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ABSTRACT 

THE ANALYSIS OF SPATIAL-TEMPORAL DYNAMICS OF URBAN LANDSCAPE 

STRUCTURE: A COMPARISON OF TWO ENERGY-ORIENTED CITIES 

 

by 

 

Junmei Tang, B.S., M.S. 

 

Texas State University-San Marcos 

May 2007 

 

SUPERVISING PROFESSOR: LE WANG 

 This dissertation integrates remote sensing, spatial metrics, and urban modeling to 

map, compare, and model the urban process in two petroleum-oriented cities, Houston in 

the United States and Daqing in China. The primary objective of my research is to 

understand the relationships between the human behavior and natural environments under 

different socio-political contexts at a regional scale. Accordingly, there are two major 

research foci in this dissertation: 1) improving the accuracy of remote sensing 

classification in the highly fragmented urban landscapes, especially the human land use 

classes such as the residential area and the industrial/commercial area; and 2) testing the 

utility of sub-pixel information for a self-organized model towards a framework to 
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support and improve urban modeling. Although a variety of studies have focused on the 

urban remote sensing and urban modeling, this research is the first investigation on the 

relationship between sophisticated remote sensing techniques and urban process models 

within socioeconomic dimensions. The results of this study provide evidences on the 

threatened natural landscape and environment deterioration during the urbanization 

processes in two petroleum-oriented cities and suggest that the utility of sub-pixel 

techniques improves the accuracy of both mapping and modeling in urban research 

through the cost effective satellite imagery.   
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CHAPTER I 

INTRODUCTION 

Problem Statement 

Approximate 70% of the population in developed counties and 50% of the 

worldwide population live in urban areas. As a result of human behavior, the natural 

environmental in these areas have evolved into an urban landscape with modified 

ecological processes (IGBP 1988). These landscapes now represent one of the greatest 

challenges in environmental, economic, social, political, and cultural research. Urban 

landscape also provides numerous challenges for urban planners, civil engineers, 

environmentalists, sociologists, economists, and even remote sensing scientists (Mesev 

2003). 

Rapid urbanization, as the result of population growth and migration from rural to 

urban areas, has been recognized as a critical process in metropolitan areas. It changes 

both the structure and function of our cities (Frank 1999). Rapid urbanization also affects 

the climatology of cities and their surrounding areas (Orville et al. 2000). These changes 

have a direct, immediate, and significant impact on human settlements (Douglas 1994), 

ecological diversity (Grove and Burch 1997), energy flows (Breuste et al. 1998), and 

climatic conditions (Orville et al. 2000) from local to regional scales. The need to 

understand urban evolution and preserve the natural resources has culminated in 
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analyzing the urban process over a medium or long term (Ward et al. 2000). To analyze 

the structure, function, and dynamics of urban systems, we need to link the landscape 

pattern with its processes (Geoghegan et al. 1998). Current studies were seldom able to 

ascertain how urban landscape patterns affected natural ecosystem processes. However, 

the increasing awareness of the importance of sustainability in natural resources is 

stimulating the improvement of current methods to better understand and quantify the 

causes and consequences of urban landscape evolution (Turner 1987).  

To understand and predict urban change processes, we need to monitor and 

characterize their spatial landscape patterns by observing them at different states in time. 

Essentially, it involves the ability to quantify the pattern change using multi-temporal 

data sets (Singh 1989) and incorporate this information into appropriate landscape 

models. In the early days, aerial or field surveys were commonly used to produce land 

use maps to serve the planners’ needs (Zhang et al. 2002). These aerial or field methods 

are easy-to-use in describing land use / land cover processes through a detailed and 

spatially-disaggregated way (Petit et al. 2001; Tang et al. 2005). However, these manual 

interpretations are labor intensive, and unable to detect the spatial patterns at the 

landscape scale and grasp changes that occurred over a long period of time (Nelson 

1983). 

Remote sensing data, in conjunction with geographic information systems (GIS), 

has been recognized as an effective tool in quantitatively measuring landscape patterns 

and their changes over a large area in a timely and cost-effective manner (Nelson 1983; 

Singh 1989; Metzger and Muller 1996; Frohn 1998; Quattrochi and Luvall 1999; Roy 

and Tomar 2001; Petit et al. 2001). Images from satellite sensors provide a large amount 
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of cost-effective, multi-spectral and multi-temporal data to monitor landscape processes 

and estimate biophysical characteristics of land surfaces (Weng 2002). GIS technology 

provides a flexible tool with which to store, analyze, and model the digital data for the 

detection of change and the development of model. Significant progress in acquiring 

remotely sensed data in a higher spatial resolution and developing the spatial geographic 

process model using GIS technique has widened our research on the process, driving-

forces, and impacts of urbanization. 

Although remote sensing has been widely applied in providing the knowledge of 

where, how much, and what kind of landscape change has occurred, considerable 

uncertainty continues to exist in the quality and scope of spatial data for landscape 

models. There is still a large research gap between the sophisticated remote sensing, GIS 

techniques, and landscape process modeling. In particular, we need more standardized 

methods for incorporating high quality remote sensing data into the urban process model, 

not only for the further analyses of urban pattern and dynamics, but also for finding a 

better way to determine the parameters in the model’s development, calibration, and 

validation. Thus, there is an urgent need for us to determine the potential of spatial data 

and find an innovative method to incorporate this potential into a real landscape dynamic 

model. 

 

Study Objectives and Research Design 

This dissertation is the first systematic study of urban landscape dynamics in two 

petroleum-oriented cities, Houston, Texas in the United States, and Daqing, Heilongjiang 

in China. Although these two cities have a similar domain industry and economic history, 
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they developed under different socio-political contexts. Building on my pre-dissertation 

research, I will investigate the landscape structure, urban growth, and environmental 

change along with the fast-growing petroleum industry.  

The general objective in this dissertation is to combine remote sensing, GIS, and 

landscape ecology models to compare the landscape pattern in these cities and predict 

their future patterns. The lack of high quality data on a large scale has limited the 

application of landscape process models for urban forecast. Moreover, the accuracy of 

such models depends both on the data source and on the defined relevant parameters. 

Specifically, after comparing Houston and Daqing, I will develop a new sub-pixel 

classification to analyze the internal structure in Houston and apply the sub-pixel results 

into a fuzzy logic Cellular Automaton (CA) model. In order to verify this new model, I 

will also develop a traditional CA model based on the hard classification and compare the 

hard model results with the soft model results.  

The general framework in this research is threefold (Figure 1). First, I will 

conduct a multi-temporal landscape classification with satellite imageries in Daqing and 

Houston. With that information, I will perform an in-depth quantitative urban analysis 

based on the landscape ecology method to link the physical pattern change with the urban 

growth drivers. The sub-pixel classification will be developed specifically for Houston 

since it has a more heterogeneous pattern than Daqing. Lastly, I will predict the future 

landscape pattern in these two cities. Based on the fuzzy logic laws, I also develope and 

calibrate the spatiotemporal model through the fuzzy data source from remote sensing. 

Theoretically, the urban pattern / process analysis will provide complementary 
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information regarding the ecological function of urban landscape and consummate the 

analysis on the spatial-temporal modeling. 

 

 

 

 

 

Fig. 1. General framework of this research 
 

Specifically, my research will focus on three critical questions:  

o What are the current landscape patterns of Houston and Daqing? In what 

particular ways did the landscapes in these cities change during the urbanization? 

What factors have caused them difference from each other given their similar 

nature of petroleum-based cities?  

o What are the future patterns of these two cities? What are the major human 

drivers shaping these two cities, and could they be incorporated into the urban 

dynamics models? 

o How can I incorporate a finer sub-pixel classification in the cell-based model, and 

will this incorporation really improve the accuracy in the landscape model?   

My hypothesis is that both cities are experiencing environmental deterioration 

during the urban sprawl, and the development of petroleum industry is still the dominant 

factor in steering urban landscape dynamics. We will test the following hypotheses: 

o Theoretically, urban patterns in these two cities have experienced significant 

changes over the last two decades. Specifically, natural landscapes were 

Urban Pattern/ 
Process Analysis 

Sub-pixel 
Classification 

Spatial-temporal Modeling 
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substituted gradually by human landscapes due to the urban sprawl. As a refinery 

center, Houston does not have the oil field in its urban area. Thess different 

economic modes in these two cities lead to different change types and manners 

during their urbanization. 

o Technically, the sub-pixel classification will improve not only the pattern analysis 

in urban areas, but also the capability of urban landscape models. Through 

incorporating sub-pixel information into the cell-based model, we can derive a 

more sophisticated urban landscape process model. 

The general framework of this dissertation follows the structure of Figure 1. 

Chapter II focuses on the review and discussion of theoretical background, and Chapter 

III introduces the study sites and data preprocessing. Chapters IV, V, and VI represent the 

cores of this dissertation. They correspond to the three sections in Figure 1, reflecting 

three individual research tasks accomplished within this research. Chapter VII includes 

the summary and potential research. 

 

Contribution and Significance of This Research 

We will investigate spatial and temporal patterns of urban landscape change 

through synthesizing remotely sensed data with both landscape ecology methods and 

urban dynamic models. The direct beneficiaries of this research will include two distinct 

groups: (1) resource managers at the local, regional and state levels of government, and 

(2) urban planners who want better urban planning in broader social and economic 

settings.  

The primary significance of this research falls into three aspects: 
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o This research is the first systematic comparison of landscape dynamics in two 

petroleum-based cities. My research will provide a better understanding of the 

relationship between urban morphology and human behavior and a better 

conceptual and scientific framework to quantify the interaction between human 

and social environments on a regional scale.  

o This research also provides an advanced soft classification for urban areas. The 

primary significance of this research lies in identifying the heterogeneous urban 

landscapes under the pixel level. It offers additional scientific evidence to the 

ongoing remotely sensed analysis on the urban growth and environmental quality 

monitor.  

o More significantly, it provides a geographically referenced model using the sub-

pixel information which is derived from the soft classification. My research 

attempts to standardize methods in incorporating sub-pixel information into a cell-

based landscape process model and to find a better way to determine the 

parameters in the model’s development, calibration, and validation. This will 

provide a bridge study between the advanced remote sensing techniques and 

landscape process model. 
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CHAPTER II 

THEORETICAL CONSIDERATIONS AND LITERATURE REVIEW 

In general, urban area can be described as a physical concentration of people and 

buildings in a wide variety of social, economic, political and cultural contexts (Herbert 

and Thomas 1982). Not surprisingly, many current pressing social, political, and 

economic problems are associated with cities and their growth. Traditionally, 

geographers have been concerned with long-term issues on spatial topics such as the 

spatial layout of transport facilities, the location of industry or service activities, and the 

interactions of environment and society (Herbert and Johnston 1979). That is, the concern 

of urban geographers is the space organization within the urban context. 

 

Traditional Urban Geography and its Emphases 

The first urban study was developed in the late nineteenth and early twentieth 

centuries, the years social science first formed. This overlay provided the context for 

geographers’ emerging interest in cities (Berry and Frank 1970). Early urban studies were 

mostly descriptive and centered on physical appearances and subjective impressions of 

urban places. The most influential research was the early theory on city location, such as 

Cooley (1894) and Weber (1899), who touched on the importance of urban centers for 

urban development, especially for the route way and the transportation system. Hassert
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(1907) and Blanchard (1917) pioneered the study on the site and situation of towns and 

cities, emphasizing that the urban character was the response to local physical conditions. 

With more complex urban structures appearing in the early twentieth century, 

some cities, of course, displayed neither a rank-size nor a primary pattern. Urban 

researchers tried to find the reason for differences among cities, asking whether the 

classification of internal urban structure could be associated with the urban size. These 

questions have stimulated the research on the urban pattern and function (Johnston 1984). 

Haig (1926) noted that house payments and the accessibility of transportation could be 

involved in a bidding process determining the occupancy and the use of urban land. 

Crowe (1938) used town studies as an example of objects’ classification upon the urban 

landscape, rather than upon people and movement.    

Stepping into the early 1960s, interests in urban geography shifted significantly 

toward the social aspect of cities (Herbert and Thomas 1982). Associated with the 

increasing influence of spatial analysis, this shift gave quantification and model-building 

a new and vigorous platform. The typical research at that time included the classification 

of settlements (Smith 1965), examination of urban population sizes (Berry and Garrison 

1958), and analysis of population densities within cities (Berry, Simmons, and Tennant 

1963). These studies focused on the internal urban structure or the gradient land value 

and land use types (Yeates 1965). 

A further development within urban geography was the interest in spatial 

imageries and cognitive mapping. The key reference of the early image study is 

Boulding’s (1956) work on images of urban life and society which has become central to 

many later geographical works. Given the external socialization condition and the 
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internal value, Boulding (1956) defined the image as a picture that carries reference 

points for actors’ behavior.  For many urban geographers, images formed the link 

between the phenomena and the behavioral environment (Herbert and Thomas 1982). 

However, technical procedures were still limited in representing detailed urban 

distributions though images and maps have served largely to qualify spatial entities such 

as urban structure and its neighborhoods.   

To date, many works by urban geographers relate to the sophisticated description 

of patterns, processes, and responses of cities. The study of urban patterns remains a 

traditional concern in urban geography, while the process and response further investigate 

what and how patterns will appear in the future (Herbert and Thomas 1982). Spatial 

analysis, quantitative measurement, and modeling, with the essential geographers’ 

descriptive methods, gradually broadened their research fields. Some important efforts in 

understanding and representing urban spatial structures and dynamics have been triggered 

by the fields of urban modeling and remote sensing. This research agenda will be 

discussed in following sections. 

 

Urban Pattern, Process, and Response 

Classic Theories and Models 

Geographic research in interpreting and analyzing internal differentiations of 

cities within the last century has resulted in developing a variety of classic urban theories. 

According to the economic base of urbanization, we can divide early urban development 

theory into three aspects: trade, location, and staple (Berry and Frank 1970).   
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Early movements of goods among nations and regions made cities grow in 

different ways. Urban geographers found that the difference in urban structure was 

caused by special products. Ohlin (1933) assumed that qualities and functions of the 

production in one region are identical, attributing relative advantages of productivity to 

different “factor endowments” in the urban development. Heckscher (1949), on the other 

hand, tried to find regional differences in the function of productions based on this 

theory. The above two studies provided a satisfactory basis to explain the difference 

among regions, however, they failed to account for effects of urban changes. Other 

theories must be sought out to provide more general frameworks for the urban growth.  

The location theory was developed out of a need to explain and predict locations 

of urban entities by rationalizing the “survival of the fittest” theory. The most popular 

work is the central place theory, proposed by German economists / geographers Walter 

Christaller and August Lösch. Christaller (1933) first developed this theory based on the 

size and distribution of settlements in the southern area of Germany with an assumption 

that both entrepreneurs and consumers made rational decisions in minimizing transport 

costs. Thus, urban structure is characterized by the business type, the maximum distance 

from a customer to the grocery store, and the threshold volume to operate the business. 

The ideal urban pattern predicted in this theory is a hierarchical spatial system of nesting 

hinterlands on a hexagonal frame. Lösch (1954) studied a more complex example with a 

consideration on the assumptions about the business type. 

The staple (export) theory was developed for problems existing in settlements of 

undeveloped regions. In this theory, size and function of a city were affected by a given 

industry and the land use characteristic of this industry. Other land use types, such as 
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retail shops and service centers, were secondary since they existed only to serve workers 

employed in staple industries (Fox and Kumar 1966). Thompson (1965) argued that the 

growth rate in a large city is self-sustained and the urban hierarchical structure will be 

filtered down from the center to the periphery by exploiting new industry staples. Thus, 

according to the staple theory, cities are developed continually from new staple industries 

accompanying the “filtering down” and “diffusing outward” of older staple industries. 

One characteristic of modern cities is their high level of internal differentiations. 

A number of models have been developed by urban geographers to understand urban 

spatial structures. Thünen (1826) first developed a basic analytical model between 

markets, productions, and distances to analyze agricultural land use patterns in Germany. 

The earliest urban spatial model, concentric-zonal model, was proposed by Burgess from 

an ecologist’s view.  Founded on economic bases of land values and bid-rents, Burgess 

(1925) suggested a five-zone arrangement of land use as concentric circles in Chicago 

(Figure 2A). These zones began with the city center, namely Central Business District 

(CBD), as zone 1. This zone was surrounded by concentric rings of commercial and 

residential land uses, which were also known as transition or gray zones (zone 2) between 

the commercial core and residential communities. Following the transitional zone is the 

zone of working-men’s homes (zone 3) consisting of older residential buildings for low-

income working-class families, and then the residential zone (zone 4) occupying newer 

and more spacious dwellings for middle-class families. Finally, the commuter’s zone 

(zone 5) lies beyond the continuous built-up areas of the city. Although this model is 

crude and unrefined, it provided an empirical framework to test the urban spatial structure 

and a detailed example to study land use areas within a city.   
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Fig. 2. Three classic spatial city models: A. concentric-zonal model (Burgess 1925); B. 
sector model (Hoyt 1939); and C. multiple nuclei model (Harris and Ullman 1945)  

 

 
The sector model of urban land use was formulated by a land economist Hoyt in 

1939 (Figure 2B). Through the rental and other data in block level for 142 American 

cities, Hoyt (1939) argued that residential areas were not aligned concentrically along the 

city center, but rather were distributed in a sector fashion along major roadways from the 

CBD. This model is normally regarded as the second classic model of urban spatial 

growth since it considered specific characteristics, location, and dynamics of different 

urban land use categories. Hoyt’s view of cities is partial, constrained by his narrow 

observation on housing characteristics, particularly in rent, with little consideration for 

the occupants.  

The third classic model, termed as multiple nuclei model, was developed by two 

geographers, Harris and Ullman (1945). Its main distinctive quality was its abandonment 
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of CBD as a sole focal point, replacing it by a number of discrete nuclei around which 

individual land uses were geared (Herbert and Thomas 1982). This model has no 

generalized spatial form since the location of nuclei may depend on the unique location 

and function.  

