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Abstract. We the solvability of the two-dimensional stream function-vorticity

formulation of the Navier-Stokes equations. We use the time discretization and

the method of characteristics order one for solving a quasi-Stokes system that
we discretize by a piecewise continuous finite element method. A stabilization

technique is used to overcome the loss of optimal error estimate. Finally a

parallel numerical algorithm is presented and tested.

1. Introduction

The flow of an incompressible viscous fluid in a two dimensional domain Ω is
characterized by two variables: its velocity u and its pressure p. It is described by
Navier-Stokes problem

∂u
∂t

+ u∇u− ν∆u +∇p = f in Ω, t > 0,

∇.u = 0 in Ω, t > 0.
(1.1)

This system corresponds to the equation of the conservation of the quantity of
movement and the equation of conservation of mass. Here, ν is the kinematic
viscosity of the fluid and f is a given function corresponding to the forces applied
to the fluid. In general, we add to this system a boundary condition on the border
Γ of the domain Ω, like

u = ud on Γ (1.2)

known as the Dirichlet condition.
This formulation, called velocity-pressure formulation, can be rewritten by intro-

ducing two other scalar functions, called the vorticity (noted by ω) and the stream
function (noted by ψ) [2, 5, 8, 10, 11, 6, 17, 18]. The link between these functions
is given by the relations:

ω = ∇× u and u = ∇× ψ. (1.3)
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Then we obtain the following ψ-ω formulation equivalent to (1.1),

∂ω

∂t
+ u∇ω − ν∆ω = ∇× f in Ω, t > 0,

ω + ∆ψ = 0 in Ω, t > 0.
(1.4)

The velocity boundary condition (1.2) implies that the function ψ and its normal
derivative ∂nψ are fixed on the boundary Γ and given by

ψ = ψd and
∂ψ

∂n
= g on Γ.

Such a formulation has two main advantages. The first one is related to the au-
tomatic satisfaction of the divergence free condition. The second one concerns the
reduction of the number of equations.

We propose to solve problem (1.4). A time discretization of this system using
the characteristics method [7, 12, 14], leads to study, at each time step ∆t, the
following system, called quasi-Stokes problem.

ω + ∆ψ = 0 in Ω
−∆ω − λ∆ψ = F in Ω

(1.5)

where λ = 1
ν∆t and F = λωP + 1

ν∇× f with ωP (t, x) = ω(t−∆t, x(t−∆t)).
The resolution of the system (1.5) by a direct approach leads to the loss of one

order in the error estimates. To optimize the behavior of our approach, we adapt
the regularization-stabilization technique, introduced in [1, 3], to the Navier-Stokes
equations. The main step of the proposed approach is to write the decomposition
ψ − ω in a natural variational framework.

Such a decomposition permit us to built a linear piecewise stabilized finite ele-
ment method having a good behavior and to obtain an optimal error estimate.

The numerical resolution of the obtained linear system is performed by the Bi-
gradient Conjugate Stabilized method [13]. After an algorithmic analysis identify-
ing the dependence between the different tasks and data involved, an implementa-
tion under MPI (Message Passing Interface) has been done [16]. We obtain then a
parallel stabilized algorithm for the Navier-Stokes problem.

We start this paper by presenting respectively the time and spatial discretiza-
tion of the considered problem. Then we describe the stabilized method and its
advantage. The numerical analysis of the obtained system and the validation of
the stabilization technique is presented in section 3. In addition we present a par-
allel algorithm. The performance of the proposed method is illustrated by some
numerical results.

2. Discrete problem

We present in this section the time and spatial approximations of problem (1.4).

2.1. Time discretization. Let T a fixed positive real and f ∈ C(0, T,H−1(Ω)).
We consider the regular partition of [0, T ] into N equal subintervals [ti−1, ti], 1 ≤
i ≤ N with t0 < t1 < . . . < tN = T and δt = ti − ti−1 = T

N .
Let ψn+1 = ψ(., tn+1) and ωn+1 = ω(., tn+1) being the approximations of ψ and

ω at time tn+1 = (n + 1)δt. The time discretization of the problem (1.4) is given
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by: Find ψn+1 and ωn+1 solutions to(∂ω
∂t

+ u∇ω
)n+1

− ν∆ωn+1 = ∇× fn+1 in Ω

ωn+1 + ∆ψn+1 = 0 in Ω

ψn+1 = ψd on Γ

∂ψn+1

∂n
= g on Γ

(2.1)

The total derivative of the function omega is approximated using characteristics
scheme [7, 12] as follows( ∂
∂t

