S

|vn|p + o(1)

=
∫
S+
−l0

|v+
n |p +

∫
S−l0

|un|p + o(1).

Thus, ∫
S−l0

|un|p =
∫
S

|un|p −
∫
S+
−l0

|v+
n |p + o(1)

= (
2p
p− 2

)α(Ar)− (
2p
p− 2

)α(Ar) + o(1)

= o(1),

which contradicts to (5.3).
Step 2: Suppose that there exists a u0 ∈ M0(S) with J(u0) < α(Ar) + δ(ε) such
that ∫

S+
−l0

|u0|p < ε and
∫
S−l0

|u0|p < ε.

Then
2p

(p− 2)
α(S) ≤

∫
S

|u0|p =
∫
S+

l0

|u0|p +
∫
S−l0

|u0|p

<
p

(p− 2)
α(Ar) +

p

(p− 2)
α(Ar)

=
2p

(p− 2)
α(Ar),

which is also a contradiction. �

Lemma 5.2. If αs(S) < 2α(Ar). Then for each 0 < ε ≤ ( p
p−2 )α(Ar), there exist

positive numbers l(ε) and δ(ε) such that if u ∈ Ms(S) and J(u) < αs(S) + δ(ε),
then

∫
(S−l(ε),l(ε))c |u|p < ε.

Proof. If not, there exist a positive number c ≤ ( p
p−2 )α(Ar) and {un} ⊂ Ms(S)

such that

J(un) = αs(S) +
1
n
,∫

(S−n,n)c

|un|p ≥ c for all n = 1, 2, . . . .
(5.7)

By Lemma 2.3, {un} is a (PS)αs(S)-sequence in Hs(S) for J . Since αs(S) < 2α(Ar).
By Proposition 4.4, J is satisfying (PS)αs(S)−condition in Hs(S). Thus, there exist
a subsequence {un} and u0 ∈ Hs(S) such that

un → u0 strongly in Hs(S).
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By the Sobolev imbedding theorem and the Vitali convergence theorem, there exists
a l0 > 0 such that ∫

(S−l0,l0 )c

|un|p <
c

2
for all n,

which contradicts to (5.7). �

Lemma 5.3. Suppose that the equation (1.1) in S does not admit any solution u0

such that J(u0) = αs(S). Then for each positive number ε ≤ ( 2p
p−2 )αs(S) and l,

there exists a δ(ε, l) > 0 such that if u ∈ Ms(S) and J(u) < αs(S) + δ(ε, l), then∫
S−l,l

|u|p < ε.

The proof of this lemma is similar to the proof of Lemma 5.1, and is omitted
here.

For Θt = Ar
−t,t\ω, consider the filtration of J in M(Θt),

F (Θt) = {u ∈ M0(Θt) : J(u) ≤ αs(S)} .

Note that if F (Θt) is a nonempty set, then

α(Θt) = inf
v∈F (Θt)

J(v).

Note that Θt1 ⊂ Θt2 for t1 < t2. Thus, αX(Θt1) > αX(Θt2) for t1 < t2. Then we
have the following result.

Lemma 5.4. αX(Θt) ↘ αX(S) as t↗∞.

The proof of this lemma is similar to the proof of Lien-Tzeng-Wang [7, Lemma
2.5] and omitted here.

Theorem 5.5. There exists a positive number t0 such that F (Θt) is non-empty and
F (Θt) ∩Ms(Θt) = φ for t ≥ t0. Furthermore, the equation (1.1) in Θt has three
positive solutions which one is y-symmetric and the other are non-axially symmetric
for t ≥ t0.