In general, merits of these classic spatial models are their basic structure concepts, 

especially the zone and sector. These concepts continue to have useful roles in organizing 

city structure and testing some general theories in urban geography. Whatever the detail-

functional characteristic of a city, its internal spatial structure will be organized around 

the concentration of employment opportunities, service facilities, and their associated 

land uses (Herbert and Thomas 1982). Moreover, it is not necessarily contradictory to use 

these spatial models in one city to measure different areas or aspects. This 

complementary idea is more practical in real cities.  

The urban growth during the 1950s - 1970s generated a significant research 

contribution and raised compelling questions regarding more detailed urban 

infrastructures. Given the complex structure and function of a city in the real world, early 

classic models became unrealistic for representing and predicting urban patterns and 

dynamics. This prompted the need for a more spatially explicit model with more detailed 

spatial data. 

 

Sensing Urban Landscapes Remotely 

 Remote sensing is the science and art of obtaining information from an object, 

area, or phenomena through the analysis of data acquired by a device that is not in 

contact with the object, area, or phenomena (Lillesand, Kiefer, and Chipman 2004). 
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Given the diverse assemblage of materials in urban landscapes and recent developments 

in sensors and computing technology, the application of remote sensing as a tool for 

mapping and monitoring urban areas increased greatly. However, the operational 

potential of urban remote sensing will depend on the capacity of remote sensing to 

capture objects in urban areas and how to interpret urban areas by remote sensing, 

namely, data demands for mapping urban areas and attempts to enhance urban 

classifications. 

 

Data Demands for Mapping Urban Areas 

From the historical remote sensing perspective, the first use of remote sensing in 

urban areas dates back to 1858, when Gaspard Felix Tournachon (also known as 

“Nadar”) used a camera carried aloft by a balloon to study the city of Paris (Forster 

1983). His “bird-eye” photograph of the village of Petit Bicetre is the world’s first aerial 

photograph, in which houses can be clearly seen from approximately 260 feet. 

 Since then, especially after the Second World War, the increasing awareness of 

image potential for identifying and classifying urban spaces brought about a dramatic 

development of remote sensing in urban areas. Until the early seventies, aerial 

photography, in both black-and-white and multi-spectral bands, was still the mainstream 

in urban remote sensing. Green (1957) applied the interpreted data from the black-and-

white aerial photography to extract socio-economic parameters for cities. Wellar (1968) 

used nine spectral bands of a large scale aerial photography to evaluate the quality of 

houses and neighborhood environment. More recently, Collins and El-Beik (1971) further 

extended the use of aerial photographs to real world problems through acquiring the 
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information in urban land use of Leeds, Great Britain. Indeed, this form of remote 

sensing is still extensively used today. Notwithstanding, the aerial photograph is easy-to-

use in describing the land cover / land use information of urban areas, they are high in 

cost and not available in digital formats (Yagoub 2004). Moreover, such images are labor 

intensive and unable to discover spatial patterns at the landscape scale and grasp changes 

that occurred over a long time frame. 

 The 70s and early 80s saw a gradual shift of urban remote sensing from aerial 

photograph to digital, multispectral images, particularly those acquired by earth-orbiting 

satellite sensors (Donnay, Barnsley, and Longley 2001) because of their widespread 

availabilities and high frequency in updating with low costs. The land use study on the 

boundary region of Texas and New Mexico is a typical urban analysis performed by 

MacPhail and Campbell (1970) using spacecraft photographies from Gemini 4, Apollo 6, 

and Apollo 9. This trend of applying satellite remote sensing data, especially in the urban 

land use/land cover classification, was reinforced with the first generation of satellite 

sensors, notably the Landsat Multispectral Scanning System (MSS). This gave further 

impetus by a number of second generation devices, such as Landsat Thematic Mapper 

(TM) and SPOT High Resolution Visible (HRV). The earliest research using Landsat 

data in urban areas was reported by Erb (1974) to detect land use classes through both 

unsupervised and supervised clustering techniques. Using satellite data, Cater et al. 

(1977) classified the urban land use into a more detailed system: large building, strip 

cluster development, single-family residential area, and multiple-family trailer court. 

The development of non-photographic remote sensing systems, such as thermal 

infrared and their application to urban area has generally paralleled to that of advanced 
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photographic techniques in spatial resolution. The most commonly used thermal remote 

sensing data in urban area includes infrared bands on Landsat TM 4, 5 and 7, Advanced 

Very High Resolution Radiometer (AVHRR) on the National Oceanic and Atmospheric 

Administration (NOAA), Thermal Infrared (TIR) subsystems under the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spaceborne sensor.  

Instead of detecting the urban structure, thermal infrared bands are mostly applied to 

detect the thermal attribution on the presence of a urban heat island (Quattrochi and Ridd 

1994; Chrysoulakis and Cartalis 2002).   

Hyperspectral remote sensing is another important data source for urban 

observation, providing a large amount of contiguous spectral detail. Hepner et al. (1998) 

used the Airborne Visible Near Infrared Imaging Spectrometer (AVIRIS) to compare the 

spectra of different urban land cover types. Herold et al. (2004) developed a spectral 

library to identify urban land cover using AVIRIS on Santa Barbara and Goleta. Another 

popular hyperspectral sensor carried on satellite is MODerate resolution Imaging 

Spectroradiometer (MODIS) with enhanced spectral mapping capabilities. It has shown 

an improved capability in assessing the net primary productivity in urban areas at a 

continental scale (Tang and Zhang 2002). Usually, MODIS can be used in conjunction 

with the ASTER sensor to monitor the earth at moderate or coarse spatial resolution since 

both of them are equipped on the Terra satellite. 

Generally, all former satellite data were initially used to analyze regional urban 

systems or big cities on a large scale. Experience has shown that the satellite data is not 

accurate for the urban classification due to the complex mixture and erratic spatial 

arrangement in urban areas. It makes the individual pixel into a mixture of several 
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materials. As early as 1982, Welch (1982) pointed out that high spatial resolution image, 

at least 5-meter or higher, was required to improve urban classification. With the advent 

of the third generations of satellite sensors, it is likely to stimulate the urban development 

in a detailed way (Aplin, Atkinson, and Curran1997; Ganas, Lagios and Tzannetos 2002; 

Puissant, Hirsch, and Weber 2005). These satellite images include IKONOS images with 

a 1-meter spatial resolution panchromatic band and 4-meter spatial resolution 

multispectral bands, and QuickBird images with a 0.6-meter panchromatic band and 2.4-

meter multispectral bands. Moreover, the Light Detection and Ranging (LIDAR) sensor 

provided a new source of data that captured three dimensions of urban surfaces (Zhou et 

al. 2004). Many studies have demonstrated LIDAR’s potential in different kinds of urban 

studies, especially in extracting buildings, roads and other surface features (Priestnall, 

Jaafar and Duncan 2000; Gamba and Houshmand 2002). These studies are considered to 

be the beginning of a new era of urban remote sensing in civilian spaces (Tanaka and 

Sugimura 2001). 

The use of high or very high spatial resolution images, however, brought some 

unexpected problems. Cushnie (1987) found that increasing the spatial resolution will not 

increase the classification accuracy in some cases. This might be caused by the increase 

of spectral variability in both inter-class and intra-class due to the reduction of mixed 

pixels. Moreover, if the spatial resolution is too fine, remote sensing image captures 

much more spatial variation than the requirement for a specific application. This will 

result in the “information overload” and “salt and pepper” in the image classification 

result. Thus, enhancing the urban classification becomes necessary after appropriate 

remote sensing images have been acquired.  
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Attempts to Improve the Urban Classification 

 Traditional urban feature identification and classification are performed through 

visual interpretation and analysis of aerial photographs based on the tone, color, texture, 

contexture, and spatial configuration of urban land cover features on the images (Forster 

1983). This early manual interpretation is labor intensive and relies on the interpreters’ 

knowledge of both images and specific urban locations.  

 The increasing availability of digital remote sensing data stimulates researchers to 

improve the results of automatic and semi-automatic urban classification. One challenge 

in these automatic classifications is bridging the knowledge of human visual 

interpretation with digital image processing techniques. A key issue is to fully explore 

and evaluate the textural, spatial, and contextural information provided by digital remote 

sensing images.     

Texture is a fundamental characteristic of images and is often crucial in targeting 

discrimination (Woodcock and Strahler 1987). The essential feature of texture methods is 

the inhomogeneity of urban landscapes that produces distinct textural characteristics 

between different classes (Shaban and Dikshit 2001). Galloway (1975) calculated various 

gray levels among rows of the satellite images to obtain the textural information. Haralick 

(1979) presented the first co-occurrence matrix as a second-order statistical index to 

describe textures of different materials in urban areas. Marceau et al. (1990) applied the 

gray-level co-occurrence matrix method for land cover classification using SPOT 

imagery. More recently, Myint (2003) applied a higher order statistical index of image 

texture in order to classify the urban area using fractal geometry.   
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Contexture methods will consider additional information from spatial neighbors 

around the classified pixel (Cortijo and Blanca 1998). There are three general approaches 

used to incorporate spectral properties of surrounding pixels in the image classification, 

including pre-classification spatial feature extraction (Gong and Howarth 1990; Xu et al. 

2003), post-classification processing (Gurney 1981), and direct contextural classification 

(Harris 1985; Cortijo and Blanca 1998). Given the combination of spectral and contextual 

information, the contextual classifier offers the potential to increase the richness of 

information in the spatial data set.  

Other ancillary GIS data are found as valuable referenced information in the 

urban remote sensing classification. Zhang et al. (2002) combined road density with 

spectral information from the multi-temporal Landsat TM data to detect the built-up land 

change in Beijing, China. Zha, Gao and Ni (2003) used the normalized difference built-

up index in mapping urban areas from the TM imagery. Generally speaking, methods of 

combing the ancillary GIS data with the original spectral data in the image are 

particularly numerous. Besides the most commonly used unsupervised methods and 

supervised methods, other classifiers include the neural classification (Seto and Liu 

2003), kernel classification (Kontoes et al. 2000), expert system classifier (Stefanov et al. 

2001), and hybrid approach (Lo and Choi 2004). Theoretically, the major limitation of 

such a per-pixel classifier for urban landscape is that it assumed each pixel to be pure 

(Gong and Howarth 1989; Foody and Arora 1996), which is inherently unable to 

represent varying combinations of land covers below the pixel resolution (Small 2004). 

An alternative to this conventional “hard” classification is required to map 

multiple class memberships at the pixel level (Foody and Cox 1994; Foody 1996; Foody 
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1997). Wang (1990) incorporated the “fuzzy mean” and “fuzzy variance” to do a 

discriminant analysis in the traditional MLC. Foody (1992) proposed the initial “fuzzy” 

c-means algorithm in the unsupervised classification. Spectral mixture analysis (SMA) is 

another widely-used method to decompose mixed pixels in urban areas. More detailed 

information about fuzzy classification and SMA will be introduced in Chapter V.  

 This mixed-pixel problem is ameliorated when the very high spatial resolution 

images (< 5m) are used to map urban areas. In these digital images, the man-made 

structures, in contrast to natural environments, have been identified as one or few objects 

with distinct and straight boundaries (Couclelis 1992). This characteristic brought the 

object-based perspective to urban analysis. Recent development of object-oriented 

classification has taken advantage of detailed spatial information from the very high 

spatial resolution data. This classification usually segments images based on the 

aggregate information from both spectral and shape characteristics of adjacent image 

objects. In this method, images are segmented into homogenous objects to reduce the 

spectral variety within segments. Further image classification is based on the spectral 

characteristic of these homogenous objects, i.e. the mean spectral reflectance.  

Additionally, other information, such as the spatial relationship, contextual 

information, and elevation threshold, can be incorporated into the object-based 

classification. Johnson (1994) first provided a segment-based land use classification for 

the SPOT satellite data based on the object characteristics of contextual images. Barnsley 

and Barr (1997) further developed the object-based idea in image analysis and presented 

a complex graph-based system to recognize the detailed urban land use pattern. 

Ecognition, one of the most popular commercial object-based softwares, classifies the 
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image based on the attributes of segmented image objects rather than on the attributes of 

individual pixels. 

 In conclusion, urban remote sensing is concerned with obtaining and interpreting 

physical properties of urban surfaces. The traditional remote sensing emphasizes 

technical aspects of data assembly and physical image classification with less attention to 

the cross-discipline study and application-oriented research. In terms of urban spatial 

analyses, Longley, Barnsley, and Donnay (2001), for example, described the inherent 

vagueness and ambiguity in urban structures associated with apparently discrete urban 

functions. There is still a lot of resistance, especially among social scientists, against 

using remote sensing in urban studies. Given this situation, the statistic or quantitative 

analysis on urban landscape maps in certain social circumstances will be our next 

research objective.  

 

Spatiotemporal Urban Analysis 

 The emerging agenda in urban remote sensing calls for a new orientation in the 

related research on urban areas. Recently, most urban studies have shifted from the 

simple interpretation of urban arrangements toward the quantitative measurement of 

urban spatial structures, mainly in urban characterization and urban modeling. 
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Urban Characterization 

Traditional urban analyzers interpret urban land use from historical, social or 

economic data based on the interpreters’ knowledge of city history and city environment 

(Herold, Goldstein, and Clarke 2003). Right now, most urban landscape studies have 

been directed toward the quantitative measurements on the spatial structure of urban 

environments through the urban landscape map classified from the remotely sensed data. 

Batty and Longley (1988) first employed the fractal method to describe urban land use 

structures. Mesev et al. (1995) demonstrated the capability of fractal indices in detecting 

urban land use density to describe structures and changes in urban morphology from 

remote sensing data. Barnsley and Barr (1997) tested a graph-based pattern recognition 

method to infer broad categories of urban land use from remote sensing data. Brivio and 

Zilioli (2001) applied the semi-variogram to explore urban spatial patterns in Landsat TM 

images of urban areas. All these studies indicated that the quantitative technique is 

necessary to better characterize the urban spatial pattern. 

Understanding the dynamics in spaito-temporal urban patterns is another primary 

objective in urban characterization. Many techniques have been developed to detect the 

urban dynamics during past few decades (Singh 1989; Zhang et al. 2002) based on 

different study purposes. Most detection methods can be grouped into the spectrum-based 

method and the post-classification method. The spectrum-based method assumes that the 

significant changes in image pixel values are caused by the changes on the ground instead 

of interference from atmospheric and other system variations (Singh 1989). This method 

compares the multi-temporal image using map algebra, such as image difference (Yeh 

and Li 1997) or image regression (Yuan and Elvidge 1998), and detects the change area 
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using a given threshold. Alternatively, the post-classification technique applies the 

traditional classification methods to the registered multi-temporal image datasets, and 

then labels the change and non-change areas (Zhang et al. 2002) after comparing these 

two images.  

Both the spectrum-based method and the post-classification method have their 

own advantages and disadvantages. First, the spectrum-based method is straightforward 

and widely used in natural landscape ‘change detection. However, it is impossible to 

capture the small change in a heterogeneous urban landscape which has various land 

use/cover types. Secondly, it only describes the change area without finding out the 

“from” and “to” information. Moreover, this method is time-consuming because it 

requires higher accuracy requirements on the registration, training, and cluster labeling of 

individual images. For the post-classification method, it is easy to identify and locate the 

change, but the detection error comes from not only the image registration but also the 

image classification.    

Although many quantitative methods have been applied in providing the 

knowledge of what, where, and how much landscape change has occurred, researchers 

still face a fundamental problem in providing an effective dynamic spatial model to 

describe the former urban landscape pattern and assess the future urban landscape 

pattern. Thus, there is an urgent need for us to explore the potential of new spatial data 

and provide innovative methods to improve current urban spatiotemporal models. 
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Urban Modeling 

Although several descriptive and analytical models of urban land use were 

developed before 1950, the real urban growth model began to arise in the 1960s and 

faded in the early 1970s, since the models fail to monitor the real cities. Currently, urban 

models are always built in mathematical terms with identified driving factors. These 

factors, such as human activity, one of the most active factors, determine spatial 

structures of cities. 

After 1990, especially in recent years, updated computers can support a larger 

spatial database for GIS analysis. Incorporating high quality data, more sophisticated 

models were developed with the capability of prediction. Batty and Longley (1989) 

introduced a diffusion limited aggregation (DLA) model to predict urban growth. In this 

growth model, a cluster developed from a seed site by the accretion of randomly walking 

particles across a simulation space. In the late 1990s, various spatial models were 

developed due to the availability of remote sensing data on a large scale, such as 

UrbanSim model (Waddell 2002), Markov chain model (Stewart 1994), LUCAS model 

(Berry et al. 1996), CLUE model (De Koning 1999), CA model (Batty and Xie 1994), 

and Agent-based model (Liebrand et al. 1998). The detailed review of these spatial 

explicit models can be found in Table 1.  

 

 

 

 

 



          
  

  

 
 

TABLE 1 DETAILED COMPARISON OF URBAN LANDSCAPE MODELS 
 Model Name Developer Purpose Variables Strengths Weakness 

UrbanSim Waddell 
2002 

Predict land use, physical 
development, the movement 
and location of businesses and 
households 

Socioeconomic, 
environmental parameters 

Simulate the interaction 
between urban activities 
and the natural 
environment 

Deterministic 
model 

What if Klosterman 
1999 

Determine what will happen in 
land use patterns in the future  
if policy choices are made 

Natural conditions, urban 
infrastructure,  

Fully operational model 
in adapting particular data 
sets and policy concerns 

Lack of a firm 
theoretical 
basis 

Area Base Lichtenberg, 
1985 

Project the proportions of land 
use using hedonic rent theory 
and acreage allocation model 

Based on Palmquist’s 
hedonic rent theory and 
acreage allocation model 
(Lichtenberg, 1985) 

Easy to incorporate 
available socioeconomic 
data, such as age, income, 
population, and rent 

Long-term 
prediction is 
not good 

Vector-
based 

Markov Bell, 1974 
Characterize the land use/land 
cover change 

Multi-temporal change, 
transition probabilities 

Mathematically compact, 
easy to implement 

Does not 
account for 
spatial context 

CA Batty and 
Xie 1994 

Model the spatial structure of 
urban land use over time 

Landscape maps, 
environmental factors in 
neighborhood 

The spatial factor and 
ecological aspects are 
easily to be incorporated 

Face challenge 
in 
incorporating 
human 
decision 
making 

LUCAS Berry et al. 
1996 

Simulate the landscape change 
with socioeconomic 
information and its 
environmental impacts 

Socioeconomic variables, 
such as transportation 
network, ownership, 
population density etc. 

