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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO

SUPERLINEAR PERIODIC PARABOLIC PROBLEMS

TOMAS GODOY, URIEL KAUFMANN

Abstract. Let Ω ⊂ RN be a smooth bounded domain and let a, b, c be three

(possibly discontinuous and unbounded) T -periodic functions with c ≥ 0. We
study existence and nonexistence of positive solutions for periodic parabolic

problems Lu = λ(a(x, t)up−b(x, t)uq+c(x, t)) in Ω×R with Dirichlet boundary

condition, where λ > 0 is a real parameter and p > q ≥ 1. If a and b satisfy
some additional conditions and p < (N + 2)/(N + 1) multiplicity results are

also given. Qualitative properties of the solutions are discussed as well. Our

approach relies on the sub and supersolution method (both to find the stable
solution as well as the unstable one) combined with some facts about linear

problems with indefinite weight. All results remain true for the corresponding
elliptic problems. Moreover, in this case the growth restriction becomes p <

N/(N − 1).

1. Introduction

Let Ω be a C2+θ bounded domain in RN , θ ∈ (0, 1), N ≥ 2. For T > 0 and 1 ≤
p ≤ ∞, let LpT be the Banach space of T -periodic functions h on Ω×R (i.e. satisfying
h(x, t) = h(x, t + T ) a.e. (x, t) ∈ Ω × R) such that h|Ω×(0,T ) ∈ Lp(Ω × (0, T )),

equipped with the norm ‖h‖Lp
T

:= ‖h|Ω×(0,T )‖Lp(Ω×(0,T )). Let C
1+θ,(1+θ)/2
T , C1,0

T

be the spaces of T -periodic functions on Ω × R belonging to C1+θ,(1+θ)/2(Ω × R)
and C1,0(Ω× R) respectively, and denote by

P ◦ := the interior of the positive cone of C
1+θ,(1+θ)/2
T .

Let {aij}, {bj}, 1 ≤ i, j ≤ N , be two families of T -periodic functions satisfying

aij ∈ C0,1(Ω× R), bj ∈ L∞T , aij = aji and∑
aij(x, t)ξiξj ≥ α|ξ|2

for some α > 0 and all (x, t) ∈ Ω× R, ξ ∈ RN . Let A be the N ×N matrix whose
i, j entry is aij , let b = (b1, . . . , bN ), let 0 ≤ c0 ∈ L∞T and let L be the parabolic
operator given by

Lu = ut − div(A∇u) + 〈b,∇u〉+ c0u.

For 1 ≤ r ≤ ∞ let W 2,1
r (Ω × (t0, t1)) be the Sobolev space of the functions

u ∈ Lr(Ω × (t0, t1)), u = u(x, t), x = (x1, . . . , xN ) such that ut, uxj
and uxixj
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belong to Lr(Ω× (t0, t1)) for 1 ≤ i, j ≤ N , and let W 2,1
r,T be the space of T -periodic

functions such that u|Ω×(0,T ) ∈ W 2,1
r (Ω× (0, T )). For g : Ω× R→R and r > 1 we

say that u ∈W 2,1
r,T is a (strong) solution of the periodic problem

Lu = g in Ω× R
u = 0 on ∂Ω× R
u T -periodic

(1.1)

if the equation holds a.e. in the pointwise sense. It is known that for g ∈ LrT
with 1 < r < ∞ there exists a unique solution u ∈ W 2,1

r,T of (1.1) and that the

associated solution operator L−1 : LrT → W 2,1
r,T is continuous (see e.g. [20, Section

4]). Moreover, if r > N + 2 then W 2,1
r,T ⊂ C

1+θ,(1+θ)/2
T for some θ ∈ (0, 1) and so

u ∈ C1+θ,(1+θ)/2
T (e.g. [19, Lemma 3.3, p. 80]), and in particular the boundary and

periodicity conditions are satisfied pointwise.
Our aim in this paper is to study existence, nonexistence and multiplicity of

(strictly) positive solutions for periodic parabolic problems of the form

Lu = λ(a(x, t)up − b(x, t)uq + c(x, t)) in Ω× R
u = 0 on ∂Ω× R
u T -periodic

(1.2)

where a, b, c ∈ LrT for some r > N + 2, c ≥ 0, λ > 0 is a real parameter and
p > q ≥ 1.

To avoid unnecessary complexity we restrict ourselves to (1.2), but one can see
that most of the results are still valid for increasing nonlinearities that behave like
up and uq near the origin and infinity. Let us also mention that as a consequence
of our proofs all results remain true for the corresponding elliptic problems. Let

Λ := sup{λ > 0 : there exists a solution uλ > 0 of (1.2)}. (1.3)

If c 6≡ 0, constructing (well ordered) sub and supersolutions we shall prove that
there exists some Λ > 0 such that for all λ ∈ (0,Λ] there exists uλ ∈ P ◦ solution of
(1.2). Moreover, we shall see that there exist k1, k2 > 0 not depending on λ such
that k1λ ≤ ‖uλ‖∞ ≤ k2λ for such λ’s. Also, if in addition a ≥ 0 and b+/c ∈ L∞T ,
by means of the implicit function theorem we shall show that uλ can be chosen
such that λ → uλ is differentiable and increasing for all λ ∈ (0, β) for some β > 0
(see Theorem 3.1 (i) and (ii) respectively). Under an additional condition (which is
fulfilled if for instance b ≤ min{a, c}) we shall see that (1.2) has a solution for every
λ ∈ (0,Λ). Furthermore, when a 6≡ 0 we will prove that Λ <∞ and we will provide
some upper estimates for Λ (see Theorem 3.1 (iii)). Let us note that if a ≡ 0 ≤ b
then (1.2) becomes “sublinear” and it is known in this case that Λ = ∞ (see e.g.
[12]).

