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SEQUENCES OF SMALL HOMOCLINIC SOLUTIONS FOR
DIFFERENCE EQUATIONS ON INTEGERS

ROBERT STEGLINSKI

Communicated by Vicentiu D. Radulescu

ABSTRACT. In this article, we determine a concrete interval of positive pa-
rameters A, for which we prove the existence of infinitely many homoclinic
solutions for a discrete problem

~A(a(k)p(Aulk — 1)) +b(k)gp(ulk)) = Af(k,u(k), k€ Z,
where the nonlinear term f : ZxXR — R has an appropriate oscillatory behavior

at zero. We use both the general variational principle of Ricceri and the direct
method introduced by Faraci and Kristaly [11].

1. INTRODUCTION

In this article we study the nonlinear second-order difference equation
—A (a(k)pp(Au(k — 1)) + b(k)pp(u(k)) = Af(k,u(k)) forall k€ Z

uw(k) =0 as |k| — oo. (L.1)

Here p > 1 is a real number, ) is a positive real parameter, ¢,(t) = [¢|P~2t for all
teR,a,b:Z — (0,+00), while f : Z x R — R is a continuous function. Moreover,
the forward difference operator is defined as Au(k — 1) = u(k) — u(k — 1). We say
that a solution u = {u(k)} of is homoclinic if lim|;| o u(k) = 0.

Difference equations represent the discrete counterpart of ordinary differential
equations and are usually studies in connection with numerical analysis. We may
regard as being a discrete analogue of the following second order differential
equation

—(a(t)pp(2'(1)))" + b(t)dp(x(t)) = f(t,x(t), teR.
The case p =2 in has been motivated in part by searching standing waves for
the nonlinear Schrodinger equation

iy + A%y — v + f(kyy) =0, k€ Z.

Boundary value problems for difference equations can be studied in several ways.
It is well known that variational method in such problems is a powerful tool. Many
authors have applied different results of critical point theory to prove existence
and multiplicity results for the solutions of discrete nonlinear problems. Studying
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such problems on bounded discrete intervals allows for the search for solutions in a
finite-dimensional Banach space (see [1}, 2, [9] 10, 19}, 20, 21]). The issue of finding
solutions on unbounded intervals is more delicate. To study such problems directly
by variational methods, [I3] and [I8] introduced coercive weight functions which
allow for preservation of certain compactness properties on [P-type spaces. That
method was used in the following papers [12] [14] 23] 24 25].

The goal of the present paper is to establish the existence of a sequence of ho-
moclinic solutions for problem , which has been studied recently in several
papers. Infinitely many solutions were obtained in [25] by employing Nehari mani-
fold methods, in [I4] by applying a variant of the fountain theorem, in [23] by use of
the Ricceri’s theorem (see [4, 22]) and in [24] by applying a direct argumentation.
In the two latter papers the nonlinearity f has a suitable oscillatory behavior at
infinity. In this article we will prove that results analogous to [23] and [24] can be
obtained assuming that the nonlinearity f has a suitable oscillatory behavior at
zZero.

A special case of our contributions reads as follows. For b : Z — R and the
continuous mapping f : Z X R — R define the following conditions:

(A1) b(k) > a>0forall k € Z, b(k) — 400 as |k| — +o0;

(A2) there is Ty > 0 such that sup, <q, [ f(--t)] € l1;

(A3) f(k,0) =0 for all k € Z;

(A4) there are sequences {cp }, {dm} such that 0 < dpt1 < ey < d,

limy;, 00 dy, = 0 and f(k,t) <0 for every k € Z and t € [cj, dm],m € N;

(A5) liminf, o ZkeeP@MasT0E _

(A6) Hmsup 1) (100,0+) [a(k+1)f¢(z]§kt))+b(k)]tl’ = +00;

(A7) Hmsup (e g (—oc,0) [a(k+1)+t(zlzl;)+b( W = 109
(A8) supyey (hm SUP; o+ [a(k—i—l)—fc(tl(ckt))—&-b(k)]tp) = +09,

where F'(k,t) is the primitive function of f(k,t), i. e. F(k,t) fo
foreveryte Rand k € Z .