Flexible and interactive 
computing environment 

The patch size 
is no sense due 
to the pixel-
based method 

LTM Pijanowski 
et al. 1997 

Analyze the land use change 
and predict land use pattern 

Landscape maps, social, 
political, and 
environmental factors 

Can be applied to multiple 
scales using a moving 
scalable window metric 

Suppose all the 
variables 
constant 

Grid-based 

CLUE DeKoning 
1999 

Predict future land use 
 

 

Biophysical drivers and 
human drivers 

Covers a wide variety of 
biophysical and human 
factors and ranges 
multiple spatio-temporal 
scales 

No social or 
political 
factors 

Grid/Vector Agent-based Liebrand et 
al., 1988 

Represent a wide variety of 
entities and its activities  

A simulated environment, 
entities under human 
decision making 

Flexibility, and successful 
in replicating human 
decision 

Difficult to 
develop and 
control 
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In terms of the methods to represent the model object, there are vector based 

models and grid based models (Herold 2004). Vector based models use the thematic map 

as the input data for the model and the spatial objects are usually defined as homogenous 

land units. UrbanSim is one of land use simulation models for the growth government, 

regional land use, and transportation planning in the states of Hawaii, Oregon and Utah 

(Waddell 2002). Within the context of urban infrastructure and governmental policy, 

UrbanSim represents zonal structure in the urban area to monitor the market behaviors of 

households, business, and land developers. Theoretically, UrbanSim is an object-oriented 

model.     

 What if model (Klosterman 1999) begins with uniform analysis zones or 

homogeneous land units generated from the GIS software. Through applying the 

governmental policies and land use demands, this model derives the aggregating value of 

the regional condition on the land units. What if model projects future land use patterns 

by balancing the supply, demand, and land sustainable at different locations. 

Area Base model is a vector based model used in resource assessments to predict 

the availability of farm and forest land. Transformed from the regional model (Palmquist, 

1989), Area Base model allocates the proportions of a given land use to predefined land 

use categories using Lichtenberg’s (1985) acreage allocation method. 

Another vector-based model is Markov model which predicts future landscape 

patterns based on the spatial transition probability. Although Markov model is a typical 

spatial transition model, early Markovian analysis is a descriptive tool to predict land use 

change on a local or regional scale (Bell 1974; Bourne 1976). Actually, the Markov 

model is not a strict vector-based model, it is based on the statistical results from the 



  28     

  

thematic map. Lopez et al. (2001) used Markov chain to simulate the relationships among 

a set of urban and social variables in predicting land use/cover change in the urban fringe 

of Morelia city, Mexico. Weng (2002) demonstrated that the integration of satellite 

remote sensing and GIS techniques into the stochastic urban modeling was an effective 

approach for analyzing the direction, rate, and spatial pattern of landscape change in 

Zhujiang Delta of China.  

Mathematically, most vector-based models rely on some static equations and this 

characteristic provides the potential in integrating the GIS information into the model 

entities. The major drawbacks of such models are the poor handling in dynamic entities 

and poor representation of external variables, e.g. the spatial information and socio-

economic factors. 

The models developed on grid have more advantage in solving these problems 

than the vector ones. Land-Use Change Analysis System (LUCAS) is a grid-based model 

which integrates socioeconomic and ecological variables in the multilayered, gridded 

maps (Berry et al. 1996). This model consists of three subject modules: socieconomics, 

which derives the transition probability from the function of socioeconomic driving 

variables; landscape change, which predicts the landscape maps from the socieconomical 

module; and environmental impacts, which estimates the impacts of selected 

environmental variables from the landscape maps from second modules. 

 Land Transformation Model (LTM) (Pijanowski et al. 1997) applied the spatial 

rules to land use transitions for each location in the processed spatial layer or grid. It is 

easy to quantify the contribution of different spatial variable because of its format. In 

order to aggregate the land use change and change drivers, this model adopted the similar 
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method with the Conversion of Land Use and its Effects (CLUE) model (DeKoning et al. 

1999). Both of them apply the variable values in grid format to create a series of future 

land uses over the time. 

Agent-based model (Liebrand, Nowark, and Hegselmann, 1988) is a complex 

behavior model which used both vector data and raster data. Usually, the raster data is the 

agents’ environment, and the agents, in turn, act on the simulated environment. This 

model can be applied to a wide variety of simulations, including moving cars, animals, 

people, or even organizations. 

In conclusion, a reliable urban growth model should have following capabilities: 

o Providing an appropriate theoretical and technical framework for urban growth 

o Understanding and describing the historical dynamics of urban structures 

o Anticipating and predicting future changes or trends of urban developments 

o Exploring and incorporating different economical, social, and political parameters 

to monitor the urban growth. 

 

Current Research Challenge: Combining the Remote Sensing with Urban Research 

Based on the literature review in urban research, the following assumptions can 

be made for current research in urban remote sensing and urban modeling:  

o Over the past half century, rapid urbanization has exhibited an extreme impact on 

the environment and climate change in both developing and developed countries 

on local, regional and global scales. Research in geography, especially in urban 

geography, has performed the shift from traditional descriptions to quantitative 

measurements.  
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o Remote sensing, in conjunction with geographic information systems (GIS), has 

been recognized as an effective tool in detecting urban landscape patterns and its 

processes. More satellite images with high spatial and spectral resolutions are 

becoming more available in urban studies.  

o An important agenda in the availability of remote sensing data asks for a new 

orientation in related image analysis methods and pattern recognition techniques. 

Given different image sources, appropriate classification methods and enough 

ancillary information are important in producing detailed spatial data for urban 

research. 

o More sophisticated urban dynamics models are needed to support the exploration 

of urban landscape changes under a variety of natural and social scenarios. 

The nature and pace of development in urban remote sensing was, and remains, 

very impressive, but detailed interpretation of urban areas needs more exploration besides 

the conventional urban classification of spectral reflectance. Most research on remote 

sensing focused on technical issues of data assembly and physical classification, in which 

the socio-economic factors were always ignored. Moreover, what and how advanced 

remote sensing techniques make progress in measuring urban morphology and predicting 

future urban patterns are still interesting topics. If this can be accomplished, remote 

sensing will certainly play an important role in urban research, not only for interpreting 

urban forms, but also for understanding their functions.  
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CHAPTER III 

STUDY AREA AND DATA PREPARING 

Study Area 

 This research was conducted in two petroleum-oriented cities: Houston, Texas in 

the United States and Daqing, Heilongjiang in China. In order to make Houston and 

Daqing comparable, two smaller areas were subset from the original images, covering 

around 1,200 km2 of the major metropolitan areas in both Houston and Daqing. 

 

Houston, Texas in the United States 

Houston, seat of Harris County, Texas, lies largely in the northern portion of the 

Gulf coastal plain, a 40- to 50-mile-wide swath along the Texas Gulf Coast, 50 miles 

from the Gulf of Mexico (Moser 1998). Centered at 95°22' W longitude and 29°46' N 

latitude, the city has a total area of 1,558 km2 and a total population of 2.02 million in 

2006, according to the United States Census Bureau. The city of Houston has undergone 

significant growth in the last decade and is the fourth largest city in the United States. 
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(1) Physical Environment of Houston 

The geology of Houston developed from the erosion of the Rocky Mountains, 

whose stream deposit consists of a series of sands and clays from decayed organic 

material. Over time, this material was transformed into oil and natural gas (Moser 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Study area of Houston, Texas in the United States 
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Fig. 4. The major six landscape classes in Houston 
 

1998). During the last century, subsidence in Houston has caused significant impact on 

flood control, utility distribution, and water supply as a result of the withdrawal of oil or 

gas and other minerals. 

The climate of Houston is classified as humid subtropical. Houston has a 

temperate climate all year round due to the proximity to the Gulf of Mexico, though the 

humidity in summer makes the city feel hotter than the actual temperature. Mean annual 

precipitation in Houston is 43 inches and the mean temperature ranges from 45°F in 

winter to 93°F in summer, varying seasonally between a hot, humid summer and a cool, 

dry winter (Texas State Historical Association 2002). Located on the upper Gulf coastal 

plain (Figure 3), Houston has a rather low elevation, with the highest elevation in the area 

at 27 meters and elevation rises approximately 0.2 meters per meter inland (Houston city 

and meeting planners guide 2004). The metropolitan area is located in the Gulf costal 

plains biome, and its main vegetation is classified as temperate grassland. Under this 

particular natural environment, a variety of landscape types were generated in this region: 
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the northern and eastern portions of the study area are largely forested and the southern 

and western portions are predominantly prairie grassland, while coastal areas are prairie 

and sand. Totally, the Houston region contains over 110 tree species, with the dominant 

native species being oaks and pines. The major distinct ecosystems in the Houston area 

include saltwater marsh, prairie, swamps, and upland pine / hardwood. However, in the 

city itself, there is relatively little canopy coverage, especially in downtown areas. Figure 

4 shows the major landscape types in Houston. 

 

(2) Economic-social Status of Houston 

Although nowadays more frequently referred to as the Space City, Houston was 

founded in 1836 as the Bayou City on the banks of Buffalo Bayou. Historically, Houston 

was first developed as a cotton and lumber market in the early nineteenth century. The 

discovery of oil at the Spindletop oilfield in 1901, and later at Humble and Goose Creek 

in 1905 and 1906, respectively, dramatically changed the Houston economy in the 

twentieth century. These discoveries made it the largest city in Texas as of 1930 and the 

fourth largest city in United States since 1990 (Texas State Historical Association 2002). 

Until recently, the economy of Houston was still focused on the exploration and 

production of oil and natural gas, even though oil production continues to slide after the 

early 1980s. Although the government tried to diversify its economy (Key to the city 

2001), the city’s unchallenged role as an international center of oil technology, 

headquarters for a number of the world’s largest energy companies, and a strong refining 

and petrochemical manufacturing base should shore up the local economy of Houston in 

the near future. 
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Different from other large cities in the United States, Houston did not adopt city 

zoning laws in its urban planning. Lacking city zoning has led to an abundance of urban 

sprawl in Houston, resulting in a relatively large metropolitan area and low population 

density. Land developers inspired the spread of Houston when they built suburbs such as 

Pasadena (1892), Houston Heights (1892), Deer Park (1892), Bellaire (1911), West 

University Place (1919), and River Oaks (1922-24). Basically, the heavy industries 

concentrated in the area of the ship channel and subdivisions controlled construction 

along the banks of Buffalo Bayou. 

 

 

 

 

 

 

Fig. 5. The growth of population in Houston from 1900 to 2000 
 

  With the rapid economic development in the last century, the population in 

Houston has undergone a dramatic growth since the last century, from 45,000 in 1900 to 

1.95 million in 2003 (Figure 4). As one of the most developed cities, Houston’s 

population increased in one of the fastest growth rates in the United States.   

 

Daqing, Heilongjiang Province in China 

Daqing lies in the middle of Songlen Plain of Heilongjiang Province in the 

northeast of China, located about 159 kilometers from the city of Haerbing and 139 



  36     

  

kilometers from the city of Qiqihaer. Centered at 124°15' E longitude and 46°20' N 

latitude, the study area covers four major urban areas, Shaertu district, Ranghulu district, 

Longfeng district, and Honggang district (Figure 6). Daqing, the energy capital of China, 

maintains a variety of landscape types due to its unique geology and climate 

environment. The typical land use types include agriculture, urban or build-up, grass, 

saline or barren land, water, wetland, and woodland (Figure 7).    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Study area of Daqing, Heilongjiang Province, China 
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Fig. 7. The major seven landscape classes in Daqing 
 

(1) Physical Environment of Daqing 

The study area shows typical characteristics of the large-scale Mesozoic and 

Cenozoic land sediment basin. After long geotectonic movements, Daqing ends up with a 

unique geological structure for the storage of oil. Since the elevation ranges from 126-

165 meters, the study area is a relatively flat plain and the elevation difference ranges 

from 10-39 meters.  

Located in the edge of the North Temperate Zone, the Daqing area is affected by 

both cold monsoons from Mongolia and warm monsoons from the near North Pacific 

Ocean. Mean annual precipitation is 17 inches and the rainy seasons are summer and 

autumn, varying seasonally between a hot, wet summer and a cool, dry winter. The 

average temperature in Daqing is 36 – 40° F, with –3 – 7°F during January and 73 – 74° 

F during July (Statistic Bureau of Daqing 2001).  

Daqing also has plenty of surface water, such as natural lakes and man-made 

reservoirs. The major soil in the Daqing region is chernozem, covering almost 33% of the 
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whole Daqing area. Herbage is the major vegetation in Daqing, mainly as meadow, 

halophyte, and swamp. With the great development of Daqing in recent years, a large 

area of wildwood has been cultured into farmlands or woodlands around the farmland.  

 

(2) Economic-social Status of Daqing 

Daqing, once a rural area, has become the largest oil production base in China 

since the oil was found in 1959. Although Daqing is now diversifying its energy-oriented 

economy, petroleum and petrochemical industries are still the main backbones of its 

economy. In 2000, 99.9% of petroleum and 100% of gas in Heilongjiang province were 

produced in Daqing, which are 53.0 million ton and 2.3 billion m3 respectively. The 

continual construction of the oil field has spoiled the original landscape pattern over the 

last 50 years. The reduction of swamp, grassland, and forest has resulted in the 

deterioration and desertification of Daqing, potentially affecting its future landscape 

pattern, regional environment, and climate.  

With the fast economic development, the population of Daqing has grown greatly 

during the last 50 years, increasing from 150,000 in 1960 to 1.2 million in 2000 (Figure 

8a, Statistic Bureau of Daqing 2001). The major population is distributed in the Ranghulu 

district (39.53%), which is the old industry center in Daqing (Figure 8b). 
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Fig. 8. a: The growth of population in Daqing from 1960 to 2000; b: the distribution 
between the major city district: Ranghulu district, Shaertu district, Longfeng district, and 
Honggang district 
 

 

Data and Preprocessing 

Multi-temporal Landsat MSS/TM/ETM 

 In order to study the urban dynamics in Houston and Daqing, two sets of Landsat 

MSS/TM/ETM satellite images were chosen. Table 1 describes the characteristics of 

these images. All images were geometric rectified into the UTM map projection, WGS 

84, Zone 51, on a SUN workstation using ERDASTM Software. Fifty to seventy ground 

control points (GCP) were chosen in this rectification given the size of study area. They 

were evenly distributed throughout the whole study area, and most of them were laid on 

the distinguishably discerned objects, for example, the intersections of roads, aqueducts, 

or the fence tree around the agriculture. The registration procedure achieved an accuracy 

of less than 0.5 pixels Root Mean Square Error (RMSE) for both Houston and Daqing. 
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TABLE 2 CHARACTERISTICS OF USED SATELLITE REMOTE SENSING 
IMAGES 

 
Study area Sensors Dates Data characteristics 

Landsat Multispectral 
Scanner (MSS) 

10/1/1976 4 spectral bands, 60 m 
spatial resolution 

Landsat Thematic 
Mapper (TM) 

12/8/1990 7 spectral bands, 30m 
spatial resolution Houston 

Landsat Enhanced 
Thematic Mapper (ETM) 

11/9/2000
1/2/2003 

8 spectral bands, 15m 
spatial resolution 

Landsat Multispectral 
Scanner (MSS) 

8/23/1979 4 spectral bands, 60 m 
spatial resolution 

Landsat Thematic 
Mapper (TM) 

7/20/1990 7 spectral bands, 30m 
spatial resolution Daqing 

Landsat Enhanced 
Thematic Mapper (ETM) 

6/21/2000
8/11/2001

8 spectral bands, 15m 
spatial resolution 

 

 

IKONOS Data 

 Considering the scene size and the availability of our data source, six scenes 

IKONOS images, including one panchromatic band at 1-meter spatial resolution and four 

multispectral bands at 4-meter spatial resolution, were used to study the downtown area 

of Houston. The specific IKONOS image characteristics are shown in Table 2. These 

IKONOS remote sensing datasets were acquired in January 2002 with initial geo-

rectification completed. All images were additional geometric corrected to the same 

projection with the satellite images. This was done by standard polynomial 

transformation with fifty ground control point (GCP).  
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TABLE 3 CHARACTERISTICS OF THE IKONOS DATA 
 

Source 
Image ID 

Scene 
ID 

Acquisition 
Date 

Collection 
Azimuth 

Collection 
Elevation 

Sun Angle 
Azimuth 

Sun Angle 
Elevation 

702 1/2/2002 128.52 deg 83.65 deg 158.83 deg 34.25 deg 740 703 1/2/2002 128.52 deg 83.65 deg 158.83 deg 34.25 deg 
805 1/2/2002 181.01 deg 66.89 deg 159.10 deg 34.30 deg 741 806 1/2/2002 181.01 deg 66.89 deg 159.10 deg 34.30 deg 
501 12/14/2002 279.63 deg 85.19 deg 164.22 deg 35.25 deg 980 502 12/14/2002 279.63 deg 85.19 deg 164.22 deg 35.25 deg 

 

 Since the IKONOS were acquired on different dates with varying atmospheric 

and illumination conditions, it is necessary to conduct image-to-image radiometric 

normalization between the image 980 to image 740 and 741 (Table 3). To perform this 

normalization, we applied a histogram matching the adjacent scenes using the 

Radiometric Enhance function in ERDAS Software. Then, we mosaic all six scenes into 

one image to cover our study area in Houston. 