On the other hand, suppose a, b, c ∈ L∞T with 0 ≤ a 6≡ 0 with infΩ×R(a/b+) > 0.
Then for p < (N + 2)/(N + 1) we shall prove employing (non-well-ordered) sub
and supersolutions that there exists a solution vλ ∈ P ◦ for all λ ∈ (0, α) for some
α > 0, and that vλ satisfies that ‖vλ‖∞ ≥ kλ−1/(p−1) for all λ > 0 small enough
and k > 0 not depending on λ. If additionally either the aforementioned condition
in Theorem 3.1 (iii) holds or c ≡ 0, then we shall prove existence of a positive
solution for all λ ∈ (0,Λ) (see Theorem 3.3 (i) and (ii) respectively). Moreover, in
many situations in which c ≡ 0 we shall show that Λ =∞ (see Theorem 3.3 (iii)).
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Also, as a consequence of the above results we shall obtain the existence of at least
two positive solutions of (1.2), and in the case c ≡ 0 and q = 1 we shall prove
similar results even without any relation between b and a or c (see Corollaries 3.4
and 3.5). Let us point out that for the analogous elliptic problem, Theorem 3.3
and Corollaries 3.4 and 3.5 are still valid for p < N/(N − 1) (see Remark 2.5 (ii)
below).

Problems of the form (1.2) have been studied by several authors. If b = c ≡ 0,
Esteban [8, Theorem 4] proved existence of a positive solution assuming that L has

θ-Hölder continuous coefficients, p < (N + 2)/N and that a = a(t) ∈ Cθ/2T (R) with

minR a > 0. If in addition a ∈W 1,∞
T (R) and satisfies some technical conditions, she

gave the same result in [8, Theorem 7] for L = ∂/∂t−∆ and p < (3N+8)/(3N−4),
and later on in [9] she improved this last theorem to the case p < N/(N − 2).
Also, Quittner in [22] obtained a positive solution (also for the heat operator and

a ∈ W 1,∞
T as above) for p < (N + 2)/(N − 2), and an extension of this result

under some additional hypothesis for a = a1(x)a2(t) with a1 ∈ C1(Ω), a2 ∈W 1,∞
T ,

infΩ×R{a1, a2} > 0 and Ω convex can be found in [18]. In all these works the main
tools used are topological degree arguments together with several a priori estimates.
We would like to point out that while our approach poses a stronger restriction on
p, the assumptions on a(x, t) and L are considerably weakened and the proofs given
here are completely different and (in our opinion) quite more simple. We mention
also that in the elliptic case existence of a positive solution of (1.2) with b = c ≡ 0
is well known (even if a changes sign) but to our knowledge it is always asked that
either a ∈ C(Ω) or a ∈ L∞(Ω) but with several additional assumptions (see e.g.
[2, 1] and the references therein).

On the other hand, when b ≡ 0 6≡ c Esteban [8, Section V] showed the existence
of at least two positive solutions for all 0 < λ < Λ under the aforementioned
hypothesis in [8, Theorem 7] and assuming that 0 ≤ c ∈ C(Ω × R). If a ≡ 1,
0 ≤ c ∈ L∞T and p < (N + 2)/(N − 2), Hirano and Mizoguchi found also in the
case of the heat operator two positive solutions for λ > 0 small enough and studied
their stability/instability (see [17]), and an extension for a similar problem and sign
changing c′s with c ∈ C(R, L∞(Ω)) was later established in [5]. We observe that
again all these results mainly rely on topological degree arguments and a priori
bounds which require restrictions on p, while we do not impose any condition on
p in order to prove the existence of one of the solutions (namely, the stable one).
Furthermore, we allow in this case a, b and c to be unbounded and a, b may have
indefinite sign.

Finally, as far as we know no results are available specifically for (1.2) neither
when b 6≡ 0 ≡ c nor if b 6≡ 0 6≡ c. There are, however, some bifurcation results
available for convex nonlinearities (e.g. [16, Chapter 3]) or increasing nonlinearities
(e.g. [8, Section V]), but under strong regularity conditions on the coefficients of L
and the nonlinearity. Let us note that for example when a ≥ 0, the right member
of (1.2) is convex either if q = 1 or b ≤ 0, and if q > 1 and b ≥ 0 then it becomes
“concave-convex”. As far as the elliptic problem is concerned, (1.2) with a, b, c
positive constants and p ≤ N/(N − 2) is included in some of the many types of
nonlinearities covered in the nice paper [21, Theorem 6.21]. When Ω is a ball and
L = −∆, it is proved there that Λ < ∞ and that there exist exactly two positive
solutions for λ ∈ (0,Λ) and exactly one for λ = Λ. Let us also mention that the
nonlinearities that arise in Corollary 3.5 are included (for Ω, L and p as above, and
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a,±b positive constants) in [21, Theorems 6.5 and 6.11], and it is also proved there
that in this cases the solution is unique for every λ ∈ (0,Λ). We remark that all
these last results are obtained applying variational and symmetry arguments which
of course are not eligible in our case.