+u∇
)
ω(x, tn+1) ≈ ω(x, tn+1)− ω(X(x, tn+1; tn), tn)

δt
=
ωn+1 − ωnoXn

δt
(2.2)

where Xn(x) = X(x, tn+1; tn) is the position at time tn of particle of fluid which is
at point x at time tn+1. System (2.1) becomes

ωn+1 + ∆ψn+1 = 0 in Ω

∆ωn+1 +
1
νδt

∆ψn+1 = −1
ν

(
∇× fn+1 +

ωnoXn

δt

)
in Ω

ψn+1 = ψd on Γ

∂ψn+1

∂n
= g on Γ

(2.3)

which is equivalent at each time step to the quasi-Stokes system

ω + ∆ψ = 0 in Ω
∆ω + λ∆ψ = F in Ω

ψ = ψd on Γ
∂ψ

∂n
= g on Γ

(2.4)

where F (·, tn+1) = − 1
ν

(
∇× fn+1 + ωnoXn

δt

)
, and ψd, g, λ, F are given.

2.2. Continuous problem. First, we denote by H−1(Ω) the dual space of

H1
0 (Ω) = {θ ∈ L2(Ω) : ∇θ ∈ L2(Ω), v|Γ = 0}

with the associated norm

‖v‖−1,Ω = sup
ϕ∈H1

0 (Ω)

〈v, ϕ〉−1,1,Ω

|ϕ|1,Ω
, ∀v ∈ H−1(Ω)

where 〈·, ·〉−1,1,Ω is the dual pairing between H−1(Ω) and H1
0 (Ω).

We introduce the space

H−1(∆; Ω) = {θ ∈ L2(Ω) : ∆θ ∈ H−1(Ω)},

equipped with the norm

‖θ‖−1,∆,Ω =
(
‖θ‖20,Ω + ‖∆θ‖2−1,Ω

)1/2
, ∀θ ∈ H−1(∆; Ω)

For simplicity of the analysis, we consider in the following ψd = 0 and g = 0. A
variational formulation of problem (2.4) is given by: Find (ω, ψ) ∈ H−1(∆; Ω) ×
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H1
0 (Ω) such that ∫

Ω

θω dΩ + 〈∆θ, ψ〉−1,1,Ω = 0 ∀θ ∈ H−1(∆; Ω)

〈∆ω, η〉−1,1,Ω − λ
∫

Ω

∇η∇ψ dΩ =
∫

Ω

Fη dΩ ∀η ∈ H1
0 (Ω)

(2.5)

Theorem 2.1. For all f ∈ H−1(Ω), problem (2.5) has a unique solution (ω, ψ) ∈
H−1(∆; Ω)×H1

0 (Ω) and there exists a constant C > 0 such that:

|ψ|1,Ω + ‖ω‖−1,∆,Ω ≤ C‖F‖−1,Ω (2.6)

Moreover, the solution (ω, ψ) of (2.5) is a solution of (2.4).

For a proof of the above theorem see [4].

Remark 2.2. Using the decomposition

ω = ω0 + ω∗, (2.7)

problem (2.5) can be rewritten as: Find ω0 ∈ H1
0 (Ω) such that∫

Ω

∇ω0∇ηdΩ = 〈F, η〉−1,1,Ω, ∀η ∈ H1
0 (Ω), (2.8)

and find ω∗ ∈ H−1(∆; Ω), ψ ∈ H1
0 (Ω) such that∫

Ω

θω∗ dΩ−
∫

Ω

∇ψ∇θ dΩ = −
∫

Ω

θω0 dΩ ∀θ ∈ H1(Ω),

−〈∆ω∗, η〉−1,1,Ω + λ

∫
Ω

∇ψ∇η dΩ = 0 ∀η ∈ H1
0 (Ω)

(2.9)

The advantage of this decomposition is to get more regularization on ω∗, Indeed
−∆ω∗ = λ∆ψ ∈ L2(Ω) while −∆ω0 = f ∈ H−1(Ω) and −∆ω = f + λ∆ψ ∈
H−1(Ω).

Next, we shall discretize problem (2.8)-(2.9) using the decomposition defined by
(2.7). This particularity related to ω∗ will improve the behavior of the discrete
method.