The solutions are found in the normed space (X, || - ||), where
X={u:Z—R : Y [ak)|Au(k - 1)|” + b(k)|u(k)["] < oo},
kEZ
1/p
lull = (D falk)Autk = 1) + b |u(k)7])
keZ

Theorem 1.1. Assume that (A1)—(A4) are satisfied. Moreover, assume that at
least one of the conditions (A6)—(A8), is satisfied. Then, for any X\ > 0, problem
(1.1) admits a sequence of non-negative solutions in X whose norms tend to zero.

Theorem 1.2. Assume that (A1), (A2), (A5) are satisfied. Moreover, assume that
at least one of the conditions (A6)—(A8) is satisfied. Then, for any A > 0, problem
(1.1) admits a sequence of solutions in X whose norms tend to zero.

The issue of multiplicity of solutions can be investigated through variational
methods, which consist in seeking solutions of a difference equation as critical points
of an energy functional defined on a convenient Banach space. In the proof for the
first theorem a direct variational approach is used, introduced in [I1] and then used
in such papers as [8 [15] [16] (17, 24]. In the proof for the second theorem the general
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variational principle of Ricceri is used, which was applied in [2 [3 Bl [6l [7, 23]. To
obtain the differentiability of the energy functional associated with problem (1.1),
so far in the literature the following condition has been used

|f (k1)

t—0 |t\p—1

following [13], 18] and then used in [23, 24, 25].

We cannot use the condition, as it contradicts each of the conditions (A6)—(A8).

We obtain our results due to a suitable oscillatory behavior of the nonlinearity
f. Let us observe that to satisfy the condition (A8) it suffices that a suitable
oscillatory behavior is present for just one k € Z, while for satisfying conditions
(A6) or (A7) a suitable behavior of the nonlinearity f needs to be maintained for
an infinite number of k € Z.

The plan of the paper is as follows: Section 2 is devoted to our abstract frame-
work, in Section 3 and Section 4 we prove more general versions of Theorems
and respectively. In Section 5 we give examples and we show that Theorem
and Theorem [I.2] are independent.

=0 uniformly for all k£ € Z,

2. ABSTRACT FRAMEWORK

For all 1 < p < 400, we denote by ¢P the set of all functions u : Z — R such that

lullf = > lu(k)P < +oo.

kez
Moreover, we denote by £°° the set of all functions u : Z — R such that

lu|loo = sup |u(k)] < +o0
keZ

Lemma 2.1. Let a continuous function f:7Z x R — R satisfies

sup |f(-,t)| € Iy for all T > 0. (2.1)
[t|<T
Then the functional W : [P — R defined by
u) = ZF(k‘, u(k)) for allu € lP, (2.2)
kez

where F(k, s) fo f(k,t)dt for s € R and k € Z, is continuously differentiable.
Proof. Let us fix u,v € [P. We will prove that

. Y(u+Tv)
lim, = f(k,u(k))v(k). (2.3)
keZ

Put r = [ufloe + [[v]lo and q(k) = supy, <, |f(k,t)| for all k € Z. We have ¢ € I',

by .

Let us fix arbitrarily ¢ > 0. Then, there exists h € N such that

|k|>h

We can find 0 < 7'0 < 1 such that for all 0 < 7 < 79,

S Ptk )+ o) = Pl ulk) o) <

=
|k|<h

Wl ™
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Now fix 0 < 7 < 79. For all |k| > h we can find 0 < 7, < 7 such that

F(k, u(k) + Tv(k)) = F(k, u(k)) _ flk,u(k) + meo(k))o(k).

We define w € IP by putting w(k) = 0 for all |k| < h and w(k) = u(k) + mpv(k) for
all |k| > h. So ||w||e <7 and

|\I/( +TU Zf k, ’LL ‘
kEZ
§+ Z | (ks w(R)o (k) + Y |k, u(k))o(k)]
|k|>h [k[>h
<z +20lle Y alk) <e
k|>h

which proves (2.3). From ([2.1)) and the continuity of the embeddings [P — [* and
e lp,, the linear operator on the right-hand side of (2.3) lies in lp/, }% + i =1,
so ¥ is Gateaux differentiable and
=D Sk, u(k))o(k)
kEZ

It remains to prove that U’ : {? — [#" is continuous. Let (uy) be a sequence such that
up — win P, Put R = max{[|ullec,sup,en [[unlloc} and Q(k) = supy<p [f(k,1)]
for all k € Z. We have Q € [', by (2.1). Fix an € > 0 arbitrarily. There exists
h € N such that