2. Preliminaries

We start by collecting some necessary facts about periodic parabolic problems
with indefinite weight.

Remark 2.1. (i) Let m ∈ LrT with r > (N + 2)/2, and let

PΩ(m) :=

∫ T

0

esssupx∈Ωm(x, t)dt. (2.1)

Then PΩ(m) > 0 is necessary and sufficient for the existence of a (unique and
simple) positive principal eigenvalue λ1(L,m) (or λ1(m) if no confusion arises) for
the problem

Lu = λmu in Ω× R
u = 0 on ∂Ω× R

u -periodic

(2.2)

(cf. [10, Theorem 3.6]). We note that PΩ(m) = +∞ is allowed (cf. [10, p. 218])
and that no regularity on ∂Ω is needed. It also holds that m→ λ1(m) is continuous
(cf. [10, Theorem 3.9]). If λ1(m) exists, we will denote (from now on) by Φ the
positive principal eigenfunction normalized by ‖Φ‖∞ = 1. If in addition Ω has
C2+θ boundary and r > N + 2, then Φ ∈ P ◦.

(ii) The following comparison principle holds: if m1,m2 ∈ LrT with r > (N+2)/2,
PΩ(m1) > 0 and m1 ≤ m2 in Ω × R, then λ1(m1) ≥ λ1(m2) and, if in addition
m1 < m2 in a set of positive measure, then λ1(m1) > λ1(m2) (cf. [10, Remark
3.7]).

Remark 2.2. (i) Let m ∈ LrT with r > (N + 2)/2. For λ ∈ R, let µL,m(λ) (or
simply µm(λ) if no confusion arises) be defined as the unique µ ∈ R such that the
Dirichlet periodic problem Lu = λmu+µm(λ)u in Ω×R has a positive solution u.
Then µm(λ) is well defined, µm(0) > 0, µm is concave and continuous, and a given
λ ∈ R is a principal eigenvalue for (2.2) if and only if µm(λ) = 0 (cf. [10, Lemmas
3.2 and 3.5]). In particular, for λ > 0, if PΩ(m) > 0 then µm(λ) > 0 if and only if
λ < λ1(m), and µm(λ) > 0 for all λ > 0 if PΩ(m) ≤ 0.

(ii) Let m,h ∈ LrT with r > (N + 2). Then, if µm(λ) > 0, the problem

Lu = λmu+ h in Ω× R
u = 0 on ∂Ω× R
u T -periodic

(2.3)

has a unique solution u ∈W 2,1
r,T which is positive if h ≥ 0, and the solution operator

h → u is continuous (cf. [11, Lemma 2.9]). Conversely, if λ1(m) exists and Lu 	
λmu (respectively �) for some λ > 0 and u > 0 in Ω × R with u = 0 on ∂Ω × R,
then λ < λ1(m) (respectively λ > λ1(m)) (cf. [14, Remark 2.1 (e)]).

We will need the following elementary lemma to provide one of the upper esti-
mates for Λ.
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Lemma 2.3. Let p > q ≥ 1 and let h(ξ) := ξp − ξq − cp,qξ + 1, where cp,q > 0 is
defined by

cp,q :=


p

(p−1)(p−1)/p − 1 if q = 1

( q
p−1 )(p−1)/(p−q) if q > 1 and p− q ≥ 1

p− q if q > 1 and p− q ≤ 1

(2.4)

Then h(ξ) ≥ 0 for all ξ ≥ 0.

Proof. Suppose q = 1. Then h attains its unique minimum at ξ0 := ((1+cp,q)/p)
1/(p−1).

Moreover, after some computations we get

h(ξ0) =
(1 + cp,q

p

)1/(p−1)(1 + cp,q
p

− (1 + cp,q)
)

+ 1 = 0.

Suppose now q > 1 and p − q ≥ 1. Define ξ0 := (q/(p − 1))1/(p−q). Then pξp−1
0 −

qξq−1
0 = cp,q and hence h′(ξ0) = 0. Furthermore, taking into account this we find

that

h(ξ0) = (1− p)ξp0 + (q − 1)ξq0 + 1

=
( q

p− 1

) q
p−q
( (1− p)q

(p− 1)
+ (q − 1)