2.3. Numerical approximation. Let (Th)h be a regular family of decomposition
of Ω in triangles K [9, 15]. For each triangle K, we denote respectively by hK its
diameter and h = maxK∈Th

hK .
We associate to each decomposition Th, the set Ch of the internal edges. Then,

for every edge T of Ch, there exists two triangles K and K ′ of Th such that

K 6= K ′ and T = ∂K ∩ ∂K ′. (2.10)

We define the jump of the normal derivative on each edge T of Ch, by

[∂nv]T =

{
∂Kn vK + ∂K

′

n vK′ p.p. on T if T = ∂K ∩ ∂K ′, K,K ′ ∈ Th
0 on T if T = ∂K ∩ Γ, K ∈ Th,

(2.11)

where vK = v |K and ∂Kn vK is the normal derivative of vK on ∂K, K ∈ Th, and
the discrete scalar product and semi-norm

〈θh , δh〉h =
∑
T∈Ch

mesT
∫
T

[∂nθh][∂nδh] dT, ∀θh ∈ Xh, δh ∈ Xh,

|θh|h =
(
〈θh, θh〉h

)1/2

∀θh ∈ Xh,

(2.12)
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where mesT denotes the length of the edge of T for T ∈ Ch.
We consider the discrete spaces

Xh = {θ ∈ C0(Ω) : ∀K ∈ Th, θ |K∈ P1(K)} ⊂ H−1(∆; Ω)

X0
h = Xh ∩H1

0 (Ω)

where P1(K) is the space of piecewise linear functions defined on K. We denote by
ωh, ψh and Fh respectively the approximations of ω, ψ and F in Xh. The classical
discrete variational formulation of problem (2.8)-(2.9) is written

a(ωh, θh) + b(θh, ψh) = 0 ∀θh ∈ Xh

b(ωh, ηh)− d(ψh, ηh) =
∫

Ω

Fηh dΩ ∀ηh ∈ Xo
h

ψh ∈ Xo
h ωh ∈ Xh,

(2.13)

where a, b and d are the following three bilinear forms

a(δh, θh) =
∫

Ω

δhθh dΩ, ∀δh, θh ∈ Xh,

b(θh, ϕh) = −
∫

Ω

∇θh∇ϕh dΩ, ∀θh, ϕh ∈ Xh,

d(ϕh, ηh) = λ

∫
Ω

∇ϕh∇ηh dΩ, ∀(ϕh, ηh) ∈ Xh ×X0
h.

We remark that the compatibility constant between spaces Xh and X0
h is inde-

pendent on h but the associated bilinear form a(·, ·) to Xh is elliptic for the L2(Ω)
norm. Consequently the coercivity constant depends on h. To make up for such in-
convenient, we use an approximation method based on a technique of stabilization
described in [2, 3]. It consists in changing this principal form a(·, ·) into another
form ah(·, ·) by addition a stabilizing term as

ah(δh, θh) = a(δh, θh) + β Ah(δh, θh) ∀δh, θh ∈ Xh, (2.14)

with Ah(δh, θh) = 〈δh, θh〉h and β ≥ 0 is a parameter to be chosen.

Discrete problem. Using stabilization technique, introduced in (2.14), the dis-
crete variational formulation of (2.8)-(2.9) (which is equivalent to (2.5)) can be
rewritten as ∫

Ω

∇ω0
h∇ηhdΩ = 〈f, ηh〉−1,1,Ω, ∀ηh ∈ X0

h,∫
Ωh

ω∗h θh dΩh + β〈ω∗h, θh〉h −
∫

Ωh

∇ψh∇θh dΩ = −
∫

Ωh

ω0
h θh dΩh∀θh ∈ Xh

−
∫

Ωh

∇ω∗h∇ηhdΩh − λ
∫

Ωh

∇ψh∇ηh dΩh = 0

∀ηh ∈ X0
h ω

0
h ∈ X0

h, ω
∗
h ∈ Xh, ψh ∈ X0

h

(2.15)
Setting ωh = ω0

h + ω∗h, the couple (ψh, ωh) is an approximation of (ψ, ω).

Theorem 2.3. The discrete problem (2.15) has a unique solution.

For a proof of the above theorem see [4].
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Error estimates.

Theorem 2.4. If ω∗ ∈ H2(Ω) and ω0 ∈ H2(Ω), there exist s ∈] 1
2 , 1] and C > 0,

independent of h, β and λ, such that

‖ω∗ − ω∗h‖0,Ω +
√
λ|ψ − ψh|1,Ω ≤ C

(
hs+1|ω0|2,Ω + eh

)
, (2.16)

‖ω0 − ω0
h‖0,Ω ≤, hs+1|ω0|2,Ω, (2.17)

|ψ − ψh|1,Ω ≤ Ch|ψ|2,Ω + C(1 +
√
β){hs+1|ω0|2,Ω + eh} (2.18)

where

eh =
(
λh
√
β +

h√
β

+ h
√
λ
)
|ψ|2,Ω +

(
hs +

√
β
)
h|ω∗|2,Ω

The proof of the above theorem is an adaptation to the quasi-Stokes problem of
the proof presented in [3] for the biharmonic problem. We omit it.