Proof. First, we need to show that α(S) < αs(S). Assume the contrary, α(S) =
αs(S). By Corollary 4.5, the equation (1.1) in S admits a solution u0 such that
J(u0) = α(S), this contradicts the fact of Lemma 4.2. Since S is a proper large
domain in Ar. From Lemma 4.2, we have

α(Ar) = α(S) < αs(S). (5.8)

By (5.8) and Lemma 5.4, there exists a t0 > 0 such that

α(S) < α(Θt) ≤ αs(S) for all t ≥ t0. (5.9)

Since Θt is a y-symmetric bounded domain, by Lemma 3.5, F (Θt) is nonempty for
all t ≥ t0. Moreover,

αs(Θt) = inf
v∈Ms(Θt)

J(v)

and
αs(S) < αs(Θt) for all t > 0. (5.10)

We can conclude that F (Θt) ∩ Ms(Θt) = φ for all t ≥ t0. By (5.9), (5.10) and
Lemma 3.5, we have

α(Θt) ≤ αs(S) < αs(Θt) for all t ≥ t0 (5.11)
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and the equation (1.1) in Θt admit two disjoint positive solutions u1, u2 such that
J(u1) = αs(Θt) and J(u2) = α(Θt). Take u3(x, y) = u2(x,−y), then J(u3) =
α(Θt), u3 ∈ M0(Θt) and u3 is third positive solution. �

Remark 5.6. By Theorem 5.5, there exists a t0 > 0 such that for t ≥ t0, the
equation (1.1) in Θt has one y−symmetric positive solution u1 and two non-axially
symmetric positive solutions u2 and u3. Moreover,∫

Θt

|u1|p =
2p
p− 2

αs(Θt) >
2p
p− 2

αs(S)

and ∫
Θt

|ui|p =
2p
p− 2

α(Θt) ≤
2p
p− 2

αs(S) for i = 2, 3.

Thus, we can conclude that∫
Θ+

t

|u1|p =
∫

Θ−t

|u1|p >
p

p− 2
αs(S),∫

Θ+
t

|u2|p ≤
p

p− 2
αs(S)∫

Θ−t

|u3|p ≤
p

p− 2
αs(S),

where Θ+
t = {(x, y) ∈ Θt : y ≥ 0} and Θ−

t = {(x, y) ∈ Θt : y ≤ 0}.
Next, we describe the concentration of solutions of equation (1.1) in Θt. We

need the following notation:

Θt(−l, l) = {(x, y) ∈ Θt : −l ≤ y ≤ l} ;

Θ+
t (l) = {(x, y) ∈ Θt : y ≥ l} ;

Θ−
t (l) = {(x, y) ∈ Θt : y ≤ l} .

Then we have the following results.

Theorem 5.7. Suppose that αs(S) < 2α(Ar). Then for each positive number
ε ≤ ( p

p−2 )α(Ar), there exist positive numbers t0 > l0 such that for t > t0 the
equation (1.1) in Θt has three positive solutions u1, u2 and u3. Moreover,

(i)
∫
(Θt(−l0,l0))c |u1|p < ε

(ii)
∫
Θ+

t (−l0)
|u2|p < ε and

∫
Θ−t (l0)

|u3|p < ε.

Proof. Since αs(S) < 2α(Ar). By Lemma 5.2, for each positive number ε ≤
( p

p−2 )α(Ar), there exist positive numbers l0 and δ(ε) such that if u ∈ Ms(S)
and J(u) < αs(S) + δ(ε), then

∫
(S−l0,l0 )c |u|p < ε. Moreover, by Lemma 5.4, there

exists a t1 > 0 such that αs(Θt) < αs(S) + δ(ε) for all t > t1. Since Θt is a
bounded domain, by Lemma 3.5, the equation (1.1) in Θt admits a positive solu-
tion u1 ∈ H1

0 (Θt) such that J(u1) = αs(Θt). Thus, u1 ∈ Ms(S),

J(u1) < α(Ar) + δ(ε) ,∫
(S−l0,l0 )c

|u1|p =
∫

(Θt(−l0,l0))c

|u1|p < ε.