)
+ 1 ≥ 0

because p− q ≥ 1.
Finally, suppose q > 1 and p−q ≤ 1. Since in this case cp,q = p−q it follows that

h′(1) = 0. Moreover, h(1) ≥ 0 because p− q ≤ 1 and this concludes the proof. �

We say that f : Ω × R × R → R is an LrT -Carathéodory function if f(x, t, ξ)
is T -periodic in T , (x, t) → f(x, t, ξ) is measurable for all ξ ∈ R, ξ → f(x, t, ξ)
is continuous on R a.e. (x, t) ∈ Ω × R; and, for each ρ > 0, there exists h ∈ LrT
such that |f(x, t, ξ)| ≤ h(x, t) for a.e. (x, t) ∈ Ω× R and every ξ ∈ [−ρ, ρ]. Also, if

r > N + 2, we will say that v ∈W 2,1
r,T is a subsolution (respectively a supersolution)

of
Lu = f(x, t, u) in Ω× R

u = 0 on ∂Ω× R
u T -periodic

(2.5)

if Lv ≤ f(x, t, v) (resp. Lv ≥ f(x, t, v)) in Ω×R and v ≤ 0 (resp. v ≥ 0) on ∂Ω×R.
Finally, we say that a subsolution v of (2.5) is strict if for every solution u of (2.5)
with v ≤ u one has v < u in Ω × R and either v < u or v = u and ∂νu > ∂νv
on ∂Ω× R, ν being the unit outer normal to ∂Ω. A strict supersolution is defined
analogously.

We state for the reader’s convenience the following existence result in the pres-
ence of non-well-ordered sub and supersolutions (for the proof, see [15, Lemma
2.3]). Let us mention that for m ≡ 1 this lemma can be found in [4, Theorem 3.2].

Lemma 2.4. Let m ∈ L∞T such that PΩ(m) > 0 and let f : Ω × R × R → R
satisfying

(H1) f is an LrT -Carathéodory function for some r > N + 2.
(H2) There exist γ ∈ (0, 1), δ ∈ (1, (N + 2− γ)/(N + 1)) and σ0 > 0 such that

f(x, t, ξ)− λ1(m)mξ

|ξ|γ
≥ −1 and

f(x, t, ξ)− λ1(m)mξ

|ξ|δ
≤ 1

a.e. (x, t) ∈ Ω× R for all ξ such that |ξ| > σ0.
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Suppose that there exist v, w sub and supersolutions respectively of (2.5) such that
v � w. Then (2.5) has a solution u ∈ O where

O := {u ∈ C1,0
T : v � u and u � w}.

Remark 2.5. (i) In the same way as in [4, Theorem 3.2 and Remark 2.2], if v and
w are strict sub and supersolutions, every solution u ∈ O actually satisfies u ∈ O.

(ii) The restrictions r > N + 2 and δ ∈ (1, (N + 2 − γ)/(N + 1)) come from
the use of the strong maximum principle in the proof of Lemma 2.4. Thus, in the
elliptic case one can take r > N and δ ∈ (1, (N − γ)/(N − 1)) and obtain exactly
the same conclusions (in fact, for m ≡ 1 this is done for instance in [3, Section 4]).

3. Main results

As usual, we write f = f+ − f− with f+ = max(f, 0) and f− = max(−f, 0).
For a, b, c ∈ LrT with r > N + 2 and p > q ≥ 1 we set

Λ := 1/‖L−1(a+ + b− + c)‖L∞T , Λ := ‖(L+ Λ(a− + b+))−1c‖L∞T , (3.1)

β0 := min{Λ, (Λq−1
λ1(pa+ qb−))1/q}. (3.2)

Recall that Λ is given by (1.3).

Theorem 3.1. Let a, b, c ∈ LrT for some r > N + 2 such that 0 ≤ c 6≡ 0, and let
p > q ≥ 1. Then

(i) Equation (1.2) has a solution uλ ∈ P ◦ for all λ ∈ (0,Λ] and

Λλ ≤ ‖uλ‖L∞T ≤ Λ
−1
λ (3.3)

for such λ (in particular, Λ ≥ Λ).
(ii) Assume in addition that a ≥ 0 and b+/c ∈ L∞T . Then there exists β > β0

such that λ→ uλ is a C1 increasing map from (0, β) into P ◦.
(iii) Assume in addition that

K1 := ‖b+/c‖1/qL∞T
≤ inf

Ω×R
(a/b+)1/(p−q) := K2. (3.4)

Let m(x, t) := min{a(x, t), c(x, t)}, let cp,q be given by (2.4), and let w ∈ P ◦ be the
solution of (1.1) with c in place of g. Then (1.2) has a solution uλ ∈ P ◦ for all
λ ∈ (0,Λ) and

Λ ≤

{
λ1(m)/cp,q if m 6≡ 0

max{1, λ1(awp−1)} if m ≡ 0 and a 6≡ 0
(3.5)

Proof. Let λ > 0, and let Φλ ∈ P ◦ be the unique positive principal eigenfunction
of (2.2) with c and L + λ(a− + b+) in place of m and L respectively, normalized
by ‖Φλ‖∞ = 1 (since c 6≡ 0 such Φλ exists). Let λ∗ := λ1(L + λ(a− + b+), c) and
let k0 = k0(λ) := λ/λ∗. We first claim that kΦλ is a subsolution of (1.2) for every
0 < k ≤ k0. Indeed, taking into account that p, q ≥ 1 we find that