 

Ancillary Digital Data 

Other reference data used in this research are: (1) a soil thematic map at the scale 

of 1:100,000 from Committee for Agricultural Development Planning of Daqing in 

1980’s; (2) vegetation thematic map of Daqing at the scale of 1:750,000 from the 

Geography Institution of Changchun, Chinese Academic Science in 1973; (3) district 

map at the scale of 1:100,000 from Daqing land bureau in 1999; (4) land use map at the 

scale of 1:100,000 from Daqing land management bureau in 1994; (5) social and 

economic statistical data for Houston from the United States Census Bureau and for 

Daqing from Daqing’s Statistic Bureau. 
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CHAPTER IV 

PATTERN AND DYNAMICS ANALYSIS OF URBAN LANDSCAPE 

Introduction 

The magnitude and intensity of urbanization are of grave concern. It changes both 

the extent and density of urban areas (Wikipedia 2006). The limited understanding of 

urban landscape changes and trends, however, often results in an incomplete assessment 

of the urbanization and impedes the comprehensive planning for future urban 

developments. To make an intelligent urban planning, planners need a comprehensive 

and extensive knowledge about the causes, chronology, and effects of these processes.  

Many spatial techniques have been developed to detect the landscape change. As 

mentioned in Chapter II, post-classification methods begin the analysis with the 

classification of multi-temporal images; from this, changes are detected through 

comparing the classification results directly or the indices of classification results. 

Landscape metrics technique is one of most commonly used methods to detect landscape 

change on the classified maps. This technique derives various spatial indices to 

summarize the spatial pattern at each given time, and then compares the result of spatial 

indices to detect the spatial pattern changes over different times (Singh 1989; Jensen 

1996; Zhao et al. 1996; Zheng et al. 1997; Macleod and Congalton 1998; Miller et al. 

1998; Mas 1999; Roy and Tomar 2001; Yang and Lo 2002). Different from the direct 

comparison of two classified maps, the landscape metrics technique is advantageous in 
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capturing inherent spatial structures of landscape pattern and biophysical characteristics 

of these spatial dynamics.  

Within the landscape metrics technique, a variety of landscape metrics have been 

proposed to characterize the spatial configuration for either the individual landscape 

classes or the whole landscape base (Patton 1975; Forman and Gordron 1986; Gardner et 

al. 1987; Schumaker 1996; Chuvieco 1999; Imbernon and Branthomme 2001). For 

instance, patch size and patch shape indices have been widely used to convey meaningful 

information on the biophysically changed phenomena associated with patch 

fragmentation at a large scale (Viedma and Melia1999; Fuller 2001). These configuration 

indices vary as a function of patch shapes and usually correlate with the basic parameter 

of individual patches, such as the area, perimeter, or perimeter-area ratio, but perform 

poorly in reflecting the spatial location of patches within the landscape (Imbernon and 

Branthomme 2001).  

Based on the information theory, O’Neill et al. (1988) first developed the 

dominance and contagion indices to capture major features of spatial patterns throughout 

the eastern United States. According to Gustafson and Parker (1992), the proximity index 

quantifies the spatial context of patches in relation to their neighbors; specifically, the 

nearest-neighbor distance index distinguishes the isolated distribution of small patches 

from the complex cluster configuration of larger patches (Turner 1989). These indices 

reflected the spatial heterogeneity by quantifying the spatial structures and organization 

within the landscape. The above two groups of indices, patch-based and heterogeneity-

based, reflect two aspects of the same spatial pattern, and complement each other. 

Although the choice of indices relies on the emphasis of a specific research, it is preferred 
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to adopt both groups of indices when speculating on a spatial pattern (Turner and Gardner 

1990) because the landscape pattern possesses both homogeneous and heterogeneous 

attributes.  

The objective of this chapter has two folds:  1) to analyze and interpret the 

landscape pattern as well as its change in both Houston and Daqing during the last twenty 

years using the classified maps from satellite images, and 2) to explore the inter-linkage 

between landscape change, economic development, and land management. To enable a 

comprehensive investigation and comparison of the complex and heterogeneous 

landscape in Houston and Daqing, I chose a set of landscape indices with inter-

complementary ecological meanings. Lastly, these indices are analyzed to effectively 

examine both current landscape patterns and retrospective change processes to monitor 

ongoing changes. 

 

Data and Methodology 

Data and Preprocessing 

The images used for two study areas run across three decades through from the 

1970s to 2000 (Table 1). For each city, I conduct a histogram match between the images 

so that the distribution of brightness values between the resultant images in different 

years is as close as possible (Richards 1993).  
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TABLE 4 CLASSIFICATION SYSTEMS AND DEFINITIONS OF TRAINING 
SAMPLES 

 

 Landscape type training samples using color composite (bands 4, 5, 3)

Residential Rectilinear shape with brown, gray, and dark blue 
Industrial or 
commercial 

Bigger and brighter than the residential roof, usually in 
brown, white, and gray 

Grassland Light red and regular shape 
Woodland Dark red and distributes along northeast of Houston  

Barren or soil White or yellow and distributes along the river or 
grassland 

Houston 

Water Smooth, cyan, blue, and sometimes black 

Urban Intensively used by the building, and shows in the image 
as mixed pixels of light blue 

Agriculture primarily for the production of rice and fiber, shows in the 
image as light or dark red, green with stripe texture 

Grassland Mixed pixels of red, white, and light green 
Woodland Dark red and distributes along northeast of Daqing 

Wetland Identified on higher elevations, Regular shape, red or dark 
red 

Saline White or light, most near to the water 

Daqing 

Water Irregular shape, ultramarine 
 

Gained from the long-term field knowledge of geology, geography, vegetation 

and land use in Houston and Daqing, I set up two sets of classification schemes. These 

classification schemes are listed and described in Table 3. Considering the requirement of 

traditional Maximum Likelihood Classification and the size of the study area, I chose a 

separate set of training and test samples for the images at each year. The ancillary data 

mentioned in Chapter III, including soil thematic map, vegetation map, and land use map 

were overlaid on the image to help to select the training samples. The selection of 

training and test samples was guided by the characteristic description of each class (Table 

3). Landscape maps for Houston and Daqing from the 70’s to 2000 were produced using 
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a traditional maximum likelihood classification (MLC). The number of training and test 

samples and the classification accuracy are shown in Table 4. 

 

TABLE 5 THE ACCURACY ASSESSMENT OF LANDSCAPE MAPS FROM 
LANDSAT IMAGES BY MAXIMAM LIKLIHOOD CLASSIFICATION 

 

Train sample Test sample User Accuracy (%) Producer Accuracy 
(%) Houston 

76 90 2000 76 90 2000 76 90 2000 76 90 2000 
Residential 79 324 1215 78 313 1312 91.72 98.01 99.72 97.79 94.25 100.00
Industrial or 
commercial 73 320 1112 65 296 1218 82.67 85.85 80.23 95.75 90.20 100.00

Grassland 74 270 1259 69 302 1216 95.12 90.72 99.99 84.48 94.69 99.89 
Woodland 75 338 1200 78 308 1140 99.68 100.00100.00 100.00 100.0099.79 
Barren or soil 80 343 1192 79 272 1172 88.77 82.84 98.99 80.06 81.87 70.47 
Water 75 304 1243 63 287 1102 98.39 100.00100.00 99.19 97.39 99.47 

Overall accuracy (%):92.58(1979); 94.45(1990); 96.19(2000)
Kappa: 0.92(1979); 0.93(1990); 0.95(2000)

Train sample Test sample User Accuracy (%) Producer Accuracy 
(%) Daqing 

79 90 2000 79 90 2000 79 90 2000 79 90 2000 
Urban 72 276 1216 75 278 1142 88.60 99.23 100.00 96.40 98.85 90.67 
Agriculture 68 275 1128 77 283 1220 72.83 90.25 77.88 61.22 85.49 91.88 
Grassland 74 296 1132 83 326 1216 76.18 91.90 85.50 84.30 92.99 66.14 
Woodland 74 268 1172 69 285 1116 87.16 87.08 92.11 83.77 87.08 84.39 
Wetland 78 282 1204 71 282 1118 83.60 93.63 88.55 87.55 93.63 96.93 
Saline 76 285 1158 77 308 1208 97.50 99.61 87.21 99.41 99.61 100.00
Water 78 294 1152 71 278 1164 99.36 99.64 100.00 92.81 99.64 100.00

Overall accuracy (%):86.41(1979); 93.07(1990); 89.90(2000)
Kappa:0.84 (1979); 0.92(1990); 0.88(2000)
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Indices to Measure Patch Attributes 

(1) Patch Size Coefficient Variation (PSCOV):  
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where ai is the patch size, m is the total number for ith landscape, and MPS is the mean 

patch size.  

 PSCOV is one of the typical indices to indicate the distribution of area among the 

patches by finding out the area difference among patches within one landscape class. 

Basically, the class with a large PSCOV (or PSSD) is less uniform than that with a small 

PSCOV (or PSSD) (Chuvieco 1999), i.e., if the landscape class is dominated by several 

big patches, both PSCOV and PSSD values would be large. 

 

(2) Landscape Shape Index (LSI): 

 The first index to characterize landscape shape is the Edge Density (ED), a simple 

ratio between the perimeter and area. 

(4.3)                                                     
i
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A
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 Since the simple ratio is usually affected by the patch size, I used the modified 

perimeter – area ratio here to imply the shape of landscape (Patton 1975; Schumaker 

1996). 
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Where Pi and Ai are the perimeter and area of the ith landscape. As a modified index of 

ED, LSI attains its minimum value when the shape of patches is completely regular, such 

as a circle, and it increases when the patch turns to be more complex (Schumaker 1996; 

O’Neill et al. 1999; Fuller 2001). 

 

(3) Area-Weighted Mean Patch Fractal Dimension (AWMPFD):  

 Fractal dimension, with its value ranging from 1 to 2 for a 2-dimensional 

landscape (Mandelbrot 1967), is another modified shape index to indicate the patch shape 

in the landscape ecology. It is usually built on the linear regression between the 

logarithms of perimeter and area (De Cola 1989). 

 To acquire a normalized fractal dimension, I calculated the area-weighted mean 

patch fractal dimension using the following equation: 
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Where pi and ai are perimeter and area of each patch within one landscape class; A is the 

total area for one landscape class. Theoretically, The AWMPFD of the highly convoluted 

perimeter will approach closer to 2 than the simple perimeter due to an increasing 

complexity in the patch shape (De cola and Lam 1993; Schumaker 1996; Olsen et al. 

1999; Read and Lam 2002). 

 

Indices to Measure Spatial Heterogeneity 

(1) Shannon’s Diversity Index (SHDI): 

(4.6)                                          ( )[ ]∑
=

−=
m

i
ii PPSHDI

1

ln  



  49     

  

 The Shannon Diversity Index measures the landscape diversity using two 

components: the number of different patch types, m, and the proportional area 

distribution, Pi, among patch types. Furthermore, the other two indices will be calculated 

followed by the diversity index to measure the dominance and evenness. They are:  

Patch Dominance and Patch Evenness (PD and PE): 

(4.7)                                        [ ]∑
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Where H is the shannon’s diversity index and m is the number of patch of ith landscape 

class; Pi is the probability of ith class in the landscape. In this study, I used the ratio 

between the area of ith class and the total landscape area to denote Pi. Indices of 

landscape diversity, dominance, and evenness have been widely used to indicate the size 

and distribution of patches in the landscape (O’Neill et al. 1988; Viedma and Meliâ 

1999). 

 

(2) Contagion Index (CONT): 

 CONT index developed by O’Neill et al. (1988) quantifies both the composition 

and configuration of the landscape (Li and Reynolds 1993): 
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Where the Pij is the probability that a patch of ith landscape is found adjacent to a patch 

of jth landscape, while m is the patch number within one landscape category and n is the 

number of landscape categories. Pi is the probability that a randomly chosen polygon 
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belongs to patch type i, and Pj/i is the conditional probability. In this study, I set this 

conditional probability as the ratio of i adjacent to j. A large CONT reflects the clumping 

of large contiguous patches while a small CONT value reflects a landscape that is 

dissected into small patches (O’Neill et al. 1988; Turner 1990; Li and Reynolds 1993; 

Griffith et al. 2002).   

 

(3) Proximity Index (PI): 

 In landscape ecology, nearest-neighbor distance is defined as the distance from a 

patch to the nearest neighboring patch of the same type, based on edge-to-edge distance. 

Mean Nearest-Neighbor Distance (MMND), Nearest-Neighbor Standard Deviation 

(NNSD), and Nearest-Neighbor Index (NNI) were chosen to calculate in this study as 

follows: 
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Where hj is distance from each patch to its nearest neighbor, and m is the total number of 

nearest neighbor to this patch, n and a are the number and area of this class. ENND is the 

expected value of MNND in random. The NNI ranges between 0 and 1, and the less NNI, 

the landscape is less random and more clumped. The proximity indices measure both the 

degree of patch isolation and the degree of fragmentation of the corresponding patch type 

within the specified neighborhood of the focal patch (Gustafson and Parker 1992). 

 

(4) Fragment Indices (FI): 
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 I chose the Total Core Area (TCA), Core Area Percent of Landscape (CAPL), and 

Mean Core Area per Patch (MCA) to denote the landscape fragmentation: 
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Where c
ia is the core area, the interior habitat as an undisturbed area in the ecological 

meaning; A is the total class area, m is the number of patch. 

 To identify the core area of each patch, we smoothed the sharp edge and 

calculated the core area within each patch. These edge-to-interior indices provide 

fragmentation information of the class, i.e., the higher the ratio between core area and 

total area is, the less fragmented this class would be (FRAGSTATS * ARC 2004).  

To summarize, two categories of landscape indices were chosen from perspectives of the 

patch attributes and spatial heterogeneity. The patch-based indices consist of PSCOV, 

LSI, and AWMPFD with aims to measure the area distribution and the shape of 

landscape among the patches. Regarding the spatial heterogeneity-based indices, I chose 

SHDI to describe the landscape diversity, CI to measure the composition and 

configuration of landscape, PI to denote the degree of isolation, and FI to measure the 

landscape fragmentation. 
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Results and Discussions 

Quantitative Description of Landscape Dynamics 

 
Figure 9 is landscape maps of Houston in 1976, 1990 and 2000, and Daqing in 

1979, 1990 and 2000, respectively. In Houston (Figure 9A), most of the industrial / 

commercial areas are distributed in the downtown area or along the major roads. The 

central business district (CBD) is surrounded by the concentric rings of residential area, 

which spread greatly during 1976 – 2000. Residential buildings are surrounded by the 

grassland and woodland. This pattern can be attributed to the regional characteristics of 

Houston’s neighborhoods. Located in the coastal biome of the gulf plains, the vegetation 

of Houston is classified as temperate grassland. Prevailing winds from south and 

southeast bring enough moisture from the Gulf of Mexico, which provides a favorable 

environment for the woodland in the northeastern Houston. 

Fig. 9. The landscape maps of Houston and Daqing 
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Figure 9B is the landscape map of Daqing in 1979, 1990, and 2000. It reveals a 

north-south distribution throughout the whole study area. Most of the agriculture is 

distributed in the southeast and northwest of the study area, while the city itself lies along 

the railway line between the city of Haerbin and Qiqihaer. Most lakes distribute in the 

middle part of the study area, with the grassland and saline distributing around them. 

Grassland was the dominant class in Houston, which occupied 511.34 km2 and 

41.61% of the whole study area in 1976 (Figure 9, Table 5). The residential area became 

the dominant class after the 1980s, occupying 479.78 km2 (39.07%) in 1990 and 564.43 

km2 (45.97%) in 2000, respectively. The expansion of residential areas occupied a mass 

of grassland and woodland in the suburban area of Houston. Similar to Houston, the 

dominant class of Daqing is also grassland, occupying 432.67 km2 and 35.21% of the 

whole study area with a large mean patch area (0.16 km2/per patch) in 1979 (Table 5). As 

a part of alluvial Songnen plain, a mass of grassland in Daqing was cultivated into 

agriculture in the eastern area due to the fertile soil and sufficient rain conditions there. 

From 1990, agriculture became the dominant class, occupying 383.19 km2 (32.82%) in 

1990 and 419.63 km2 (34.18%) in 2000, respectively.  

Although grassland is the dominant class in both Houston and Daqing, it 

experienced a rapid decreasing in the mean patch area in these two cites. In Houston, it 

decreased from 0.12 km2/ per patch to 0.01 km2/ per patch in 1990 and 2000. In Daqing, 

the mean patch area of grassland decreased from 0.16 km2/ per patch in 1979 to 0.03 km2/ 

per patch in 1990 and 0.02 km2/ per patch in 2000. This is in accordance with the 

fragmentation process caused by urban sprawl. Woodland, similar with the grassland, 

experienced the fragmentation process from the 1970s to 2000, in both Houston and 
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Daqing. It is interesting to find other impervious surfaces, i.e. residential or industrial / 

commercial area had a decreasing average area though their total area increased. This 

implies that new buildings are likely to be constructed sporadically far away from the 

original building instead of just beside them. Although the water landscape does not own 

a large area in Daqing, its average patch area is larger than other classes (0.08 km2/ per 

patch in 1979; 0.10 km2/ per patch in 1990; and 0.07 km2/ per patch in 2000). The reason 

is obvious because water is found as lakes in Daqing and lakes are always naturally 

continuous in space.  

 

TABLE 6 THE ANALYSIS OF AREA CHANGE IN HOUSTON AND DAQING 
 

Area (km2) Patch # % Area  Average Area 
(km2) Houston 

1976 1990 2000 1976 1990 2000 1976 1990 2000  1976 1990 2000
Residential 312.47 479.78 564.43 6401 16689 18712 25.43 39.07 45.97  0.05 0.03 0.03
Industrial / 
commercial 93.50 228.58 198.21 2282 12402 12286 7.61 18.62 16.14  0.04 0.02 0.02

Grassland 511.34 287.53 235.89 4416 19693 22052 41.61 23.42 19.21  0.12 0.01 0.01
Woodland 209.68 140.32 184.70 3325 4003 15048 17.06 11.43 15.04  0.06 0.04 0.01
Barren / 
soil 70.13 81.98 32.72 4404 19751 12364 5.71 6.68 2.66  0.02 0.00 0.00

Water 31.73 9.67 11.85 1655 722 1133 2.58 0.79 0.97  0.02 0.01 0.01

Area (km2) Patch # % Area  Average Area 
(km2) Daqing 

1979 1990 2000 1979 1990 2000 1979 1990 2000  1979 1990 2000
Urban 33.38 79.55 148.07 464 6333 5352 2.72 6.47 12.06  0.07 0.01 0.03
Agriculture 362.90 403.33 419.63 6544 12912 14409 29.53 32.82 34.18  0.06 0.03 0.03
Grassland 432.67 383.19 285.93 2757 11134 16400 35.21 31.18 23.29  0.16 0.03 0.02
Woodland 141.00 85.61 97.06 3334 11321 8297 11.47 6.97 7.91  0.04 0.01 0.01
wetland 70.18 72.05 62.90 1847 1771 3359 5.71 5.86 5.12  0.04 0.04 0.02
saline 76.27 89.21 102.19 1570 10421 8929 6.21 7.26 8.32  0.05 0.01 0.01
water 112.45 115.92 112.02 1499 1220 1700 9.15 9.43 9.12  0.08 0.10 0.07
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Over the past 20 years, our study areas have experienced tremendous changes. 