€
S el <5 (24)
|k|>h
and there exists NV € N such that for all n > N we have
€

[k|<h
Applying (2.4) and (2.5)), for every n > N and v € [P one has
(O (1) — W' (w), v)|

< Nollse D 1f (K, wn(k)) — f(k,u(k))]

kEZ
< ollp (32 170 a () — £ u( + 3 L ua )]+ 3 170k, u(k))])
|E|<h |k|>h |k|>h
<ol (5+2 Y Q)
|k|>h
< elvllp,
thus, ||9/(u,) — ¥/ (u)|| < €. So, ¥ is continuous and ¥ € C1(IP). O

Now, we set
X ={u:Z—R:Y [alk)[Aulk - V) + b(k)[u(k)]”] < oo}
kEZ
and

Jull = (3 la(k) Ak = D)IF + b(k)uk) 1) 1/p.

keZ
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Clearly we have
oo < [Jull, < a™YP|lul| for all u e X. (2.6)
As is shown in [I3] Propositions 3], (X, || - ||) is a reflexive Banach space and the

embedding X < [P is compact. See also [14, Lemma 2.2].
Let Jy : X — R be the functional associated with problem (3.3]) defined by

Jn(u) = ®(u) — AP (u),
where
D(u) = - Z[a(k)|Au(k —DP 4+ b(k)|u(k)P] forallue X
p kEZ

and ¥ is given by (2.2).
Proposition 2.2. Assume that (A1) and (2.1) are satisfied. Then

(a) U e CYIP) and ¥ € CH(X);

(b) B € C'(X);

(c) Jx € CY(X) and every critical point w € X of Jy is a homoclinic solution

of problem (1.1));

(d) Jy is sequentially weakly lower semicontinuous functional on X.

Proof. Part (a) follows from Lemmal[2.1} Parts (b) and (c) can be proved essentially
by the same way as [I3 Propositions 5 and 7], where a(k) = 1 on Z and the norm
on X is slightly different. See also [I4, Lemmas 2.4 and 2.6]. The proof of part
(d) is based on the following facts: ® = %H -||P, ¥ € C(I?) and the compactness of
X — [P and it is standard. O

3. PROOF OF THEOREM [I.1]

Now we will formulate and prove a stronger form of Theorem Let

= im su F(kv t)

e <’<vt%—’<io§0+) [a(k +1) + a(k) + b(k)]tr’ (3.1)
— . F(k,t)

o = s (1m0 oy o) 52

Set B = max{By, By}. For convenience we put 1/ 4+ co = 0.

Theorem 3.1. Assume that (A1)—(A4) are satisfied and assume that B > 0. Then,
for any A > Bip, problem (1.1 admits a nonzero sequence of non-negative solutions
in X whose norms tend to zero.

Proof. To apply Proposition we need to have a nonlinearity which satisfies
condition (2.1). Let Tp > 0 be a number satisfying (A2). Define the truncation
function

0, s<O0andk € Z,
fk,s) = f(z,s), 0<s<Tyandke€Z,
f(z,To), s>Tpand k € Z.
and consider the problem
—A (a(k)gp(Aulk = 1)) + b(k)dy(u(k)) = Af (k, u(k))
u(k) — 0.
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Clearly, if u is a non-negative solution of problem (3.3]) with |Ju||cc < Ty, then it is

also a non-negative solution of problem (|1.1]), so it is enough to show that problem
(3.3) admits a nonzero sequence of non-negative solutions in X whose norms tend
to zero.

Put A > Bip and put ¢,V and J) as in the previous section. By Proposition
we need to find a nontrivial sequence {u,} of critical points of Jy with non-negative
terms whose norms tend to zero.

Let {cn}, {dn} be sequences satisfying conditions (A4). Up to subsequence, we
may assume that dy < Tp. For every n € N define the set

W, ={u€ X : ||u]leo <d, for every k € Z}.
Claim 3.2. For every n € N, the functional Jy is bounded from below on W,, and
its infimum on W, is attained.

The proof of this Claim is essentially the same as the proof of [24, Claim 3.2].

Claim 3.3. For every n € N, let u,, € W,, be such that Jx(u,) = infw, Jy. Then,
U, 15 a solution of problem (3.3)) with 0 < uy (k) < ¢y, for all k € Z.