The parameter β is selected in such way that error estimates in theorem 2.4
becomes optimal. In the case of

√
β = 1√

λ
,

eh = h
√
λ|ψ|2,Ω +

(
hs+1 +

h√
λ

)
|ω∗|2,Ω

and we obtain the following error estimates.

Corollary 2.5. Under hypothesis of theorem 2.4,

‖ω∗ − ω∗h‖0,Ω ≤ C{h
√
λ+ hs+1 +

h√
λ
}, (2.19)

|ψ − ψh|1,Ω ≤ C{h+
hs+1

√
λ

+
h

λ
}, (2.20)

where the constant C > 0 is independent of h and λ.

This choice of parameter β leads to an optimal error estimates, we get a behavior
in O(h). We remark that if λ becomes very small, the error estimate on ψ is better
than that on ω.

3. Numerical implementation

3.1. Linear system. Let n the number of mesh nodes, (θi)i=1,n be a base of Xh

and (ηi)i=1,n a base of Xh
0 . The system (2.13) is written for all j = 1, . . . , n

n∑
i=1

ωi a(θi, θj) + β

n∑
i=1

ωi Ah(θi, θj) +
n∑
i=1

ψi b(θj , ηi) = 0

n∑
i=1

ωi b(θi, ηj)−
n∑
i=1

ψi d(ηi, ηj) =
∫

Ω

fηj dΩ

(3.1)

which is equivalent to the linear system

MX = N (3.2)

where

M =
(
A+ βS BT

B −D

)
, X =

(
ω
ψ

)
, N =

(
0
F

)
• The matrix A = (ai,j)1≤i,j≤n with aij = a(θi, θj) is computed from the

bilinear form a(·, ·).
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• The matrix S = (si,j)1≤i,j≤n with sij = Ah(θi, θj) represents the bilinear
form Ah(·, ·).
• The matrix B = (bi,j)1≤i,j≤n with bij = b(ηi, ηj).
• D = −λB.
• F is associated to the second member with Fj =

∫
Ω
Fηj dΓ.

For the storage of these matrices, we used the Morse compact method keeping only
non zero terms. For the resolution, we implement a parallel Bi-gradient Conjugate
Stabilized (BICGSTAB) algorithm [13].

3.2. Parallel algorithm. The parallel implementation of the BICGSTAB algo-
rithm was done with fortran and MPI library for communications [16]. We present
in the following some numerical results to show the performance of the parallelized
solver. The simulations are performed on a cluster of 8 PC’s and for different
Meshes (Mesh 1 with 4× 104 nodes, Mesh 2 with 16× 104 nodes and Mesh 3 with
64 × 104 nodes). We remark that the number of unknowns is the double of the
number of nodes and that from the meshes 1 to the 2 and from 2 to 3, we resolved
a problem with four times more data.

Table 1. Computing time with respect to number of processors

Mesh 1 proc 2 proc 4 proc 8 proc
1 21.05 11.13 6.55 4.02
2 245.85 128.04 70.85 37.7
3 2113.36 1061.98 548.9 297.65

From table 1, we remark that the execution time increases when we raise the
number of unknowns and decreases when the number of processors increases. We
deduce that more the mesh is finer or more the number of unknown is important,
more the gain of time becomes significant. This is proportional to the treated case
and is often polluted by the communication time between processors which becomes
more significant when the number of processors increases.

To evaluate the efficiency of the algorithm, we compute the speed-up which
represents the ratio between the execution times for n processors and 1 processor.
The optimal speed-up for n processors is n. We present in table 2 the obtained
speed-up for each mesh.

Table 2. Speed-up

Mesh 2 proc 4 proc 8 proc
1 1.89 3.21 5.25
2 1.92 3.47 6.52
3 1.99 3.85 7.1

We remark that the speed-up increases and approaches its optimal when the
number of unknowns increases. Indeed, for 2 processors we obtain a good speed-
up for mesh 1 (1.89) which reaches its optimal value (1.99) for mesh 3. On the
other hand for 8 processors we obtain bad speed-up (5.25) for mesh 1 but which
becomes better (7.1) for mesh 3. This result is a consequence of the communication
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time between processors which becomes very important compared to the calculation
volume when we increase the number of processors. Therefore, the communication
cost degrades the performance of the parallel algorithm.