The total change area in Houston between 1976 – 1990 and 1990 – 2000 are 629.48 km2 

and 262.49 km2 and the percentage are 51.22% and 21.38%, respectively. As indicated in 

Figure 10A, the most significant change in Houston appears to be the spread of 

residential and build-up, and the loss of grassland. The total change area in Daqing 

between 1979 – 1990 and 1990 – 2000 are 209.74 km2 and 219.55 km2 and the 

percentage are 17.07% and 17.87%, respectively (Figure 10B). Compared with Houston, 

Daqing has a smaller change area. Only three classes have obvious changes: urban and 

agriculture increased, and grassland decreased.    

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 10. Comparison of area change in Houston (A) and Daqing (B) 
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TABLE 7 THE DESCENDING SORT OF THE MAIN CHANGE OF HOUSTON 
AND DAQING 

 
1976-1990  1990-2000 Transform Type 

(Houston) Change 
Area(km2) 

% 
area  

Transform Type 
(Houston) Change 

Area(km2) 
% 

area 
Grassland to 
Residential 204.22 16.74 

 Industrial 
/commercial to 
Residential 

69.17 5.67 

Grassland to 
Industrial 
/commercial 

51.94 4.26 
 Grassland to 

Residential 68.70 5.63 

Residential to 
Industrial / 
commercial 

49.45 4.05 
 Grassland to 

Woodland 44.84 3.68 

Woodland to 
Grassland 40.75 3.34  Residential to 

Grassland 35.80 2.93 

Grassland to 
Barren / soil 39.30 3.22   Residential to 

Woodland 32.05 2.63 

1976-1990  1990-2000 Transform Type 
(Daqing) Change 

Area(km2) 
% 

area  
Transform Type 

(Daqing) Change 
Area(km2) 

% 
area 

Grassland to 
Agriculture 124.06 10.10  Grassland to 

Agriculture 135.04 10.99 

Agriculture to 
Grassland 117.24 9.54  Agriculture to 

Grassland 76.04 6.19 

Woodland to 
Agriculture 63.94 5.20  Urban to Grassland 66.75 5.43 

Woodland to 
Grassland 38.58 3.14  Woodland to 

Agriculture 38.94 3.17 

Grassland to Saline 35.75 2.91   Saline to Grassland 36.55 2.97 
 

Table 6 shows the descending sort of main changes in Houston and Daqing. This 

analysis of change landscape provides not only the “from” and “to” information, but also 

the quantity of the conversion area. The major changes can be summarized as follows: 

o A Mass of grassland was converted to human-disturbed landscapes in both 

Houston and Daqing. Although this conversion was slowed down in Houston and 

some agriculture converted back to grassland in Daqing, grassland was ranked as 
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first in decreasing classes due to urban expansion during the last two decades for 

these two cities. 

o The human-disturbed landscape, especially the impervious surface in urban area 

increased greatly during these two decades. In Houston, the residential area kept 

increasing while the industrial / commercial area decreased from 18.60% in 1990 

to 16.13% in 2000. Most of the decreasing area in industrial / commercial is 

transformed to residential (69.17 km2), which made the residential area increase. 

In Daqing, both urban and agriculture, experienced obvious increase during 1979 

– 2000. Most of urban is transformed from grassland (26.42 km2) and agriculture 

(20.73 km2) and most cultivated land is converted from grassland (124.06 km2) 

and woodland (63.94 km2). 

o Woodland experienced a significant decrease during the first period in both 

Houston and Daqing. During the second period, both Houston and Daqing have 

slightly increased in woodland. In Daqing, most woodland was transferred from 

agriculture (26.00 km2) and grassland (28.96 km2). The increase of woodland in 

Houston might be caused by newly planted trees around the new houses in 

southern and northern Houston. 

o A general trend of landscape change was revealed: grassland was taken over by 

impervious surface due to the urban sprawl. Some of woodland was degraded into 

grassland, and trees were planted sporadically around the residential area, 

resulting in a more fragmented landscape. 
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Landscape Metrics Analysis of Dynamics 

We applied the chosen landscape metrics to characterize the change of patch 

attribute and spatial heterogeneity in each class throughout Houston and Daqing. Table 7 

and 8 show the changes of these indices in both Houston and Daqing. In this research, we 

analyzed the landscape in three major groups: (1) human-disturbed landscapes, including 

agriculture and urban area; (2) vegetation, including grassland and woodland; and (3) 

other barren surface, including the soil around the vegetation and barren area around the 

building. 

 

TABLE 8 PATCH ATTRIBUTE INDICES OF HOUSTON AND DAQING 
 

PSD ED LSI  AWMPFD Houston 1976 1990 2000 1976 1990 2000 1976 1990 2000  1976 1990 2000
residential 166.70 94.56 245.60 61.80 125.32 144.30 107.40 175.89 186.84  1.28 1.34 1.42
industrial / 
commercial 44.25 98.88 42.70 19.44 71.52 59.27 61.68 145.35 130.54  1.18 1.32 1.26

grassland 405.97 25.91 19.43 74.78 91.13 84.42 102.42 165.54 168.82  1.34 1.24 1.22
woodland 162.22 40.09 21.27 26.69 25.68 54.94 57.16 66.84 124.28  1.22 1.19 1.19
barren / 
soil 4.64 2.61 1.51 21.10 48.50 22.48 77.63 165.43 120.61  1.10 1.14 1.12

water 22.46 17.77 14.18 7.53 2.41 3.46 41.06 23.67 30.83  1.13 1.20 1.20
PSD ED LSI  AWMPFD Daqing 1979 1990 2000 1979 1990 2000 1979 1990 2000  1979 1990 2000

urban 44.39 15.35 68.82 5.06 27.63 35.88 26.96 97.14 90.48  1.19 1.23 1.32
agriculture 143.48 74.01 221.04 77.67 113.08 124.32 125.79 173.26 186.79  1.28 1.35 1.41
grassland 233.07 131.00 41.40 73.57 121.06 69.08 109.25 190.22 126.06  1.32 1.32 1.27
woodland 15.97 7.25 11.53 29.25 38.09 35.86 75.82 126.58 112.02  1.15 1.18 1.20
wetland 49.01 92.31 71.01 12.46 10.20 12.88 45.83 36.95 49.99  1.17 1.24 1.24
saline 24.80 8.25 14.65 14.51 37.08 36.94 51.22 120.65 112.37  1.15 1.19 1.22
water 69.00 78.43 65.02 9.99 8.43 12.19 29.17 24.16 35.72  1.09 1.09 1.12

 

 

In Houston, the PSD of residential area decreased in the first period and then 

increased in the second period (Table 7). A possible explanation is that more irregular-

shaped residential areas appeared, not sprawling out from original buildings, but 
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gradually nibbling at the grassland around the urban area. The increasing of other patch 

attribute indices also indicates the residential area became more irregular. All the patch 

indices of industrial/commercial area in Houston increased in the first period and then 

decreased in the second period. This might because few industrial or commercial 

buildings were constructed in Houston due to the collapse of Houston’s energy industry 

in the severe economic recession since the mid-1980s.  

In Daqing, human-disturbed landscapes have a very similar trend with Houston. 

Both urban and agriculture have an increasing trend in ED, LSI, and AWMPFD. For all 

the landscape types, the Houston’s residential and Daqing’s agriculture have an identical 

trend in the patch attribute indices. This also indicates that the new small patches in them 

always appeared far away from original patches, instead of sprawled from them.   

Grassland and woodland have different trends in our study areas, indicating 

different manners of conversion in these two classes. Since most of woodland is 

distributed in the northeastern corner of Houston, the edge of woodland was likely to be 

replaced by the impervious surface due to the urban sprawl during 1976 – 1990. At the 

same time, the grassland was fragmented into small pieces. During 1990 – 2000, more 

grassland was fragmented into pieces and then replaced by the impervious surface. Thus, 

PSD and AWMPFD, in both grassland and woodland, kept on decreasing during 1976 – 

2000 with an increasing LSI. 

It is also interesting to analyze different trends of grassland in Daqing and 

Houston. Although both of them have a decreasing patch area and increasing patch 

number, the LSI and AWMPFD indicated different locations of change areas. For 

Houston, most of grassland was updated by new residential buildings sprawling from the 
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central business district. In Daqing, the grassland was always cultivated into agriculture 

far away from the urban; that is, the replacement always happened in the middle area of 

grassland.  

 

TABLE 9 SPATIAL HETEROGENEITY INDICES OF HOUSTON AND DAQING 
 

SHDI CONT MNND CAPL Houston 
1976 1990 2000 1976 1990 2000 1976 1990 2000 1976 1990 2000

residential 0.35 0.37 0.36 0.54 0.63 0.78 1.49 0.70 0.44 7.87 11.41 11.15
industrial / 
commercial 0.20 0.31 0.29 0.61 0.67 0.84 2.05 0.91 0.60 2.03 3.13 2.73
grassland 0.36 0.34 0.32 0.56 0.64 0.80 1.42 0.80 0.61 17.17 5.21 3.36
woodland 0.30 0.25 0.28 0.73 0.82 0.84 1.88 1.12 0.69 9.11 5.16 4.69
barren / soil 0.16 0.18 0.10 0.44 0.44 0.68 1.84 0.92 0.87 0.77 0.27 0.13
water 0.09 0.04 0.04 0.58 0.79 0.87 2.90 2.51 1.81 0.75 0.33 0.33

SHDI CONT MNND CPLI Daqing 
1976 1990 2000 1976 1990 2000 1976 1990 2000 1976 1990 2000

urban 0.10 0.18 0.26 0.73 0.67 0.75 2.94 1.07 0.97 1.13 1.10 3.35
agriculture 0.36 0.37 0.37 0.47 0.64 0.59 1.37 0.76 0.76 7.33 6.70 5.86
grassland 0.37 0.36 0.34 0.54 0.60 0.71 1.37 0.71 0.85 11.31 5.33 8.28
woodland 0.25 0.19 0.20 0.59 0.58 0.63 1.84 0.92 1.01 3.09 0.75 1.15
wetland 0.16 0.17 0.15 0.67 0.87 0.80 2.55 1.36 1.22 2.28 3.16 2.62
saline 0.17 0.19 0.21 0.65 0.61 0.64 2.19 0.92 1.02 1.84 0.93 1.29
water 0.22 0.22 0.22 0.83 0.93 0.89 2.70 1.63 1.26 6.26 7.10 6.03

 

The result of spatial characterization indices suggests that these indices, as the 

indicators of relation between the patches, provide complementary information to those 

shape characterization indices (Table 8). In Houston, the CONT and MNND showed an 

identical trend in all landscape types. This trend implies that all classes have a more 

clustered pattern, with less mixture with other classes. Residential and 

industrial/commercial have the same trend in the CAPL, which increased first and then 

decreased. This might be caused by the planting of trees around new residential buildings, 

which brought meandering edges to these impervious surfaces. The decreasing CAPL, in 
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both grassland and woodland, implies a more fragmented landscape associated with 

vegetation. 

In Daqing, both urban and agriculture have an increasing SHDI and decreasing 

MNND. While in the CAPL, urban decreased lightly first (1.13 in 1979 and 1.10 in 1990) 

and increased greatly (3.35 in 2000) in the second period. Agriculture kept on decreasing 

in CAPL during 1979 – 2000. This different trend in urban and agriculture also denotes 

different conversion manners in them. Since new agriculture patches were always small, 

the CAPL and MNND kept on decreasing. More and more small urban patches were 

connected with original large ones during the second period, the CPLI of urban increased 

greatly during the second period though the MNND kept decreasing. As a typical 

decreasing landscape, grassland had a slight increase during the second period in the 

MNND and CAPL. The MNND and CAPL of grassland in Houston are different from 

those in Daqing. These different trends imply that the transformation of grassland in 

Houston always happened from the boundary area to the core area. Similarly, the MNND 

and CAPL of woodland in Daqing have a same change trend: decreased greatly in the 

first period and increased slightly in the second period. On the contrary, direct 

replacement of forest patches along the boundary dragged both the MNND and CPLI 

down in Houston. 

 

Conclusion 

 The quantitative analysis of landscape pattern using multi-temporal Landsat 

images enabled us to characterize the internal structure of landscape, compare landscape 

classes, and monitor the landscape dynamics throughout both Houston and Daqing. This 
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study explored the potential of satellite remote sensing and GIS-related techniques in 

producing accurate landscape maps and statistical analysis of the landscape pattern. 

 Petroleum is the major economic source in Houston and Daqing. Agriculture is 

another economic support in Daqing due to its historical development. Although Houston 

has a similar physical environment as Daqing, it has no farmland around the city centre. 

Therefore, Daqing has an obvious trend in cultivating grassland into agriculture as well as 

the urban sprawl.  

Landscape dynamics throughout the study area were estimated based on the 

analysis of multi-temporal maps. Obviously, Houston is a concentric-zonal pattern based 

on one central business district (CBD) while Daqing is a multiple-nuclei pattern in its 

expansion. This analysis indicated that during the first period, Houston experienced more 

change than Daqing due to the energy industry boom. Daqing kept expanding in the 

second period, while the sprawl of Houston slowed down from the 1990s due to the 

decline of petroleum production. Based on the derived indices, a general trend of 

landscape change was revealed: Houston experienced the urban expansion by gradually 

replacing the grassland around the suburban area during the first 10 years, whereas a 

mass of grassland and woodland was cultivated and taken over by agriculture and urban 

in Daqing. 

This study also revealed that spatial indices built on the classified vectors were 

useful to detect landscape pattern and its changes. The patch attribute indices, PSD, ED, 

LSI, and AWMPFD, were found to be effective in the identification and description of 

the shapes of landscape types. The SHDI revealed the patch diversity associated with the 

proportion of landscape classes; CONT measured the degree of contiguity and 
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homogeneity by revealing the clumping trend of patches for each class; MNND reflected 

underlying natural processes or human-caused disturbance patterns, while CAPL 

measured the degree of fragmentation by the area of interior habitat. All these spatial 

heterogeneity indices have a great potential in providing useful information about the 

overall spatial pattern of the landscape. With incorporating more and more biophysical or 

social-economic factors in this research, the spatial statistics methods will demonstrate its 

unique role in the quantitative analysis of landscape pattern. 

Current research results can be further improved from the following three aspects. 

First, ecological, social, political, and economic factors should be incorporated in the 

analysis of change detection. The added awareness of the landscape context from these 

factors will assist us in making objective statements about the changes in time series. 

Second, based on this analysis, we can found the urban area, especially the residential 

area, is major landscape type in Houston study area while the agriculture and grassland 

are two major landscapes in Daqing. Obviously, Houston is much more heterogonous 

than Daqing which requires a more sophisticated sub-pixel classification method for 

Houston. Third, the emphasis of this study is to assess landscape complexity and its 

dynamic process in the past and current time. In this dissertation, landscape metrics were 

calculated either on class or on landscape. This prevented us to apply these results into a 

cell-based model, such as the Cellular Automata model in the later study. A natural future 

is to develop a set of cell-based metrics for the further model application. 
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CHAPTER V 

IMPROVING URBAN LANDSCAPE CLASSIFICATION 

Introduction 

Understanding the extent, distribution, and evolution of urban landscape is critical 

in analyzing and explaining its structure. Such information plays a vital role in predicting 

future urban landscape patterns and guiding the direction of urban planning for satisfying 

both environmental and socioeconomic sustainability. Moderate resolution satellite 

images such as Thematic Mapper (TM), provide a distinctive opportunity to capture 

urban landscapes over a large area in a timely and cost-effective manner (Yang and Lo 

2002; Song 2005). Traditional per-pixel methods, nevertheless, are inadequate in 

classifying urban landscape from the moderate satellite imagery due to the presence of 

many mixed land cover categories in each pixel, as a result of the rapid alternation of 

artificial and natural objects within a small distance in a typical urban setting (Mesev et 

al. 2001; Small 2003; Lu and Weng 2004). Treating each individual pixel as a pure class, 

as has been assumed in such per-pixel classifiers, prevents the representation of varying 

land cover and use information below the inherited pixel resolution (Gong and Howarth, 

1989; Foody and Arora 1996, Small 2004).  

Instead of assigning only one class per pixel, sub-pixel classification approaches 

quantify multiple class memberships for each pixel (Foody and Cox 1994; Foody 1996; 
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Foody 1997; Myint 2003). Spectral mixture analysis (SMA) represents a widely-used 

method for tackling the decomposition of mixed pixels. The Linear SMA has so far been 

the most popular approach in the SMA family methods given its simple mathematical 

form. It has been adopted to generate fractions of urban physical constituents according 

to the spectral variability inherited in either multi- or hyperspectral imagery (Settle and 

Drake 1993; Tompkins et al. 1997; Small 2001; Wu and Murray 2003; Lu and Weng 

2004). For the purpose of standardization, Ridd (1995) proposed the vegetation-

impervious surface-soil (VIS) model to parameterize the biophysical composition of 

urban environment as vegetation, impervious surface, and soil. This model was later 

adopted as a scheme for choosing appropriate endmembers in the linear SMA (Madhavan 

et al. 2001; Phinn et al. 2002). Small (2001) conducted a spectral unmixing to 

characterize the pattern of New York City through three modified endmembers: 

vegetation, low albedo, and high albedo. Wu and Murray (2003) separated the 

impervious endmember as the low albedo and high albedo to accommodate four 

endmembers in the VIS model. Lu and Weng (2004) included the shade endmember in 

the spectral mixture analysis for Indianapolis, Indiana.  