λ(a+(kΦλ)p + b−(kΦλ)q + c) ≥ λc ≥ λ∗ckΦλ = (L+ λ(a− + b+))kΦλ

and since kΦλ ≤ 1 the claim follows.
On the other hand, let Λ be given by (3.1), let 0 < λ ≤ Λ and let zλ ∈ P ◦ be

the unique solution of the periodic problem Lzλ = λ(a+ + b−+ c) in Ω×R, zλ = 0
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on ∂Ω× R. It is easy to check that zλ is a supersolution for (1.2). Indeed, clearly

‖zλ‖∞ = Λ
−1
λ ≤ 1 and then

Lzλ ≥ λ(a+‖zλ‖p∞ + b−‖zλ‖q∞ + c) ≥ λ(azpλ − bz
q
λ + c).

Hence, if k = k(λ) is small enough, [7, Theorem 1] gives some uλ ∈ L∞T solution

of (1.2) satisfying kΦλ ≤ uλ ≤ zλ for all λ ∈ (0,Λ]. Moreover, uλ ∈ P ◦ and

‖uλ‖∞ ≤ Λ
−1
λ for such λ′s (i.e., the second inequality in (3.3) holds). Also, taking

into account this last fact, from (1.2) we obtain

Luλ ≥ λ(−a−uλ − b+uλ + c) (3.6)

and thus (L+ Λ(a−+ b+))uλ ≥ λc (because λ ≤ Λ) and the first inequality in (3.3)
follows. So, (i) is proved.

To prove (ii) we first note that we may assume without loss of generality that

b ≤ c. Indeed, if ‖b+/c‖∞ = 0 then b ≤ 0 and so b ≤ c. If not, take k := ‖b+/c‖1/q∞
and define ak := ak1−p, bk := bk1−q and ck := ck. It follows that bk ≤ ck.
Furthermore, u is a solution of (1.2) if and only if ku is a solution of (1.2) with ak,
bk and ck in place of a, b and c respectively. Henceforth we assume that b ≤ c.

Let λ > 0, uλ > 0 be the solution of (1.2) found in (i), and let mλ := paup−1
λ −

qbuq−1
λ . We claim that the implicit function theorem can be applied in a point

(λ, uλ) for any λ > 0 sufficiently small. Indeed, a direct computation shows that
in order to see this it suffices to prove that for a given h ∈ LrT there is a unique

solution u ∈ W 2,1
r,T of problem (2.3) with mλ in place of m and that the solution

operator for this problem is continuous. Thus, recalling Remark 2.2 (ii) the claim
will follow if λ1(mλ) > λ (if such λ1(mλ) exists; if λ1(mλ) does not exist we have
nothing to prove). Now, let β0 be given by (3.2) and let 0 < λ ≤ β0. Since p > q
and λ ≤ Λ, by the second inequality in (3.3) we have

mλ ≤ uq−1
λ (paup−qλ + qb−) < (Λ

−1
λ)q−1(pa+ qb−)

and therefore the comparison principle in Remark 2.1 (ii) yields

λ1(mλ) > (Λλ−1)q−1λ1(pa+ qb−) ≥ λ
(if λ1(pa+ qb−) does not exist then mλ ≤ 0 and we are done). Hence, the claim is
proved.

Let I := (α1, α2) be a maximal interval centered at β0 provided by the implicit
function theorem in which λ→ uλ is a C1 map into P ◦. Differentiating (1.2) with
respect to λ and taking into account that a ≥ 0 and b ≤ c we obtain

(L− λmλ)
∂uλ
∂λ

= aupλ − bu
q
λ + c ≥ c(1− uqλ) (3.7)

for all λ ∈ I. So, since uβ0 satisfies (3.3), it follows from (3.7) and Remark 2.2
(ii) that ∂uλ/∂λ > 0 for some (α, β) ⊂ I with β0 ∈ (α, β). We next observe that
α = α1 = 0. Indeed, suppose first α > α1. In this case ∂uλ/∂λ|λ=α = 0, but
since λ → uλ is increasing in (α, β) and ‖uβ0‖∞ ≤ 1, again (3.7) and Remark 2.2
(ii) yield ∂uλ/∂λ|λ=α > 0. Assume now α > 0, and let uj ∈ P ◦ be the solutions
of (1.2) corresponding to some sequence λj ↘ α. Then uj is decreasing and so
the continuity of the solution operator L−1 supplies some uα ≥ 0 solution of (1.2)
for λ = α. Furthermore, α > 0 implies ‖uα‖∞ > 0 (because c 6≡ 0) and hence
we can apply the implicit function theorem in the point (α, uα), contradicting the
maximality of (α, β). Consequently, α = 0 and (ii) is proved.
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Let us prove (iii). By (3.4), as in the beginning of the proof of (ii) we may now
assume that b ≤ min{a, c}. Indeed, take 0 < k ∈ [K1,K2] (where K1 and K2 are
given by (3.4)) and define ak, bk and ck as in (ii). Then bk ≤ min{ak, ck} and as
before u is a solution of (1.2) if and only if ku is a solution of (1.2) with ak, bk and
ck in place of a, b and c.