3.3. Numerical validation. We present in this section a validation of the pre-
sented stabilization technique on the quasi-Stokes problem (2.4). We consider the
domain of computation Ω = [0, 1]× [0, 1] and the following analytical stream func-
tion solution

ψ(x, y) = 3x sin(πx) cos(πy) 0 < x, y < 1.
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Figure 1. Total Error
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Figure 2. Slope

Figure 1 shows the total error ‖ω1 − ω1h‖−1,∆,Ω + |ψ1 − ψ1h|1,Ω with respect to
the stabilization term β. We remark that the lowest error for this case is obtained
for β = 0.1.

Figure 2 shows the slope of the total error according to the parameter β. We
remark that this slope is included in the interval [1.4, 2] which confirms the obtained
error estimate.

Figures 3 and 4 present a comparison between the exact and computed solutions.
Figures 3 (a) and 4 (a) show respectively the exact stream function and vorticity
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(a) Exact solution (b) Without stabilization (c) With stabilization

Figure 3. Vorticity ω.

(a) Exact solution (b) Without stabilization (c) With stabilization

Figure 4. Stream function ψ.

isovalues. We give also a comparison between the stabilized method corresponding
to β = 0.1 (figures 3 (c) and 4 (c)) and the classical finite element method corre-
sponding to β = 0 (figures 3 (b) and 4 (b)). One can see the contribution of the
stabilization term β on the quality of the solution. This contribution is more clear
for the vorticity (figure 3(c)).

Conclusion. A stabilized finite element method for the Navier-Stokes equations
written in stream function-vorticity formulation is presented in this work. In order
to optimize the computing time, a parallel implementation for the obtained solver
is presented. The proposed approach will be extended in a forthcoming work to a
three dimensional Navier-Stokes equations. we denote that the proposed algorithm
is general and can be used for many engineering problems related to the Navier-
Stokes equations.
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[1] M. Amara; Une méthode optimale de classe C◦ d’approximation du bilaplacien, Comptes
Rendus de l’Academie des Sciences, 319 (1994), 1327-1330.

[2] M. Amara, C. Bernardi; Convergence of a finite element discretization of the Navier-Stokes

equations in vorticity and stream function formulation, Mathematical Modelling and Numer-
ical analysis, 33(5) (1999) ,1033-1056.

[3] M. Amara, F. Dabaghi; An optimal Co finite element method for the 2D biharmonic problem,

Numerisch Mathematik, 90(1) (2001), 19-46.
[4] F. Brezzi, M. Fortin; Mixed and hybrid finite element method, Springer Series in Computa-

tional Mathematics 15, Springer Verlag, New York, 1991.
[5] C. Bernardi, V. Girault, Y. Maday; Mixed spectral element approximation of the Navier

Stokes equations in the stream function and vorticity formulation, IMA Journal of Numerical

Analysis, 12 (1992), 565-608.
[6] P. Colli, G. Gilardi, J. Sprekels; A boundary control problem for the pure Cahn-Hilliard

equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), no. 4, 311-325.

[7] J. Douglas, T.F. Russel; Numerical methods for convection dominated diffusion problems
based on combining the method of characteristics with finite element methods or finite dif-

ference method, SIAM, J. Numer. Anal., 19 (1982), 871-885.

[8] P. Ghadimi, M. Y. Fard, A. Dashtimanesh; Application of an Iterative High Order Difference
Scheme Along With an Explicit System Solver for Solution of Stream Function-Vorticity

Form of Navier-Stokes Equations, Journal of fluids engineering-transactions of the ASME,

135(4), 2013.
[9] V. Girault, P. A. Raviart; Finite element methods for Navier-Stokes equations, Theory and

Algorithms, (1986) Springer Verlag, Berlin.

[10] V. Girault, J. Giroire, A. Sequeira; A stream function-vorticity variational formulation for
the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. in the Applied Sciences,

15(5) (1992), 345-363.
[11] P. Minev, P. N. Vabishchevich; An operator-splitting scheme for the stream function-vorticity

formulation of the unsteady Navier-Stokes equations, Journal of computational and applied

mathematics, 293 (2016), 147-163.
[12] O. Pironneau; On the transport diffusion algorithm and its applications to the Navier-Stokes

equations, Numer Math., 38 (1982), 309-332.

[13] Y. Saad; Iterative methods for sparse linear systems, PWS series in computer science, (1996).
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