One critical problem encountered in the application of Linear SMA is that the 

number of endmembers has to be kept at a fairly limited size since it is constrained by the 

number of available bands offered by the remotely sensed imagery (Radeloff et al. 1999). 

Moreover, the impervious surface in the VIS model is not appropriate to be treated as one 

endmember given that the presence of various components are not unusual (Wu and 

Murray 2003; Lu and Meng 2004). A number of approaches have been made to address 

this question by either modifying the endmembers or altering from a simple Linear SMA 
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to a nonlinear function. Examples of these methods include iterative spectral unmixing 

(Meer 1999; Theseira 2002); endmember bundles approach (Bosdogianni et al. 1997; 

Bateson et al. 2000); neural network (Foody et al. 1997; Carpenter et al. 1999; Linderman 

et al. 2004); mixture discriminant analysis (Ju et al. 2003); and Bayesian spectral 

unmixing (Song 2005). 

Fuzzy classification is another robust method which provides class memberships 

at the pixel level. After Zadeh (1965) introduced the fuzzy set concept in 1965 to describe 

imprecision, the fuzzy set concept was then widely applied to sub-pixel image analysis. 

Fuzzy C-Means (FCM) algorithm (Bezdek et al. 1984; Foody 1992), Fuzzy-Maximum 

Likelihood Classification (Wang 1990), and Neuro-Fuzzy (Carpenter et al. 1999), are 

three prevalent approaches in this category. Based on an iterative optimization of 

clustering, Fuzzy C-Means limits its application when the priori knowledge of the 

number of cluster and local optima are not enough (Bandyopadhyay 2005) before 

classification. Fuzzy-Maximum Likelihood Classification and Neuro-Fuzzy are two 

supervised soft classifications by softening the output of traditional Maximum Likelihood 

Classification and Neural Network Classification. Typically, these two methods need to 

identify the training samples to characterize the classes in the image. However, inability 

to account for mixed pixels when collecting information from the training samples, as a 

general practice when the aforementioned methods were applied, has circumvented the 

implementation of a “fully” fuzzy classification (Zhang and Foody 2001). Therefore, it is 

critical to choose proper endmembers and solve the mixed pixel problem for the fuzzy 

training data in order to perform an accurate supervised soft classification in urban areas. 
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In this study, I focus on the development, implementation, and evaluation of a 

new Fuzzy-SMA model based on the fuzzy supervised classification, along with the 

linear SMA, to improve the urban landscape classification accuracy. Considering both the 

availability of data and the practicability of results, I only apply this sub-pixel 

classification to Houston since Daqing is much more homogenous than Houston. 

Particularly, endmember signatures of training samples are not treated as constants, but 

rather represented by the probability density using the linear SMA. In order to examine 

the effectiveness of this new method, we compare the fraction images from our Fuzzy-

SMA model with the fraction images that were derived from the linear SMA and 

maximum likelihood classification (MLC) methods. 

 

Data Preparation 

A subset image from Landsat 7 ETM+ (path 25, row 39) acquired on January 2, 

2003 was employed in this study. For the sake of reducing atmospheric distortion, the 

digital number (DN) at each band was first converted to the normalized at-sensor 

reflectance using the method that was introduced in Markham and Barker (1987) (Figure 

11; ENVI 2000). Figure 12 shows the normalized reflectance for each representative 

class. The Minimum Noise Fraction (MNF) transformation was then applied to remove 

the correlation that existed among six bands (the thermal band was excluded since it has a 

different spatial resolution) (ENVI 2000) (Figure 12). A bundle of IKONOS image, 

comprising a 1-meter panchromatic and 4-meter multispectral images, that were acquired 

on January 2, 2002, were adopted as references for choosing the training samples for 

different endmembers as well as the test samples of known fractions from land ETM+.  
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Fig. 11. Normalized at-sensor reflectance for the representative urban LULC wavelength   
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. MNF components of ETM+ image 
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Methodology 

 A systematic framework of our model is presented in Figure 13. Three sets of 

proportion maps were derived using linear SMA, Partial-Fuzzy, and Fuzzy-SMA, 

respectively. The major difference between the Partial-Fuzzy and Fuzzy-SMA lies in the 

training spectrum among landscape classes. In the Fuzzy-SMA, we applied the linear 

SMA to obtain the fuzzy mean and fuzzy covariance matrix instead of treating them as 

constants. Based on these statistical measures, we derived the fractions of urban images 

using the fuzzy set theory. The following sections will describe the fuzzy logic and SMA 

in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Flowchart for the Fuzzy-SMA model. Note: IKONOS image is used to select 
pure endmembers and training samples, as well as check the resultant proportion maps 
from three sub-pixel classification models 
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Fully-fuzzy Supervised Classifier and its Training Data 

 Conventional discriminant analysis is a widely used classifier in the classification 

of remotely sensed data. This method allocates each pixel to the class which has the 

highest posteriori probability of membership (Foody 1996; Richards and Jia 1999). 

Without considering the prior probability, the posteriori probability, also named as 

discriminant function, is expressed as: 
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Where xi is the pixel spectral vector of the training samples of class i, M is the total 

number of training samples; and f (xi) is the membership function of class i.  

Training samples for six classes, including residential area, commercial or 

industrial area, transportation, woodland, grassland, barren or soil, were selected from the 

Landsat ETM+ image by referencing to the IKONOS image. Water was masked out 

before the analysis since it occupies only a small area in the study area. Samples for each 

class come from thirty training plots and each training plot covering 90  90 m2 on the 

ground. Due to the mixture of membership in each training plot, it is important to identify 

the proportions of endmembers in these training plots before an accurate fuzzy mean and 

fuzzy variance matrix can be derived. For example, Wang (1990) estimated the 

endmembers’ fractions from training plots with manual interpretation from aerial 

photography. However, the inaccurate estimation of fuzzy mean vector and fuzzy 

variance matrix through manual digitization often leads to poor classification results. In 

this research, we applied the Spectral Mixture Analysis (SMA) to identify the fraction 

membership of the training sample. 

  

Spectral Mixture Analysis 

 Spectral mixture analysis (SMA) aims to map the fractions of landscape classes 

within mixed pixels using an inverse lease square devolution method and spectra of pure 

endmembers (Shimabukuro and Smith 1991; Gilabert, Garcia-Haro, and Melia 2000). In 

this study, we employ a modified constrained least square method for the linear spectral 

unmixing analysis using the following expression: 
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Where nR  is the normalized spectral reflectance of the mixed pixel for each band n; ef  is 

the fraction of endmember e; E is the total number of endmembers; enR , denotes the 

normalized spectral reflectance of endmember e within a pure pixel on band n; and iε  is 

the residual error.    

 The choice of spectral reflectance for endmembers is critical for the spectral 

mixture analysis. An optical approach for selecting endmembers is to use laboratory-

based spectra from the field. However, substantial problems exist in accounting for the 

atmospheric conditions when upscaling the field spectral value to the level that can be 

employed with the satellite sensor data (Settle and Drake 1993; Wu and Murray 2003). 

Alternatively, the endmembers’ spectra can be obtained by locating pure pixels on the 

same image (Bateson et al. 2000; Lu and Weng 2004). In our study, the endmember for 

each class is carefully selected from the representative homogenous pixel, i.e. having a 

full membership to the specified class and zero membership to the other classes. To 

ensure the purity of the chosen pixel from the ETM+ image, the high spatial resolution 

IKONOS image was employed as a reference image. The clear delineation of feature 

spaces among the six classes in the first three Principle components (Figure 14) suggests 

that the reflectance spectra of the ETM+ image could be represented by a six-endmember 

linear mixing model. 
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Fig. 14. Feature space representation of the first three principle components. Red: 
residential; Magenta: commercial or industrial; Yellow: transportation; Green: woodland; 
Cyan: grassland; Black: barren or soil  
 

Accuracy Assessment 

The accuracy assessment is an essential step for landscape mapping from 

remotely sensed data (Foody 2002). An independent set of test samples was chosen for 

this evaluation. Considering the statistical requirement and the size of our study area, we 

randomly selected 200 sample plots at the size of 90  90 m2 from the IKONOS image 

using the ERDAS Imagine accuracy assessment module (Figure 15). For each sample 

unit, its actual land use types were acquired through digitizing the IKONOS image 

(Figure 16b). The actual fractions of each landscape class in sample units were obtained 

through dividing the class area by the total area of one sample plot.  
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Fig. 15. Random test points distribution in the study area 
 

 

 

 

 

 

 

 

 

Fig. 16. The sample fraction validation using IKONOS, (a) one test plot in ETM; (b) 
corresponding IKONOS test plot, the magenta line is used to digitize the residential area 
in this unit 
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As stated by Foody (1996), conventional confusion matrix is inappropriate for the 

fuzzy classification evaluation since multiple memberships exist with each pixel. In this 

research, we adopt two accuracy assessment methods to evaluate the accuracy of urban 

composition of each land class. The first method is the mean absolute error (MAE) 

(Willmolt and Matsuura 2006) defined as follows: 

(5.5)  
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Where iP1  is the estimated land use composition fraction from the classification 

and iP2  is the “actual” land use composition fraction digitized from IKONOS for class i 

in the test simple n; N is the total number of test samples and J represents the number of 

categories.  

The generalized cross-tabulation matrix as introduced by Pontius JR and Cheuk 

(2006) was also adopted to further analyze the disagreement between the estimated 

results and reference maps. Specifically, a composite operator was used to calculate the 

entries in the cross-tabulation matrix through: 
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Where jiP ,  is the estimated entry in the cross-tabulation matrix for class i and class j.  

Once all entries were filled, overall accuracy and Kappa values were calculated in 

the same manner as that was applied in the traditional hard classification. Further details 

about the accuracy assessment in soft classification can be found in Pontius and Cheuk 

(2006).  

 

Results and Discussions 

Figure 17 is the classified image of downtown Houston from the supervised MLC 

method in 2003. Different from the landscape maps created in Chapter IV, this map also 

classified the transportation area out from the images. It reveals the central-zonal spatial 

pattern throughout the whole study area. Most industrial or commercial area is located in 

the central business district (CBD) or distributed along the major road or the Buffalo 

Bayou. High-density residential areas are found around the CBD, especially around the 

highway I45 and the Buffalo Bayou in the southern study area. The woodland is mainly 

seen in the northeastern area of Houston. Grassland is mainly distributed in the southern 

part, mostly around the Houston International Airport. Although the supervised 

classification result describes the overall urban land use pattern, it could not provide a 

realistic or accurate measurement on urban pattern since it neglected the relative 

abundance of surface materials within a pixel. 
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Fig. 17. Classified images generated from the MLC method 
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Conversely, a richer amount of land use information has been derived by the 

“soft” classification. Figure 18 illustrates six fraction images unmixed from the ETM+ 

image using the Linear SMA model. We used the gray level to designate the percentage 

of a specific class that a pixel contains. Therefore, a brighter pixel means a higher 

fraction. It is noticeable that the fraction images of all classes have a similar gray level. 

These results may be attributed to the spectral similarity among the six classes. The most 

obvious misinterpretation is the confusion between transportation and 

commercial/industrial area in the central part of the study area. Therefore, the Linear 

SMA would result in substantial misinterpretation due to the spectral similarity among 

classes. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Fraction images generated from the SMA model 
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The fraction images derived from the Partial-Fuzzy method (Figure 19) present a 

more obvious pattern than the Linear SMA. Particularly, fractions of the 

commercial/industrial area and the residential area have been refined. The bright pixels in 

the two fraction images correspond well to the known impervious area within the original 

ETM+ image. Moreover, the woodland fraction image concurs with the field woodland 

distribution: i.e., almost zero in the CBD and ranging between 60-80% in the residential 

areas. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Fraction images generated from the Partial Fuzzy model 
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The fraction images from the Fuzzy-SMA model achieved a remarkable 

improvement compared to both Linear SMA and Partial-Fuzzy methods. In Figure 20, the 

brightest spot, as an indicator of high proportion for the commercial/industrial fraction 

image, is located in the central area of the study area. The residential fraction is near zero 

in the high-density commercial or industrial area, while gradually increased to 10%-50% 

in the transition zone between the industrial area and residential area, and approach 90% 

in the high-density residential area. The transportation fraction image is also consistent 

with its actual distribution, showing an interlaced pattern. Most grassland is located in the 

southeastern corner and almost tops at 100% in the park area. The woodland has the least 

fraction in the central area of Houston, ranging between 10% and 30%. The brightest spot 

of the woodland is found in the known woodland area, the northeastern area of Houston. 

The fact that Fuzzy-SMA performed better than the Linear SMA can be attributed to the 

incorporation of fuzzy mean and fuzzy variance, with which the spectral overlaps 

between the endmembers has been significantly reduced.  
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Fig. 20. Fraction images generated from the Fuzzy-SMA model 
 

 Table 9 shows the accuracy indices (MAE) and the cross-tabulation matrix for the 

Fuzzy-SMA, Partial-Fuzzy, Linear SMA, and MLC. In Table 9, a smaller indice denotes 

a better classification result. From this table we can easily find that the Fuzzy-SMA 

performed better than the other two methods since it has the smallest MAE (0.35). A 

detailed examination with the MAE shows that Fuzzy-SMA performed well with the 

impervious surface, e.g. the commercial or industrial area (0.06), residential area (0.05), 

and transportation area (0.09). The best fraction is associated with the barren/soil, having 

the smallest MAE (0.01). A possible explanation could be that most of the training 

samples for barren/soil are mixed with vegetation, especially for the “fragmentized” 

grassland. The Fuzzy-SMA accounts for the fractions in dealing with the training 

samples, thus reduces the signature confusion between the vegetation and soil. 
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TABLE 10 COMPARISONS OF MAE FOR THE FUZZY-SMA, PARTIAL-
FUZZY, LINEAR SMA AND MAXIMUM LIKLIHOOD CLASSIFICATION 

 
Accuracy 

Assessment residential commercial 
or industrial transportation grassland woodland barren 

or soil overall

MLC 0.48 0.08 0.25 0.17 0.12 0.04 1.15 
Linear 
SMA 0.15 0.17 0.20 0.17 0.13 0.14 0.96 

Partial-
Fuzzy 

0.13 0.10 0.28 0.17 0.14 0.46 1.27 MAE 

Fuzzy-
SMA 0.05 0.06 0.09 0.06 0.08 0.01 0.35 

 

 

Table 10 shows the cross-tabulation matrix for the MLC, Linear SMA, Partial-

Fuzzy, and Fuzzy-SMA. The diagonal numbers in the matrix were underlined to highlight 

the agreement between the classified results and empirical map. Obviously, Fuzzy-SMA 

showed an obvious improvement in the results with the highest overall accuracy 

(82.11%) and Kappa (77.33%). Specifically, Fuzzy-SMA has the highest agreement in 

the commercial / industrial area (11.63%), transportation (26.83%), and woodland 

(16.40%). 
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TABLE 11 THE CROSS-TABULATION MATRIX FOR THE MLC, LINEAR 
SMA, PARTIAL-FUZZY, AND FUZZY-SMA 

 
E M P I R C I A L   M A P 

 residential commercial 
or industrial 

transportation grassland woodland barren 
or soil 

17.77 3.73 20.30 8.77 15.90 0.70 
11.84 1.71 3.86 1.83 1.51 0.11 
9.15 0.25 2.28 1.37 0.66 0.01 

residential 

16.17 0.07 0.37 1.35 1.09 0.09 
0.13 6.20 1.48 0.38 0.29 0.54 
2.05 5.26 3.30 1.71 3.69 0.03 
0.01 3.51 0.89 0.35 0.09 0.00 

commercial 
or industrial 

0.45 11.63 1.78 2.19 0.92 0.26 
0.00 1.53 6.02 0.64 0.13 0.17 
0.23 0.70 12.12 0.72 1.33 0.13 
0.01 0.37 1.39 0.10 0.02 0.00 

transportation 

0.98 0.26 26.83 2.81 1.98 0.47 
0.03 0.01 0.34 6.73 1.07 0.15 
1.20 0.98 2.32 10.36 2.18 0.04 
0.07 0.03 0.44 4.04 0.22 0.00 

grassland 

0.10 0.00 0.03 10.07 0.71 0.14 
0.00 0.00 0.00 0.00 3.48 0.00 
0.73 1.61 2.32 0.64 9.35 0.13 
2.05 0.40 4.52 4.31 14.68 0.11 

woodland 

0.31 0.01 0.40 0.85 16.40 0.10 
0.05 0.63 1.27 0.77 0.24 0.57 
1.96 1.82 5.52 1.96 3.07 1.71 
6.77 7.53 19.85 7.08 5.41 2.04 

 
 
 
 
 

C 
L 
A 
S 
S 
I 
F 
I 
E 
D 
 
R 
E 
S 
U 
L 
T 

barren or soil 

0.00 0.06 0.00 0.07 0.03 1.02 
Overall Accuracy: MLC (40.77); Linear-SMA (50.65); Partial-Fuzzy (34.81); Fuzzy-SMA (82.11) 

Kappa: MLC (27.85); Linear-SMA (40.82); Partial-Fuzzy (26.76); Fuzzy-SMA (77.33) 
 

Note: The MLC gives the upper number in normal font, the Linear SMA gives the second number in bond, 
the Partial-Fuzzy gives the third number in italics, and the Fuzzy-SMA gives the fourth number in bond 
and italics. 

 

Further analysis on the cross-tabulation matrix suggests that there are still some 

drawbacks with the sub-pixel classification methods. In the cross-tabulation matrix, the 

improvement from the MLC to the Linear-SMA mainly can be found in the 

transportation (from 6.02% to 12.12%), grassland (from 6.73% to12.36%), and 

barren/soil (from 0.57% to 1.71%). These classes usually have a distinct spectral 
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characteristic. Other classes, such as the residential and commercial/industrial, due to the 

spectral confusion, obtained even worse results with the Linear-SMA. 