Firstly, arguing as in the proof of [24, Claim 3.3], we obtain that if u,, € W, is
such that Jy(uy) = infy, Jy, then 0 < u, (k) < ¢, for all k € Z. Secondly, arguing
as in the proof of [24] Claim 3.4], we obtain that u,, is a critical point of Jy in X,
and so is a solution of problem . This proves Claim

Claim 3.4. For every n € N, we have Jy(u,) < 0 and lim,,— 1o Jr(up) = 0.

Firstly, we assume that B = B.. Without loss of generality we can assume that
B = By. We begin with B = 4+00. Then there exists a number o > )\ip, a sequence
of positive integers {k,} and a sequence of positive numbers {¢,,} which tends to
0, such that
F(kn,tn) > o(a(kn + 1) + alky) + b(kn))th (3.4)
for all n € N. Up to extracting a subsequence, we may assume that ¢,, < d,, for all
n € N. Define in X a sequence {w, } such that, for every n € N, w,(k,) = ¢, and
wp (k) = 0 for every k € Z\{ky,}. It is clear that w,, € W,,. One then has

J)\(UJT,)
= 23 (@), (= D + b (BF) = A Y F (k. ()

kEZ kEZ

< % (a(kn +1) + alkn)) ], + %b(kn)ti = Ao(a(ky, +1) + a(ky) + b(kn))t;,

_ (% —20) (alkn + 1) + a(kn) + b(k,))th < 0

which gives Jy(u,) < Jy(w,) < 0. Next, assume that B < 4o00. Since A > Bp,
we can fix e < B — )\ip. Therefore, also taking {k,} a sequence of positive integers

and {t,} a sequence of positive numbers with lim,,_, ¢, = 0 and ¢,, < d,, for all
n € N such that

Flkn,tn) > (B — &)(a(kn + 1) + a(kn) + b(kn))t2 (3.5)

for all n € N, choosing {w,,} in W, as above, one has

Tn(wn) < (% —\B - s)) (a(kn + 1) + alkn) + b(kn))EE.
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So, also in this case, Jy(uy) < 0.
Now, assume that B = By. We begin with B = 400. Then there exists a number
o> ﬁ and an index kg € Z such that

lim sup Fiko, ¢
ol (alko + 1) + alko) + b(ko) )P~

Then, there exists a sequence of positive numbers {¢,,} such that lim, . t, =0
and

F(ko,tn) > o(a(ko + 1) + a(ko) + b(ko))tH, (3.6)
for all n € N. Up to considering a subsequence, we may assume that ¢,, < d,, for all

n € N. Thus, take in X a sequence {w,} such that, for every n € N, w,, (ko) = t,
and wy, (k) = 0 for every k € Z\{ko}. Then, one has w,, € W,, and

J,\(wn)

== Z k)| Awy (k — 1)[P + b(k)|w, (k)|") — )‘ZF(kawn(k))
kEZ keZ

< % (ko +1) + alko)) 2 + %b(ko)tﬁ “o(alko + 1) + alko) + b(ko)) 2
1

= (5 — )\J) (a(ko + 1) 4+ a(ko) + b(ko))tE <0

which gives Jy(uy) < 0. Next, assume that B < 4+oc0. Since A > Bip, we can fix
€ > 0 such that e < B — )\ip. Therefore, there exists an index kg € Z such that
li F(k()a t)
im su
oot (a(ko + 1) + a(ko) + b(ko)) 7

and taking {t,} a sequence of positive numbers with lim,_, ;o ¢, =0 and ¢, < d,
for all n € N and

F(ko,tn) > (B —¢) (a(ko + 1) + a(ko) + b(ko))t}, (3.7)

for all n € N, choosing {w,,} in W, as above, one has

> B —-«¢.

Ta(wn) < (% “ (B — &) (alko + 1) + alko) + b(ko))EZ < 0.