Fixed the positive numbers ε, l0. By Lemma 5.1, there exists a δ(ε, l0) > 0 such
that if u ∈ M0(S) and J(u) < α(Ar) + δ(ε, l0), then

∫
S+
−l0

|u|p < ε or
∫
S−l0

|u|p < ε.
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Moreover, by Lemma 5.4, there exists a t2 > 0 such that α(Θt) < α(Ar) + δ(ε)
for all t > t2. Since Θt is a bounded domain, by Lemma 3.5, the equation (1.1) in
Θt admits a positive solution u2 such that J(u2) = α(Θt). Then u2 ∈ M0(Θt) ⊂
M0(S), J(u2) < α(Ar) + δ(ε) and either∫

Θ+
t (−l0)

|u2|p < ε or
∫

Θ−t (l0)

|u2|p < ε. (5.12)

Without loss of generality, we may assume that∫
Θ+

t (−l0)

|u2|p < ε.

Take u3(x, y) = u2(x,−y), then u3 is third positive solution and∫
Θ−t (l0)

|u3|p < ε.

Now, let t0 = max{t1, t2}. Since ε ≤ ( p
p−2 )α(Ar), ui is disjoint for i = 1, 2, 3. �

Theorem 5.8. Suppose that the equation (1.1) in S does not admit any solution
u0 such that J(u0) = αs(S). Then for positive numbers ε ≤ ( p

p−2 )α(Ar) and l,
there exists a positive number t0 such that for t > t0, the equation (1.1) in Θt has
three positive solutions u1, u2 and u3. Moreover,

(i)
∫
(Θt(−l,l))c |u1|p < ε

(ii)
∫
Θ+

t (−l)
|u2|p < ε and

∫
Θ−t (l)

|u3|p < ε.

The proof of this theorem is similar to the proof of Theorem 5.7 and therefore
omitted here.

Note that if u1, u2 and u3 are positive solutions as in Theorem 5.7 or Theorem
5.8, then u1 is y-symmetric and u2, u3 are non-axially symmetric.

6. Dynamic System of Solutions

For m = 1, 2, · · · , define Θm = Ar
−m,m\ω, then {Θm} is an increasing sequence

and
S = Ar\ω = ∪∞m=1Θm.

By Theorem 5.5, there exists a t0 > 0 such that for m ≥ t0, the equation (1.1) in
Θm admit one y−symmetric positive solution u1

m and two non-axially symmetric
positive solutions u2

m and u3
m. Note that

J(u2
m) = J(u3

m) = α(Θm) < αs(Θm) = J(u1
m) for all m ≥ t0.

Then we have the following results.

Theorem 6.1. (i) The sequence {u1
m} is a (PS)αs(S)-sequence in Hs(S) for

J
(ii) If αs(Θm0) < 2α(Ar) for some m0 > 0, then there exist a subsequence u1

m

and u1 ∈ Hs(Ω) such that u1
m → u1 strongly in Lp(S) in Hs(S) as m→∞

and J(u1) = αs(S)
(iii) If the equation (1.1) in S does not admit any solution u0 such that J(u0) =

αs(S), then u1
m ⇀ 0 weakly in Lp(S) and in H1

0 (S) as m→∞.
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Proof. (i) By Lemma 5.4, we have J(u1
m) = αs(Θm) = αs(S) + o(1). Since u1

m ∈
Ms(Θm) ⊂ Ms(S), from Lemma 2.3 we can conclude that {u1

m} is a (PS)αs(S)-
sequence in Hs(S) for J .
(ii) Since αs(Θm0) < 2α(Ar) for some m0 > 0 and Θm ⊂ Θm+1 ⊂ S for each m, we
have αs(S) < 2α(Ar). By Proposition 4.4, J satisfies the (PS)αs(S)−condition in
Hs(S). Then there exist a subsequence

{
u1

m

}
and a y-symmetric positive solution

u1 of equation (1.1) in S such that u1
m → u1 strongly in Lp(S) and in Hs(S) and

J(u1) = αs(S).
(iii) Let v ∈ Lq(S), where 1

p + 1
q = 1. Then for each ε > 0, there exists a l > 0 such

that ∫
(S−l,l)c

|v|q < εq.