A regression analysis was carried out between the actual class fractions and 

estimated fractions for the three models (Figures 21-24). The distance that the test 

samples deviate from the standard line (y=x) was then used to assess the closeness 

between the actual proportions and estimated proportions of each class. The total distance 

(∑D ) for each class was also shown in each plot. The closer the test samples to the line 

y = x, the better the estimated result will be. In the regression relationships observed in 

the MLC model (Figure 21), a number of fractions of landscape classes are estimated as 

either 0 or 1, especially for the commercial or industrial and transportation, which 

indicates that the conventional “hard” MLC approaches are ineffective for mapping urban 

internal structures, especially when using the coarse resolution image. 
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Fig. 21. Regression relationships for the 30 test samples between the estimated fraction 
using MLC and the “actual” fraction digitized from the IKONOS image 
 

In contrast to the MLC method, the Linear SMA has largely alleviated the 

extreme situation of having either 0% or 100% fractions. A much clear correlation can be 

discerned between the estimated and actual fractions (Figure 22). However, the 

regression line thus formed shift way from the standard line. As previously discussed, 

such situation may be a result of the spectral similarity among urban landscape classes. 

Although many researchers have found the SMA is an effective approach in 

characterizing urban landscape (Lu and Weng 2004; Wu 2004), few endmembers (e.g. 

three or four surface covers) were usually the cases in their studies. When more 

endmembers were designated in urban area, this method will easily reach its limit due to 
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the spectral closeness and overlap. The correlation between the estimated fraction using 

the Partial-Fuzzy and actual fraction from the IKONOS is shown in Figure 23. Although 

the Partial-Fuzzy has an improvement over the MLC, most classes still have zero 

fractions in several test plots. Therefore, we can conclude that from the MLC to the 

Partial-Fuzzy method, there is some, but not enough, improvement for the urban 

landscape classification. 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Regression relationships for the 30 test samples between the estimated fraction 
using Linear SMA and the “actual” fraction digitized from the IKONOS image 
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Fig. 23. Regression relationships for the 30 test samples between the estimated fraction 
using Partial-Fuzzy and the “actual” fraction digitized from the IKONOS image 

 

Compared to the MLC, Linear SMA, and Partial-Fuzzy, Fuzzy-SMA has 

achieved a promising result with the smallest overall distance to the standard line (Figure 

24). The best classification result using Fuzzy-SMA was observed in the barren/soil and 

residential area, with total distances as 1.80 and 6.60, respectively. The test samples were 

much closer to the standard line in the Fuzzy-SMA, indicating that the Fuzzy-SMA 

method gives the most accurate estimation of the landscape composition in this study 

area. 
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Fig. 24. Regression relationships for the 30 test samples between the estimated fraction 
using Fuzzy-SMA and the “actual” fraction digitized from the IKONOS image 

 

 

Conclusion 

 Using moderate resolution satellite images, traditional “hard” classification is 

usually inappropriate for urban landscape analysis since multiple class memberships exist 

within one pixel. In this dissertation, we developed a Fuzzy-SMA method to estimate the 

subpixel fractions for urban landscape and the performance was compared to Linear 

SMA, Partial-Fuzzy, and MLC methods. The same sets of training and test samples were 

used in these methods based on IKONOS data. Previous studies proved that the SMA and 
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Partial-Fuzzy were effective in the urban classification, especially when addressing 

fuzziness in the training and testing samples. However, the straightforward application of 

Linear SMA was not satisfied when the number of endmembers goes over four using TM 

images. Conversely, we propose to carry out SMA in the first stage and serve its result in 

the calculation of fuzzy mean and fuzzy covariance, followed up with a fuzzy 

classification to derive the final fractions. It turns out that this Fuzzy-SMA performs 

consistently better than the MLC, Linear SMA, and Partial-Fuzzy. 

 For most subpixel classifications, endmember selection is still a critical step 

towards the final success. Various unmixture methods are vulnerable with an 

inappropriate identification of pure endmembers. This is particularly true without having 

a higher spatial resolution reference image. Moreover, most SMA studies only choose 

three or four endmembers, i.e. VIS models developed by Ridd (1995) and Wu and 

Murray’s SMA models (2003). This circumvents a finer characterization of the urban 

landscape since it usually has various surface types. 

 Shade, caused by tall buildings or trees, is an inevitable part of urban area, 

especially in the developed area. In this research, we classified it into barren and soil 

instead of treating it as a separate endmember. This simplification adversely influences 

modeling results, e.g., barren and soil is overestimated and commercial/industrial area is 

underestimated. In the future research, we will incorporate the shade as a single 

endmember to reduce the error within other classes. 

 Although the Fuzzy-SMA in this study achieved considerable improvements in 

the urban landscape classification, the exact location of each endmember within one pixel 

is still unresolved. To locate each endmember, we could incorporate the context 
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information from its surrounding pure pixels. How to combine this knowledge in a fuzzy 

classification to develop a more sophisticated soft method is still an interesting research 

topic. 
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CHAPTER VI 

SPATIAL-TEMPORAL URBAN MODELING 

Introduction 

Increasing awareness about the importance of urban development and its effect on 

the environment is stimulating an improvement in the current methods to better 

understand and predict the evolution of urban landscapes (Turner 1987). One of the 

greatest challenges in designing effective models is that their performances are often 

limited by the availability of high-quality data. Modern remote sensing techniques 

provide rich and efficient data, however, the capability to interpret and use these data has 

not kept the pace with our ability to generate them. Moreover, considerable uncertainty 

continues to exist in choosing data sources with the appropriate spectral and spatial 

resolutions. In other words, a fundamental problem confronted by urban researchers is the 

difficulty in finding an effective model with the appropriate data to represent urban 

changes and predict its future patterns.  

The motivation to model urban landscape dynamics arises from the process of 

examining where, what, and to what extent landscape change has occurred, and 

furthermore, the need to understand how and why the changes can occur (Weng 2002; 

Yang and Lo 2002). The Cellular Automata (CA) model, introduced by Tobler in 1979, is 

one of the most powerful spatial dynamics techniques used to simulate a complex urban 
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system (Batty and Xie 1994). The CA model allows researchers to view the city as a self-

organizing system in which the basic land parcels are developed into various land use 

types. The model begins with a homogeneous cell-based grid and adjusts itself through 

the transition rules derived from a local spatiotemporal neighborhood. These make the 

CA model suitable to simulate complex and hierarchical structures since more unknown, 

immeasurable spatiotemporal variables can be incorporated and manipulated in this 

model. Wu (1998) combined the multicriteria evaluation (MCE) and GIS into the CA 

model to define the transition rules in a visualized environment. Li and Yeh (2000) 

extended the CA model to a constrained CA model within a grid-GIS system. Cecchini 

and Viola (1990) applied simple decision rules in the CA model to predict the complex, 

large-scale structure in the urban growth process. The advantages of the CA model in 

simulating urban spatial process and dynamics (Hillier and Hansen 1984; White and 

Engelen 1993) have been widely documented because the theoretical abstraction of the 

CA model and the practical constraints in the real world can be easily related (Batty and 

Xie 1994; Clarke and Hoppen 1997; Wu and Martin 2002). 

Another critical advantage in CA simulation is the ability of the model to 

incorporate proper parameters or weights to model the alternative socioeconomic states in 

the model development (Clarke and Gaydos 1998; Li and Yeh 2000). With better 

computer techniques, the CA model is also able to explore more complex human 

behavior through defining different transition rules (Li and Yeh 2000; Wu and Martin 

2002). However, the tension, between the simple local transition rule in CA models and 

the complex, unpredicted sociopolitical changes in urban landscapes, still remains. The 
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ability of most CA models to correlate socioeconomic factors with the urban 

development process is still weak.  

Modeling cities using CA is virtually impossible without using large-scale data 

sources such as historical maps (Clarke and Hoppen 1997), historical land use records 

(Batty and Xie 1994), urban land use maps (White and Engelen 1993), and remote 

sensing images (Wu and Webster 1998). In this context, integrating high quality data into 

models becomes important. Unfortunately, researchers gave more attention to the model 

itself than the choice of appropriate data sources for the model. In this chapter, we 

developed two sets of typical CA landscape models. One is based on the classification 

result from the traditional Maximum Likelihood Classification, and the other is based on 

the fuzzy classification result from the Fuzzy-SMA (Chapter V). Daqing’s simulation is 

only based on the hard classification result given the data availability and its practicality. 

For Houston, the fuzzy membership will be incorporated into the CA model to represent 

the urban development under the pixel level and to test whether the fuzzy logic function 

can improve the defining transition rules in an urban CA model. 

    

Data Preparation 

Multi-temporal Hard Classification and Fuzzy Classification 

 The landscape maps for the model’s development and calibration came from the 

same data source as Chapter II. For Daqing City, only the hard classification results 

(Figure 9B) are used in the model prediction. For Houston, we assembled landscape maps 

from hard classification (MLC) and soft classification (Fuzzy-SMA) from 1976 to 2000. 
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Figure 25 shows the soft classification results using Fuzzy-SMA from 1976 to 2000 for 

Houston.  

 

 

 

 

 

 

 

 

 

Fig. 25. Fraction images of Houston using Fuzzy-SMA in 1979 1990, and 2000 
 

Ancillary Socioeconomic Data 

 We collected the socioeconomic data for Houston on the block level. Four 

socioeconomic variables were used: population density, house density, road density, and 

distance to highways. All data were collected from the official website of the U.S. Census 

Bureau (U.S. Census Bureau 2000).   

 

Methodology 

General Definitions of the CA Model 

A CA model was developed to investigate the scenarios of future urban land 

transformations in two cities, Houston and Daqing. This model started on a 15-meter 

grid, initially rescaled from landscape maps for cities. The transition rules were applied to 
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all cells at the same time, and then the whole grid is updated at the annual iteration. 

Transition rules and time are the real engines of change in the CA, which specify the 

cell’s behavior between time-step evolutions to determine the future status of cells. Four 

factors control the behavior of the system: diffusion factor j,iN , transition coefficient j,iM  , 

socioeconomic factor j,iSE , and current state of cell j,iS .  To determine the state of a cell 

in a certain time period, the simulation function can be written as: 

(6.1)                    t
j,iSj,iSEj,iM

t
j,iN SaSEaMaNa1t

j,iS ×+×+×+×=+  

Where t
jiN , denotes the diffusion factor regarding its neighborhoods, jiM , denotes 

the Markov transition rules, j,iSE denotes the socioeconomic status of the cell and its 

neighborhoods, and t
jiS , represents the cell’s state at time t at the location (i, j). The 

coefficients for these variables are calibrated through the Genetic Algorithm. The 

calibration will be discussed in the next section. 

For the self-organizing CA model, the first step is to define a way to represent the 

neighborhood status in a two-dimensional grid. In this research, we adopted a 

conventional 3 ×3 Moore’s neighborhood (Figure 26) to identify and calculate the 

diffusion factor t
jiN , . The diffusion factor of the observed cell, therefore, directly relates 

to the ratio of the observed class to its total amount of neighbor cells. The effect of 

neighbors can be calculated as: 

(6.2)                                                
∑

=
j,i

j,i
j,i n

n
N  

Where in is the total number of class i surrounding the observed cell j. 
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Fig. 26. The cellular space of simulated land use 
 

The Markov transition was used to model landscape changes in understanding and 

predicting the behavior of complex systems (Baker 1989; Weng 2002; Fortin et al. 2003) 

using discrete state spaces. In this research, the Markov transition probabilities were 

derived based on two assumptions. First, we supposed that the landscape change was 

stochastic, as opposed to deterministic, and that the landscape distribution at a given time 

was the independent state of the Markov chain. Secondly, we assumed all cells in one 

block had the same transition probability. The transition probabilities P were derived 

from the landscape transitions occurring on the census block as: 

(6.3)                           ∑∑
==

==
k

1k m

mn

1i
ijm nk

jiPjiPnjiNjiP
*

),(),(;/),(),(  

Where N (i, j) is the observed landscape change during the transition from state i 

to j, and nij is the number of years between time step i and time step j, and total years is m.  

  A third factor, the socioeconomic factor, includes four variables: population 

density, house density, road pattern, and distance to highways. We calculated the 
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population density (Figure 28a), house density (Figure 28b), road density (Figure 28c), 

and the distance to highways (Figure 28d) for each block (Figure 27), and then assigned 

those values to each cell located in the corresponding block. The difference of 

socioeconomic values between the observed cell and the neighbors was used to measure 

the socioeconomic factor as: 

(6.6)                                  
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Where jiSE , is the standardized score at location (i, j), n
jid , is the different value in 

four variables between the observed cell and its neighbors, and n is the total number of 

neighborhood cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  98     

  

 

 

 

 

 

 

 

 

Fig. 27. Census blocks in Houston 
 
 

  

 

 

 

 

 

 

 

Fig. 28. A Visualization of the socioeconomic value in Houston 
 

 

Obviously, different socioeconomic factors vary in the importance of their impact 

on urban land use and land cover change. In order to find the relative importance of each 
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socioeconomic variable, I invited 20 experts to assign weight to each variable using an 

index ranging from 0-10, and then calculated the average value of their ratings (Table 12). 

 

TABLE 12 INDEXES OF WEIGHTED THE SOCIOECONOMIC VARIABLES 
 

Houston Population 
Density 

Road 
Density 

Distance to 
Highway 

House 
Density 

Barren / Soil 3.67 3.50 3.40 4.00 
Industrial / 
Commercial 

8.80 8.17 8.42 7.33 

Grassland 3.18 2.75 3.36 4.90 
Residential 9.46 8.08 6.25 8.92 
Transportation 7.66 9.00 8.95 6.82 
Woodland 2.82 2.58 3.18 4.70 

 
Note: The weight value range is from 0-10. The higher the weight, the more affect the socioeconomic 
variable will have on the urban land use class. 

 

Model Calibration and Validation 

 A critical issue in the CA model is the provision of proper methods to calibrate 

the CA model to find suitable parameter values. In this research, Genetic Algorithms (GA) 

was used for the model calibration. The original GA was designed to optimize solutions 

based on natural selection and natural genetics (Goldberg 1989). In general, the GA 

operates on a set of coded individuals, and each one of them receives a fitness value 

using the coding of their genes (Mertens et al. 2003) to produce a new population. The 

individuals with a higher fitness value are more likely to be selected over others in the 

evolutionary process and the new population is most likely to have a higher average 

fitness than the old one (Bornholdt 1998).  

Figure 29A depicts how the GA is used to calibrate the CA model. In this research, 

the fitness is the discrepancy between the observed data and the model-predicted result. 

The observed data is a set of maps that were classified from Landsat TM images on the 
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following dates: November 5, 1984; January 8, 1985; July 20, 1990; October 27, 1998; 

October 6, 1999; and November 9, 2000. In order to calibrate four major factors in our 

CA model, a code was obtained for each parameter by randomly selecting from a set of 

encoded numbers (Figure 29B). The specific calibration process using the GA is as 

follows: (1) randomly select an encoded parameter for each factor; (2) run the CA model 

with these parameters; (3) compare the cells simulated in the CA model with the cells 

located in the empirical maps; (4) choose the simulated data with the highest fitness as 

the highest probability parents to generate the next generation.  

 

 

 

 

  

 

 

 
Fig. 29. The calibration for CA model using Genetic Algorithm. A: The calibration 
process. B: The parameters values for the variables in the CA model 

 

Validation of a landscape dynamics model is usually carried out by examining the 

ability of the model to recreate the spatial pattern of landscape change, preferably at the 

pixel level. In order to validate the model, the simulated output is compared to the 

empirical map in the same year (Pontius JR et al. 2001). There are two stages in the 

validation: a visual inspection and a quantitative evaluation. First, we rasterized the 

simulated land use maps and compared them with the empirical maps. Due to the 

High Normal Low
3 2 1 
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GA 
(Parameters) 

Empirical 
Data 



  101     

  

availability of images and data, we adopted the classified image in 2003 as an empirical 

map for Houston and a 2001 map for Daqing, respectively. A black-and-white image was 

generated to denote the distribution of error. Meanwhile, the error matrix was built up to 

show the accuracy of each class.  

To validate the fuzzy model result, the IKONOS acquired in 2002 were utilized as 

a ground reference. Two hundred test plots with 90  90 m2 were selected randomly from 

the simulated result and the digitized IKONOS image. Two types of error measurement, 

root-mean-square error (RMSE) and systematic error (SE) were used to evaluate the 

accuracy of the model’s results. 
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Where Po is the percentage of each class of the model’s simulated output, Pc is the 

percentage of each class of the empirical map, and n is the number of classes. A 

“successful” simulation occurs when the model’s simulated output best matches the 

empirical land-use map with the least RMSE and SE.  
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Results and Discussions 

Initial prediction from the Markov Chain model 

Although water is one of the most important landscape types in the landscape 

pattern analysis, it is unlikely to have a significant change and effect on the overall 

landscape pattern change. In this research, all water areas in three periods were masked 

out first. Figure 30 shows the mask layer used for Houston and Daqing.   

 

 

 

 

 

 

 

Fig. 30. The layer used to mask out the water for Houston and Daqing 
 

Since our model is based on actual observation from the last 30 years for both 

Houston and Daqing, the temporal transition probability matrix is calculated using 

equation 6.3, by accumulating the periods 1979 – 1990 and 1990 – 2000 for Houston and 

1976 – 1990 and 1990 – 2000 for Daqing. The yearly transition probability matrix is 

shown in Table 12.      