Now, let λ ∈ (0,Λ) and let λ ∈ (λ,Λ) such that there exists uλ > 0 solution of

(1.2) with λ in place of λ. Since b ≤ min{a, c} and a, c ≥ 0 it is easy to check that
aξp − bξq + c ≥ 0 for all ξ ≥ 0 a.e. (x, t) ∈ Ω × R. Thus uλ is a supersolution
for (1.2). Therefore, since for all λ > 0 the first paragraph of the proof provides
subsolutions for (1.2) of the form kΦλ, making k > 0 sufficiently small we can again
apply [7, cite 1], and obtain a solution of (1.2).

We prove (3.5). Suppose first 0 6≡ m(x, t) := min{a(x, t), c(x, t)}. We observe
that λ1(m) exists because m ≥ 0. Let u > 0 be a solution of (1.2). Taking into
account Lemma 2.3 we get

Lu = λ(aup − buq + c) ≥ λm(up − uq + 1) ≥ λmcp,qu

and then Remark 2.2 (ii) says that λ ≤ λ1(mcp,q) = λ1(m)/cp,q.
On the other hand, if m ≡ 0, from b ≤ min{a, c} and a, c ≥ 0 we have that b ≤ 0.

Suppose now the last inequality in (3.5) is not valid. Let w ∈ P ◦ be the unique
solution of (1.1) with c in place of g. Since c 6≡ 0 it holds that w > 0. Moreover,
0 ≤ awp−1 6≡ 0 because a 6≡ 0. Choose λ > max{1, λ1(awp−1)} such that there
exists u > 0 solution of (1.2). We observe that since λ > 1 the maximum principle
yields u ≥ w. Also,

Lu = λ(aup − buq + c) ≥ λaup ≥ λawp

and so again employing Remark 2.2 (ii) we obtain λ ≤ λ1(awp−1). Contradiction.
�

Let us note that if in Theorem 3.1 (iii) it holds that m = a ≡ 0 then (1.2)
becomes Lu = λ(b−uq + c) and hence upper bounds for Λ can be obtained in the
same way as there.

Lemma 3.2. Let a, b, c ∈ L∞T such that a, c ≥ 0 and infΩ×R(a/b+) > 0, and let
1 ≤ q < p < (N + 2)/(N + 1). Assume there exist v, w ≥ 0 sub and supersolutions
respectively of (1.2) such that neither of them is a solution and v � w. Then there
exists u ∈ P ◦ solution of (1.2) satisfying v 6≤ u 6≤ w.

Proof. We note first that v is a strict subsolution. Indeed, if z is a solution of (1.2)
with v ≤ z then

L(z − v) > −b+(zq − vq) ≥ −q‖z‖q−1
∞ b+(z − v)

and hence the assertion follows from the strong maximum principle (as stated e.g.
in [6, Theorem 13.5]). In the same way w is a strict supersolution.

Let f̃ be defined by f̃(x, t, ξ) = λ(a(x, t)ξp − b(x, t)ξq + c(x, t)) for ξ ≥ 0 and

f̃(x, t, ξ) = λc(x, t) for ξ < 0. Let µ := (N + 2)/(N + 1) − p > 0, and choose
α, γ > 0 small enough such that α + γ/(N + 1) < µ. Since infΩ×R(a/b+) > 0,
reasoning as in Theorem 3.1 (iii) we may assume that b ≤ a. Taking into account

this, it is easy to check that the function f̃ satisfies the assumptions of Lemma 2.4
with γ as above, δ := p + α, m := a and any r > N + 2. Therefore, Lemma 2.4

provides a solution u ∈ C1,0
T of (2.5) with f̃ in place of f satisfying v 6< u 6< w.
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Moreover, since v and w are strict sub and supersolutions, from Remark 2.5 (i) we
get v � u � w. In particular u 6≡ 0 because w 6≡ 0 (observe that if w ≡ 0 then
c ≡ 0 and therefore w is a solution of (1.2), contradicting the hypothesis). Let
U := {(x, t) ∈ Ω × R : u(x, t) < 0}. If U 6= ∅ we have Lu = λc ≥ 0 in U and
u = 0 on ∂U and so the maximum principle (as stated e.g. in [13, Lemma 2.3])
implies u ≥ 0 in U which is not possible. Thus u ≥ 0 in Ω × R and hence by
the aforementioned strong maximum principle in [6] u ∈ P ◦. It follows that u is a
solution of (1.2) and this ends the lemma. �

We focus now on what happens when a 6≡ 0. The special case c ≡ 0 and q = 1
will be considered separately in Corollary 3.5 below. For Λ as in (3.1) and ε > 0
we set

δ0 := min{λ1(a),Λ}
Ωε := {x ∈ Ω : dist(x, ∂Ω) < ε}, Ωcε := Ω− Ωε.

(3.8)

Theorem 3.3. Let a, b, c ∈ L∞T with a, c ≥ 0, a 6≡ 0 and infΩ×R(a/b+) > 0. Let
1 ≤ q < p < (N + 2)/(N + 1). Then

(i) Equation (1.2) has a solution vλ ∈ P ◦ for all λ ∈ (0, δ0) and there exists
k > 0 not depending on λ such that for all λ > 0 small enough

‖vλ‖L∞T ≥ kλ
−1
p−1 . (3.9)

(ii) Assume that either c ≡ 0 or (3.4) holds. Then (1.2) has a positive solution
for all λ ∈ (0,Λ).