Moreover, by Theorem 5.8, there exists a m0 such that∫
S−l,l

|u1
m|q < εp for all m > m0.

Thus, for each ε > 0, there exists a m0 such that∫
S

u1
mv =

∫
(S−l,l)c

u1
mv +

∫
S−l,l

u1
mv

≤
( ∫

(S−l,l)c

|u1
m|p

)1/p( ∫
(S−l,l)c

|v|q
) 1

q

+
( ∫

S−l,l

|u1
m|p

)1/p( ∫
S−l,l

|v|q
) 1

q

≤ (c1 + c2)ε for all m > m0,

where c1 = ( 2p
p−2αs(Θ1)) and c2 = ‖v‖Lq . This implies u1

m ⇀ 0 weakly in Lp(S) as
m→∞. Since u1

m is a solution of equation (1.1) in Θm, we have∫
Θm

∇u1
m∇ϕ+ u1

mϕ =
∫

Θm

|u1
m|p−2u1

mϕ for all ϕ ∈ H1
0 (Θm).

First, we need to show for each ε > 0 and ϕ ∈ C1
c (S), there exists m0 such that∫

Θm

∇u1
m∇ϕ+ u1

mϕ < ε for all m > m0.

For ϕ ∈ C1
c (S). Let K = suppϕ, then K ⊂ S is compact and there exists a m1

such that K ⊂ Θm for all m ≥ m1. Thus, by Theorem 5.8 for each ε > 0, there
exist l0 > 0 and m0 such that ϕ ∈ H1

0 (Θm),∫
(S−l0,l0 )c

|ϕ|p = 0 ,∫
S−l0,l0

|u1
m|p < ε

p−1
p for all m > m0.

We obtain∫
Θm

|u1
m|p−2u1

mϕ =
∫

(S−l0,l0 )c

|u1
m|p−2u1

mϕ+
∫
S−l,l0

|u1
m|p−2u1

mϕ

≤
( ∫

(S−l0,l0 )c

|u1
m|p

) p−1
p

( ∫
(S−l0,l0 )c

|ϕ|p
)1/p

+
( ∫

S−l0,l0

|u1
m|p

) p−1
p

( ∫
S−l0,l0

|ϕ|p
)1/p

≤ cε
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and ∫
S

∇u1
m∇ϕ+

∫
S

u1
mϕ =

∫
Θm

∇u1
m∇ϕ+

∫
Θm

u1
mϕ

=
∫

Θm

|u1
m|p−2u1

mϕ for all m > m0.

This follows that ∫
S

∇u1
m∇ϕ+

∫
S

u1
mϕ ≤ cε for all m > m0. (6.1)

Since αs(Θm+1) < αs(Θ), there exists a C > 0 such that ‖u1
m‖H1 ≤ C. Thus, for

each ε > 0 and ψ ∈ H1
0 (S), there exists a ϕ ∈ C1

c (S) such that

‖ψ − ϕ‖H1 <
ε

C
. (6.2)

From (6.1) and (6.2), we can conclude that for each ε > 0 and ψ ∈ H1
0 (S), there

exists a m0 > 0 such that〈
u1

m, ψ
〉

H1 =
〈
u1

m, ψ − ϕ
〉

H1 +
〈
u1

m, ϕ
〉

H1

≤ C‖ψ − ϕ‖H1 +
〈
u1

m, ϕ
〉

H1

< ε+ cε for m > m0.

This implies u1
m ⇀ 0 weakly in H1

0 (S). �

Theorem 6.2. (i) The sequence {ui
n} is a (PS)α(S)-sequence in H1

0 (S) for J ,
for i = 2, 3

(ii) ui
n ⇀ 0 weakly in Lp(S) and in H1

0 (S) as n→∞, for i = 2, 3.

The proof of this theorem is similar to the proof of Theorem 6.1 (i) and (iii).
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