 

 

 

 



  103     

  

TABLE 13 YEARLY TRANSITION PROBABILITY (%) MATRIX FOR 
HOUSTON AND DAQING 

 
Houston 

(1976 - 2000) residential industrial / 
commercial grassland woodland barren / soil 

residential 97.97 0.75 0.71 0.36 0.19
industrial/commercial 1.70 97.55 0.23 0.03 0.40
grassland 2.28 0.55 96.05 0.72 0.38
woodland 1.02 0.24 1.20 97.25 0.26
barren/soil 2.23 2.34 1.36 0.17 93.90

Daqing 
(1979 - 2000) urban agriculture grassland woodland wetland saline 

urban 94.93 1.37 2.31 0.31 0.10 0.71
agriculture 0.70 94.57 3.25 0.83 0.13 0.42
grassland 1.15 2.33 94.55 0.58 0.26 0.86
woodland 0.40 3.69 3.06 92.07 0.41 0.22
wetland 0.40 1.05 1.05 1.29 95.32 0.29
saline 1.81 1.19 3.15 0.20 0.08 92.98

 

 Using the yearly transition probability matrices in Table 12 and equation 1, we 

predicted the future pattern of Houston and Daqing and compared the simulated 

landscape maps to the empirical landscape map. From Table 13, we can easily see that 

the Markov Chain model is valid for predicting the future pattern, especially for the class 

which has obvious trends, e.g. the residential area in Houston: agriculture, woodland, and 

wetland in Daqing.    
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TABLE 14 THE COMPARISON OF SIMULATED RESULTS WITH THE 
EMPIRICAL MAP 

 
Houston 
(2003) Residential Industrial / 

Commercial Grassland Woodland Barren/soil  

Empirical results 41.80 16.06 16.19 15.43 9.45 
Predicted results 42.47 17.22 20.34 14.26 5.02 

Daqing 
(2001) urban agriculture grassland woodland wetland saline

Empirical results 14.47 25.72 27.20 10.11 6.28 8.00
Predicted results 13.69 25.80 32.59 8.93 5.52 8.30

 

 As a demonstration of the change pattern in these two cities, we generated future 

landscapes for the years of 2010, 2030, and 2050 (Table 14). A notable trend is 

discernible: the sprawl of the cities and oil fields will result in grasslands being cultivated 

to agriculture or degraded to barren area. As sprawl continues, many woodlands and 

wetlands will be converted into grassland, resulting in a more fragmented landscape.  

 

TABLE 15 THE PREDICTED RESULTS FROM THE MARKOV CHAIN 
MODEL IN 2010, 2030, AND 2050 

 
Houston Residential Industrial /

commercial Grassland Woodland Barren/soil 

2010 43.70 18.54 18.72 13.60 4.91 
2030 45.28 20.96 16.53 12.21 4.80 
2050 45.80 22.21 15.78 11.40 4.79 

Daqing Urban Agriculture Grassland Woodland Wetland Saline 
2010 14.02 24.75 31.53 8.42 5.18 8.28 
2030 14.50 24.57 31.48 8.25 5.00 8.41 
2050 14.64 24.55 31.49 8.21 4.94 8.44 

 

 Although the Markov Chain analysis is able to predict the general development 

trends in these two cities, it is unable to simulate the exact location of the changes. The 

CA model was then applied after that to detect the relationship between landscape change 

and its location.   
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The CA Model Prediction Using the Hard Classification 

 This CA model took into account three factors: the Markov transition probability, 

socioeconomic variables, and each cell’s neighbors. For Houston, we parameterized the 

Markov transition probability and socioeconomic variables on the block level. For 

Daqing, we only considered the global Markov transition probability and neighbor 

classes due to a lack of available data for Daqing. The distributions of landscape classes 

in these two cities are shown in Figure 31 and Figure 32. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. The simulated landscape pattern for Daqing. Note: T means the number of years 
since 1979  
  

Compared with the initial status of Daqing (T = 0), its development is not as 

obvious as it should be, especially in the urban areas. As shown in Figure 31, the future 

changes of Daqing were characterized by a loss of woodlands due to an increase in 
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cultivated agricultural lands. Without other ancillary socioeconomic data, the urban area 

in Daqing has no observable sprawl. This might be the result of its small area and small 

boundary in this class, and further indicates the importance of the behavioral aspect of the 

CA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32. The simulated landscape pattern for Houston. Note: T means the number of years 
since 1976 
 

Figure 32 shows the initial state and the simulated patterns of Houston. With the 

parameterized socioeconomic variables, Houston’s model is much better than Daqing’s. 
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The residential and industrial/commercial area obviously sprawled greatly from the 

center of city. The evident urbanization process was found in the suburban areas, which 

was driven by the economic development in Houston. In sum, the Houston results 

indicate that the ability of the CA spatial model to include the socioeconomic variables 

makes it especially suitable for simulating the evolutions of urban landscapes. 

 

 

   

 

 

 

 

 

 

Fig. 33. Maps showing the differences between the predicted map and the empirical map 
 

 By comparing our predicted results with the empirical maps, we were able to 

show the errors found in the predicted map. Figure 33 illustrates the differences between 

two maps. Obviously, the predicted results for Houston matched the empirical maps 

much more closely than did the results of Daqing. In Houston, the most accurately 

predicted classes are residential and industrial/commercial areas. The majority of errors 

were found in the woodlands and barren/soil classes in the suburban area. It is easy to 

understand this result since the natural landscape will be least affected by the 

socioeconomic variable. In Daqing, most of the errors were found in urban areas. Since 
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only the relationship between neighboring cells was considered in the CA model of 

Daqing, this model has less feasibility when considering the human effect on the model 

development.    

 For further validation of the difference between the model’s simulated and 

predicted results, the confusion matrix was developed and shown in Table 15. The value 

of user’s accuracy and producer’s accuracy represents the accuracy for each class. For 

example, in Houston, the best predicted class is the residential area and the worst 

predicted class is barren / soil. For Daqing, the agriculture performed best in all classes, 

while the woodland has the smallest value in accuracy. The analysis of the model 

validation certifies that the appropriate ancillary parameters are necessary for the CA 

model to derive a solid result. In fact, the value of the simulation approach lies in its 

exploratory nature, which enables the improvement of models by the use of additional 

variables.   
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TABLE 16 CONFUSION MATRIX AND THE MODEL VALIDATION FOR 
BOTH HOUSTON AND DAQING 

 
EMPIRICAL MAP 

Houston Residen
tial 

Industrial / 
commercial

Grass- 
land 

Wood- 
land Barren / soil 

User’s 
Accuracy 

(%) 

Producer’s 
Accuracy (%) 

Residential 1756004 257388 230903 201696 175892 66.97 77.32
Industrial/ 
commercial 123890 467825 34540 7576 110447 62.86 54.56

Grassland 320672 109304 518946 209275 185157 38.63 59.60
Woodland 68802 15960 84838 419194 28620 67.90 50.02
Barren/soil 1688 6949 1544 357 7258 40.78 1.43

Overall Accuracy (%): 59.30; Kappa: 0.43

Daqing Urban Agriculture Grass- 
land 

Wood- 
land Wetland Saline 

User’s 
Accuracy 

(%) 

Producer’s 
Accuracy (%) 

Urban 125104 57382 67136 29579 4769 25271 40.46 17.21
Agriculture 246039 769932 494941 221726 29128 88788 41.61 57.05
Grassland 286168 397967 684850 196925 32807 229077 37.47 49.28
Woodland 19636 46507 45809 15558 21911 4673 10.10 3.09
Wetland 17387 58155 56673 25529 101491 10181 37.67 52.69
Saline 125104 19638 67136 29579 2495 25271 18.77 6.54

P 
R 
E 
D 
I 
C 
T 
E 
D 
 

R 
E 
S 
U 
L 
T 

Overall Accuracy (%): 37.89; Kappa: 0.16
 

 

CA Model Prediction Using the Fuzzy Classification 

 In this soft CA model, we calculated the average transition probability for each 

pixel using the fuzzy classification result for 1979, 1990, and 2000. The results of this 

fuzzy CA model are given in Figure 34 as proportion maps of each class. One of the 

innovative features of our soft CA model is the addition of information from the sub-

pixel level. It is apparent that the short-term predictions are more reliable than the long 

term predictions. The difference between hard prediction and fuzzy prediction is 

primarily related to the transportation-based growth. Obviously, the fuzzy urban growth 

is visually presented as the expansion of residential areas and transportation. Taking in 
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road parameters and transportation landscape, most transportation-based growth is 

captured.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Fig. 34. The simulated landscape pattern of Houston from fuzzy classification 

      

Another obvious difference is the fast shrinkage in grasslands and woodlands, 

especially the woodlands. Most likely, the outward expansion of residential or 

industrial/commercial area is the most predictable type of growth (Clarke and Gaydos 
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1998). Moreover, the homogenous landscapes, such as woodlands or grasslands, have 

less accuracy than the heterogeneous landscapes in the sub-pixel classification. When a 

new expansion runs in a repeated model, these classes could easily be turned into “an 

isolated island”, a site gradually shrinking over the time during the urbanization process. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 35. Hardened map from the fuzzy CA model 
 

The fuzzy prediction results were hardened and compared with the hard CA 

results. In Figure 35, we can see that the urban pattern is more heterogeneous than the 

one predicted from the hard classification. Furthermore, we can note that the evolution of 

urbanization direction in Houston partially followed the direction of the major highways. 

The woodlands and grasslands are gradually transformed into the residential areas. All 

these changes turned the downtown area into a more fragmented pattern. 
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A further comparison between the fuzzy prediction and hard prediction in the 

error assessment is shown in Table 17. The smaller the error indices are, the more 

accurate the predicted results. Fuzzy predictions have a smaller value in both SE and 

RMSE. The most improvement in the fuzzy prediction is in the residential and 

transportation areas which have a much smaller value in the SE. These results are easy to 

understand because the fuzzy classification always derives the proportion of the 

residential area, while the hard classification always classifies one whole pixel into 

residential areas. In the real world, it is impossible to find the house as big as one pixel of 

the Landsat image. The fuzzy prediction has a less accurate result in barren/soil and 

industrial/commercial areas. For the woodland landscape, even though it has a large error 

in the northeastern corner, the total error of fuzzy prediction is still smaller than the hard 

prediction. One possible reason for this is that the trees planted around the residential 

area were classified out as a proportion from the residential area and then this proportion 

was applied to the model.   

 

 

TABLE 17 THE COMPARISON OF ERROR ESTIMATION OF FUZZY 
PREDICTION AND HARD PREDICTION 

 
Error Assessment 

(%) barren/soil industrial /
commercial grassland residential transportation woodland Overall 

SE 7.99 13.47 20.23 5.23 3.95 10.43 61.3Fuzzy 
prediction RMSE  12.13 18.80 30.94 16.16 19.44 27.19 124.66

SE  1.93 9.47 24.07 49.36 17.06 19.62 121.51Hard  
prediction RMSE 17.39 26.92 31.34 59.83 24.35 28.70 188.53
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Conclusion 

 We use the spatio-temporal CA model of urban landscape patterns using multi-

temporal TM and MSS imagery enabled us to characterize the internal structure of 

landscapes and monitor the landscape dynamics for both Daqing and Houston. For 

Houston, we also explored the potential of using socioeconomic variables to detect how 

human forces affect the urban spatial pattern. Moreover, incorporation of the fuzzy 

classification results for representing spatial information in a sub-pixel level proved to be 

a practical effective improvement for the CA model. 

 The CA model, coupled with the Markov transition probability, has indicated the 

capability of trend projection for landscape change. This spatio-temporal model provided 

not only the quantitative description of change in the past but also the direction and 

magnitude of change in the future. However, based on the experimental results and 

exploratory analysis, several limitations still exist within the current study:  

o Since the modeling process involves the usage of data from multiple sources, 

the accuracy of prediction result will be closely related to the individual 

accuracy with in each type of data, especially for the fuzzy classification. The 

development of a robust method to incorporate data in different spatial 

resolution is still an interesting issue.  

o Although the Markov transition probability is calculated on the census block 

level, it is stationary and unable to accommodate unpredictable influence 

variables, such as the climate, policy, and human disturbance. In addition, the 

pace of landscape change was not usually steady over the entire period of time. 
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o In this research, we supposed the relation between socioeconomic factors, 

neighborhood effect, and Markov transition probability is linear and 

deterministic during the calibration. Finding an exact dynamic coefficient 

between them is still an intricate study in urban modeling.  

o For the fuzzy classification result, the exact location of proportion for each 

class still cannot be simulated in the CA model. An examination on the 

relationship between landscape change and its location is recommended for 

future research. 

Currently, it is not fully conclusive that the CA model based on sub-pixel 

classification is inferior to the one based on pixel-level classification. It is still necessary 

to find more sophisticated methods applying to a series of varied landscapes to verify this 

new fuzzy model.  

Most urban landscapes have been influenced by human disturbance, resulting in a 

heterogeneous mosaic of natural and human-managed patches that vary in size, shape, 

and arrangements (Turner 1989). The landscape responses to human disturbances are 

important: however, they are difficult to assess because the landscape-level simulation 

involves numerous challenging experiments and hypotheses in the development of 

models. These hypotheses are always assumed to make the model easier to manipulate, 

leading to a more homogenous pattern in the predicted result. Thus, it is necessary to 

relate the homogenous analysis in the model prediction with the heterogeneous analysis 

in the quantitative landscape method for a comprehensive understanding of the 

urbanization process. In conclusion, thess urban studies show that by incorporating more 
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spatial algorithms into the prediction of landscape change, more accurate long-term 

landscape changes can be reproduced in the future.   
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CHAPTER VII 

SUMMARY AND FUTURE WORK 

Research Summary 

 The goal of this doctoral research is to develop a comprehensive comparison, both 

on pattern and process, between two typical economically petroleum-based cities using 

the extracted geospatial information from the satellite imagery. This study is structured to 

build a bridge between the remote sensing research, urban pattern characterization, and 

modeling of spatial processes. Although urban study is a very popular topic, the 

integrative perspective and methodology make this research unique since relatively little 

work has been reported in the literature to exploit two cities with similar economic 

history using both the remote sensing data, spatial analysis method, and urban landscape 

model.   

Specifically, this dissertation began with the research problem, study objectives, 

and research design in Chapter I. In Chapter II, a variety of background material was 

presented on the urban geographical research. Given the development of complexity and 

variability in urban infrastructure, classic urban methods became unrealistic to represent 

and predict urban patterns and dynamics. The data requirements in the remote sensing 

application, as well as the classification methods, were discussed. Choosing well-suited 

imagery and methods for urban research is significant. Following the discussion of urban 
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remote sensing, a number of relevant quantitative methods on spatiotemporal urban 

patterns and processed were reviewed. Finally, current research challenges in combining 

the remote sensing with urban research were summarized. 

Chapter III presented the detailed physical environment and socio-economical 

status of Houston in United States, and Daqing in China. Since the main economical 

backbones of these two cities are petroleum and petrochemical industries, they have a 

similar history and economic system even though they are under different socio-political 

system. Considering the study size and data availability, we collected Landsat imagery 

from the 1970s to 2000 as our main data sources.   

Chapters IV, V, and VI are the core part of this dissertation. To distinguish the 

difference of landscape patterns between Houston and Daqing, a set of landscape ecology 

metrics with complementary ecological meaning were chosen in Chapter IV. This 

comparison of urban landscape patterns is of high importance not only because of the 

many applications for which they can be used, but also because the further research on 

the sub-pixel level is based on this pattern analysis. Obviously, Houston is a concentric-

zonal pattern based on one central business district (CBD) while Daqing is a multiple-

nuclei pattern. Based on the derived indices, a general trend of landscape change was 

revealed: Houston experienced the urban expansion by gradually replacing the grassland 

around the suburban area, whereas a mass of grassland and woodland was cultivated and 

taken over by agriculture and urban area in Daqing. 

A combined fuzzy classification and spectral mixture analysis (Fuzzy-SMA) for 

urban landscape classification in Houston were presented in Chapter V. In addition to the 

urban land cover classes identified by the pixel-based classifier, the 
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industrial/commercial and the transportation classes were classified out to further refine 

the landscape classification in highly dense urban areas. To facilitate fuzzy classification 

fully, the training sample was decomposed into proportion in the pixel level using 

spectral mixture analysis (SMA) to calculate the fuzzy mean and fuzzy covariance. This 

fully-fuzzy classification approach produced a higher accuracy than the maximum 

likelihood classification, linear spectral mixture analysis, and partial fuzzy.   

After the pattern analysis and image classification, we developed a CA model to 

monitor and predict the future spatial pattern for both Daqing and Houston in Chapter VI. 

The CA models, especially for the urban land use and land over, require the exploitation 

of image data in a span of time, at least ten to twenty years. Both the availability and 

quantity of data limit the feasibility of model development. Considering the feasibility, 

we only incorporated both the socioeconomic variables and fuzzy classification results in 

Houson’s CA model. Obviously, the sub-pixel classification provides more detailed 

information for the CA model and also improves the model accuracy, especially for the 

residential and transportation areas. 

 

Future Work 

 A systematic analysis and comparison of two petroleum-based cities from multi-

temporal satellite imagery have been developed in this doctoral research. I have shown 

how Houston and Daqing experienced a remarkable change in the last two decades and 

what is the possible change trend in the future. My methodology on the urban sprawl 

analysis, urban remote sensing, and urban modeling is not only applicable to the urban 

structure, but also to the other natural environments such as savanna or rainforest. 
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Building on the presented results here, there are a number of areas that can be 

further explored. In the future, I would like to develop a more advanced technique to 

combine the data fusion and fuzzy classification. Currently, the sub-pixel classification 

used only one data source, mostly Landsat images in this research. The fuzzy integral is 

an important technique for combining supplementary information from multiple remote 

sensing data sources. As with the traditional classification, the fuzzy classification is only 

based on the spectral information. More features can be explored in further research, such 

as spatial, textural, and contextual characteristics. Based on the segmentation techniques, 

these object-based features can then be used as additional data bands to the supervised 

fuzzy classification. 

The socioeconomic parameters of the urban model deserve additional attention 

given their importance in governing the model. A more detailed and systematic parameter 

could provide useful information from the human dimension. My potential research could 

be an establishment of the site-particular parameters, not only about its current status, but 

also the change trend which is dominated by the urban dynamic process.      

Developing more sophisticated function to model the uncertainty and ambiguity 

associated with the fuzzy classification and model development would prove quite 

interesting. Most landscape models lack an easy and accessible technique to perform a 

convincing model validation. Usually, most errors in the model come from two sources: 

input data or the model itself. Each of these accurate assessments would provide valuable 

insight into the influence of the data source on the model prediction. This information 

will likely have a significant influence on the model calibration and the chosen data for 

urban landscape models.  
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