So, also in this case, Jy(u,) < 0.
Moreover, by Claim [3.3] for every k € N one has

|F (K, un (k)| S/nlf(k,t)\dtécn max |f(k,t)| < ¢, max |f(k,t)]  (3.8)
0 te(0,cx] t€[0,To]

Then
0> Ja(un) > =Y F(k,un (k) > —cn| max 17 D]
kEZ t€10,To]
Since the sequence {c,} tends to zero, then Jy(u,) — 0 as n — +o0o. This proves

Claim 3.4

Now we are ready to end the proof of Theorem [3.1] With Proposition[2.2} Claims
[3:3H3-4] up to a subsequence, we have infinitely many pairwise distinct non-negative
homoclinic solutions u,, of . Moreover, due to 7 we have

- P=Jy(un)+ Y Fk,un(k)) < (-, O,
pllunll A(tn) kZGZ s Un (k) cnlltg[%)a}%]lf( M
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which proves that ||u,||? — 0 as n — +oo. This concludes our proof. O

We remark that Theorem [I.1] follows now from Theorem [3.11

4. PROOF OF THEOREM

Our main tool is a general critical points theorem due to Bonanno and Molica
Bisci (see []) that is a generalization of a result of Ricceri [22]. Here we state it in
a smooth version for the reader’s convenience.

Theorem 4.1. Let (E, || - ||) be a reflexive real Banach space, let &,V : E — R be
two continuously differentiable functionals with ® coercive, i.e. limj,|—oo ®(u) =
400, and a sequentially weakly lower semicontinuous functional and ¥ a sequen-
tially weakly upper semicontinuous functional. For every r > infg ®, let us put

(r) = inf (SUDyca-1((—o0.ry) (V) — ¥(u)
war we€d—1((—o0,r)) r— ®(u) ’

0 := liminf .
it S
Let Jy := ®(u) — AV(u) for allu € E. If 6 < +oo then, for each A € (0,1/0), the
following alternative holds: either
(a) there is a global minimum of ® which is a local minimum of Jy, or
(b) there is a sequence {uy} of pairwise distinct critical points (local minima)
of Jx, with lim,_, 4 ®(u,) = infg @, which weakly converges to a global
minimum of .

Now we formulate and prove a stronger form of Theorem Let
2 kez Maxje <t F (K, §)

A = liminf .
t—0+ tP

Set B := max{By, By}, where By and By are given by (3.1]) and (3.2)), respectively.

i 1 1 _
For convenience we put v = +o0 and - =0.

Theorem 4.2. Assume that (A1), (A2), (A5) are satisfied and assume that the

following inequality holds A < aB. Then, for each A € (%p7 A&p), problem (1.1)

admits a sequence of solutions in X whose norms tend to zero.

Proof. To apply Proposition we need to have a nonlinearity which satisfies
condition (2.I). Let Ty > 0 be a number satisfying (A2). Define the truncation
function
flx,—Ty), s<-Tyand k € Z,
f(k,s) =1 f(z,s), Ty <s<Tygand k € Z,
f(z,Tp), s>Tyand k € Z.

and consider the problem

—A (a(k)¢p(Au(k — 1)) + b(k)p(u(k)) = Af (k, u(k))
u(k) — 0.

Clearly, if u is a solution of problem (4.1)) with ||u|lec < Tp, then it is also a solution

of the problem (|L.1)), so it is enough to show that problem (4.1) admits a nonzero
sequence of solutions in X whose norms tend to zero.

(4.1)
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It is clear that A > 0. Put \ € (— A%,) and put ®, ¥, Jy as above. Our aim is
to apply Theorem [ to function Jy. By Lemma[2.2] the functional @ is the contin-
uously differentiable and sequentially weakly lower semicontinuous functional and
U is the continuously differentiable and sequentially weakly upper semicontinuous
functional. We will show that § < +o00. Let {c¢,,} C (0,T}) be a sequence such that

lim,, 00 ¢ = 0 and

lim > pez MaxXjg|<c,, F(k,§)

lim ) — A

Set

«
T 1= —cb,

for every m € N. Then, if v € X and ®(v) < ry,, one has
1 _1
[Vl < @ ?lv]] < a7? (p2(v))1/p < cm

which gives
@‘1((—00,7",”)) - {U €X :|v]eo < cm}. (4.2)
From this and ®(0) = ¥(0) = 0 we have

SUPg (v)<r,, 2okez £ (K, v(K)) < > kez MaxX|y<c,, F(k,t)