(iii) If c ≡ 0, q > 1 and b ≤ 0 in Ωσ × R for some σ > 0, then Λ =∞.

Proof. As in the above lemma we assume that b ≤ a. Let λ ∈ (0, λ1(a)) (a 6≡ 0
and so such λ1(a) exists) and mε := aχΩc

ε×R − b
+χΩε×R. Since 0 ≤ a 6≡ 0 and the

positive principal eigenvalue is continuous with respect to the weight (cf. Remark
2.1), we can choose ε > 0 small enough such that λ1(mε) exists and λ1(mε) ≥ λ.
Let Φ be the unique positive principal eigenfunction of (2.2) with mε in place of
m, normalized by ‖Φ‖∞ = 1. Let 0 < δ := minΩc

ε×R Φ and let K0 = K0(λ) :=

((1 + λ1(mε)/λ)1/(p−q))/δ. We claim that kΦ is a subsolution of (1.2) for every
k ≥ K0. Indeed, let k ≥ K0 and let us first write f(x, t, ξ) := λ(aξp − bξq + c) and

Ak := {(x, t) ∈ Ω× R : kΦ ≤ 1}, Ack := (Ω× R)−Ak,
Bk := (Ωε × R) ∩Ak, Bck := (Ωε × R) ∩Ack,
Ck := (Ωcε × R) ∩Ak, Cck := (Ωcε × R) ∩Ack.

(3.10)

We observe that Ck = ∅ because kΦ ≥ K0Φ > δ−1Φ ≥ 1 in Ωcε × R. Now, taking
into account that b ≤ a and 1 ≤ q < p we get that

f(x, t, kΦ) ≥ −λb+(kΦ)qχBk
+ λa((kΦ)p − (kΦ)q)χBc

k∪C
c
k

≥ −λb+kΦχBk
+ λa(kΦ)q((kδ)p−q − 1)χCc

k

≥ −λ1(mε)b
+kΦχBk

+ λ1(mε)akΦχCc
k

≥ λ1(mε)mεkΦ = L(kΦ)

(3.11)

and this proves the claim.
On the other side, let 0 < λ < Λ and let zλ ≥ 0 be defined as in the second para-

graph of the proof of Theorem 3.1. Since ‖zλ‖∞ = Λ
−1
λ, there exists αλ > 0 such

that if zλ := αλ + zλ then ‖zλ‖∞ ≤ 1. Furthermore, in a similar way as there one
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can see that zλ is a supersolution of (1.2) for all λ ∈ (0,Λ). Therefore, by Lemma
3.2 there exists some vλ ∈ P ◦ solution of (1.2) for every λ ∈ (0,min{λ1(a),Λ}) and
satisfying kΦ 6≤ vλ 6≤ zλ. In particular, ‖vλ‖∞ ≥ αλ for all such λ′s.

To prove (3.9) we proceed by contradiction. Let λj be a sequence with λj ↘
0, let vj be the corresponding solutions of (1.2) found above, and suppose that
λj‖vj‖p−1

∞ → 0. Without loss of generality we can assume that ‖vj‖∞ ≥ α for all j
large enough and α > 0 not depending on λ. Let wj := vj/‖vj‖∞. Dividing (1.2)
by ‖vj‖∞ we get

Lwj = λj‖vj‖p−1
∞
(
awpj − bw

q
j/‖vj‖

p−q
∞ + c/‖vj‖∞

)
. (3.12)

Now, going to the limit in (3.12), the continuity of the solution operator L−1 yields
that wj → 0 when j → 0, which is not possible.

Let us prove (ii). Assume first that (3.4) holds. In this case we start arguing
as in the first part of the proof but defining now mε := aχΩc

ε×R. Then mε ≥ 0 in
Ω×R and mε = 0 in the sets Bk and Bck given by (3.10). Moreover, (since by (3.4)
we may suppose that b ≤ c) we have

f(x, t, kΦ) ≥ λ(−b(kΦ)q + c) ≥ 0 in Bk

and hence we do not need to impose the restriction λ ≤ λ1(mε) in (3.11). Further-
more, a quick look at (3.11) shows that the other bounds remain the same, and
thus as there we obtain a positive subsolution of the form kΦ but now for all λ > 0
(with k ≥ K0(λ) as in (3.11)).

Next, we claim that reasoning as in the proof of Theorem 3.1 (iii) we obtain a
solution to (1.2) for all λ ∈ (0,Λ). Indeed, let λ ∈ (0,Λ) and take λ ∈ (λ,Λ) such
that there exists uλ > 0 solution of (1.2) with λ in place of λ. As before, since we
are assuming that b ≤ min{a, c}, f(., ξ) ≥ 0 for all ξ > 0. So, uλ is a supersolution
for (1.2) and therefore the claim follows from the above paragraph and Lemma 3.2.