<
o(rm) < o > o
_ P 2kerMAXpy<c,, (K1)
« Cim

for every m € N. This gives
. p 1
< < Z. - .
0 < mlirilw¢(rm) < A< 3 < 400
Now, we show that the point (a) in Theoremdoes not hold, i.e. we show that
the global minimum 6 of ® is not a local minimum of Jy. Arguing as in the proof
of Claim we can find a sequence {wy,} in X with ||w,|lec — 0 as n — +o0,
such that Jy(wy) < 0 for n € N. We have to show that ||w,| — 0. Note that
lwall = ((a(kn + 1) + alkn) + b(kn ))t”)l/p,
where {k,} is a sequence dlvergent to 400 or —oo, as in and (3.5) or {ky} is
a constant sequence, as in (3.6 and (3.7) and {t } is a sequence convergent to 0T
from relevant (3.4)), (3.5]), (3.6) or (3.7)). From this
wnll < yF(kn,tn)
for some positive constant v and all n € N. Since

lim Zkezmax|g|gcmF(k,§)<+
m——+oo an

and lim, 4 o0 ¢y, = 0, we have

lim max F(k,&) =0

m—>+<x> |f|<cm

and, as max|¢|<.,, F'(k,&) > 0, we obtain lim,, . (max‘g‘gcm F(k,f)) 0
formly for all k& € Z. This and F'(ky,,t,) > 0 easily gives lim,_, o0 F(knp, tn)
and so lim,, 4 ||wy|| = 0.

From the above it follows that 6 is not a local minimum of Jy and, by (b), there
is a sequence {u,} of pairwise distinct critical points of Jy with lim,, 4 ®(u,) =

||C
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infg ®. This means that 0 = infg ® = lim,— 4o P(u,) = %Hun”p, and so {u,}
strongly converges to zero. The proof is complete. (|

We remark that Theorem follows now from Theorem

5. EXAMPLES
Consider the problem
—A (dp(Au(k — 1)) + |k|dp(u(k)) = Af(k,u(k)) forallkeZ
u(k) = 0 as |k| — oo,
where p > 1 and f:Z x R — R is defined by

1
f(k’ s) = %em (dm — Cm — 2‘8 ) (Cm + dm) ‘) . l{m}x[cm,dm](kv S) (5.2)

with sequences {¢,;, }, {dmn}, {em}, {hm} defined by
Cm = 1/222m for m € N;
dp, = 1/2227%1 for m € N;
R = 1/2(1""’1)227"72 for m € N;
em = 2R/ (dm — cm)?  for m € N.

Here 144 p is the indicator of A x B. It is easily seen that f is continuous and
conditions (A2), (A3) are satisfied. Set F'(k,t) := fot f(k,s)ds for every t € R and

k € Z. Then F(k,dy,) = [ f(k,t)dt = hy and
> ez maxjg <y F(k, §)

(5.1)

(5.3)

ZI{)EZ maX‘E‘Scnz F(k7 E)

lim inf

t—0+ P = oo 2
= Z;O:m+1 F(ka dk:)
T e (5.4)
= 1 Zk:m+1 hk
- m —-
m—+oo  Cp
< lim 2P _ 0
m——+oo m
" F(k,t) F(m,d,,)
m
li — 7 > i
(kvt)lftiligoﬂ 2+ k)tr = m—too (2+ m)db, -

ml—lg-loo (24 m)dh,
So, conditions (A4)—(A6) are satisfied and so for any A > 0, problem admits
a sequence of non-negative solutions in X whose norms tend to zero, by Theorem
or Theorem Note also that f does not satisfy (A8).

Remark 5.1. For a fixed kg € Z, if we define f: Z x R — R by

- 1
flk,s) = %em (dm — cm — 2|5 — 5 (em+ d)1) - Loy xem dm] (K5 8)

= 4-00.

with sequences {¢m }, {dm }, {€m }, {hm} defined as above, then f satisfies conditions
(A2)—(A5) and (A8), but does not satisfy conditions (A6) and (A7).
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Remark 5.2. Theorems [I.1] and [T.2] are independent of each other. Indeed, let us
replace h,, in by

o = 1/2°2" for m € N.
Then, the function f given by is continuous if p > 2. It can be seen that the
first inequality in is in fact equality. Then, an easy computation shows that

> kezmaxjg <t F(k,§)

lim inf > 1,
t—0+ tP
F(k,t
By = limsup RGN = 400

(kt)—(400,0+) (2 +K)tP

This means that we can not apply Theorem but Theorem works. On the
other hand, it is easy to see that we can modify f in the way, that for some (or
even infinitely many) k we have f(k,t) > 0 for all ¢ > 0 and the limits , (5.5))
do not change. Therefore, such an f does not satisfy (A4) and can not be used in
Theorem [[11
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