Suppose now that c ≡ 0 and q > 1 (the case q = 1 is included in Corollary 3.5
below). In this case multiplying (1.2) by λ1/(q−1) and writing v := λ1/(q−1)u we
transform (1.2) into the equivalent problem

Lv = λ−(p−q)/(q−1)avp − bvq in Ω× R. (3.13)

From (i) (3.13) has a positive solution for all λ > 0 small enough. Moreover, readily
(3.13) has a positive solution for every λ ∈ (0,Λ). Indeed, let λ ∈ (0,Λ) and take
λ > 0 small enough and λ ∈ (λ,Λ) such that there exist uλ, uλ > 0 solutions of

(3.13) with λ and λ in place of λ respectively. Then uλ and uλ are super and
subsolutions respectively of (3.13) and therefore (either if they are well-ordered or
not) we obtain a solution for (3.13), and hence for (1.2).

To prove (iii) we shall supply a solution of (1.2) for every λ > 0. We note first
that since b ≤ 0 in Ωσ × R for some σ > 0 (Ωσ given by (3.8)), for any λ > 0, the
subsolution constructed in the first paragraph of the proof of (ii) can still be used
in this situation choosing there ε ≤ σ. Indeed, as in (ii) mε = 0 in the sets Bk and
Bck, f(., kΦ) ≥ c ≥ 0 in Bk and the rest also stays the same. On the other hand,
let λ < λ small enough such that there exists v solution of (3.13) with λ in place of
λ. Clearly λ−1/(q−1)v is a supersolution of (1.2) and then again Lemma 3.2 gives a
solution of (1.2) and this concludes the proof. �

Corollary 3.4. Let a, b, c ∈ L∞T such that a, c ≥ 0, a 6≡ 0 6≡ c, and let 1 ≤ q < p <
(N + 2)/(N + 1).
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(i) If infΩ×R(a/b+) > 0, then for all λ > 0 small enough there exist two positive
solutions of (1.2).

(ii) If in addition (3.4) holds, then (i) is true for all λ ∈ (0,Λ).

Proof. (i) is an immediate consequence of (3.3) and (3.9). Let us prove (ii). We
assume b ≤ min{a, c} and argue as before. Let λ ∈ (0,Λ), let λ ∈ (λ,Λ) and let
vλ be the solution of (1.2) with λ in place of λ given by Theorem 3.3 (ii). We
have that vλ is a supersolution for (1.2). Also, the first paragraph of the proof of
Theorem 3.1 provides some positive subsolution uλ of (1.2) such that uλ ≤ vλ and
hence [7, Theorem 1] gives some wλ solution of (1.2) satisfying uλ ≤ wλ ≤ vλ. On
the other hand, as in the first part of the proof of Theorem 3.3 (ii) we can construct
another subsolution ũλ such that ũλ � vλ and thus recalling Lemma 3.2 we obtain
a solution wλ ∈ P ◦ of (1.2) satisfying ũλ 6≤ wλ 6≤ vλ. In particular wλ 6= wλ and
this proves (ii). �

For the case c ≡ 0 and q = 1 no relation between b and a or c is needed. Let us
rewrite (1.2) as

Lu = λ(a(x, t)up + b(x, t)u) in Ω× R
u = 0 on ∂Ω× R
u T -periodic

(3.14)

We recall that PΩ and Λ are given by (2.1) and (1.3) respectively. We have

Corollary 3.5. Let a, b ∈ L∞T such that 0 ≤ a 6≡ 0, and let 1 < p < (N+2)/(N+1).
Then (3.14) has a solution vλ ∈ P ◦ for all λ ∈ (0,Λ). Moreover, Λ = λ1(b) if
PΩ(b) > 0 and Λ =∞ if PΩ(b) ≤ 0.

Proof. Let us note first that since (3.14) can be written as (L + λb−)u = λ(aup +
b+u), arguing as in the first part of the proof of Theorem 3.3 (ii) we get some
positive subsolution kΦ of (3.14) for any λ > 0.

On the other hand, let µb be defined as in Remark 2.2. Then there exists some
u ∈ P ◦ satisfying Lu = λbu+ µb(λ)u in Ω×R, u = 0 on ∂Ω×R. Furthermore, by
the results listed in Remarks 2.1 and 2.2 it holds that µb(λ) > 0 for all λ ∈ (0, λ1(b))
if PΩ(b) > 0 and µb(λ) > 0 for every λ > 0 if PΩ(b) ≤ 0. Taking this into account,
it is easy to check that for such λ′s u is a supersolution of (3.14) if one takes ‖u‖∞
sufficiently small (in fact, it suffices ‖u‖ ≤ (µb(λ)/(λ‖a‖))1/(p−1)). Hence Lemma
3.2 applies and gives a solution for all λ < λ1(b) if PΩ(b) > 0 and for every λ > 0
if PΩ(b) ≤ 0. That is, Λ ≥ λ1(b) in the first case and Λ =∞ in the second one. To
end the proof we observe that (3.14) implies Lu ≥ λbu and so Remark 2.2 (ii) says
that Λ ≤ λ1(b) when PΩ(b) > 0. �
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